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1. Introduction

The index theorems for classical elliptic complexes, i.e., de Rham, signature,
spin and Dolbeault complexes, are typical and substantial examples of the
Atiyah-Singer index theorem. Restricting to these classical complexes, the
heat equation method, which was first proposed by McKean- Singer [12] for the
de Rham complex and was accomplished by Patodi [13], is nowadays well-
known. This approach is based on the identity between the index and the
alternating sum of traces, sometimes called supertrace, of heat kernels. So the
problem is reduced to obtain the asymptotic expansion of the heat kernel. For
this, Patodi [13], [14] used the parametrix and then, Gilkey [6] (cf. also, Atiyah-
Bott-Patodi [2]) used the invariance theory and many researches followed.

Recently, J.-M. Bismut discussed this problem by using the stochastic
analysis, especially the Malliamn calculus. He computed the index theorem for
the twisted spin complex and his method is based on the splitting of the Wiener
space and the pinned Wiener process. Then S. Watanabe computed the index
theorem for the de Rham and the signature complexes ([9]) by a method some-
what different from Bismut's: He expressed the fundamental solution explicitly
by using the composition of the Dirac delta function and the Brownian motion
on a manifold, which is a typical generalized Wiener functional. Then he
applied a theory of asymptotic expansion for generalized Wiener functional, as
developped in [9], [16], to obtain in asymptotic expansion of the fundamental
solution. This method has an advantage that a formal Taylor expansion is
applicable. In this paper, following Watanabe's method, we give a probabilistic
proof of the Riemann-Roch theorem, i.e., the computation of the index of Dolbeault
complex with coefficients in a holomorphic vector bundle V:

where M is a compact Kahler manifold, Λ° +(M) and Λ° "(M) are spaces of
complex differential forms of degree (0, even) and (0, odd) respectively, V is a
holomorphic vector bundle and (? is the usual 5-operator obtained by a
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decomposition of the exterior differential d: d=d-\-d (see the section 2 for precise

definitions). Although the Riemann-Roch theorem is valid for any compact
almost complex manifold, we restrict ourselves to the compact Kahler manifold
because the local theorem is true only for Kahler manifold (cf. Gilkey [6], Re-
mark 3.6.1). This theorem was first proved in heat equation method by Patodi

[14].
Here is an outline of our approach. First we construct the fundamental

ft — —
solution of -- ΔF, where Δc

v=— (fiv+civ)2 For this, we apply the Feynman-

Kac formula to treat the term of multiplication operator appearing in a
Weitzenbϋck type formula. Then we can obtain the fundamental solution
explicitly by a generalized Wiener functional expectation. Secondly in order to
calculate the index, we must obtain a cancellation of the supertrace of this
fundamental solution and the Berezin formula is a main algebraic tool. This
combined with the asymptotic expansion of generalized Wiener functional,
enable us to obtain a cancellation at the level of functional before taking expecta-
tion, thereby compute the index.

Finally we explain the construction of this paper. In the section 2, we
give a Weitzenbόck type formula which is essential in constructing the funda-
mental solution. In the section 3, we express the fundamental solution by a
generalized Wiener functional integration. In the section 4, we obtain the
Berezin formula for the supertrace of Dolbeault complex. In the section 5,
we give the proof of the index theorem.

2. Weitzenbbck type formula

To fix notations, let us review the Kahler geometry. Let (M, g) be a com-
pact Kahler manifold of complex dimension n and (V, K) be a holomorphic
Hermitian vector bundle over M of fiber dimension k. We denote by T°°(V)

the set of all C°° sections of V. We use this notation for any vector bundle.
Let (zl, •••,#*) be a local holomorphic coordinate system for M and TCM=
TM®C be the complexification of the real tangent bundle TM. Writing z'=
xj'+iy}\ set

_ _ _ _ _ _ _ _
Qzj 2 \dxj 9// ' Qzj 2 \dxj Qyj /

Then TCM can be decomposed as follows;

TM= TM®T"M

where

, T»M = span
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Moreover, set

dz> = dxi+idy* , dz} = dxj—ίdyί ,

A^Λf) = βpanβWj-i , A? \M) = spanks'} ̂  .

Then also it holds that

A ίAf) = (Γ'M)* , Λ' 'tΛf) = (T"M)* .

We set,

Λ' «(M) =

Λ° *(M) =

Λ0 +(M) = θ Λ° *(M) , Λ° -(M) = φ Λ° «(M) .
? : even q : odd

We decompose the exterior derivative d as rf=3+U where

9: Γ"

We extend 5 to complex differential forms with coefficient V as follows;

3V: Γ-(A° f(M)® 7) ~

by

(2.1) of7(ω®^)

where ί is a local holomorphic section of V. This forms an elliptic complex
called twisted Dolbeault complex.

Take a local holomorphic section {s19 s2> *"> sk} of F. We assume that the
Riemannian metric g is extended to TCM as a Hermitίan inner product, i.e.,
complex linear in the first variable and conjugate linear in the second variable
(be careful that in some literature, e.g., Kobayashi-Nomizu [10], g is to be com-
plex bilinear). We set

- a ( 9 -̂  a - a ( 9 JLΛ~~ ~ ~ '

Further we can introduce a metric on the cotangent bundle which is naturally
defined from g. We also denote it by g and set

Then (g**) is an inverse matrix of (g^) in the sense that gj7i £**=δ* where δ/ is the
Kronecker delta: δ*=l forj—k and δy— 0 for /=(=&. Here and after we abbrevi-
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ate the summation sign for repeated indices. Similarly, taking a local

holomorphic section {sly s2, ••-, sk} of V, we set

and let (h**) be an inverse matrix in the sense that

h.ph* = Sί.

Let V7 be a connection on V such that

(unitary) h(Vv

x SΛ, sβ)+h(sΛ, V£ sβ) = Xh(sΛ, sβ) ,

for

(holomorphic) V* s = 0 for a holomorphic section s of V and

Such a connection exists uniquely and we call it the canonical connection on
V. With respect to this connection, we have the following formulas for the
covariant differentiation;

where

T"M is a holomorphic vector bundle. So let VM be the canonical connection
on T'M. Then we have similarly

Y7M 8 -p/ 9 —Λf 9 _
V y a? Γy*β? v

where

We extend VM to ΓCM and Λ° *(M) as usual. Then we have the following;

Vf ife* - Vf rf0Λ - 0 , Vf dzh = -Th

u dzl .

(cf. Kobayashi-Nomizu [10], II, Chapter IX). We note that the above con-
nection coincides with the Levi-Civita connection, since g is a Kahler metric.

Let d$:Γ~(ΛQ'9(M)®V-+Γ00(ΛQ'q-l(M)®V) be the formal adjoint of 5F,
i.e.,
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ί (̂ ω, ij) dvol = ( (ω, ^97) dvol for ω, v<=Γ~(Λ?'*(M)®V) .
«J M Ί M

Let Δκ=— (5y+(ϊι£)2 be the associated Laplacian of this complex. We shall get
the Weitzenbϋck type formula for Δv to solve the heat equation for Δc

v. Let
V=VM®l7+lΛ<>.*CΛf)®V7 be a connection on Λ°'*(M)® V. Let ext(dzs): Λ° p

(M)->AM+1(M) be defined by exterior multiplication, i.e.,

ext (d&) ω = dzj Λ ω for ω S ΛM(M ) .

Let int(ίfe'): Λ°^(M)->Λ0 ί~1(M) be defined by interior multiplication, i.e.,

y dzh =

In other words, int(ίfe') is the dual operator of ext(JF). Using these notations,
we put

V, ) .

Lemma 2.1. W^ AΛ^^ the following identity

(2.2)

Proof, (cf. Gilkey [6], p. 149) Both (5+5*)r and dv+3$ are invariantly
defined first order difϊeretial operators whose leading symbols coincide each
other and whose 0-th order symbols are linear in the 1-jets of the metric. For
each point, we can take a holomorphic coordinate and a holomorphic frame such
that the 1-jets of the metric vanish at the point (cf. Gilkey [6], Lemma 3.7.1

and Lemma 3.7.2). Therefore (5+g*)7=57+5f D

Next, let us define the curvature transformation as follows

RV(X, Y) = JVJ, v?]-Vfr,n on Γ~(F) for X,

where [X, Y]=XY—YX. This is valid for any vector bundle. Further we
define the curvature tensors as follows;

8 8 \ 8DΓ'Λί _
R > - 'Qza

τ>τ"u( 9 9 \ 9 _ na 9

W'βs'/βί. ~ "as"

Then, it holds that
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and

For an nxn complex matrix K=(K°ι), we define the derivation extension D[K]
eEnd(Λ° *(M)) as follows;

D [K] (dz'i Λ — Λ dz*p) = Σ d&i Λ
r=l

Then

Let ΩΓ/Jlί be a curvature form on Γ'M and (lr be a curvature form on V with
respect to the canonical connection. Then it holds that

Now we can state the Weitzenbdck type formula as follows

Theorem 2.2. It holds that

(2.3)

Proof. Take any #0eM and fix it. Since g is a Kahler metric, we can
take a holomorphic coordinate and a holomorphic frame near #0 so that

(2-4) £y*(#o) = δ/* , ί/ι//(*β) = ^//(^o) = 0 ,

(2.5) AΛ?(^0) = 8Λβ , A^ /^β) = A.#/(*o) = 0 ,

(cf. Gilkey [6], Lemma 3.7.1. and Lemma 3.7.2.). Then we have

(2.6) ext (d&) int (έte*)+int (έfe*) ext (̂ ) = SyA ,

(2.7) ext(rfg') ext(rfδ*)+ext(έίi*) ext(rfβ') - 0 ,

(2.8) int(έfeO int(Λr*)+int(έZ»*) int(ιfo') - 0 .

Here every term is evaluated at #0. This is valid throughout the proof. Hence,

^ = ext(rfz'*) V/ ext(έ/δ*) Vj-e
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ext(dzj) {ext(V7JzA)+ext(</zA) V/}

-ext(rfz') {i

+mt(dzj) {int(Vyί

txt(dzj) ext(rfzA) V/Vj— ext(rfz')

-int(dzj) txt(dzh) Vy

(since Γj,(*β) - 0)

) ext(dzh) (V/Vj-

Since the connection is canonical, it holds that

V,VA- V Λ Vy = 0 , v/Vj- V,V/ - 0 .

Hence we have

Therefore, using (2.6), we get

(d+3*)^ = -vyVy+ext(rfβ*) ίnt(ώr') (VyV5-

and

Averaging these,

- [int(ΛrO,

On the other hand,

Hence by Lemma 2.1,
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— - [int(<fe' ),

This is valid even for non Kahler complex manifold.
Further by uisng (2.6), we have

[int(«feO>

-2 Σ ^j/j
yφA

By Kahler condition, VM is torsion free, i.e., Γjfo=Γ?A, and hence
Moreover by noting (2.7), we get,

= -Ra-bjjext(dzb)mt(dza)

Thus we have

- , - .

= ^yί V, V,+

which completes the proof. Π

3. A heat equation for Δ^

In this section, we shall obtain the fundamental solution of the following
heat equation on Λ° *(M)<g)F:

(31) If (t,*) = *u(t

I Iimtι0u(t, w) = ξ (
to +z

Let U(M) be the unitary frame bundle of T'M. Let (C*)', (C*)" and
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be the canonical fiber of T'M, T"M and Λ* «(Λf), respectively. Let
y=ι be a canonical basis of (C*)' and {5y}J.ι be the conjugate basis. Let

and {5y} be the dual and conjugate dual basis, respectively. We introduce

the following representations p: U(n)-»U((Cn)') and β: U(ri)-+U(^*(C"}} by

p(u) Sj = u h j S h ,

where U(n) is the unitary group of degree n. Then

T'M = U(M) x P(C")' , Λ° *(M) = E/(Λf) X P

Λ Λ°'*(Cn) .

Similarly, let U(V) be the unitary frame bundle of V, {δJ ίLi be the canonical
basis of C*, Ck being the canonical fiber of V, and introduce the following repre-

sentation <r: U(k)-+U(Ch) by

σ(ιι) δΛ =uβ

Λbβ.

Then F can be represented as an associated vector bundle by this representation :

V= U(V)χσC
k.

Let U(M)+ U(V) be the U(n) X U(K) principal fiber bundle whose base is M and
fiber at z^M is Ug(M)x U2(V). Let ωM be the connection form on U(M)

for VM and ωv be the connection form on U(V) for VF. Then ω-ωMθωFeΓ°°

(Γ*(f7(M)+£7(F))®(U(n)eU(ft))) is the connection form on U(M)+U(V)for
V where tt(rc) is the Lie algebla of U(ri). We extend ω and the differential of

projection π* to be complex linear:

of: r(U(M)+U(V))

wj: Tc(ί7(Λί)+ί7(F))

We define the complex canonical horizontal vector fields Llt •••, LΛ^T°°(TC(U
(M)+C/(F)))sothat

f32) («c, L,) (r) = 0 , ^Ly(r) = ^.,

^ ' ' for r = (*,«, w)e£7(ΛO+^(Π

Here z^M, e=[elt •• ,en] is a unitary frame at UT^M and v=\yl, •••, vk] is a
unitary frame at Fz. For ?eΓ"(Λ°'*(M)(2)F), we define the scalarization Fς:

U(M)+ ?7(F)-^Λ° *(C")®C'* by Ff(r)=r~1 ξ (»(r)). Here we regard re Z7(Λf )

+ C/(F) as a vector space isomorphism r: Λ°-*(C")®C*^ Λ5 *(M)(g)Fί (cf.
Kobayashi-Nomizu [10], Proposition 5.4).

Lemma 3.1. For any £eΓ"x>(Λ° *(M)<8>F), it holds that

(3.3) *>Vi«(O
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(3.4) Fβ}^^r) = LlLiFt(r).

Proof. We decompose Lj to the real and the imaginary parts and do the
same proof as in the real case. Π

We introduce a local coordinate to U(M)+U(V). For r=(#, e, v)> we de-
note the components of e=[ely •••, en] and v=[vly •••, vk]9 as follows;

y 9 «
eh= Qz*~' vβ = vβs«

Denoting by Raicd(r) the scalarization of Raiά, we have

Similarly denoting by L*βcd(r) the scalarization of LΛ^-d :

The following lemma is straightforward from the definition.

Lemma 3.2. For any ξ e Γ°°(Λ0'*(M ) ® F), if

(3.5) JPα^ii *rr,.Λ-]®ιF)δ(r) = (ΰ[^ r

(3.6) F([int(^)ιext(ί/FΛ)]ΘL..yp£(r) - ([int(SO,

^ definition of D is extended to the basis {δ'} .

From Theorem 2.2, Lemma 3.1 and Lemma 3.2, we have

[int(δO,

Now we consider the following initial value problem of a heat equation on
U(M)+U(V) taking values in Λ0

(3.8)
1 lim,,. V(t, r')

), 00,
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Let (x\t)9 ••,#*(£)> y(0> " >y(0) be an Λ2n-valued Brownian motion and
set

0=1, ~,«).

#(£)= (#*(£), •"> #n(0) ig called an w-dimenitonal complex Brownian motion. We
consider the following stochastic differential equation (SDE) in the form of the
Stratonovich differentials;

(3 9)
( *V = L/r,)

( r0 = r ,

and we denote the solution of the SDE by

(r(f, r, *)) = (Z(t, r, *), e(t, r, ar), »(ί, r, ar)) .

The meaning of (3.9) is as follows; we say that r, is a solution of (3.9) if it is

a C7(M)+Z7(F)-valued continuous semimartingale in the sense that, for every

F^Ceo(U(M)+U(V)), F(rt) is a continuous semimartingale and satisfies

F(rt)-F(r) = (L,F) (rs)o<fe>»+ (Lf) (r.

So we can rewrite the SDE (3.9) in the real form as follows;

drt =

Then (r(ί, r, s)) is a diffusion process whose generator is

{(ReLy)
2+(ImLy)

2} = -

We define the End(A° *(C")®C*)-valued process M(t, r( , r, %)} by the solu-

tion of the following differential equation;

(3.10)

where

/(r) =—D[^;jj(r)]®lck+— [int(δy), <
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Lemma 3.3. The unique solution of (3.7) is given by

(3.11) V(t, r) = E[M(t, r( , r, *)) F^t, r, *))] .

Proof. By the Ito formula, for

B(t, /OeΓ' 'dΌ, co)χ(U(M)+U(V)) -* Λ° *(C")®C*) ,

M(t, r( , r, *)) B(t, r( , r, z))-B(Q, r)

= Γ M(s) JL B(s, r(s)) ds+ Γ M(ί
Jo 9£ Jo

(3.12)

L;) B(s,

Γ M(s)J(r(s, r, »)) B(,, r(ί)) Λ .
Jo

Using this formula we can complete the proof (cf. Ikeda-Watanabe [8] Chapter

V,§3). D

For FeΓ~(J7(M)+i7(F)-*Λ0 *(C")<8)C*), V is called U(n)xU(k)-
equivariant if

0(uγl®σ(vγlV(r)=V(RMr} for ιιet/(n) and *;<ΞU(k),

where JZ^ is the right action by (u, v)^U(n)x U(k) on U(M)+U(V). Then

there exists ξeΓ°°(Λ°»*(M)® F) such that F$= F if and only if V is J7(w) X U(k)-
equivariant.

Lemma 3.4. V(t, r) w ί7(w) X U(k)-equίvariant for each t where

V(t, r) = E[M(t, r( f r, «)) ̂ (r(ί, r, ar))] .

Proof. We fix a u^U(ri) and a v^U(k). It is easy to see that
R(ίttV)r(ty r, #) satisfies the following SDE;

( r(0) = *(„,„) r,

By the uniqueness of the solution of the SDE, we have

(3.13) r(ί, Λ(.tf, r, w-1^) - Λ(βft) r(ί, r, ar) .

On the other hand, by the definition of the scalarization we have
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By the uniqueness of the solution of an initial value problem of an ordinary
differential equation, we have

. M(t, ΛO,.., r( , r,

Then by using the [/(w)-invariance of a complex Brownian motion,

f, £(„,,) r)
= E[M(t, r(',R(u,,y r, iΓ1*)) Ff(r(t, RM r, tΓ1*))]

(3.15) = E[M(t, r(. , £<„,„> r, *)) β^Γ^σ^ΓF^t, r, *))]

= JB[jδ(M)-1®σ(Z;)-
1M(ί( !•(•, r, 2)) Pj(r(i, r, *))]

= fi(uγl®σ(v)-lV(t, r) ,

which completes the proof. Π

Thus the unique solution of the heat equation (3.1) is given by

(3.16) n(f, *) = JB[rM(ί, r( , r, »)) r(ί, r, *)-lξ(Z(t, r, »))] .

Then the fundamental solution of the heat equation (3.1) is expressed formally
as follows;

(3.17) e(t, x, to) = E[rM(t, r( , r, *)) r(ί, r, *)-*. (Z(ί, r, ar))] ,

where π(r)=z, Sw=δw/|det(^ry3ί)| and δw is the Dirac delta function at w. But
δw(Z(£, r, 5r)) is not a usual Wiener functional. It is a kind of distribution on

the Wiener space W\n as an element of a Sobolev class D~°°= (J ΓΊ#/ΓS and the
5>0 P>1

meaning of the expectation in (3.17) is a generalized expectation in the sence of
the pairing;

j5"(End(Δ°.*(Λf)®F)) <*» rM(*) r(0"X ^U (̂0)> JD—ίEndίΔo^ίM)®^)) '

For details of an analysis on the Wiener space, Sobolev spaces of generalized
Wiener functionals and generalized expectations in particular, we refer to [9]
and [16].

Next we will give a local expression of the SDE (3.9). Let C(M) be the
complex frame bundle for M and C(V) be that of V. We extend ωM to the
connection form on C(M) and ωv to that on C(V). As before, we extend these
to be complex linear:

ωv:

where Ql(n, C) is the Lie algebra of the complex general group GL(n, C). We
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define the restriction of ωM to T'C(M) by ωίf. Similarly we denote the

restriction of ωv to T'C(V) by ωf. Then we have the following lemma.

Lemma 3.5. We can express ω¥ and ω\ locally as follows:

(3.18) ωf a

b = (O? (dec

b+Tc

jd ed

b dsf),

(3.19) ωΓ *β = (eΓ1)? (dvl+lis v8

β dz>').

Proof. The proof is similar to that in the real case (cf. Kobayashi-Nomizu

[10], p. 142, Proposition 7.3), so we omit it. Π

Then for the connection form on C(M)-\-C(V), we have

Jtf/ \ π Ί
>ι h) υ

(3.20) ω =

o ((O? «ί <***))

Lj - epj -^τ-Γ?s ei ή — 4δ

8 v\ euj -A..

By considering the condition (3.2), we see the following expression for Lji

(3.21)

By taking conjugate,

(3.22) -s -r 9 β -K 9

Now we can express the SDE (3.9) locally. Since #yeC°°(C(M)+C(F)->C)
is holomorphic, we have

Similary, since e\ and v% are also holomorphic,

Thus we have the following SDE :

dZ'(f) = ei(t)od

de\(ί) = -Π.

(3.23)

Z'(0) = z>, βj(0) = ej, β«(0) = β .
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This form is exactly the same as in a real case (cf. Ikeda-Watanabe [8]).

4. Berezin formulas

To prove the index theorem we must study a supertrace. Berezin formulas
provide us a very powerfull algebraic methods to discuss it, cf. Cycon et al. [5]
§12.2.

We consider on Λ°'*(C'n). Setting,

(4.1) (of)*: = ext(SO , of: = int(δ>) (j = 1, -, n) .

then it holds that

Γ (αO*(α*)*+(β*)*(αO* = aV+αV - 0 ,
(4'2) l*V)*+(**)*^=δ'*.

Moreover, setting,

(4.3) r>: = (*>)*-*', :̂ = i((^)*+^),

it holds that

(4.4) Ύ

j 7h+Ύs Ύh = -2δ>* (j, A = 1, -, 2n, r>+« - f >) .

Thus End(Λ° *(CΛ)) is a Clifford algebla generated by γ1, •-, γn, ̂ , — , <f. For
< — </f(^n)>, weset

γ^ = γ*ι...rγ*p y <γL = ryli. .rγl« .

Then we have

ίd imΛ 0 ' *C Λ -2 Λ if K=L =
(4.5)

( 0 if K =t= φ or L Φ φ ,

(cf. Cycon et al. [5] (12.18) and also Atiyah-Bott [1], Proposition 8.28). From

this we have

(4.6)^ ) 0 .f

By noting that #{γίr^I}=(2")2=diιn End(Λ0 *(C")), {γ^ ^1} is an orthogonal

basis of End(Λ° *(C*)) with respect to the Hubert-Schmidt inner product. So

for any ^4eEnd(Λ° *(C*)), we can express it uniquely as

(4.7) A =
Jζ,

Then the Berezin formula is as follows:
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(4.8)

We define (-l)'eEnd(Aβ *(C")) by

(-1)' <», = (-!)>», for ωίeΛ° '(C").

Then we have the following:

Lemma 4.1. (— l)F is expressed by {γκ 7£} as follows;

(4.9) (-i^ίVγ' v r.
Proof. By (4.3), we get

Tι7ι...7",f = i«((aγ α'-αV)*)"'^")* β -ώ

Then for leΛ° °(ίr),

^^...y-y i = **(-αV)*) "((-*V1)*) i = (
So (4.9) holds on Λ° °(C"). Futhermore by (4.4),

and hence by noting («')*=('/•'— 1 ̂ ')/2 ,

(βOV^ y y = -T^ y fV)*

Therefore we have

1 -f r" 7

which completes the proof. Π

Thus for ̂ eEnd(Λ° *(C")) such that ^(Λ0 ±(C"))cΛ° ±(C"),

(4 10Ϊ
1 ' •*

The supertrace that we must consider to prove the index theorem is the
following:

T[C] =

(4.11) for C€ΞEnd(Λ0 *(O<8)C*) such that



RIEMANN-ROCH THEOREM 775

With respect to this supertrace we have the following;

T[A®B] = (-20" C,ιί ̂ }(A) tfcKS) ,

(4.12) for ^<=End(Λ0 *(C")) such that A(A!> ±(Cn))cA0 ±(Cn)

and SeEnd(C*).

On the other hand, it holds that

(4.13) D\M\=~ M

(4.14) [int(δ'), ext(S*)] = --L
ί*

They are order 2 with respect to γ and •£. Then we have the following two
lemmas for calculating the supertrace T.

Lemma 4.2. (Cancellation lemma)
Let M(1), —, Mw, N(1), •••, Nw, be nxn complex matrices and α(1), •-, a(p\

βm, -,β(r\ be kxk complex matrices. Let CίeEnd(Λ° *(C")(g)C*),
(Λ° *(C")), and B,ξ=End(C*) as

Cp = (D[M<l>](g)lct+[mt(SO, ext(8»)]®α«)

+[int(δ' ), ext(δ*)]®α<«) ,

B, = /3(1>-/3W .

Then it holds that

(4.15) T[Cf(Aq®Br)} = 0 if p+q<n.

Proof. Ct(Aq®Br) is order 2p+2q with respect to γ and •?. So by
(4.12), (4.15) holds immediately. Π

Lemma 4.3. Assume p+g=n. Let M,Nm, ,NM, be nxn complex
matrices and a'. jh be kxk complex matrices and zϋe define ^4eEnd(Λ° *(C*)(S>C'*)

by

+i- [int(δO, e

Then the following identity holds

T[A] dx1/\dy1/\ Λdx*ΛdyH
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Proof. We note that A can be expressed by γ* and ty as follows,

A = - Λrί(γί-I

®α .

Then by using (4.12) we have

-̂.) (1 Λί^(γ -f^) (γ'+rf ))'

Since the 2κ-th order part of the Clifford algebra and the 2w-th order part of
the exterior algebla are isomorphic, we have

= (f c!(

Λ tfjdίf-id?

A" N\(dxt'-idyt')/\(dx' +idy"') ,

which completes the proof. Π

5. Riemann-Roch theorem

In this section we will prove the Riemann-Roch theorem. For the com-
plex (2.1), we define the cohomology Hq(V) by

(5.1) #?(F) = Ker^/Im5r on

Since the complex (2.1) is elliptic, dim H"(V) is finite. So we define the index
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of the complex (2.1) by

(5.2) IndfiU = Σ (-1)* dim H\V) .
7 = 0

Then the Riemann-Roch theorem can be stated as follows

Theorem 5.1. The index of the twisted Dolbeault complex, denoted by
, can be expressed in terms of ch(V) and Td(T'M) as follows;

(5.3) Ind(5F) = \ ch(V)/\Td(T'M) .
v M

To prove this theorem, we use the following well-known fact. Let e(t, #, w)
be a fundamental solution for Δ^ and T be a supertrace defined by (4.11). Then
it holds that

(5.4) Ind(3F) = ί T[e(t, *, *)] dvol(*) , V*>0
v M

and

(5.5) T[e(t,z,z)]~fίt«t-2»»2ah(z) as f | 0 .

So we have

^ Γ / ^ I / X f lnd(^) ίf k=2n

(5 6) α*(*) dvol(ar) = |
JΛf ( 0 if Λ Φ 2w

(cf. Gilkey [6] p. 58, Theorem 1.7.6). Hence, we only have to show

a2n(z) dvol(*) = {ch(V}/\Td(TM)}2n

where { }2rt is the 2«-form part. This is called a heat equation method.
We will study the short time asymptotics of the fundamental solution.

For this, it is convenient to introduce the parameter £>0 as follows. Let
r'(t)=(Z\t), e\t)y v'(t)) be the solution of the following SDE;

ί dr\() = εL^t^odz^ή+εLj^^odz^t)
( ' J ( r8(0) = r .

Let M\t, rε( )) be End(Λ0'*(Cn)<g)C*)-valued process defined as the solution of
the following differential equation;

( ' ' M\0) = I .

Then by the scaling property of the complex Brownian motion, it holds that
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(5.9) e(£\ z, tf) = E[rM\\, r'( , r)) r»(l, r)-' ξu(Z\l, r))]

where π(r)=z. We take an arbitrary point #0eM and fix it. Further we take

coordinate neighborhoods ( Uly φ^ and ( £72, φ2) such that Oλ C C72, φ2 1 Er1=9>ι> ^ I uz

is trivial and U2 is relatively compact. We identify U2 and φ2(U2)c:Cn by ^>2

If £ is a metric on Cn which coincides with g on U2 and A is a fibre metric on
C*xCk which coincide with h on V \ Uz and e(t, z, w) is the corresponding funda-
mental solution on C" X Ck, then there exists a constant £>0 such that

sup \\e(t, z, z)—e(t, z, z)\\=O(e~c/t) as

(see e.g. [9] for this reduction). So our problem is reduced to the simpler case
that M=C"9 the Kahler metric (#^(#)) coincides with the identity matrix In

outside of a compact set, V=MxCk and (hΛ$(z)} coincides with Ik outside of a
compact set. Furthermore we will take a nice coordinate and a nice frame. Let
(zl, •••, z") be a holomorphic coordinate around ZQ satisfying (2.4) and (sl9 •••, sk)
be a holomorphic frame of V around ZQ satisfying (2.5). Then we have the
following properties near the origin;

51
1 ' J /U*) = -

I iFϊώ(0) =

By this coordinate we can take the coordinate for U(M)+U(V) as follows;

Then we can rewrite the SDE (3.23) as follows;

= 6e'i(t)°dsh(t) ,

= -ΓίχZ»(ί)) e t(t)*dZ '(t) ,
( ' ]

Furthermore we choose re U(M)+ U(V) so that

This r defines an isomorphism from Λ° *(C")®C* onto Aĵ M)®]^,,, so we
identify Λ.°>*(Cn)®Ck with ΛSi
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Next, we will get the expression of a local SDE for ι*(t)-l=ΊΓ(t)®B'(t),
where

Π (ί):Λ .*)(M)-*Λ« *(C')

and

Lemma 5.2. Π*(ί) satisfies the following SDE;

(dn\t) = n\t)°d&(t)
( ] lπ'(θ) = /,
where &(t)=D[θ\t)] and θ"(t)eQί(A!> \Ca)) is given by

(5.13) 0°VO = -£ rij(Z°(s))°dZ"(s)

Moreover B'(t) satisfies the following SDE;

where ι'(t)=(ι"'β(t))Gu(k) is given by

(5.15) ^β(t)

Proof. We note that the expression of the isomorphism

in the matrix form with respect to a local frame {έfetyj.i is (eeIj(t))^GL(A.0t\Cn)).
Further, by (5.11) we have

where θ*(t) is given by (5.13). θ*(ΐ)=D[θ*(t)]<=βl(Λ°'*(Cn)) is the extension
of θ\t) to gI(Λ°'*(Cn)) with the derivation property. So the extension of (e*](t)}
to GL(Λ°'*(CΛ)) is determined by the solution U\t) of the SDE (5.12).

Similarly we have the SDE (5.15) for B*(t). Q

By standard arguments in the Malliavin calculus, all of Z*(t)GD°°(Cn)9

e*(t)&D°°(End(Cny) and v\t)^D00(End(Ck)) have asymptotic expansions in the
space Zr(O,Zr(End(C'n)') and Zr(End(Λ° *(Cn))) respectively. More pre-
cisely, we have

(5.16) Z\ί) = εz(t)+O(62) in D~(C") as £ |0 .

Furthermore Z*(l)/6 is uniformly non-degenerate as 6 J, 0 in the sense of
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Malliavin and hence we have

(5.17) S0(Z*(l)) = ε-2nS0(z(l))+O(8-2n+1) in ZT~ as fi

(cf. Ikeda-Watanabe [9] or Watanabe [16]). By (5.12), we have

where

(5.18) A, = [ \'1-\tt'1od&(tp)0d&(tp.1)o...od&(tl) .
Jo Jo Jo

By (5.10), (5.13) and (5.16), we can expand θ\ί) as follows;

(5.19) Θ^j(t) = 62^j(t)+O(ε3) in D°°(Cn) as £ J

where

By using this, we have

) in Z>~(End(Λ0 *(C"))) ,

(5.20) A = ε2' Γ ί'1. .Γ' 1oίίJD[c(ίί
JO JO JOO JO JO

in Zr(End(Λ° *(C"))) .

Similarly, setting

(5.21) Bp =
v Jo Jo Jo

(5.22) i%(ί):

we have

Bβ(l)-:/+β1+ +J5Λ+O(£2Λ+2) in U-(End(C*))

(5.23) Bp = 62p Γ ['l—[''~l°db(tp)
Jo Jo Jo

+O(62p+1) in ZT(I

On the other hand, by (5.8) we obtain

(5.24) AT(1) = /+C1H hCrt+O(£2n+2) in Z>°°(End(Λ°'*(Cn)(8)C*)),

where

C, = ε2' Γ J'1 "J''"7(r'(ί,)) »y(r'(ίι)) Λ, dt^ dt,.
Jo Jo Jo

Jo Jo Jo
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Furthermore,

n

in

Using these, we have

(5.25) J(r*(t))=J(Q)+0(6) in ^(End(

where

/(O) = -lz>[/Z:;,χθ)]®leH-| [int(δ' ), ext(S*)]<S>L Λ(0) .

So we obtain

(5.26) Cp = ε2pJ(Qγ/pl+O(82p+l) in ir(End(A0 *(C")®C*)) .

Note that Ap, Bp and Cp are of order > 2p with respect to £. Now we can
apply Lemma 4.2 for ,̂ 5̂ , Cp. Combining these with (5.20), (5.23) and
(5.24), we have

(5.27) T[M\\) (Πε(l)®Ξs(l))]= Σ T[Cp(Aq®I)]+O(82»+2) .
p + q = n

Thus the stochastic parallel displacement for V does not affect to the conclu-
sion. Furthermore by (5.20) and (5.26),

(5.28)

Now by using Lemma 4.3 and the Itό formula, we have

Γ[Λr(l)(Π (l)®Bf(l))]dvol(*β)

+«=» ^>! »=oc!(/)— c)!

X trc»[(r.Λ(0) <fe'Λrfz*)Λ(ί-c)]

(5'29) Λ^^ W^Λ^)^

Λ j1 Γ1- (<f "Oifc'*.̂ ,) dz>'/\dz
Jo Jo Jo

Λ - Λ °dc\(t,) dzb>Λdz"ι+

= £2" (I)" ,JL. A *«• KL' *
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^)!\ 2

On the other hand, by (5.10) we have

β'ΛΛf - -̂ %p(0) rfz*Λ<feβ Γ
Jo

and

Also by noting L*v j(0) dz* /\dzh=Ωv, we have

e(l)<g)Bβ(l))] dvd(*β)

(5.30)
ΛJ_ (-Ωί 'jf /4 f

1

j l \ Jo

By (5.9), (5.17) and (5.30), we have

(5.31) =(4)* Σ -ί
\ 2 / ί + ί + r=» r!

Λ

5

On the other hand, the following identity for the conditional expectation is
well-known

E[Φ(s) δa(*(l))] = (!/«)' £[Φ(*)K1) = 0] .

So we get

(5.32) *+"=»r!

(1) = θ]+0(£)
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Λ
00 1 Γ/ i ' (l

9=0 al L\ 2τr * J o '
' — " /2«

where

= exp -̂ *',) £ Γexp ( —L. X\ Γ
4τr / L \ 2τr Jo

for any nXn complex matrix X=(XJ

h). By the ί7(n)-invariance of the com-
plex Brownian motion, P(X) is U(ri) -invariant, i.e.,

P(U*XU) = P(X) for C7e U(n) .

So let us obtain the generating function of P(X) :

—2πix1
0

—2πίx2

0 —2πixn_

= exp ( Σ -|-) ̂  [exp (- ± *y [ z'(t)odz'(t)) \ z ( l ) = θ]

*(!) = θ]= Πexp - -

exp

= o]

Here we used the well-known formula for the stochastic area due to P. Levy
(cf. Ikeda-Watanabe [8], p. 388). Hence p(xly x29 •••, xn) is the generating func-
tion for Todd polynomial (cf. Gilkey [6], p. 97). Thus we have P(ΩT'M)=
Td(T'M). By (5.4) and (5.32), we conclude that

Ind(5F) -

This completes the proof of Theorem 5.1.
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