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Structure of Alternative and Jordan Bimodules

by N. JACOBSON®

The notion of a bimodule for a class of algebras defined by
multilinear identities has been introduced by Eilenberg [137]. If A is
in the class of associative algebras or in the class of Lie algebras,
then this notion is the familiar one for which we are in possession
of well-worked theories. The study of bimodules (or representations)
of Jordan algebras was initiated by the author in a recent paper [21].
Subsequently the alternative case was considered by Schafer [32].
In our paper we introduced the basic concepts of the Jordan theory
and we proved complete reducibility of the bimodules and the ana-
logue of Whitehead’s first lemma for finite dimensional semi-simple
Jordan algebras of characteristic 0. Similar results on alternative
algebras, based on those in the Jordan case, were obtained by Schafer.
The principal tool in our paper was the notion of a Lie triple system.
This permitted the application of important results on the structure
and representation of Lie algebras to the problems on Jordan and
alternative algebras. This method has one nice feature, namely, it is
a general one which does not require a consideration. of cases. On
the other hand, it has the serious drawback that is unlikely that it
can be adapted to the characteristic p(==0) case, since, as is well
known, most of the important theorems on Lie algebras of character-
istic 0 are false for Lie algebras of characteristic p.

Besides this question of the validity of the theorems for Jordan
and alternative algebras of characteristic p there is another important
problem which was left open in the two papers cited, namely, the
problem of determining the irreducible representations for finite
dimensional semi-simple algebras. For this problem, too, the Lie
method seems to be inappropriate.

In this paper we shall solve the two problems which we have
indicated. An outline of the method which we shall use is as follows.
In part I we develop certain general results on universal associative
algebras and Peirce decompositions which permit a reduction of the

1) A major portion of this work was done while the author held a Guggenheim Memorial
Fellowship.



2 N. JACOBSON

problems to various particular cases of these problems. Of impor-
tance are the special ways of constructing bimodules (e.g. special
bimodules for Jordan algebras, associative bimodules for alternative
algebras) and a criterion (Theorem 5.1) that a Jordan bimodule be
obtainable by one of these constructions. In part II we consider the
theory of alternative bimodules for matrix algebras and of Jordan
modules for Jordan algebras of self-adjoint elements of matrix alge-
bras. A noteworthy feature of this discussion is the intertwining of
the Jordan and alternative theories. A key result in these considera-
tions is a general structure theorem (Theorem 9.1) for Jordan alge-
bras which permits the reduction of the theory of certain types of
Jordan bimodules to alternative ones. While we confine ourselves to
the application to representation theory here, it should be mentioned
that this result can be used to effect substantial simplifications in the
structure theory. We hope to indicate some of these applications in
subsequent papers. Also we should note that the methods developed
in part II need not be confined to finite dimensional algebras. Thus
these methods can also be applied to certain important types of alge-
bras and rings which do not satisfy finiteness conditions (e.g. the
Jordan algebra of self-adjoint transformations in Hilbert space).® In
part III we study the representations of Jordan algebras which are
defined by symmetric scalar products (or quadratic forms). The
universal associative algebras for these Jordan algebras are the
Clifford algebras and certain algebras which we shall call meson alge-
bras, since they seem to have made their first appearance in the
quantum theory of mesons. We determine the structure of these
algebras. In part IV we specialize the theory to alternative and
Jordan algebras of finite dimensions. The results of part II and III
have to be combined and supplemented with the considerations of
the exceptional simple alternative algebras (the Cayley algebras) and
Jordan algebras (M§). The combination of these results yield the
theorem on complete reducibility and the determination of the irre-
ducible representations.

The next step which is indicated in the development of this type
of representation theory is the consideration of the cohomology theory.
While we do not as yet have satisfactory general definitions of the
cohomology groups, we can apply the results of the present paper to
obtain the analogues of the first two Whitehead lemmas for arbitrary
characteristic. We hope to take up these questions, too, in subsequent
papers.

2) Cf. Jacobson and Rickart [227] and [23].
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I. GENERAL THEORY

1. Classes of algebras defined by identities

We shall be concerned with algebras over a field ®. Nearly
everything which we shall do can be done also for algebras over
commutative rings, but for the sake of simplicity we shall confine
our attention to the field case.

We define first the notion of a free non-associative algebra based
on a vector space ¥ over ®. Consider the Kronecker product space
BVBx VB and the Kronecker product spaces (BxB)xB and B x (B xB).
There is a natural isomorphism between the last two and one usually
identifies these two spaces by means of this isomorphism. However,
for the purposes of non-associative algebra one has to consider these
two spaces as distinct objects and, in fact, as having no elements in
common. Similarly, we can form five four-fold product spaces out of

B and in general we have 1 (2"—2> n-fold products of B.» These

n \ n—1
are obtained by Kronecker multiplication of any of the 7-fold products
by any of the (z—7)-fold products where » =1, 2, ---,z—1. We now
form the direct sum &(B) of all these #-fold products of B,z=1, 2, ---
and we define the obvious multiplication in &(8). The result is called
the free nom-associative algebra based on the vector space 8. Some-
times it is convenient to adjoin an identity element to &(¥). This is
done by forming the direct sum &*(V) = S(B)PH(1) where (1) is the
one dimensional space of multiples of the identity 1. We shall refer
to ©*(B) as the free non-associative algebra with identity based on %.

Let A be an arbitrary non-associative algebra over ® and let T
be a linear mapping of B into A. Then T can be extended in one
and only one way to a homomorphism of the free non-associative
algebra &(B) into A.

Definition 1.1. Let {p} be a set of non-zero elements in the free
non-associative algebra &(8). A non-associative algebra 2 is said to
satisfy the set of idemtities {p} if every p in this set is mapped into 0
by every homomorphism of &(L) into 2.

Examples. (1) Let e,, ¢, be linearly independent in B. Then
p=e xe,—e,xe,+=0 in S(B). Since the ¢, are linearly independent,
there exists a linear transformation sending ¢, and ¢, into any two
elements of an algebra . Hence U satisfies p if and only if ab = ba

3) Cf. the author’'s Lectures in Abstract Algebra, Vol. I, p. 18.
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holds for all ¢, b in . (2) Let e,, ¢,, e, be linearly independent and
take p = (e, xe,) Xe,—e, x (¢, xe,). The algebras satisfying this identity
are just the associative. algebras. (3) Take p=e¢,xe,—e,xe,,
g = (e, xe,) Xe,—e, x(e,xe,). The algebras satisfying these two iden-
tities are the commutative, associative algebras. (4) Let p=-exe,
g = (e, xe,) xe,+(e,xe,;) xe,+ (e, xe,) xe,. These two identities define
the class of Lie algebras. (5) Set p,= (e, xe,)xe,—e, x(e,xe,),
D, = (e, xe,) xe,—e, x(e,xe,), p, = (e, xe,) xe,—e, x (e, xe,). These iden-
tities define the alternative algebras. (6) The class of Jordan algebras
is defined by the following two identities: p=¢e, xe,—¢,xe,,
q = ((e, xe,) xe,) xe, —(e, xe,) x (e, xe,).

We shall not attempt a systematic investigation of identities of
algebras. However, one or two remarks may be in order. First, we
define a T-ideal in a free non-associative algebra &(B) as an ideal
which is mapped into itself by every homomorphism of &(%) into
itself.”? Now let {#} be a set of non-zero elements in S(LB) and let
& be the T-ideal generated by this set. It is clear that R is the
ideal generated by the images of the pe {p} under homomorphisms
of &(B) into itself. It follows that if 2 satisfies the identities in {p}
then A satisfies the identities in f.

If {p} is an arbitrary set of non-zero elements in &(B)-and R is
the T-ideal generated by {p} then &(B)/® is called the free algebra
based on B for the set of identities {p}. Since any homomorphism of
S(B) into S(B)/& is a product of a homomorphism of &(BV) into itself
by the natural homomorphism of &(B) into S(VB)/&, & is mapped into
0 by every homomorphism of &(8) into &(L)/R. It follows that the
free algebra &(L)/R® satisfies the given set of identities {p}. If A is
any algebra satisfying these identities, then any homomorphism of
S(Y) into A maps & into 0. Hence it induces a homomorphism of the
free algebra &(L)/R into A. It follows that any linear mapping of

S(B)/® into A can be extended to a homomorphism of &(B)/K into
A, If BV is chosen large enough so that there exist homomorphisms
of &S(B) onto A then A =&(VB)/IJF where F is an ideal. Evidently
>R and A is a homomorphic image of the free algebra &(B)/K.
Thus any algebra satisfying a set of identities is the homomorphic
image of a suitable free algebra for these identities.

The free associative algebras will be particularly important in the
sequel. We denote such an algebra by F(L) or, if the identity is

4) TFor associative algebras this notion has been introduced by Specht [33]. Cf. also
Amitsur [6].
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adjoined, by F*(B). It is easy to see that F(B) can also be obtained
in the following way: There is a natural isomorphism between any
two #n-fold Kronecker products of B with itself. We shall now
simply identify all of the products by means of these isomorphisms.
The resulting space is denoted as BRIV --- XV and the product of
n vectors from B by 9,00,Q - ®v,. Then F(B)=VP(BRIV)D
(BRIVRIBV)P --- with the obvious multiplication.

We consider again the free non-associative algebra &(8). A sub-
set of a T-ideal in &(B) is called a set of T-generators of the ideal
if the smallest T-ideal containing these elements is the given 7T-ideal.
Evidently, in considering identities, we can replace any set of
T-generators by any other. ,

Let ¢,, e,,--,e, be linearly independent elements of LB. It is
clear what is meant by a monomial (belonging to &(8B)) in ¢,, ¢,, -, e,,
by the total degree of such a monomial and by its degree in a par-
ticular ¢,. An element p of &(¥B) is called multilinear in e,, e,, --- e,
if it is a liner combination of monomials in e,, ¢,, - e, all of which
are of total degree n» and of degree 1 in each ¢, i =1,2,---,n.

If ¥ has infinite dimensionality and if the characteristic of the
base field is suitably restricted, then any 7-ideal in &(L) has a set
of multilinear 7-generators. The proof of this is quite easy but we
shall not give it. In the examples we listed above, the identities in
(1)-(3) are multilinear. In (4) we replace p by e, xe,+e¢,xe,. This
gives an equivalent set of identities if the characteristic of & is ==2.
In the alternative case (5), if the characteristic is =2, we can use
the multilinear identities :

(e, xe,) xe,—e, X (e,xe,)—(e,xe,) xe,+e, % (e, Xe,),
(e, xe,) xe,—e, x(e,xe,)—(e, xe,) xe,+e, X (e, xe,),
(e, xe,) xe,—e, X (e,xe,)+ (e, xe,) xe,—e, X (e, xe,).

In the Jordan case (6) we have to assume that the characteristic is
==2,3. Then we can use the multilinear identities ¢, xe¢,—e, xe, and

(e, xe,) xe,) Xe,+((e; xe,) xe,) xe,+e, x((e,;xe,) xe,)
—(el Xez) X (ea ><e4) —(ex Xea) X (82 ><84) _(el Xe4) X (62 ><e3) .
These results can be proved by a simple polarization process. In

the sequel we shall assume that the characteristic is ==2 for Lie and
alternative algebras and ==2, 3 for Jordan algebras.®

5) As a matter of fact, the multilinear identity for Jordan algebras implies the original
identity if the characteristic is==2. We could therefore use it to define Jordan algebras of
characteristic three. With this understanding, our results will be valid also for this charac-
teristic.



6 N. JACOBSON

2. Bimedules for non-associative algebras satisfying identities

We consider now a fixed set {p} of multilinear identities and we
let 17 be the class of algebras satisfying these and 2 a member of
I'. We propose to consider the simplest extension problem for 2L
Thus we take a vector space M over ® and we form the space
G =APpMm. We retain the given multiplication in A, define m,m, =0
for m, € M and we seek to define compositions am, ma for a €A, m e M
so that & will be an algebra in I” and 9 will be an ideal in .
Since M is to be an ideal, we must have am, ma e . Also the con-
dition that @ be an algebra is equivalent to the bilinearity of the
compositions am, ma, that is, to the conditions

(a,a,+a,a,)(pm +p,m,) = a,p,am +o,ma,m,
(1) + e, m,+ L, u,a,m,
(lulml + p,m,) (alal +a,a,) = pama, +po,ma,

+p X ma, + p,m,a,,

a,, a,cW; m,meM; «,, «,, g, p, €. We consider next the con-
ditions that & satisfy the given multilinear identities. Since these
identities are multilinear it suffices that they be satisfied for all
choices of elements out of M and out of A. If we choose all the
arguments in 2, then the identities do hold; for A e . Also, every
product containing two elements of 9 is 0. Hence, necessary and
sufficient conditions that & € 7 are that the results of substituting one
meY and the remaining elements in 2 in the identities should be
0. These substitutions must be done in every possible way, but of
course, the resulting conditions may be redundant and reducible to a
smaller set. These conditions define the notion of a bimodule for
the algebra in the class /°. The algebra & = APIM constructed from
the bimodule M is called the split null extension determined by the
given bimodule. It is clear that if €/ then A itself can be re-
garded as a bimodule relative to the multiplication compositions ma,
am defined in 2. More generally, if 9 is a subalgebra of an algebra
B e then we consider B as an A-bimodule relative to the multipli-
cation compositions ba, ab, a €A, b€B. The notions of sub-bimodules,
difference bimodule, homomorphism, isomorphism, etc. are clear. If A is
an algebra that contains no ideals =0 whose squares are 0 then the
ideal M in the split null extension € = APIM contains every ideal
N of G such that M*=0. In this case it follows that the two
bimodules M, and M, are isomorphic if there exists an isomorphism
between the corresponding split null extensions €, =APWM, and
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€, = APM, which is the identity on A. The converse holds without
any restriction on A,

In the associative and Lie cases the concept of a bimodule
specializes to familiar notations. Thus in the associative case, the
conditions that & be associative are that

(a1az) m = a1(a2m) ’ m(axaz) = (ma1) a,

(2) ,
(alm) a2 == al(maz) .

These, and (1), define the usual concept of an associative bimodule for
A. It should be noted that this includes the usual notion of a right
(left) module. For, if we have a right module with composition ma,
meM, ac A, then we obtain a bimodule by setting em=0. In the
Lie case we obtain the usual notion of a Lie bimodule, in which we
have

(3) am = —ma
m(a1az) = (mal) az_(maz) a,.
Since am = —ma, we can drop ene of these compositions and we may

consider M as just a right (or left) module relative to 2A.

The purpose of this paper is the study of alternative and Jordan
bimodules. Hence we shall define these formally in the following
two definitions.

Definition 2.1. Let 2 be an alternative algebra. An alternative
bimodule for U is a vector space I together with two compositions
am, ma for a in A, m in M such that am, ma € I, the bilinearity con-
dition (1) hold and

A(al » M, az) = —A(m» a, az) = A(az » Ay Wl)
(4) A
= - (az, m, al)

where, in general,
A(x, p, 2) = (xy) 2—x(y2) .

Definition 2.2. If & is a Jordan algebra, a Jordan bimodule is a
vector space MM with bilinear compositions ma, am, a €y, m € M, am and
ma € M such that

am = ma
ma.,a,a,+ma,a,a, +m(a,a,a,)
= (ma,)(a,a,)+ (ma,)a,a,)+ (ma,) a,a,)
= (m(a,a,)) a,+ (ma,a,)) a,+m(a,a,)) a,

(5)
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where, in general,
XXy e K= (- ((%,2,) X,) - %) .

As in the Lie case, it is clear that a Jordan bimodule can also be
considered as just a Jordan right or left module. Since am = ma,
nothing is lost in dropping one of the compositions. The condition
for a right module is the one given above. For a left module we
have a corresponding condition in which the &’s appear to the left of
M. In the sequel the term Jordan module will be used for right
Jordan module.

3. Relations to associative algebras

It is clear from the definitions that associative algebras are alter-
native. Thus the notion of an alternative algebra is a generalization
of that of an associative algebra. It is well known that Lie and
Jordan algebras are also closely related to associative ones. For Lie
algebras the relation is as follows. Let 2 be an arbitrary associative
algebra and define [a@b]=ab—ba in A. If one replaces the associative
multiplication ab by the Lie multiplication [ab] one obtains a Lie
algebra 2,. Moreover, it is well known ([8] and [36]) that every
Lie algebra is isomorphic to a subalgebra of a suitable Lie algebra
A,. In a similar manner one obtains Jordan algebras from associative
ones. Here we replace the associative composition ab by the Jordan
multiplication {ab} = ab+ba. The result is a Jordan algebra ;. The
situation is, however, somewhat different from the Lie case, since it
is known that there exist Jordan algebras which are not subalgebras
of any ;. One must therefore distinguish two types of Jordan alge-
bras: the special ones which are isomorphic to subalgebras of alge-
bras of the form 2A,, 2 associative and the exceptional ones which are
not. If A is an alternative algebra, then it is well known (cf. [37])
that any two elements of 2 generate an associative subalgebra. Since
the defining Jordan identities are functions of pairs of elements, it
is clear that if 2 is alternative then the algebra U, obtained by sub-
stituting {ab} = ab+ba for ab in A is a Jordan algebra. However, it
is not difficult to see that these algebras are all special ([32] p. 3).

The relations which we have indicated have counterparts in the
theory of bimodules for alternative and Jordan algebras. First, let 2
be alternative, )t a vector space and am and ma bilinear compositions
defined for ae€ A, meIM with values am, ma € M such that (2) holds.
Then M and the two compositions evidently define a bimodule for 2L
A bimodule of this type will be called an associative bimodule for the
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alternative algebra 9. Next let & be a Jordan algebra and let I be
a vector space, ma a bilinear composition into M such that

( 6 ) Wl(dldz) = (ma1) a,+ (maz) a,

It is easy to verify that 9t and ma define a Jordan (right) module
for & A module of this type will be called special.

Now suppose that I is both a special left module and a special
right module for . Thus we have compositions ma and aem satisfying
(6) and the corresponding left condition (ab)m = a(bm)-+b(am). We
assume also that we have the associativity (or operator commutativity)
condition : (am) b = a(mb). We now define a new bilinear composition

(7) {ma) = ma+am

in M. Then we can verify that I and { } constitute a new Jordan
module. We shall call this module the sum of the given two commmui-
ing special modules. _

In a certain sense one can form the sum of any two special
modules for a Jordan algebra & Then let M, and M, be two such
modules and let M = M, Q®M,. Then it is clear that we can define
compositions ma and aem in M by setting

(m1®mz) a= m1®mza
alm,@m,) =maQm,.

These define M as a left and a right Jordan module so that the
associativity conditions hold. Hence

{(m1®m2); ay = m1a®m2+m1®mza

defines another Jordan module in 9% We shall call this module the
Kronecker sum of the two given special modules for .

We again suppose that 2 is alternative and that I is an arbi-
trary bimodule for 9. Then it is easy to deduce from the defining
conditions (4) that

m(ab+ba) = (ma) b+ (mb) a

(8) (ab+ba) m = a(bm)+b(am) .

Evidently these relations mean that 9t is a special left and a special
right module for the Jordan algebra ;. While these two special
modules do not in general satisfy the associativity condition, it is
nevertheless true that the composition {ma} = ma+am defines another
Jordan module for A; (cf. [32] p. 3).
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4. Birepresentations. Universal associative algebras

Up to this point we have emphasized the module point of view
in the representation theory. It is fundamental also to consider the
strictly representation approach in which the linear mappings
R,:m —ma and L,:m — am play the predominant role. The concept
of bimodule for an algebra 2 in a class of algebras defined by mul-
tilinear identities is equivalent to that of birepresentation for 2 in I
We describe this to consist of a pair of linear mappings @ — R,,
a — L, of A into the space of linear transformations of a vector space
M where the L, and R, satisfy relations which are imposed on the
mappings m — am, m — ma in a bimodule for 2. We shall not attempt
to make this explicit in the general case but shall confine our atten-
tion to the two cases of intesest here. These are given in the follow-
ing definitions. :

Definition 4.1. If ¥ is an alternative algebra we define an (alter-
native) birvepresentation (L, R) for 2 by linear transformations in the
vector space M as two linear mappings L:a —-L,, (R:a —- R, of A
into the space of linear transformations of 9t into itself such that

[LaxRaz:I = Ra1a2_Ra1Raz = Lazal—LalLaz
= [RaxLaz]

where, as usual, [XY]=XY-YX).

(9)

Definition 4.2. If & is a Jordan algebra, we define a (Jordan)
birepresentation (L, R) for & by linear transformations in a vector
space I as two linear mappings L:a - L,, R:a — R, of & into the
space of linear transformations'in 9 such that

L,=R,
Rq,Ra,Ra,+ Ra,Ra,Ra, + Ra,a,a, = Ra,Ra,a,
+Ra2Ra1a3 +Ra;Ra1a2 = Ru,a,Ra, +Ra1a3Ra2
+Rala2Ra3 .

(10)

If we drop the L, we have a representation for . The concept
of bimodule and birepresentation are equivalent in the following
sense: If M is a bimodule for A or & then the linear mappings
L,:m —am and R,:m — ma define a birepresentation. Conversely, if
a birepresentation acting in 9% is given, then the composition
ma=mR, and am=mL, define M as a bimodule. In a similar
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fashion, the notion of an associative bimodule for an alternative alge-
bra U is equivalent to an associative birepresentation (L, R) defined by
the conditions

(11) Raa, = Ra,Ra,, [La,Ra,] =0, Laa, = La,La, .

We remark that if we know that (L, R) is a birepresentation for the
alternative algebra 2, then any one of the conditions (11) is sufficient
that it be associative. If & is a Jordan algebra then a special (bi)
representation S for I is a linear mapping @ — S, such that

(12) Salaz = Sa‘Sa2 + SazSa1 .

If S® and S® are two such representations acting in the same space,
the associativity condition for modules corresponds to the requirement
that [SPS§®] =0 for all a, b. In this case the mapping R, = S+ S
define a representation (in the general sense) which we call the sum
of the two commuting special representations.

In considering a set of linear transformations it is often useful
to pass to the enveloping associative algebra, that is, the (associative)
algebra generated by the set. In the case of a birepresentation, the
study of this enveloping algebra of the L, and the R, is facilitated
by the introduction of the universal associative algebra for the
birepresentations. Suppose first that 2 is alternative. Let L = APW
where 2’ is a vector space isomorphic to U under a correspondence
a —a'. We now form the free associative algebra &(B) and the dif-
ference algebra U(A) = F(BV)/® where K is the ideal in F generated
by the elements of the following types:

a1’®a2——a2®a1’—a1a2 +al®az
(13) a1az_a1®az—'(azax)’+a1/®a2/
(aZal)/—al,®a2/—al®a2,+a2/®al ) a; € A.

Let @ denote the coset of e in N(A) and & that of &’ €W and
denote multiplication in U(A) in the usual way (by ®). Then we
have the relations (9) for @/, @ (in place of L,, R,). It follows that
if (L, R) is a birepresentation of 2 then @’ —L,, @ - R, define a
representation (in the usual sense) of the associative algebra U(2A).
Thus we can consider MM as a right (associative) U(A)-module. Con-
versely, any right U(A)-module defines an alternative U-bimodule.
For these reasons we shall call U(A) the wuniversal associative algebra
for the birvepresentations (bimodules) of A. Every alternative algebra has
a birepresentation which is 1-1 in the sense that ¢ —- L, and ¢ - R,
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are 1-1. Thus, if 2 has an identity then the regular birepresentation
(M = A) has this property and if 2 does not have an identity then
the regular birepresentation of 2 acting in the algebra UA+d1
obtained by adjoining an identity has the property. (One verifies
that A +®1 is alternative.) It now follows that the mapping @ — @ of
A into U(A) is 1-1. We may therefore identify 2 with this image in
n(A). Similarly, a’— a’ is 1-1 and we may identify 2 with its image
in U(A). It is also convenient to consider 2 as an (alternative) alge-
bra which is anti-isomorphic to 2 by means of the correspondence
a —-a. Thus we introduce the multiplication a’b’ = (ba)’. In the
sequel we shall make these identifications and introduce the multi-
plication indicated in %’. The alternative multiplication in % and 2
will be distinguished from the associative multiplication in () by
the use of the notation @ for the latter.

If & is a Jordan algebra, we form the free associative algebra
F(X) for the vector space § and we work modulo the ideal ® gener-
ated by the elements:

a,Ra,Ra,+a,Qa,a,+a,a,a,—a,Ra,a,—a,Ra.a,—a,QRa,a,,

(14)
a1®azd3 +a2®a1a3 +a3®a1a2—a2a3®al _axa3®a2—a1a2®a3 B

The algebra U(J) =F(J)/R is called the umiversal associative algebra
Sor the representations (modules) of ¥. As in the alternative case, any
representation of & determines one of the associative algebra U()
and conversely. Also since there exist 1-1 representations of &, we
can identify 3 with a subset of U().

The introduction of the universal associative algebras for the
birepresentations enables one to split the representation problem into
two parts: (1) determination of the structure of U, (2) representation
theory for the associative algebra 0. In practice, however, it seems
to be difficult to treat (1) as a separate problem. Only in some
special cases is it feasible to attack this directly.

It is useful at times to consider also the enveloping Lie algebra
of the L, and R, furnished by a birepresentation. For this purpose
one needs the Lie relations connecting the R’s and the L’s. In the
alternative case these are

[[LaLc:I Lb_] = LzA(n, 5 €)+CLacn)
[[RaRc] Rb] = RzA(a, by ) +CCacdnd

15) [LR] =5 Rus— 3 [RuR,]

1 1 .
= _? LEabJ _“2" [LaLb] .
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In the Jordan case, we have
(16) [[RaRb] Rc] = RA(b,c»u) .

One can also introduce universal Lie algebras for these relations, but
we shall not require these in the sequel.®

5. Properties of the universal associative algebras

Let ¥ be a Jordan algebra and () D ¥ the universal associative
algebra. We note first that U(S&) has an involution which is character-
ized by the property that the elements of & are self-adjoint. It is
well known and trivial that the free associative algebra F(J) has an
involution such that the elements of the generating subspace & are
self-adjoint. This involution will induce an involution in W) = F() /&
provided that it maps R into itself. To see that this is the case we
observe that the generators of the second type listed in (14) are skew
relative to the involution in § while a generator of the first type is
mapped into a,®ae,Qa,+a,QRa,Ra,+a,a,a,—a,a,Ra,—a,a,Ra,—a,a,Qa,
and this is expressible in terms of the given generators. Since U(S)
is generated by §}, it is clear that the involution in U(J) is the only
one which leaves invariant the elements of . We shall call this
involution the fundamental involution in W(S).

We shall introduce next several other universal associative alge-
bras for a Jordan algebra and shall consider their relation to U(S).
The first of these is the wuniversal associative algebra for the special
representations. This is defined to be the algebra U, (J) = B(I)/K,
where R, is the ideal in $(J) generated by the elements of the form
aQRb+bRa—ab. We denote the coset ¢+ &, of ¢ in U,(J) by «,. Then
it is clear that if ¢ — S, is a special representation of &, @, — S,
determines a representation of the associative algebra U,. More gener-
ally, if @ —a is a homomorphism of J into any special Jordan algebra
B,, then a, > a can be extended to a homomorphism of 1I, into 8.
The algebra U, has been used before for the study of homomor-
phisms of Jordan algebras into special ones ([9] and [15]). Evidently
the mapping a — @, is 1-1 if and only if ¥ is a special Jordan algebra.
Since every special representation is a representation of & and since U,
has a 1-1 representation, @ — @, can be extended to a homomorphism
of U(X) onto 1U,(F). The algebra U, has an involution which leaves the
elements ¢, fixed. This follows from the observation that the gener-

6) For the Jordan case this has been done in Jacobson [217].
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ators aQb+bQa—ab of the ideal &, are self-adjoint. Since the involu-
tion in U, is characterized by its property of leaving the ¢, invariant,
we shall call it the fundamental involution in N,().

Now suppose that I is a Jordan algebra with an identity element
1. A module M for & will be called unital if ml = m for all me Ik.
In considering these modules one introduces the wuniversal associative
algebra for the unital representions. This is the algebra U,(¥) = F(JI)/ &,
where &, is the ideal generated by the R used to define U() and
the elements a®1—a, 1Qa—a, a€JF. The problem of determining
the structure of 1U(J) can be reduced to this problem for 1U,(J) and
1,(Y); for it is known that () = U,(J)SU,(Y) (in the algebra sense).”
In 1,(Y) we have the relations 2.12=1, and 1,q,+a,1l, =a,. From
these it follows that # = 2.1, is the identity element of 11,(J). Hence
in considering special representations it is natural to assume that

S, = 1 1. It is clear that the sum of two commuting special modules

2
of this type is unital.

Now form the Kronecker product algebra U,QU, and let UP(J)
denote the subalgebra of 1,1, generated by the elements a, = a,Qu
+uRa,. Let S and S® be two commuting special representations

with S{? = % . Then the mappings a,Qu — SL, uQRQa, — S homo-

morphisms mapping the identity element 1, of 11,QU, onto the iden-
tity transformation. It follows that these homomorphisms can be
extended to a homomorphism of 1,®U, onto the algebra generated
by the S and the S{®. Hence we have a homomorphismn of U®(F)
mapping @, = a,Qu+uRa, onto R,=SP+S?. For this reason we
shall refer to UP(J) as the universal associative algebra of sums of com-
muting special represeniations. Since 1, is the identity element of
nP(Y) it follows easily that there is a homomorphism of U,(J) onto
() mapping @, onto a,. We can now summarize the relations
among the various universal associative algebras for a Jordan algebra
with an identity in the following diagrams:

(17) n=ueu,, n, -1 - 0.

In a number of important cases the homomorphism of U, onto
1® is an isomorphism. In these cases the problem of determining
the structure of U is largely reduced to that of U,. An important
tool for establishing the isomorphism of U, and U¢® is the following
general criterion. '

7) Jacobson [21], p. 517.
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Theorem 5.1. Let I be a special Jordan algebra, M a module for
I and G = JIPM the corvesponding split null extension. Then W is
isomorphic to a submodule of a sum of two commuting special modules if
and only if € is special.

Proof. Assume first that 9 is ismorphic to a submodule of a
sum N of two commuting special modules. Then ¢ = JPM is isomor-
phic to a subalgebra of the extension JPN. Hence we may assume
that M is a sum of two commuting special modules. Thus we have
two commuting special compositions am, ma in M and the given com-
position is {am} = am+ma. Let U, be the universal associative alge-
bra of the special representations of & and let @, denote the element
in this algebra corresponding to ae€J. If we set am = am, ma, = ma,
then we can consider I as a biomodule for U,. This is clear since
(am) by = a,(mb,). We can therefore construct the corresponding asso-
ciative null extension U,M. Since I is special, ¢ — a, is 1-1; hence
a+m—a,+m is 1-1 of € into U,PpW. Since

(@, +m)(by+m') + (b, +m') (@, +m) = (ab)s+>{m’a} + {mb} ,

a+m — a,+m is an isomorphism of € into the Jordan algebra (U,pM),.
Hence @ is special. Conversely, assume that ¢ = @M is special.
Then we have an isomorphism 6 of & into ,, U associative. Now
we can consider 2 as a special J-module in two ways by setting
va=va% av=a%, aeJF, veA. These two modules commute so that
we can form their sum in which the composition is {va} = va+av.
Evidently ¢ is a submodule of this module. Since {ma} = (m°a®
+a®m?) = (ma)?, 0 is a module isomorphism of M onto IM?. Hence M
is isomorphic to a submodule of a sum of two commuting special
modules. _

The theory of the universal associative algebra for the birepresen-
tations of an alternative algebra 2 does not appear to be as interest-
ing or as useful as that of a Jordan algebra. We note only that ()
has an involution which exchanges the element ¢€2 and its image
@ €. We recall finally a fundamental result which is common to
the two theories: The universal associative algebra of the birepresen-
tations of an alternative or a Jordan algebra of finite dimensions is
finite dimensional ([21] p. 519 and [32] p. 10).

6. Peirce decompositions

Let 2 be alternative and ¢ — R,, a — L, a birepresentation of 2
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acting in M. The defining conditions give [R,L,]=0. Hence if
¢® = e then, by (9), R2=R,, L2=L,. These relations imply that we
have a Peirce decomposition of I relative to e, that is,

(18) M =M, M, DM,, DM,
where
(19) My = (Mg |Mmyy0 = 8;,m, 5, emyy = 8;,myy} .

Assume next that % has an identity element 1. Then we have the
Peirce decomposition (18) for ¢ =1. Moreover, {R,R,} = 2R,. This,
and R2=R, imply that R R,=R,=R,R,. Similarly, L,L,= L,= L,L,.
It follows that [R,L,]=0=[L,R,] and these relations imply that the
9M,, in the Peirce decomposition are sub-bimodules of . In the
sub-bimodule 9&,,, we have R,=0=L,. This implies that R,=0=1L,
for all ¢ in 2. Hence M,, is a trivial bimodule in which the
birepresentation is 0. In the submodule 9,, we have L, =0, R, = 1.
Hence L, =10 and R,R,= R,,. Thus this bimodule is associative;
similarly the bimodule 9, is associative.

Assume now that 9% is unital and let {¢|i=1,2,---,7} be a set
of orthogonal idempotent elements in 2 such that >'e¢,=1. The
argument used before shows that if e is idempotent and & satisfies
¢a = a = ae, then R, R,=R,=R,R,, L,L,=L,=L,L, and [R,L,]=0
=[L,R,]. If ea=0=ae, then fa=a=af for f=1—e. It follows
that R,R,=0=R,R,, L,L,=0=L,L,, [R.L,]=0=[L,R,]. In par-
ticular, we see that the R,,(L.,) are orthogonal idempotent elements
whose sum is 1 and that the R, commute with the L.,. It follows
that we have the Peirce decomposition

(20) M= > HM,,

iy g=1
where 3} @ denotes direct sum and
(21) Wy = {Mmy]e,myy = 8;,m, 5, Myse, = 8;,myy) .

Next let A=A, PA,P --- DA, where the 2, are ideals. Then
1="u,, u,€?, and the #, are orthogonal idempotent elements. Let
M = 9IN,, be a bimodule in which L, =0, R, =1. Then it is easy to
see that Wt =>) PM,, M, = MRy, and this is a sub-bimodule which
is annihilated by all the A,==A;. A similar remark can be made for
bimodules of the type I =9,,. Next suppose that % is unital.
Suppose (20) is the Peirce decomposition of 9N relative to these idem-
potents. If a,€¥;, qu, =a, =w,a, and au, = 0=u,a; for j==i. It
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follows that R, and L,, commute with all the Ry, Li,. Hence, the
Ry, and Ly, commute with all the R, and L,. It follows that the M,
are sub-bimodules of the unital bimodule 9. As before, if i=7,
then 9M,; is associative. Moreover, @; — L4, is an antihomomorphism of
A; into the algebra of linear transformations in M, and a; — Rq, is a
homomorphism of 2, into this algebra. Also, M;,A, = 0= AM,, for
k==1i, j. It remains to consider the 9M,;. One sees that these are untial
A;-bimodules which are annihilated left and right by the 2U;, j==:.

Similar results hold for Jordan algebras. Thus let ¢ be an idem-
potent element in a Jordan algebra & and let ¢ — R, be a represen-
tation of X in M. Then R,(R,—1)(2R,—1)=0 so that we have the
Peirce decomposition

(22) M = M, SN, W,
where
(23) mi-'—_'— {mitmiRe'——'—im‘} .

If ¢e=1 is the identity element in I then [R,R,] =0 for all . Hence
the 9, in the Peirce decomposition for 1 are submodules. Since, for
m € I,
mlab+mbal +m(ab) = (ml)(ab) +mab+mba ,
m(ab) = mab +mba

in M, and M. Thus these are special {-modules. As a matter of
fact, it is clear that 9, is a trivial module in which ma=0. The
module 9N, is unital.

Now let 9 be unital and let 1 =:V‘_,e, where the ¢, are orthogonal
1

idempotent elements. Then we have the Peirce decomposition

(24) M= 31 M,

iy J=1
where

Wyy = (Mg | Mgy, = My, )
(25) ; 1 o
m”=m,,={mi,lm“ej=-2—~m“=m“ei}, i=&=7.
This follows directly from the well-known Peirce decomposition of a
Jordan algebra applied to the split null extension €= JPpM.»> We
have € =3$E,, and M,;; =CE,;,nM. We recall also the following
well-known relations

8) Cf. Albert [2], p. 558.
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(26) @3t g @:M ’ @ii(gi,} = @tj@ti g @U ) @g,j g_ @ii +@jj
€€ < Cu

for ¢, j, k==. All other products of the terms in the Peirce decomposi-
tion are 0. These relations imply relations connecting the terms of
the Peirce decomposition of & relative to the ¢, arnd those of the

decomposition of M.
Assume next that S:é@& where the &, are ideals and
1

1=3u,, u,€JF;. We consider first a special module N = M, and
we note that we can decompose such a module as a direct sum of
submodules M, such that 9M, is annihilated by all the JF,==J;.”
Suppose next that 9t is unital. Then ‘the J;; =0, for /<=4, in the
Peirce decomposition of I relative to the ¢, = u, and

(27) wzuiﬁgm“, wz“_\_k=0 if kzl:'l.,j.

Hence the M,; are submodules of M. Also, it is clear that 9, is a
unital J,-module which is annihilated by the other J,. In M, i<=j,

we have Rui=—%—1=Ru,. Hence this module is a special ;- and

J5-module, annihilated by all the other .. If we take m = m,, in
M,, and the elements #,, ¢, €;, a,€S, in the defining equations (5),
we obtain m,;a,a, = m;;a,a,. Hence M,; is a sum of two commuting
special modules one of which is essentially a &,-module, the other
essentially a ,-module. These considerations reduce the study of a
unital ¥-module to that of sums of these special J;-modules and to
unital J;-modules (the 9MN;).

II. MATRIX ALGEBRAS

7. Canonical involutions in matrix algebras

In the theory of Jordan algebras we shall have to consider matrix
algebras over alternative algebras and certain types of involutions in
these algebras. A number of the results which will be required are
valid also for matrix algebras over arbitrary non-associative algebras.
Hence we shall begin our considerations with these.

Let © be an arbitrary algebra with an identity 1 and let 9D,
denote the algebra of #x# matrices with entries in ®. If, as usual,
we let ¢;, be the matrix with a 1 in the (7, j) position and 0’s else-
where then

9) Cf. [15], p. 146.
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(28) €430, = 034845 2 ey=1,

i,j,k,l=1,--,n Itis also immediate that the ¢, are in the nucleus,
that is, in the subalgebra of elements ¢ which associate with the
pairs x,y in the sense that

A(d, x’y)ZA(x> a,y):A(x-,y, d)=0.

If A is any non-associative algebra with an identity element, a system
of n® e;; in the nucleus of A satisfying (28) is called a set of matrix
units in A,

ProposITION 7.1. If 2 is a (non-associative) algebra with an iden-
tity and {e;} is a set of #* matrix units in %, then A =D, where D
is the subalgebra of elements of 2 which commute with all the ¢,;.

The usual proof of the associative special case goes over without
change. We remark that the associativity of the e¢; with all x,y
is needed to prove that the subset ©® of elements commuting with
the e,, is a subalgebra. In the sequel we identify 2 with ©, and we
write A =9,,.

Suppose now that the algebra ® has an involution d —d (that
is, an anti-isomorphism of period two). Then we can define an involu-
tion @ — a* in A by setting a* = >\ de,, for a = 3d,e;,, d, €D. An
involution of this type in A =D, will be called standard. More gener-

ally, let 4, =1, v,,,9, be self-adjoint (7,=1¢, elements in the
nucleus of ® having inverses, then we have the involution
(29) a=721dye; —> 2] w‘laﬁ,%e,t

in ®,. Such an involution is called canonical. We have the follow-
ing characterization.

PrOPOSITION 7.2. Let 2 be an algebra with an identity element 1
which possesses an involution ¢ —a*. Then A =9, and a — a* is
canonical (standard) if and only if 2 possesses a set of #° matrix
units {e;;} such that '

e;I;Zeu! i:l,-'-,% (eii';:eji) i)jzly"'yn)'

The proof of the associative special case given by Jacobson and
Rickart [23] carries over without change for the canonical involution.
This implies the result for standard involutions.

We consider now the Jordan structure of 2. Thus we introduce
the Jordan composition {xy} = xy+yx. This is, of course, commutative
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but it need not satisfy the second Jordan identity. Nevertheless, we
denote the system U relative to the given addition and scalar multi-
plication and the Jordan composition {xy} as U,. Suppose that A
has an involution @ — a*. Then the subset $ of self-adjoint elements
of A is a subalgebra of A,. We consider now the case in which
A =D, and the involution is given by (29). We assume also that the
characteristic of the base field is ==2.

A subset of A or D will be called self-adjoint if it is mapped into
itself by the given involutions in these rings. An element s is called
skew if s* = —s. Let & denote thé set of skew elements in A. If B
and € are subsets of an algebra, then we write [B€] for the set of
sums > [bc], 6€B, c€€ and {BEC} for the set of sums > {bc}. One
verifies that if & and 9 are defined as before, then [D9]< S,
[68]< G, [69]S D, (896G, (86} 9.

PROPOSITION 7.3. Let A=2I,, » >3, have a canonical involution
where ® is any (non-associative) algebra with an identity. Let 9
and & be as above and let ©* and ©, respectively, denote the sets
of self-adjoint and skew elements of ©. Then the dimensionality

dim (6 -[99]) < dim (D™ —([D"D"]+[D"D 1))
so that @ =[99] if D" =[D D J+[D*'D*]. In any case
| & = [99]+{[99], O}
so that %A = H+[HD]+{[HD], D}.
Proof. The elements of & are sums of elements of the form
dey;—y7'dyes. Assume i, j, k= and form the commutator of
degy +o5 dyess With €5, +qilyse,; to obtain deg—qi'dye,;. This shows

that all the skew elements of the form de,;—y7'dye,,, i==j, are in
[©9]. We note next that

(d—g7dy;) ey— (d—o5 dyy) €55 = [deu""%—ld—')’zeﬂ » Catoyityse]

is in [$9]. This shows that if we supplement [99] with the sub-
space of elements ge,,, ¢ €D, then we obtain the whole of &. On
the other hand, if p,, p, € D" then [p,p,]e,,=[1.¢.., P,¢,,]1€[HD] and
if g =d,—d,, q,=d,—d,c® then
[9.9.]¢., = [[dlel.l"‘ vi'd.ey,, ey +95€15]5
[d.ew+vitdsey,, ex+queinl]-

if 1, j, k are =i=. Since the wv,, ¢, and ¢;, are in the nucleus we can
use the Jacobi identity to show that the right hand side is in
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[[9919], ©1<[99] Thus we see that it suffices to supplement
[$9] by a subspace of elements ge,, where ¢ is chosen in a comple-
ment of [D*D*]+[D D] in D-. This proves the first statement.
To prove the second we note that

1
2
Hence the addition of the space of these elements gives ©.
Evidently, Prop. 7.2 implies that the subalgebra of A generated
by 9 is 2L
We shall now introduce certain notations which will be useful
throughout this section. If d €® and i, =1, 2, ..., n, then we set

{eu’ (d_d_) 811—((1*-771(7%) ejj} = (d_—d) €1 -

(30) d[ij] = de,y+97 dyees = de,; +(deyy)*.

Every element of © is a sum of elements d[ij]. We have the Jordan
relations

(31) {dlij], FLik]} = df[ik]
(32) {dlij], fLji]y = drii]+fdlji]
if d,fed® and 7, j, k are 3=. Set

(33) Uy = 1[ij] = e+ 97 v, id=7.

Theorem 7.1. Let A =D, have a canonical involution and assume
n>3. Let {&) be the collection of self-adjoint subalgebras of D contain-
ing the &, yi* and {J} the collection of self-adjoint ideals in D. Then
the mappings € - E,NnO, I — IF.ND are 1-1 outo the set of subalgebras
of © containing the u,,, e, and onto the set of ideals of O (velative to { }),
respectively. The ideal ¥ satisfies X* =0 if and only if the Jordan
square {J.N9, J.NH} =0.

Proof. We consider first any subspace & of  which is closed
under Jordan composition with the elements e;, #,,. Let € denote
the subset of ® of elements which appear as entries for the matrices
belonging to & Let k=>"d,,e;, d,; €D, be in & Since

{{key)} €y} — {key) = 2e,key,;,
eukey, = dye, € R If i==j then d,[ij] = {dye,, ,;} €R. Also
{{euk) €5, = d, e, +d e, € R.

Since ® < 9, this element is d,,[7j]. Thus we see that € can be
characterized as the set of elements de® such that d[ij]e& for
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some Z==j. Since d[kj]= {uy, d[ij]} and d[ik]= {d[ij], u,,} for
i,j, k==, d[kl]€ & for every d€@ and k-|-/. This implies that € is a
subspace of ®. Since

2d[ii] = {{d[ij], Usg} €y} s

d[ii]e® for all 7 and all de@. Evidently < HnE,. On the
other hand, if 3)d,,e;€9 and the d,e,; €€, then 3d,, =>d,,[ij ]+
i<J

%Z dy[ii] e R. Hence & = HnE,. Now assume that & is a subalgebra
2

of © containing the #,,. Then & satisfies our conditions and so
! =91 ¢, where € is defined above. It is clear from (31) that € is
a subalgebra of ©. Since #}, = (e, +e¢,) and u}, = 47l(e,, +ey), i >1,
¢ contains the elements o, and ¢;*. Since

(34) dlij] = y7'dyl 7],

it is clear that € is self-adjoint. It is now easy to conclude the proof
of the first assertion of the theorem. The second is obtained in
exactly the same way. The last statement is an immediate con-
sequence of (31).

Let the ¢, and u,,, i==7, be defined as before. We shall now list
a number of Jordan relations connecting these elements, as follows:

{€uls} = 2¢4,
{€utlss} = ty; = {uy5e;,}
(35) {50} = Uy

(U} = 2(ey+ey55) = %{ (o, 50,5} {0 30 55} }

{ {uuuu} Uy} = 4uu ’

if 4,7, k are ==. All the other Jordan products of these elements with
the exception of {u,,u,,} are 0.

LEmMMA. Let x and y be elements of an associative algebra with
an identity such that xy+yx=2= x%?+y%*x?, 2’y +yx*=2x. Then
xy =1=yx.

Proof. Our first relation gives x*y+xyx = 2x = xyx+yx°. Since
x*y+yx®* = 2x, this implies 2% = xyx =yx*=x. Then x** = yx’y
=y’x* = xy. Since x**+y*x*=2 this gives 2%?=1=yx*>. Hence
xy =1 and yx = 1.

The essence of the situation we are considering is that we have
a subalgebra of an 2, containing e,, %, satisfying the Jordan rela-
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tions we have listed. Thus we have the following result.

Theorem 7.2. Let A be a (non-associative) algebra with an element
1 and let © be a subalgebra of U, containing elements ey, u,,, i==j, in
the nucleus satisfying (35). Assume, moreover, that all the other Jordan
products of the e’s and w's are 0 with the exception of {u,u.,}, that
Ste,=1 and that n >3. Then A =D,. Let O be anti-isomorphic to
D under a mapping d —d’, whence d,+d,’ — d,+d, is an involution in
DDY. Then O is isomorphic to the subalgebra of self-adjoint elements
of an [¥,, where F is a self-adjoint subalgebra of DD and the involu-
tion in §,, is canonical.

Proof. The first relation shows that the ¢, are idempotent and
our assumption is that these elements are orthogonal: ¢,e,; =0, 7-=7.
The second line in (35) gives e,u,,e,, = 0 = e,,u,,¢,, and

Culhys055 = Uy3€55 = Cllyy, € 3Uy5€55 = €355 == Uy 54 .
Hence u;; =e,u,,e,;+e,,u,e, and u,,= (e, +e,,) #,;(e,+e,,). This implies
(€n+€jj) u,;j = u“ = uij(eu"l'ejj) .

Thus e, +e,, acts as the identity for #,, and #,. The last two lines
of (35) and the lemma now imply

Usjlhy; == €+ €35 = Uyl .
Now set g1 = €1,U,:8u 5 811 = €3ly,€,1, i = 2’ (2 Then

8118s = €1, U U8, = e11(e11+eii) €, = €y,

11810 = Cyulyy Uy3 €y = €45 (€1, + €4) €4 = €4

Hence if we put g,=-e;, g, =g:,.8,; for 1,4, j==, then the g,, thus
defined form a set of #* matrix units. It follows that 9 =D, where
D® is the subalgebra of 2 of elements which commute with the gy;.
This proves the first assertion. Also, since for i >1, u,=¢e, 4,0,
Feul 8,1, Uy = v, 8 +vu8: Where the o’s are in the nucleus of 9.
Since g, =¢€, 4,8y, ;= gyu+v/8:, v/ in the nucleus. Similarly
Uy, = gy +7:&y, v in  the mnucleus. Since w,u,,=c¢, +e¢;,=uu,,
v =nvi'. Set g, =¢/ =1, since u;; = {u,u,,} for 1,1, j=,

(36) Uy = Zo;+ 97 %8 1

holds for all 7, j=-.
Let xe€$. Then euxe, = 1

—2—{{@@7‘7} eu}_’% {ezxy and, if i-=j,
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euXe; +e;,xe, = {{e,x} e;;} €D. Set X,=e,Xe,;, X;,;=eyXe,,+e,,%e, =X,

for i==j and 9, = {x,|x€H). Then -‘i):kZ D9, We can write
<1

Koo = Mgl Xia) Basr Fag = Nay(Xy5) Qag+NgalXig) 505 157, Where Ny(%y), Nys(%y),

M%) €D, Let © be anti-isomorphic to ® under a mapping d-»d’.

Then DHY’ has the involution d, +d,’— d,+d/’, d;eD. Let F={\,,(x,,)

+ (A0 (%,)) | 2,, € 9,,}. This is a subgroup of the additive group of

DPY. Take %x,, ¥.,€9,, and calculate

_é— { {x12u23} {ylzuSI} } = >\'12('x12) A'12(.1)12) g12+>\'21(y12) ‘YZA'ZI(xIZ) ng .

This shows that

>"12(-7“12) 7\'12(3’12)+ (727\'21(3712) ’)’2>"21(x12)),
= (A‘IZ(xIZ) + (727\.21(.2712))')()\,12(3712) + (727\-21(3)12)),) € % .

Hence § is a subring of ®PD. We calculate next
{{{x12u23} ulZ} uax} = 'sz'zx(xlz) g12+'72. 12( 12) g21’
which shows that q,\,,(x,,)+(X,(x,,)) €F. Thus § is self-adjoint.

We write next the following relations
{%, 585, :A'lj(xlj)glz"")’gl'Yj)\'jl(le)gzn Jj=+2
{xzjulj} = >\'.72('762_7)glz""kzj('xzj) 'Y]_lgzl’ j:‘*:]-
Xt} 5} = Ngs(Xiy) &1+ 93 s Nge(Xis) vi' 80y, i2F1, j1, 2.

If we recall that 4, =1, these imply that

(37) xu(xw) (‘7}7\'j¢(x¢j ')’t E%}
for all i <{j. It is easy to see that «,g,,, ryt g“ef? If we set these
= x,, we see that I'y=«,+v,/, I'T' =97+ (y/) " €T.

We now define for ¢<{j
(38) . Mj(xtj) = A’U(xij) + ('Yj)\'jt(xij> %—1)/
(39) sz(xu) = Nyl Xey) + (yahes (Xs5) ”Y;l),-

Then M,,(x,;) = I';'M,,(x,;) I’y where the bar refers to the involution
in . We can verify that

(40) M, ~({xzjy,1x:}) = Mj(xu) Mjk(yjk) , Z<.7 <k
(41) Mj( { X Ves }) = M (2xy) ]Wu(.ytﬁ ’ Z<]
(42) My ({ X0 }) = { M%) My (35 1B

We now introduce the matrix algebra &, with matrix units G,
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i,7=1,2,..-,n and we consider the linear mapping of  into &, such
that

Ty = Myy(x45) Gog+ My x44) Gyq, i <Jj

Xy — M) Gy

It is clear that this is 1-1. We can now verify directly that
X35 = (Miy(%5) Gog+ My(2,5) G 5,)

This relation together with (39)—(42) shows that we have an isomor-
phism of 9 into ¥,,. It is easy to verify that the image under this
isomorphism is the set of self-adjoint elements relative to the canonical
involution in %, defined by 71 =diag{r,, r’,,-,I,}). This com-
pletes the proof.

We return now to the original notation: U = 9, with a canonical

involution given by diag {y,, 4,, -, s}, v, =1, © the subalgebra of
A, of self-adjoint elements.

Theorem 7.3. Let N =D, have a canonical involution and let O be
the subalgebra of U, of self-adjoint elements. Assume n>>3. Let S be
a homomorphism of O into an algebra B; such that the e5,, uf, are in
the nucleus of the subalgebra of B generated by the image of O under
S. Then S can be extended in one and only one way to a homomorphism
of W into B.

Proof. We may as well assume that the subalgebra of B gener-
ated by 9% is B itself. Then 15 is the identity element of B and the
uj, satisfy the condition (35). We may therefore use these to con-
struct matrix units in B and obtain a representation of B as &,. The
remainder of the proof can be carried out exactly as in the associa-
tive special case considered by Jacobson and Rickart [23]. We
remark that the uniqueness of the extended homomorphism is an im-
mediate consequence of the fact the enveloping algebra (i.e. subalge-
bra of A generated) of  is A itself.

An important feature of the present method is the complete
arbitrariness of the algebra ®. This permits a uniform treatment of a
number of interesting special cases. We shall not attempt to list
these but shall be content to call attention to one which will be
needed later: the case of A, =9,, itself.’™ To obtain this algebra
as an algebra  we introduce the algebra @’ anti-isomorphic to ®
relative to the involution d —d’. As in the proof of Th. 7.2 we

10) A number of other examples are given in [23], pp. 311-313,
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define the involution d,+d,’ —d,’+d, in the algebra 9’ which we
now denote as §. Let © be the set of self-adjoint elements relative
to the standard involution in ¥,. Then it is easy to see that © rela-
tive to { } is isomorphic to D,,. Our results therefore apply to D,;.
In particular, Th. 7.3 holds. However, in this case, we can improve
the inequality #_>3 to »_>2 and we can formulate the result in a
slightly different manner as follows.

Theoxrem 7.4. Let D be an arbitrary algebra with an identity and
let A be the matrix algebra D,, n_>2. Let S be a homomorphism of AU,
into any algebra B, such that the matrix unils e,; are wmapped into
elements of the nucleus of the subalgebra € of B generated by N°. Then
C =CPDE® where the € are ideals such that the product of S and
the projection of & onto € is a homomorphism of A onto P while the
product of S and the projection onto € is an anti-homomorphism of A
onto €.

Proof. It is easy to deduce this result for » >3 from Th. 7.3.
However, to include the case #=2 it seems to be necessary to
employ an earlier direct method which has been used by Jacobson
and Rickart in [22]. It is easy to see that the hypothesis of associa-
tivity used in [22] can be weakened to the one stated above.

8. Exceptional Jordan algebras

We shall now consider the following question: What are the con-
ditions that an algebra 9 of self-adjoint elements of A =D, relative
to a canonical involution be a Jordan algebra? It is not hard to see
that if #_>4 then  will not satisfy the Jordan identities unless ®
is associative (cf Th. 9.1). Hence the Jordan algebras $ obtained for
n >4 are all special. If =3 it is easy to see that necessary con-
ditions that § is Jordan are that ®© is alternative and that the self-
adjoint elements relative to the involution in ® belong to the nucleus.
One might conjecture that these are also sufficient conditions. How-
ever, the calculations which seem to be required to settle this ques-
tion are quite formidable. Hence we shall confine our attention to
proving a weaker result which will be sufficient for our purposes.
Thus we shall prove that © is Jordan if # =3 and ® is alternative
with an'involution whose self-adjoint elements are in the center. For
further simplification we assume also that the involution in U is
standard.'®

11) This restriction is not really necessary.
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Let ©, denote the subspace of self-adjoint elements of ®. If
ac® then a+a and aac®D,. We denote the linear mappings ¥ — %
and ¥* - x+Z% by C and T respectively.

LEMMA. aa=aa, Ala, @, b)=0, (ab) T= (ba) T, ((ab)c) T = (a(bc)) T,
(ab)(ca) = albca), a(blac)) = (aba)c.

The first four of these are easily established using the properties
of the involution. The last two are well-known identities due to

Moufang [29] which are valid in any alternative ring.
We denote the elements of 9 as

gl x3 §2 W
(43) x=\|z & x |, & =E&,.

x2 5!. E3
Thus we have a decomposition of  as a direct sum of six subspaces,
three of which are isomorphic to ® and three of which are isomorphic
to ®,. Hence we may identify x with the vector (§£,, &,, &, x,, %,, %,),
£,€9,, x,€D. Any linear transformation in  can be represented by
a 6x6 matrix (L,;) where L, is a linear mapping of the i-th space
in the sequence (D,, ¥,, D,, D, D, D) into the j-th. The linear
transformation is the one such that

{:t - §1L11+§2L2t+§3L3t+x1L4i+szst+x3L6t

¥ —=>E L, s +EL,  +E Ly s+ XL, gy +X,Lg g +%,Lg, 1.
This .can be indicated also by multiplication of (§,, &,, &,, x,, %,, x,)
on the right by (L;). Now let ¢=(«,, «,, «,, a,, a,, a,), €,€D,,
a,eSD. Then {xa} =3y = (7]“ Noy Mas Vis Vs ys)v where
(44) n = (&0t} + (%,8;5) T+ (2,3,) T
Yo = (E;+&) ay+x,(ay+ o) + X5+ AT,

where (i, 7, k) takes on the cyclic permutations of (1,2,3) and T is
the “trace” mapping defined before. Hence we can represent the
linear transformation R, (x — {xa}) by the matrix

2Ra, 0 0 0 Rs,  Ra
0 2Ra, 0 R, 0 Ra,
0 0 2Re, Rasy  Ray O
0 Ro,T R4T Rajta, CRz,  RuC
R, T 0 Re,T RaC  Raite, CRa,
RaT RaT 0 CRi, RuC  Rayta,

1

(45)
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where the R’s in the matrix stand for right multiplications in 9.
Now let b= (B,, B,, B,, b,, b,, b,), B,€D,, b;€D. Then the matrix
of [R,R,] is the commutator of the matrices of K, and R,. If we
use the fact that self-adjoint elements are in the center and the
preceding lemma, then we can see that the matrix of [R,R,] is

0 0 0 0 —R., R,
0 0 0 R, 0 —Rc,
0 0 ‘0 —R R, 0
(46) “ o
0 — R, T R, T U, V, W,
R:;, T 0 — R, T W, U, V,
—R:, T R:T 0 v, W, U,
where
(47) Cy = bt(aj—ak)_at(ﬂj—lgk) +(‘7k51'—57a‘71)

(48) U, = 2(Ra;TRp;—R5,TRa;) + (La,Ls,— Lb,La,) + (Ra;Rb,— Rb,;Rz,)
Vi = CRa,+ (Ra;TRb;— R5,;TRa;) + (RayLo,— ReyLay)

(49) ) _
dy= (B;—By) a;—(a;—ay) b,
(50) W,= —CL4,+ (Ra,TRs,— Rp;, TRa,) + (La,;Rb,— Lb,Ra,) .
Now set b =a*= % {aa}. Then by (44)
(51) Bi= (ag‘f‘djéj"*‘ak’in)

bi - (dj-l—dk) ai+dkﬁ¢.
We are now ready to prove the following

Theorem 8.1. If D is an alternative algebra with an involution
such that the self-adjoint elements are in the center, then the subalgebra
O of A, of self-adjoint elements of A = D, relative to the standard involu-
tion is a Jordan algebra.’®

Proof. We take the values of B, and b, from (51) and substitute
in ¢,, U;, V, and W,. This gives
¢, = (af—al) a,+a,a,a,— o) —a (ol — o + ayd, —a,a,)
+a[ (o +a,) a;+aa, | —[(a,+ay) a,+a,a,] a,

12) The only case of this result which seems to have been proved before is that of
the exceptional Jordan algebra M3 defined by Jordan, von Neumann and Wigner in [25].
Here the base field is that of the real numbers and the proof given by Albert in [1] does
not generalize to the present case. The proof which we give here was communicated to us
by R.D. Schafer,
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= @,(a,q;) — a,(@:qy) + (@,a,) @;—a,(a;a,)
=0
by the Lemma. Next we have
Ut == Z(RdiTdedj_RajakTRai)
-+ (LakLaidj—Lﬁjd,;La_k) + (RajRaﬁ;ai_Rdiddej)-
Hence

xU, = 2(xa,) Tm"z( x(a;ay)) Ta,+ +(a,a;)(a,x) —ay((a,a;) x)
+ (xa,){aa;,) —(x (akac)) 3
= [aa;((@x) T)—a,((a,a,) x)]+[((xa,) T) a,a,
—(x(@:ay)) a1+ (aay)(awx) —a,((aa,x) T)]
+[—((xaax) T) a;+ (xa,)(aya,)]
= a,| a,(a,x)+a,(Za,) —(@,a,) x]
+[(xa,) @+ (aZx) a,—x(a,a,)] a,
+[( a.,,a_, Jap¥) —aas(acx)) —a,((Za,,) dj]
+[(xa,)(ava;) — ((xa;) ay) a,— (@, (@,%)) a;]
= —a,cA(aj, a,, x)—a,Ala,, %, a,)
+Alx, a;, @) a;+ Ala,, %, a;) a,
+Ala,, ay, axx)+Ala,, Za,, a,)
—A(xay, a,, a,)—Ala,, a,%, a;).
The sum of the first two terms is 0 since A(a, b, c)= Ala, b, ¢) etc.
The same reasoning applies to each of the succeeding pairs of terms.
Hence U;= 0. To calculate xV, we note first that d, = (e,a,—a,a,) a,
—(a;—ay) aya,,. Hence
V. = CRavar-ajsa;) a;— (& ;— &) CRaja,+ (at;+ aty) Ra;TRq,
+Ra;TRa;a,— (o, + ;) Ra;TRa;,— Raya; TRay,
+(ay+ ;) RayLa;+ RayLawa,— (ot +aty) RoLa,
—Raa;La;
= (ay— ;) (CRaja,— Ra;TRay, + RaLa,)
+CR(akd_k—ajﬁj) a; +RaJTRdjdi—Ra,.,aiTRak
+ RayLaya;— RajaLa;.
Since
%(CRa,0,— Ra,TRa,+ Ra,La,) = Z(a,a,)—((xa,) T) a,
+a,(xa,) = Zla,a,)— ((@;x) T) a,+a,(xay)
= — A%, a;, a,)—Ala,, x,a,) =0
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and
x(CRavar - asa5) a;+ Ra;TRaa,— Raya, TRay,
+RakLakai —“RdjdiLa‘j)
= (@l —Q,y,)(Za;) + (ara;) (Xay) —a,(x(a@,a;))
+((xa,) T) a50;— ((x(ary)) T)ay, P

= a,[a,(x.a)+ (ax) ay—(x(ara;)) T ]
+[—(a,a,) Z—a,xa,+((xa,) T)a,] a,
=0,

we have V,=0. In a similar manner one proves that W, =0. Hence
RaRs,2 = Rp2Re and 9 is a Jordan algebra.

We shall show next that the algebras  obtained from algebras
® which are not associative are not special. In fact, we have the

following result.

Theorem 8.2. Let D be an algebra (with an involution) which is not
associative and let O be the subalgebra of self-adjoint elements of U, ,
A=D,, n_>3 relative to a canonical involution in A. Then $ is not a
special Jordan algebra.'®

Proof. Suppose 9 is special and let S be an isomorphism of ©
into an algebra B, where B is associative. Then it follows from
Th. 7.2 that we may assume that B =, where § is associative and
has an involution, that the image $° is the set of self-adjoint elements
relative to a canonical involution in &, and that the images #$, of
the u,, of § generate the system of matrix units in §,. Then S-' is
an isomorphism of 9% onto © mapping the «{, into the elements u,,
belonging to the nucleus of 2. Hence, by Th. 7.3, the isomorphism
S-! can be extended to a homomorphism of ¥, onto ®,. Then D is
a homomorphic image of an associative algebra, contrary to our
assumption that ® is not associative.

9. A structure theorem for Jordan algebras

Let A =D, where D has an involution and let $ be the set of
self-adjoint elements relative to the standard involution in 2. Then

13) This theorem contains Albert’s result on the exceptional character of M} proved
in [1] and [3].
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9 contains the elements e, and u,; =e;,+e, =u,, i==j. The non-
zero Jordan relations (cf (35)) connecting these are

{eueun} = 2ey,

{egthy s} = Uyy,

(s} = 2(e+eyy),

{Ug st g3} = Uy,

(52)

if 7, j, k are ==. Also we have the fact that %Zeu acts as the iden-

tity relative to { }. In this section we shall determine the structure
of the Jordan algebras which possess sets of elements of this type.
Our result will be an abstract analogue of Th. 7.2.

Let & be a Jordan algebra with an identity element and assume

that 1= Z‘ei where the e; are orthogonal idempotent elements. Let
J= ‘Z} @C‘éw be the Peirce decomposition relative to the ¢;. Then we
have the relations (26) connecting the $;,. Moreover, if x;, etc.
denotes an element of J;, then we have the following

Lemma 1. If 4, 4, k, [ are ==, then

(XsYis) 236 = X Viy250)
(Xe3Y315) Rax = Xes(Y 352 52)
(xijyjk) Rpp = xtj(yjkzk:k)
(X33 Y 3%) B0+ (Xis250) Yju = xtj(.:vjkzjlc).
(X538 5%) By = Xay(Y 55200)
Proof. The proofs are obtained by substituting ¢=e¢e;, b=x_,
¢=y_., d=2z_ in the basic Jordan identity
(53) abcd + adcb + a(bdc) = (ab)(cd) + (ac)(bd) + (ad ) (bc).
We now suppose that & is a Jordan algebra with identity element
1 containing --2— n(n+1) elements ey, u,; =u,, i=4=j, satisfying (52)
(that is, e}, = 2e;;, eue;; =0, etc). Assume, moreover, that » >3 and
% Sle,,=1. Then the elements ¢, = % ¢y, are orthogonal idempotents
with sum 1. Let J =) ®J:, be the Peirce decomposition relative to
1]

these elements. Put U;; = Ry,;.
LEmMMA 2. U;; maps Ju+3iy+8s; into itself and satisfies

U3, = 4U,, in this space. Uj; maps J;; into itself and U},(U3,—4)=0
in ;. Uy is a 1-1 mapping of Jy; into Jy;y.
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Proof. The first parts of the first two statements follow from:
e . 1
R PR RN PP SesFus < Joy. Write = Uy, e =€;+¢€; = A (e +ey ).
Then #°=4e, ew =u. Hence #*®-=—=4u and R?=6R,R,—2R,, by (7).
Since R,=1 in Ju+Jy+I,,, Ri=4R, in this space. Hence
U}, =4U;; here and Uj; =4U3}, in J;,. To prove the last statement
we substitute @¢=x; €Iy, b=u;,, c=u,;, d=e¢, in (53) to obtain
xwuwui}ei = 2x¢¢ .

For x;, € Js;, define

- 1

(54) xg_,—‘—‘?x“Ufj—x“.

Then, by Lemma 2, x,; — Z;; is a linear transformation of period two
in &4;. Any x;; can be written in one and only one way in the form
Yoy +2; Where 7, =34, 2y, = —2. Also 7§, =y, if and only if
,,U}; =4y and z,; = —2,; if and only if 2,,U}, = 0. Since U}, =4U,;
in Su+Si,+3y,, 2U%, =0 in this space implies xU,; = 0. We now
substitute @ =2x;;, b=wu,; =c¢, d=y,, in (53). Assuming i, j, k==,
this gives
KygUs sy Y0 = — Xo3 Y suthssUs3— X 3( Y gulhsshhsz) + (X35 yu) “%j
+ 2% 5055) (D 0Ms5)

By Lemma 1, ((%4;9;5) %) thsy = %— (Xes ¥ ) 435 and (Y yuthsy) they = %«ynu?;-
Hence we obtain xy,u;,u;; ;1 = 2(%y,0:;) (Y yithes), OT

(55) (%:;U25) 930 = 2(24,Us5) (9 :Usy) i, 7, k==

Similarly, if we substitute a =x,,, b =y,,, c =u, =4, i, j, k5=, in the
basic identity and again make use of Lemma 1, then we obtain
(%39 50) Ul = 25539 5o+ 2(%4;Usi) (9 50 Usi), or

(56) 539 = (0 Un) 95U, 4,7, k==

Finally, we shall need the following relation

(57) XYoo = (%, Us) (¥ Usy) i, 7, k, [=F.

This can be obtained by starting with a=x,,, b =u;; =c¢, d =Y.

LEMMA 3. 5':tj=x,;_,UikUijUjk=x”UijUUm, i, j, k-:':.

Proof. Xy UikUij = (UgpXsy) sy = — (Usnlhsy) xtj+ui7c(xijuij) = _xszk_}
+x,;jU,;jU9;;c: —xUUkj—P—(xi_,U,;j)(uijij)Z _xijujk“‘——é— (x,;j 3]) ujk, by (55).

Hence x,,U;;U;; = #;,U,,. The first assertion now follows easily from
Lemma 1. The second relation is just a re-statement of this.
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We now set @ = J,, and we make this vector space into an alge-
bra by introducing a multiplication x in ® by

(58) XXy = (xU23)(yU13).

Evidently, this result is in ® and the function xxy is bilinear. It is
clear also that #,,=1 in 9.

LEMMA 4. The conjugation ¥ — Z is an involution in 9.

Proof. If x,y€®=3,, then

56X§= (xUZB)(yU13) = (xUZSUIZ)(yUISUlz) ’

by (56). On the other hand, xU,,U,, = xU,,U,,U}; = zU,, by Lemmas 1
and 3 and similarly yU,,U,,=7%U,,. Hence (xU,U,)yU,U,,)
= (yUza)(iUm) =y XZ.

If xe®=3,, we define
x12:x;x11=xU21> j>2;x11=§:11: J'\o
(59) Xy = xUn’n Xys = Ty Z> 2
xtjszliUzj’ 1v 2’ i:j:I:'

Note that if 1,2,4,j are ==, then (xuy,)u,; = (#; %) #,; = t;,(x%,,).
Hence x,, = xU,,U;, also. Note also that u;; =1,; (1=u,,).

LEMMA 5. Z, = x,, for all 7, j==.

Proof. This is true, by definition, if ¢ or j is 1 or 2. Hence
suppose 1, 2,1, j==. Then #,;=(xU,U,,U,,) U,U,, = xU,,U,,U,,
= (Xyilhyy) Uy = Xyglhyythyy) = Xygthyy; = xULU ;= x5,

By the definition of the multiplication in ®©, we have x,,7,,
= (xx¥),,. More generally, we have

Lemma 6. If i, j, k==, then

(60) XegYie = (XX Y)ix-

Proof. By Lemma 5, if (60) holds for particular triple (7, j, k),
then it holds for (&, j, 7). Consider first x,,5,, = (x,,U,,) ¥,, = —(x,,5,,)
U23+x13(y23U23) = —'(xX?—/)m+(xx2U23)(y23U23) - ——(xxy)13+—% xlz(yzaUga)-

Thus x,,9,, = (*x7¥),, and (60) holds for (1,2, 3). Note that x, U,
=z,U,=%,=x,. Hence x,y,=(x,U, »,, and the argument
just used for (1, 2,3) shows that (60) holds for (2,1, 3). Thus this
relation holds for all permutations of (1, 2,3). By definition, x,,U,,
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= X1 Z> 3. Also x,,Us; = Hya Uy los) = (Xy5ly5) Uy = Xyylyy = X1y, Z> 3.
Similarly, x,,U,; = %3 = %,,Us,, x,,Uy; = x5 = x,,U,;, i >3. Now let
7 >3, 4, k< 3. Choose /<3, /¥4, k. Then x,=x,U;, y,,=3.U,;.
Hence, by (57), %3956 = (%, U, 5)(3:U,;) = % 9u = (¥ X 9)s. . Hence (60) is
valid for ¢, k<3, j arbitrary. Next let (< 3, j, £ arbitrary. Choose
1<3, /==1i,j. Then (60) holds for (7, j, /). We may suppose also that
k>3 ; hence i, j, k, [ are ==. If j <3, y,,=1,U,, was proved before.
If >3 and /=2, y,,=y,U,,, by definition. If j >3 and /=1, then
V53U =930 =330 = (31,0,5) i = UiV 1) Uy = Y3y =Y. 1f j >3,
1=3, y,Up =240 =3;,U,;Uy, =9;,Uy=9;. Hence in all cases
=Y Un- Then x,y;0=2;(3,Upn) = (%:;3;) Up=(2x9),Up= (%X ).
This proves the formula for ¢ <3, j, k arbitrary. A similar argument

can be used to free the index i.
Set Etleeii and define, for x €D,

4
(61) Xy = x;UuE;, i==j.
.. 1
If 1 i, j,k are =, then Kixlhs = (Xgylhg30) (U gl 54) = 9 (X550 55) w3y
+5 DXyt gty thys + XoyUylhp gty + Xog (UyslpyUpy) ] = — (Xg3055) €55 + XoyUyg

+% Koyl gl sty . Hence (Xyhy) € = (%,4,) e, and so x,; is independent
of j.

LEMma 7. If i==j, then
(62) Xisdiy = % (X +Z) X 3]s

Proof. Choose k so that 7, j, k are ==. Then 4x,3;; = Xithi€ss Vs,
= —xinyijeuuki_xzu(”m}’ueu) + (Xer€is) (Voglhue) + (Xonlhns) (€01 Vig) + (XinYis) (Caslhs)
= X Vrgt Xexlhxs Vit XanYijhes = (x Xy)ij+xikuktyij +(Z XY)iz- Since Xielhis Vi s

Z%‘ XuthriCuYis = 2% Y4y, this gives (62).

LEMMA 8. If ¢==j, then

(63) (X559 11) €30 = 4(X X )i
(64) Xii Vi = {'% (x+2), %‘ (.y+?7)}i

where {ab) =axb+bxa.
Proof. Choose k==i,j. Then 4xuy,= % (X458 5430) ( VirMni€is)

= (X 58 g3) (Vi) = — (X5 Yan) (0 g5hng) — (Xg yUaos) (Y o g5) + 2538 55 Y iilhis X5 Uis Virh 5
F Xy (U gl Yir) = — (B XY) julhyo— X3 g1+ 2Xig Yarhws + (Y X X) g g+ X33 Y35 1
we substitute 2x;9;%:; = ((x+Z) X ¥)uhy; (Lemma 7), we obtain
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(65) A5 Y0 = — (U XX)slyi— X3 g1+ (X +F) X D) ialha
(P XX)gythg+ X5 Yy

Multiplication by e;; gives
0= —4(y X X)ue— (X539 55) €uw+ 4T X (X +Z)) i -
Hence (%:;9;x) €xx = 4(¥ X %), Now multiply (65) by e, to obtain

8x13 Vi = 4((X+Z) X ¥)ss+4(Y X X) s+ (X437 31) €15
(66) 22390 = ((X+Z) X ¥)gs+ (Y X X)gs+ (Y X %)y
= {(x+2Z),Y}u-

If we take y =1 we obtain y,e,; so that, by (66), 2x;; = x;;+Z;;. Thus
x,; = %,. Hence, by (66), 2x,;9,; = {x+%, ¥}y. If we average this
with (66) we obtain (64). Also, our previous relation: (Xxg;¥;u)€xx
= 4(§ X E)xx, NOW gives (63).

We are now ready to prove the following result which will play
a fundamental role in the sequel.

Theorem 9.1. Let & be a Jordan algebra containing an identity 1
and elements ey, Wiy =1ty, i==7, i,j =1, 2, ---,n, such that

el =204, Culliy = Usy, Uiy = 2(€s+e€;y),

67 ..
( ) Uy U35 = Uy s i,],k=|=

and all other products are 0. Assume, moreover, that %Ee“:l and

n>3. Then I is isomorphic to the subalgebra of self-adjoint elements
of a suitable W, where N =2, and the involution in N is standard.
Moreover, if n_>3, then ® is associative and if n=3, D is alternative
and the self-adjoint elements of D are in the nucleus.

Proof. Consider the Peirce decomposition J =3 HJ,, relative
to the set of orthogonal idempotents ¢, = %eu. If yely,, i5=7, then

it is clear from (59) that y = x,, = #;, for a uniquely determined x in
D=3,,. By the proof of Lemma 2 and (61), any ye€ 3y can be
written as x,;, x€%9, and we have seen that x,, = %,;. Hence we can
write y as x;,; where Z=x. It is easy to see (cf. (62)) that the self-
adjoint element x is uniquely determined by y. We now introduce
the matrix algebra ©, and denote matrix multiplication in it by x.
We denote the matrix units in ®, by E,;;, i,7=1,2,--,n. By the
remarks just made there exists a 1-1 linear mapping of J into D,
such that
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(68) Yoy = XEy+ZEy,, i)
x“_>xE“, ‘?=x.

The formulas (60), (62), (63) and (64) show that this is an isomorphism
of & into ®©,,. Also it is clear that the image is O, the set of self-
adjoint elements relative to the standard involution in . If >4
then the last equation of Lemma 1 implies that ® is associative. If
n =23, the first three equations of this lemma imply that if z=x
then «x is in the nucleus. The fourth equation of Lemma 1 shows that

(xxY)xJ=2xx(¥yxJ), (yXF)Xx=YyX(JxXx).

Since y x j is in the nucleus, these imply that A(x, y, 5) = 0= A(y, 7, x).
It is easy to see that these are sufficient conditions that © is alter-
native. This completes the proof.

Remark. The hypotheses of the theorem can be modified some-
what as follows. Assume that we have elements e¢;, and #,,, j =2, .-, n
for which the non-zero products are e}; = 2¢;, e, u,, =u,; =u,,e,,,
ui; = 2(e,, +e,;;). Then we can define wu;; =wu,u,; for 1< i< j and
4y, = u,, for all k==/. Then the Jordan identities imply (67). Hence

the conclusion of Theorem 9.1 holds (assuming —2—2eu =1, n_>3).

10 . Applications to representation theory : The Jordan case

The structure results which we have obtained for the algebras ©
give considerable information on the module theory of such algebras.
They can also be used to derive the main result on alternative
bimodules for associative matrix algebras (Th. 11.1).

We suppose first that O is the set of self-adjoint elements relative
to a canonical involution in an associative algebra A=9,. If >3
then, by Th. 7.3, any special representation S of  can be extended
to a representation of the associative enveloping algebra A. It is
easy to see that this is equivalent to the following result.

Theorem 10.1. If O is the subalgebra of N, of self-adjoint elements
in the associative matvix algebra W = D, relative to a canonical involu-
tion and n >3, then U is the universal associative algebra N (D) of D.

Suppose next that 9 is a unital module for $ and let & = SN
be the corresponding split null extension. Then @ has an identity
and, if the involution is standard, € contains elements e, #,, satisfy-
ing the conditions of Th. 9.1. Hence, if # >4, then it follows from
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this theorem that € is special. Hence, by Th. 5.1, 9 is a submodule
of a sum of two commuting special mudules for . This implies that
if @ - R, is a unital representation, then ¢, = aQu+uRa — R, deter-
mines a homomorphism of the associative algebra U?(9) (§5) onto
the enveloping associative algebra of the R,. If U,(9) denotes the
universal associative algebra for the unital representations then the
(right) regular representation of 1, defines a unital representation of
H. It follows that we have a homomorphism of U®(9) onto U,(H) map-
ping @, upon a,. Since we always have a homomorphism of U,(9) onto
N®(H) mapping @, on «, it is clear that both mappings are isomor-
phisms. This result can be stated in a slightly unprecise form as
follows.

Theorem 10.2. Let © be as in the preceding theorem. Assume the
involution is standard and n_>4. Then the universal associative algebra
N,(D) of the unital representations coincides with the universal associative
algebra U (D) of sums of commuting special representations.

This theorem focuses attention on the structure of the algebra
u®» (). Now, we observe first that any Kronecker square AU
possesses an automorphism P:> x,Qy;, — > y,Qx, of period two. We
shall call P the exchange automorphism in AR A. Evidently, the sub-
algebra B of elements invariant under P is the totality of elements
of the form > (x®y.+3.Qx,), that is, the subspace of symmetric
tensors in the tensor space ARWA. Thus if A is of finite dimension-
ality », then dim B =n(n+1)/2. Now it is clear that the subalgebra
uP(9) of U,QU, generated by the elements a,Qu+uRQa, is contained
in the subalgebra of elements invariant under P. In a number of

cases we can show that U® coincides with the subalgebra of elements
invariant under P. One situation in which this is the case is given
in the following theorem.

Theorem 10.3. Let O be as in Th. 10. 1, involution canonical, n > 3.
Assume that the set & of skew elements of U coincides with [9D]. Then
the associative algebra NP coincides with the subalgebra of N,QU, of
elements invariant under the exchange automorphism P.

Proof. Set A=a,Qu+uRa,, B=b,Qu+uRb, and form [AB]
= [ab,] @uR[ab,]. By assumption if ¢ is any skew element of
I, (=) then ¢ is a sum of elements [a,b,;]. Hence every element
of the form 2Qu+uRx, x in U, is in NP®. It follows that if » and
y €U, then



38 N. JACOBSON

IRy +IR% = (xQu+uRx)(YQu+uRy)— (xyQu+uRQxy)

is in U®. Hence UP = {3} (x,Qy,+y:®x,)} and NP is the subalgebra
of U,®U, of elements invariant under P.

Our results, particularly Th. 9.1, can also be used in another
way to reduce the theory of unital $-modules to that of alternative
D-bimodules. In fact, this second method which we shall now con-
sider is also applicable to the algebras $ which are exceptional. Thus
we consider an algebra  which is the set of self-adjoint elements of
a matrix algebra A=9,, n_>3, relative to a standard involution.
Necessary (sufficient) conditions that  is Jordan are: n >4, D asso-
ciative; n =3, ® is either associative or its self-adjoint elements are
in the nucleus (center). Let  be Jordan and let 9 be a unital
H-module, & = HPIM the split null extension. Then Th. 9.1 permits
us to identify & with the set of self-adjoint elements of an algebra
¥, where § is either associative or alternative. Since  contains the
e, and u,,, we may suppose that ® is a self-adjoint subalgebra of &
(Th. 7.1). Also, according to Th. 7.1, M = N, € where N is a self-
adjoint ideal in & such that M2 =0. Since H- M =0, NRAD=0 and
since € =9H+M, F=D+N. Thus F=DPN. Hence if »_>4, then
N is a unital associative bimodule and § is the corresponding split
null extension. If #=3, M is unital alternative and & is the corre-
sponding split null extension. The notion of bimodule, however, does
not give an adequate description of our situation; for, we must take
into account also the involution in & and in ©. For this purpose we
introduce the notion of a bimodule with involution.

Definition 10.1. Let © be an algebra with an involution and let
D belong to a class 7 of algebras satisfying a set of multilinear
identities. Then a bimodule M for  in 77 is said to be a bimodule
with an involution if there is defined a linear transformation x — % of
period 2 of M onto itself such that

(69) dx =2zd, xd=dz

for all de®, xeN. We call x - Z the involution of R.

If N has this property then the involution in ® can be combined
with that in M to give an involution in the extension § = DPMN.
Conversely, any involution in % which extends that in © can be used
to turn the bimodule R into a bimodule with an involution. In speak-
ing of sub-bimodules of a bimodule with involution, etc. we shall

mean sub-bimodules, etc. which are invariant relative to the involution
x — % given in the definition. Isomorphisms, homomorphisms, etc. for



Structure of alternative and Jordan bimodules 39

bimodules with involutions will mean mappings of this type which
commute with the involutions.

Returning to the situation above we see that the Jordan $-module
M determines a D-bimodule N with an involution. If >4, N is an
associative bimodule and if #» =3, M is alternative, but even here we
have the added condition that the self-adjoint elements of = DPN
are in the nucleus of §. If we define the nucleus (center) of a bimo-
dule to be the intersection of the nucleus (center) of the null exten-
sion with the bimodule, then it is clear that the self-adjoint elements
(Z =x) of N are contained in the nucleus. Also Th. 7.1 establishes
a lattice isomorphism between the lattice of submodules of I and
the lattice of sub-bimodules of the ®-bimodules with involution .
We therefore have the following theorem.

Theorem 10.4. Let © be a Jordan algebra which is the subalgebra
of self-adjoint elements of a matrix algebra N =D, , n >3, relative to
a standard involution. Then any unital Jordan module W for © deter-
mines a unital alternative bimodule with involution N for D which is
associative if n_>3 and, in any case, has the property that the self-
adjoint elements of the split null extension F = DPN are in the nucleus.
Moreover, one has a lattice isomorphism between the lattice of submodules
of M and the lattice of sub-bimodules of the bimodule with involution N.

Our next result gives a reduction of the isomorphism problem
from M to N.

Theorem 10.5. Let © be as in the preceding theorem and let M, and
WM, be unital H-modules, N, and N, the associated unital D-bimodules
with involution given in the theorem. Then M, and W, are isomorphic
if and only if N, and N, are isomorphic.

Proof. Let G, =9PM,, i =1, 2, be the split null extension of
M,, so that &, is the set of self-adjoint elements of F,, in where
B = DDN, is the split null extension of N;. We observe first that
an isomorphism of I, onto I, determines an isomorphism s of €,
onto &, leaving the elements of © invariant. By Th. 7.3 we can
extend this isomorphism to a homomorphism S of &,, onto %,,. By
using the inverse mapping we see that S is an isomorphism. More-
over, it leaves fixed the elements #,,, e, of ©. Hence it leaves fixed
the system of matrix units of &,, (and of %,,). Hence S induces an
isomorphism of ¥, onto %,.' Since our isomorphism of &, onto €,

14) One needs to observe that {; is the subalgebra of (&; of elements which commute
with the matrix units. Cf. Prop. 7.1.
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is the identity on 9, the extension is the identity on ®. We note
next that the isomorphism s of &, onto &, maps M, onto IW,. It
follows that its extension S maps %,, onto %,, and, consequently, S
induces a linear transformation ¢ of %, onto N,. If A€F,, (or F,,)
we let A* be its image under the standard involution in &,,(T,.)-
Then if Ae@,, A*=A and (A%)*=A% is in §,. Hence (A*)S=(A%)*.
Since &, generates §,, this implies that S commutes with the involu-
tions in §,, and $¥,,. Since the involutions in ¥, and ¥, are induced
by these, S commutes with the involutions in &, and §,. Hence o is
an isomorphism of the bimodule with involution 3, onto N,. The
converse of all this is immediate.

The passage from M to 9 can be retraced. Thus suppose we
have a unital alternative bimodule 9 with split null extension
T =DPN. We assume that if >3, ©® and N are associative and
if =23 then either this holds or the self-adjoint elements of § are
in the center. Then $§ satisfies the conditions which insure that the
algebra & of self-adjoint elements of %, is Jordan. One sees readily
that & has the form of a split null extension $PIM and that the
Jordan module 9t determines the given M as before. We remark also
that, if § is not associative, then & is not a special Jordan algebra
and so M can not be a submodule of a sum of two commuting special
modules. This remark can be used to construct new exceptional
Jordan algebras.'®

We observe finally that if © is any associative algebra with iden-
tity and an involution, the theory of unital associative bimodules with
involutions for ® can be reduced to that of right modules for a cer-
tain algebra &. Consider first that Kronecker square QD and its
natural automorphism P. We now form the cross product & of DD
and this automorphism with factor set 1. Thus the elements of &
are representable uniquely in the form #,+u#,c where #, ¢ DRD, ¢*=1
and cu = u®c, 1 e DRD. Let M be an associative unital D-bimodule
with an involution. Then we define

(70) nd,®d,) =dnd,, nc=rmu

and extend these to define a composition of N and & into M. One
verifies that 9 is a right &-module. It is easy to see that the theory
of this G-module is equivalent to that of the given ®-bimodule with
involution.

11. Application to representation theory: The alternative case

We consider now an associative matrix algebra ®, (not necessarily

15) See §19.
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involutorial) and we wish to study the alternative unital bimodules
for ®,. Now if % is any alternative algebra containing #»® elements
e;; such that ey e, =8¢, 2 e =1, one can deduce from results of
Zorn [37] that, if » >3, 2 is associative. This can be used to show
(via split null extensions) that every alternative unital bimodule for
®,, # >3, is associative. However, the known results give little
information for the case n=2. We shall therefore not attempt to
adapt them to our purposes here. Instead, we shall derive the theory
of alternative representations by another method which is based on
the Jordan results previously obtained.

Our starting point is the observation that if e > L,, a— R, is a
birepresentation in 9, then these mappings are special representations
of Ay, A=9D, (cf. (16)). Let L(A) denote the enveloping associative
algebra of the L,. Then by Th. 7.4, L(Y) = LOA)PL>A), LPA)
ideals, such that if L denotes the component of L, in L®(A), ¢ — LY
is an associative homomorphism of 2 and ¢ — L is an associative
anti-homomorphism. If the bimodule is unital, then the algebra
decomposition L(A) = LW PL>(NA) gives a decomposition of M as
MPPIM® where MP is the subspace WMLPA). Evidently, M® is
invariant relative to L(2) and the contraction of L, to IN™ is an asso-
ciative. homomorphism while the contraction to IM® is an associative
anti-homomorphism. We refer next to equation (9). According to
this, for any @ €2, the derivation X — [XR,] in the algebra of linear
transformations of 9t maps L(2A) into itself. Since (L®P(A))* = LP(A),
it follows that the ideals L®(9) are invariant under the derivation.
This in turn implies that the IMN® are invariant relative to the R,.
Hence the M® are sub-bimodules. In a similar manner we can
decompose each IMN® into two sub-bimodules such that ¢ — R, is an
associative homomorphism in one of these and an anti-homomorphism
in the other. Now we have seen that ¢ — R, is a homomorphism if
and only if @ — L, is an anti-homomorphism and if these conditions
hold, then the module is associative. We therefore see that two of
the four sub-bimodules which we considered are 0. The bimodule Wt
is a direct sum of an associative one and a bimodule in which ¢ —» R,
is an associative anti-homomorphism and ¢ — L, is an associative
homomorphism.

Bimodules of the last type do exist. Thus let A =®, and let
a— U, be a representation of the associative algebra . Also define

@ =+tr(a)1—a. Then it is known that ¢-— 2 is an involution in 2L
Now set

(71) La=Ua, Ra=U&'°
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Then one can verify that ¢« — L,, a — R, is an alternative birepresen-
tation of ®,. We shall call such a birepresentation of ®, a Cayley
birepresentation. The corresponding bimodules will be'called Cayley
bimodules.

We can now prove the following theorem.

Theorem 11.1. Let D be an associative algebra with an identity.
Then any unital alternative bimodule for ®,, n >3, is associative. Any
unital alternative bimodule for ®, is a direct sum of an associative bimo-
dule and a Cayley bimodule.

Proof. We have the decomposition of any alternative unital
bimodule for A =D,, »_>2, into an associative one M, and bimodule
M, in which ¢ — L, is an associative homomorphism and a — R, is
an associative anti-homomorphism. Thus L,, = L,L, and R,, = R,R,
holds in M,. Hence, by (9)

(72) [LaRb] = [RbRa] = [LbLa] = [RaLb] .

This implies that 7,= L,+ R, commutes with all the L,, R,. Now,
we have noted that @ — T, is a representation of 2, (cf §3 after (8)).
Ti,e,=[[TaT, 1T, ]=0 (eq (16)). Since A(d, ¢, a)={{bc}a}—{b{ca}}
=[[ab]c], T,=0for every u=[[ab]]c] in A. If {ey;i,j=1,2 -, 0}
is a system of matrix units for A =, then ey —e,, = [[€inCan] €ni]
for ig=n. Hence Tg, = T,,,. Since M, is a unital bimodule for
A, L,=K,=1; hence T,=2. It follows that u7,,=T,=2. On
the other hand, since {e,,¢,,} = 2¢,,, T¢,, satisfies the equation
x(x—1){(x—2) =0 (cf the paragraph of eq (22)). These conditions are
compatible only if either M, =0 or » = 2. This proves the first state-
ment in the theorem. Assume now that # =2 and ® = &. In this
case, T¢, =1=T,,. Also since e,, =[[e,e,,]¢,], T¢, =0 and simi-
larly T,,, = 0. It follows that T, is the trace of a (multiplied by the
identity mapping in M,). Then R, = T,—L, = L; where a =tra—a.
Thus M, is a Cayley bimodule.

12. Extension of the base field

Let % be an algebra belonging to a class 77 of algebras satisfying
multilinear identities. The identities in question are in a free non-
associative algebra &(8B) based on a vector space B over ®. Let P
be an extension of the base field ®. Then we can form the vector
space U, and the algebras &, and 9, obtained by extending the
base field to P. Since the identities defining 7" are multilinear, it is
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clear that A, satisfies these identities (as members of &,). This is
another one of the main advantages of dealing with multilinear iden-
tities. In particular, it is clear that if 9 is associative, Lie, alterna-
tive or Jordan then 2, is of the same type. Now let a > R,, a — L,
be birepresentation of A acting in the bimodule M. Then if M, is
the space obtained by extending the base field of M to P, it is
immediate that 9, can be considered as an A,-bimodule. The corre-
sponding birepresentation of A, will be referred to as the one obtained
from (R,L) by extending the base field. In the alternative and
Jordan cases, it is easy to see also that the various constructions of
universal associative algebras commute with the extension of the base
field. Thus if %A is a Jordan algebra and 1,(A), NA), U, Q) are,
respectively, the special universal associative algebra, the universal
associative algebra of the special representations and the universal-
associative algebra of the unital representations of %, then

us(s‘)'IP) = us(a)l’ ’ u(%rP) = 11(5*)1)? ) 111(%{}-) = ux(g‘)I)P .

These remarks enable us to extend the foregoing results to a
somewhat wider class of algebras. Thus in the Jordan case we do
not need to assume that the given algebra is the set of self-adjoint
elements of a matrix algebra, »_> 3, relative to a canonical involution.
It suffices to assume that the algebra obtained by making a suitable
extension of the base field has this structure. A similar remark
applies in the alternative case. Here our main theorem on birepre-
sentations applies to any associative algebra U for which there exists
an extension P of the base field such that %, =9,, n_>2. We shall
not attempt to list sufficient conditions on 2 which imply this pro-
perty. We recall only that if U is any finite dimensional central
simple algebra properly containing the base field, then there exist
splitting fields P such that 2, =P,. We investigate now more closely
the situation in the Jordan case.

First, let A be an associative algebra with an involution and let
H(A) denote the subalgebra of A, of self-adjoint elements. If P is
an extension of the base field then the given involution can be ex-
tended in one and only one way to an involution in 2, and 9(2;)
= H(WAW)p. Suppose now that A, =D,, »_>3, and the extended involu-
tion is canonical (standard). In this case we shall say that the
involution in U is extension canonical (standard). We shall now show
that the class of Jordan algebras to which our results apply is pre-
cisely the class of algebras () where 2 has an involution which is
extension canonical,
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Theorem 12.1. Let X be a Jordan algebra over a field ®. Then a
necessary and sufficient condition that there exists an extension field P
of ® such that I, is isomorphic to the subalgebra of self-adjoint elements
of an associative matrix algebra D,, n >3, with a canonical involution
is that X itself is isomorphic to the subalgebra of self-adjoint elements
of an associative algebra W with an involution which is extension
canonical *®

Proof. We may as well suppose that J, = 9(D,) where >3, D
an associative algebra over P, involution in 9, canonical. Then if
®, is considered as an algebra over ®, & is a subalgebra of D,;.
Let R be a 1-1 unital representation of the associative algebra ®, by
linear transformations in a vector space I over P. We can now
consider M as a vector space over ®, D, as an algebra over ®. Then
R defines a representation of 9, over ® in Y over ®. If we form
(W over @), we can extend R to a representation R of D,, in (W
over @),. Next we observe that R induces a special representation
of & by linear transformations in 9 over ®. This determines a
special representation of J{, in (M over ®),. By Th. 7.3 this can
be extended to a representation R® of the associative algebra D, by
linear transformations in (MM over ®),. Now let

A= {a|lacD,, RP = RP}.

Since R® is a linear mapping of 9, over ®, U is a subalgebra of D,
over ®. If jeJ, RP=RP so that T A Since the enveloping
associative algebra of J, is ©, we can find a set of elements {a,}
which are products of elements in ¥ and which form a basis for D,
over P. Evidently the @,€ . Now suppose that > pa;, p; €P, is in
2. Since RfP=p for p in P and Ry’ =Ry, our condition gives
D (Rﬁ’—pi) R;li) = 0. We assert that this implies that the p, are in ®.
Thus we know that if 4,, A,, -+, A,, are linear transformations in M
over ® which are ®-independent then their extensions in (9t over @),
are P-independent. Now express the p,=> a,\;, a,;€P, A, =1,
A; € P and ®-independent. Then the elements A,q, are ®-independent ;
hence the linear transformations Ra;R,, are ®-independent. It follows
that the extensions K{’R(> are P-independent. We have the relation
S ey, —ps) R;‘;+; g_,; “MRI(\?R%) =0.

i

Hence p; =a,;, € ®. This proves that 2 is the ®-space spanned by

16) This result is a generalization of Theorems 3 and 4 of [15].
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the a,. Hence U, =,. Since the elements of I are self-adjoint,
the involution in ®, induces an involution in . Since I, is the set
of self-adjoint elements of the involution in ®,, & is this set for 2A.
This completes the proof.

III. JORDAN ALGEBRAS DEFINED BY SYMMETRIC SCALAR PRODUCTS

13. Definition of the algebras

In this part we shall consider the representation theory of a
second important class of Jordan algebras, namely, the algebras
defined by symmetric scalar products. We begin with a finite dimen-
sional vector space &, over @ and a symmetric scalar product (x,y)
in ¥,. Thus (x,y) is a symmetric bilinear form defined on ¥, and
having values in the base field ®. We form the vector space
J=F,PP1 where ®1 is the one dimensional space of multiples of 1
and we define a multiplication in ¥ by demanding that 1 is the
identity and

(73) xy = (x,9)1.

One verifies that & is a Jordan algebra. We shall call & the Jordan
algebra of the symmetric scalar product (x, ).

We recall that the radical R of a symmetric scalar product (x, y)
in &, is the set of elements z such that (x,2)=0 for all x in $,.
(x,y) is non-degenerate if R = 0. The scalar product in &, is equi-
valent to <«/, > in J, if and only if there exists a 1-1 linear trans-
formation x — 2’ of J, onto J, such that (x,y)= <,y > for all
x,y€y,. If R is the radical of (x,y) then (x, y) defines in an obvious
way a non-degenerate symmetric scalar product in § = J,/R. If B,
is a complement of R =, (I, = B,PR) then the contraction of (x, y)
to B, is equivalent to the scalar product induced by (x,y) in J,/R.
It follows that (x,y) is equivalent to <#’,y > if and only if their
radicals have the same dimensionality and the induced non-degenerate
scalar products in the factor spaces modulo the radical are equivalent.
An element B e€® is said to be represented by (x, y) if there exists a
non-zero x in J, such that (x, x) = 8.

ProposiTiON 13.1. (1) The radical R of (x,») is an ideal in the
Jordan algebra ¥ of (x,y) such that R*=0. (2) R contains every
ideal B of & such that B*=0. (3) J/N is the Jordan algebra of the
induced non-degenerate scalar product in JI,/R. (4) If (x,y) is non-
degenerate and of rank ~>1 then  is simple. If (x,y) is non-
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degenerate and of rank 1 then & is either simple or a direct sum of
two simple algebras according as (x,y) does not or does represent 1.

Proof. (1) and (3) are immediate. To prove (2) we note that if
B+u, ue,, has square =0 then B8 =0. Hence if uv = («,v) has
zero square for all v€,, then #e€R. This proves (2). Now let (x, )
be non-degenerate and dim &, ~>1. Let B be a non-zero ideal in
X, B+u=+=0 an element of B. If 83=0, u=4=0 and we can choose
veS, so that (#, v)==0. This implies that 1e€B. If B30 we choose
v==0 so that (#,v)=0. (This is possible since dim I, >1.) Then
v=R"YB+u)veB and B=3F as in the previous case. Hence I is
simple. Finally, let (%, y) be non-degenerate and dim , =1. Let B
be a proper ideal ==0 in & Then, the argument just used shows
that B is the one-dimensional space of multiplies of #+1, #==0 in ,.
Then #(u+1) =u+(u, u) € B. Hence (u, ) = 1. The converse is imme-

diate. If (#,u)=1 then ¢= % (u+1) satisfies e = ¢ and this implies

that & is direct sum of two simple one dimensional algebras.

PrOPOSITION 13.2. The Jordan algebras & and & of (x,y) and
<«x',y~>, respectively, are isomorphic if and only if (x,y) and
<«', > are equivalent. If (x,y) is non-degenerate then the group
of automorphisms of J& is isomorphic to the orthogonal group of (x, y).

Proof. If (x,y) and <#’, "> are equivalent then it is clear that
X and Y are isomorphic. Conversely assume & and ' isomorphic.
Then it is clear from Prop. 13.1 (1) and (2) that the radicals R and
R’ have the same dimensionalities. Also, in view of (3), it suffices to
assume that (x,y) and <«/, > are non-degenerate. In this case the
non-zero elements of &, can be characterized by the two conditions :
u==pR, u*=pB. It follows that an isomorphism of & onto &’ maps S,
onto the corresponding subspace J,/. It therefore determines an
equivalence of (x,y) and <«’,»”>. This proves the first statement
of the proposition. The second one is now clear, too.

We assume now that (x,y) is non-degenerate. Then we can ex-
tend this scalar product to a non-degenerate symmetric scalar product
in & by setting
(74) (al+x, Bl+y) = (x,y)—aB,

x,y in §,. Let aey, and let R, denote the multiplication x — xa in
3 determined by ¢. Then la =« and xa= (x,a)1 if x€$,; hence
R, coincides with the mapping ¥ — (%, @) 1—(x, 1) a. Moreover, [R,R,],
a,bey,, is the linear mapping x — (x, a)b—(x, b)a. It follows from
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this that the set & = {R,+>[Rs,Rc,]la, b;, ¢;€S,) is the Lie algebra
of linear transformations (in X) which are skew relative to the sym-

metric scalar product (x,y) in & in the sense that (x7T,y) = —(x,yT)
for all x,y. If a, b, ceJ, then, by (9),
(75) [[R.R,]R,]=R,, d=(b,c)a—(a,c)b.

We can now prove the following useful result.

PrOPOSITION 13. 3. Let X be the Jordan algebra of a non-degenerate
symmetric scalar product and let € denote the Lie algebra of linear
transformations in & which is generated by the multiplications R,,
acl,. Then L is simple if #_>5. Next suppose that for each a€ J,
we have defined a linear transformation U, in some vector space and
that U, is linear in ¢ and satisfies

(76) [[U.U,]U]=U,, d=(b,c)a—(a,c)b.

Then R,— U, defines a homomorphism of ¥ onto the Lie algebra
generated by the U,.

Proof. Since ¥ is the set of skew transformations relative to a
non-degenerate scalar product, the statement on the simplicity follows
from known results.'” It is also well known that the dimensionality
of this Lie algebra is n(z+1)/2 =n+n(n—1)/2. Hence if the elements
Uy, i =1,.--,m, form a basis for J,, then the elements Ry, [RuRu,]
where i < j form a basis for 8 One verifies directly that the linear
mapping which sends Ry, into U, and [Ry,Ru,] into [UyUy,] is a
homomorphism of £ onto the Lie algebra generated by the U,.

14 . Structure of the Clifford algebra

Let & be the Jordan algebra of the symmetric scalar product
(x,¥). Then the universal associative algebra of special representa-
tions 1,() is called the Clifford algebra of (x,y). In particular, if
(x,y) =0 then W,(J) is the Grassmann (or exterior) algebra of the
vector space ,. We proceed to determine the structure of 1U,(J).

Theorem 14.1. Let I be the Jordan algebra of (x,y) and assume
that dim X =mn+1. Then (1) the dimensionality of the Clifford algebra
U() is 27, (2) the ideal in U, () genevated by the radical of (x,y) is
the radical of N,(J), (3) WI() is a direct sum of its radical and a

17) For characteristic 0 this is well known. For characteristic p(Z0) it is proved in
[17], p. 497.
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subalgebra which is isomorphic to the Clifford algebra of the non-
degenerate symmetric scalar product determined by (x,y). (4) If (x,y) is
non-degenerate and n is even, then U,() is central simple. If n is odd
U, () ¢s either simple with center a quadratic extension of the base field
or is a dirvect sum of two central simple algebras. These two possibilities

occur according as (——1)[’?]8 is not or is a square in ® for & the dis-
criminant of (x,y).'® . :

Proof. We can choose a basis («,, «,, -, u,) for &, so that
(77) (s uy) = 8,85 B0, 1<r; B;,=0, j>r.
Then the space spanned by «,.,,-,#, is the radical of (x,y). We
now denote by & (rather than a,) the coset in 1,(J) determined by
the element €. Then the elements #,, @,,-,%, and %, =21

generate the Clifford algebra. #, is the identity of this algebra and

we have the relations
1

(78) ’ljlg'l_lj-l-z—tjﬂt = —2_ Sijﬁi?zo
or
(79) WUy = —UyU, Z'-'f:j; u% =y, Y= %Bt .

It follows that every element of the Clifford algebra is a linear
combination of the 2" elements a,, %i%i, - @i, ¢, <_8,<_- < iz,
i;=1,2,---,n. It is not difficult to prove that these elements are
linearly independent. (This is more or less well known.) Hence (1)
holds. The ideal 9 generated by R has the basis (@i %, - @i
|i, < i,< - <iy, i _>r}. Since the squares of these elements are 0
and any two either commute or anti-commute, 9N is a nil ideal. Evi-
dently, U,() = NPW,(B) where B is the Jordan algebra determined
by (x,y) and the space %8B, spanned by (#,, #,, -, %,). Since (x,) is
non-degenerate in B,, (2) and (3) are consequences of (4). We now
assume that (x,y) is non-degenerate. Then » = » and all the «;==0.
In this case it is well known that if # is even then 1,(JY) is a Kro-
necker product of (generalized) quaternion algebras while if » is odd
then U, () has a center with basis 1, ¢ where ¢ =%, --- %, and

= (—1)[?:I Y172 - ya ' Also in the this case U,(J¥) is a Kronecker
product of &®(¢c) and quaternion algebras. Now ®(c) is either a
quadratic field or a direct sum of two copies of ® according as

18) This result is well known. We include the proof for the sake of completeness.
19) Cf., for example, [15], p. 155.
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(&1)[%1)/1 -+ o, is not or is a square. Since the discriminant of (x, y)
is 8.8, - B, and B, = 4y,, (4) is now clear.

Since the elements #, are linearly independent it is clear that
the mapping a—a of J into U, (J) is 1-1. This remark shows that
X is a special Jordan algebra. In the sequel we shall not distinguish
between the elements of § and their images in U,(J). We shall
therefore drop the bars in the notation introduced in the above proof.

The structure of the Clifford algebra 1,(J) and the known theory
of representations of associative algebras give a complete solution of
the problem of special representations of the Jordan algebra & of a
non-degenerate symmetric scalar product. Thus the semi-simplicity
of the 1, () implies complete reducibility of the special representa-
tions. If # is even we have just one irreducible representation (in
the sense of isomorphism). while if # is odd we have either one or

two according as (—1)["’:I is not or is a square in ®.

15. Meson algebras

We have noted (§5) that the universal associative algebra W(J)
of the representations of a Jordan algebra with an identity is a
direct sum of the universal algebra U,(JI) of the special representa-
tions of & and the universal algebra 11,(JI) of the unital representa-
tions. Also we have a homomorphism of U,(J) onto UP(F) the uni-
versal associative algebra of sums of commuting special representa-
tions. We proceed now to the analysis of 11,() for the Jordan algebra
& of a symmetric scalar product. Since these algebras seem to have
been considered first in the theory of mesons, we shall call U,(S$)
the meson algebra of the symmetric scalar product (x,y) (in J,). If
we identify &, with its corresponding subset in U,(I) then we see
that U,() is generated by 1 and the elements of , and that the
latter satisfy the relations '

(80) XY2+29x% = (x,y)2+(y, 2) x.
We determine first an upper bound for the dimensionality of U,().

2n+1
LEMMA. If dim I =#n+1 then dimU,(F) <\ # ’

Proof. Let (u,, #,,--,u.) be a basis for J,. Then it follows
easily from (80) that every element of 1,(J) is a linear combination
of 1 and the elements

(81) wru? - utu

ty 2 Ik tka1 k42 21
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where

(82) i1<i2<--~<ik; ik+1<ik+3<"'; ik+2<ik+4<“"

The number of such elements is

(83) N=2<7><2<>< )
[-“ (I—k)]
Since <,le> (l[__kl A ]> :k' < Lgk>ly'<l_g_k)y if /—k is even and
k'([l k]ﬁ)![l—’z‘@]' if I—Fk is odd, the sum f<1)5§’< )(E% N k]>

is the sum of the coefficients of the terms in (¢+b+c)* for which the
exponents of & and ¢ are equal and those for which the exponent of
b exceeds that of ¢ by 1. This is the same as the sum of the con-

stant term and the coefficient of & in (1+b+b>l. Hence N is the
sum of the constant term and the coefficient of & in

<2+b+%)" =z<}’> (1 +b+%~>l.

This is the same as the sum of the coefficients of & and b*'' in
(0*+2b+1)" = (b+1)**. Thus

V= () - ()
and dim U,(§) < <ZZ+1> .

Theorem 15.1. If X is the Jordan algebra of the symwetric scalar

product (x,y) and dim F=mn+1, then the dimensionality of the meson
algebra 1,(J) is <ZZ+1 and 0,(X) is isomorphic to the universal asso-

ciative algebra NP(J) of sums of commuting special representation of .

Proof. Since we have a homomorphism of U1,(J¥) onto U{»(J) and
since dim U, <<2n+1>’ it suffices to show that dim 11§2>=<2Z+1),

We choose a basis for ¥, so that (#;, u,) =&;,8,. Then (79) holds
for the corresponding elements of U,(¥) and the elements w;ui, --- ui,,
1<{¢, <i,< -+ form a basis for U,(F). (We now adopt the convention
that this product represents 1 if '2#=0.) The elements wu;ui, - ti,
X Uf U, o Ufyy Ty < Ly < oory §,<_J,<_--- form a basis for 1, x1U,, and
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the elements v, = w;Qu,+u,Qu,, i =1,2,-.-,n, and 1 ( = u,xu,) are
generators for WP . Every element of U is a linear combination of

the <2n+1) elements v20? ... %0
n 1171,

i, " Vi, where the ¢, are distinct and
satisfy (82). It remains to see that these elements are linearly
independent. Hence suppose we have a non-trivial linear relation
connecting these elements. Let 2, be one of the »’s and write the
relation'as A,+A,+A, =0 where A, is homogeneous of degree ¢ in v,.
Since 2%} = vjv? for all i we can write A, = v?B, where B, is homo-
geneous of degree 0 in »,. Now any element which is homogeneous
of degree 0 in v, can be expressed in terms of the base elements
Ui, - Ui, Quj, --- #j, with indices ==7». If the coefficient of wu;, --- i,
®uj, - uj, is #=0 the same holds for the coefficient of w; - u, - ui,
Quj, - u, - uj, in v times the given homogeneous element. It
follows that B, =0. A similar argument shows that A,=0; hence
also A, = 0. This reasoning shows that the existence of a non-trivial
linear relation connecting the vfl vf.mvi,m -+ v;, implies the existence
of such a relation which is homogeneous of degree 1 in, say,
v,, 0,,,0, and of degree 0 in the remaining #’s. Such a relation
has the form > «j, --- j0j0j, - vj, =0 where the summation is taken
over all the permutations j,, 7,,--,j, of 1,2, ...,¢# such that
J.<J, <+ and j,<j,<--. We assume also that our non-trivial
relation is shortest and that # is minimal. Now v, must occur either
in the first or the second place in the terms of the relation. Since
v, =0 for /==1, left multiplication of the relation by », annihilates
the terms in which », occurs in second position. The remaining
terms give a relation >V «j, -+ j0}vj, - 05, =0 and >V «j, - j,05, - Vj,
= 0. This contradicts the assumption made on the degree of the
original relation unless the new relation is trivial. Thus we see that
in the first relation », occurs in the second position for every term
with non-zero coefficient. For these terms v, occurs in either the
first or fourth positions. Left multiplication by v, shows that v,
occurs in the fourth position in every term with non-zero coefficient.
Continuing in this way we see that the terms with non-zero coefficient
have the form *v*p,*v* ... Evidently there is only one such term,
and if we express the v; as #;Qv,+u,Qu, we see that it is ==0. Thus
we have a contradiction and the theorem is proved.

16 . Structure of meson algebras

It is easy to see that the radical of (x,y) generates a nil-ideal in
the meson algebra U,(J) = UP(I) and that U, is a direct sum of this
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ideal and a subalgebra which is the algebra associated with the non-
degenerate scalar product determined by (x, y). We therefore obtain,
as usual, a reduction to the non-degenerate case. From now on we
assume that (x, y) is non-degenerate. Suppose first that # ( = dim J,)
is even.

Theorem 16.1. Let (x,y) be a non-degemerate symmetric scalar
product in a space of even dimensionality n and let 11, be the meson alge-
bra associated with (x,y). Then U, is a divect sum of ideals which are

matrix algebras ®,, k = ("‘1"1> , <n§'1> , <Zii) . °

Proof. Consider the Clifford algebra 1I;. We have seen (Th. 14.1)
that this is central simple. If xe€1ll, we denote the left (right) multip-
lication in the U, determined by x as L, (R,). Since 1, is central
simple the algebra generated by the L, and R, is the Kronecker
product of the algebra generated by the L, and that generated by
the R,.*? If aeJ (< U,) then ¢a— L, and ¢ — R, are commuting
special representations. Hence ¢ — L,+ R, is a unital representation
of & The enveloping associative algebra of this representation has

the same dimensionality (2’1;'1) as U, (cf. the proof of Th. 15.1).

Hence it gives a faithful representation of the meson algebra. We
shall now define certain invariant subspaces of the Clifford algebra
relative to the transformations L,+R,, a€J. For this purpose we
choose a basis #;, i=1,2,---,n, for &, such that (u;, u,) =38;,5;.
Let J®, k=0,1,-.-,n, be the space spanned by the vectors
Wirlhip - Wi, L, <_1,<_++<_iy. Then one verifies that the subspaces
KO L IO JOLIP .. J  are invariant relative to the L,+R,.
Typical relations for this are the following :

{u1 o Usp-as uzh—1} = 2”1”2 v Upp-y
{ut vt Usn-2s uzh—z} =0
(85)
{ul t Ush-as uzh} =0

() o Uyp_yy Uppoy ) = PUy v Usp—zy P=|:0
Since the dimensionality of J® is (Z) , the dimensionalities of

RO L O, IO LI® ... are respectively <”1L1), <”§1>, ... Hence

20) For the case of an algebraically closed base field, this theorem as well as Theorem
16.2 are due to Svartholm [34]. Cf. also Jacobson [20].
21) See, for example, the author’s Theory of Rings, New York, 1943, p. 103.
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the dimensionality of the enveloping associative algebra of the L,+R,

is at most

n+1\?  [n+1\* n+1\* _ (2n+1

(1) (3T G = ().
Now this bound can be attained only if the enveloping algebra of
the induced linear transformations in J®+J®, JP+J®, ... are the
complete algebras of linear transformations and the enveloping alge-

bra of the L,+ R, is the direct sum of these algebras. Since we have
observed that the enveloping associative algebra of the L,+ R, does

have dimension (2”;' 1), this proves that it is the direct sum indi-

cated. Hence the meson algebra has this structure.

The discussion of the case in which #=2v—1 is odd is more
complicated owing to the fact that the Clifford algebra is not central
simple in this case. In order to circumvent this difficulty we imbed
the odd dimensional space &, in an even dimensional one
& = I, +Pu,,, with a scalar product which is an extension of the
given one. We may assume also that (#,,,, #,.,) =1 and (#,.,, J,) = 0.
Let & be the Jordan algebra & @P1 and let U, (R) be the associated
Clifford algebra. Then 2> F and U (&) D> U,(Y). Let L,, R,, a€ S,
now denote the left and right multiplication, respectively, acting in
1,(R). Then a — L,+ R, is a unital representation of ¥ whose envelop-
ing associative algebra is isomorphic to the meson algebra 1,(J) of
3. As before, we wish to decompose 11,(&) into subspaces which are
invariant relative to the L,+R,. Let J*, k=0, ...,%n, be the sub-
space spanned by the vectors w;ui, ;-- ui, where the 7, are in increas-

ing order and have values in 1, ---,#. Then the subspaces {4 I,
C§(2)+ 0§(3) C"(” 1)+0§(") and 3(0)14”_}_1’ 3(1)1,{%+1+‘C\‘§(2)un+1, 3(3)un+1
4+ S

Sy e ,3 u,., are invariant relative to L,+R,, ae€ . This
can be verified by straight-forward calculations like those in (85).
Since ¢ = wu,u, --- u, commutes with the #;, the linear transformation
C =L, commutes with the L,+R,. Since this mapping is 1-1 and
sends FO+JD onto JOP VLI, IO LJ® onto IO L I-D ... and
SO,y onto I, I UL+IFPU,,, onto I Dy, +J¢ ”unﬂ,---,
it defines an isomorphism between these spaces. Hence in seeking
representatives of the classes of isomorphic spaces we are led to
consider only the following spaces:

[@% - -
(86) IO +JD, «5(2)4-.3(3), ) 8‘(" 2)+S<Q 1)
(&Y (@Y -
I,y s XU+ IFPUy o IO U+ SV,

if » is even and
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(87) 8(0)+3(1) C”(Z)+$(3) \C}w—l)_‘_g(w
8(0>un+1> 3(1 Uniy +\5( )un+1, Tty S(\rﬂu \_S(v l)un 1

if » is odd. In the first case C maps I Vu, ., +3JI%u,,, into itself and
in the second it maps J¥ 2 +J% into 1tself In either case C inter-
changes the two spaces displayed and these spaces have the same

dimensionality »<pf1> = (Z) = % <”":1> . Suppose now that (_1)[3}] s,

& the discriminant of (x, y) is a square. In this case we can replace
C by a suitable scalar times C and obtain D such that D*=1. It
follows that the space J“ Vu,,,+JI%u,.,, v even, and JO"D+JNP, p
odd, decomposes as a direct sum of two invariant subspaces relative

to the L,+R, and that these spaces have the same dimensionality

% <n—:1> . Thus the maximum dimensionality of the induced set of

linear transformations in v Yu,.,+38%u,., or JOP4+JY by the

2
enveloping associative algebra of the L,+R, is 1 (n+1 For the

v 2

other subspaces in (83) and (83’) we obtain the upper bounds (”’51> ,
2 2 y—1

(n'l"1> ) ,(Zi%) . Now L(”"-l) +5 (nz—l) <2n;—1>‘ Hence it

follows that the induced sets of linear transformations in the spaces

indicated are the complete sets of linear transformations in these
spaces. This implies that the meson algebra is a direct sum of ideals

which are matrix algebras ®,, k= (”61> o, (fib and two matrix

algebras @, k’=%~ <n—:1> Suppose next that (—1)[218 is not a
square. Then our reasoning shows that if we adjoin the square root of
this element then the induced algebra of linear transformations in
OV, +FY,,,, v even, or in JOVLIP, » odd, is a direct sum
of two matrix algebras of ¥° dimensions. Hence the original induced
set of linear transformations is an algebra which is either a direct
sum of two copies of ®, or is of the form P,y where P is a quadratic
field over ®. Since there exists a linear transformation C which is
not a scalar but whose square is a scalar commuting with the algebra
of induced linear transformations in J% “u,., +X?u,., or J@ 4+ J»
it follows that only the latter alternative can hold and that P = ®(c).

If we observe that in the first case ((——1)[%»]8 is a square) ®[c] is a
direct sum of two algebras of order one, then we can state the result
in a uniform way as follows

Theorem 16.2. Let (x,y) be a non-degenerate symmetric scalar pro-
duct in a space of odd dimensionality n = 2v—1. Then the meson algebra
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W, of (x,y) is a direct sum of ideals which are wmatrix algebras
@k,kz(”'(‘)'1>,("i"l>,...,<”ii>, and Py k’:—%(”‘:1> P the

v

center of the Clifford algebra of (x,y).

We remark that the numbers k occuring in Th. 16.1 can also be

written as ("81> , (""{1> RPN (”j1> so that we can state that result

in a manner similar to that of Th. 16.2. It is note-worthy that the
structure of the meson algebra does not depend very much on the
nature of the scalar product. In the even dimensional case, it is a
function of the dimensionality only while in the odd dimensional case
it depends only on the dimensionality and the discriminant. This is
not too surprising since it is related to the well-known fact that the
structure of the algebra generated by the left and right multiplica-
tions in a simple associative algebra depends only on the dimension-
ality and the center.

Since the meson algebra is semi-simple, it follows that every
unital representation of the Jordan algebra & is completely reducible.
The number and nature of the irreducible unital representations are
given in Ths. 16.1 and 16.2. Thus these are just the representations
induced in the various subspaces which we used in proving these
theorems. It is clear also that these representations are induced
representations in the sum of the two commuting special representa-
ttons a—L,, a— R, (in U,(J) or U, &K)). This and the complete
reducibility imply the following result.

Theorem 16.3. FEvery unital module of the Jordan algebra I of a
non-degenerate symmetric scalar product is a submodule of a sum of two
commuting special modules. '

IV. REPRESENTATION OF FINITE DIMENSIONAL SEMI-SIMPLE
ALTERNATIVE AND JORDAN ALGEBRAS

17. Resumé and remarks on the structure theory

The structure theory of finite dimensional alternative algebras is
due to Zorn ([37]), that of finite dimensional Jordan algebras to
Albert([2] and [4]). In both cases the principal facts are as follows.
If A is finite dimensional alternative or Jordan, 2 contains a unique
maximal nilpotent ideal N called the radical of A. The difference
algebra A/N is semi-simple in the sense that its radical is 0. Every
semi-simple algebra is a direct sum of ideals which are simple alge-
bras (with non-zero squares). It remains to list the simple algebras
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and it suffices to consider those which are central.

If A is an alternative simple algebra, either 2 is associative, in
which case, its structure is known by the Wedderburn theorem, or A
is a (generalized) Cayley algebra C. Such an algebra is obtained by
starting with a quaternion algebra @ and forming the direct sum of
@ and a Cayley bimodule for @ obtained from the right regular
representation. (Cf p. 42 of these proofs. One takes @ — U, to be the
right regular representation.) Multiplication of elements in by those
of the module is given by the module compositions. If # is an element
of the module corresponding to 1 then the module is Qu = qu|q€Q
Hence we have the rules:

(88) q,(q.u) =(q,9,)u, qu=uq, (uq,)q,=u(q.q,)

where the ¢;€ @ and g = tr ¢g—¢ the usual conjugate quaternion. To
complete the multiplication one must define (¢q,u#)(q,#). The alternative
identities give gqu* = u*q and this implies that #*> = 1. One can then
deduce from the Moufang identity (#q,)(q,u) = (#(q,q,)) # that

(89) (q.u)(qu) = pq.q, .

If x1 =0, Qu is a nilpotent ideal in C. Hence we must assume also
that x==0. One verifies that the resulting algebra C is alternative.
We can extend the involution ¢ —¢ in @ to one in C in such a way
that # = —u. The self-adjoint elements relative to this involution are
the elements of ®( = ®1). Hence we can write C = C,+®1 where C,
is the set of skew elements. It is easy to see that (x, )= 2(xy+ yx)
is a non-degenerate scalar product in C,. Since the Jordan algebra
C, is the Jordan algebra of this scalar product, C, is simple (Prop.
11.1). This implies that C is a simple alternative algebra. It is easy
to verify that the nucleus of C is ®1. Also the only elements which
commute with all the elements of C are those in ®1.

In order to determine the finite dimensional simple Jordan alge-
bras, one assumes first that the base field is algebraically closed. In
this case one defines the degree of the algebra to be the maximum
number of orthogonal idempotents in the algebra. At the present
time it is not certain that one knows all the simple algebras of
degree one. One might conjecture that the only algebra of this type
is the one dimensional algebra. This is known to be the case for
special Jordan algebras and for algebras of characteristic 0.

It is easy to see that the simple algebras of degree two are
Jordan algebras determined by non-degenerate symmetric scalar pro-
ducts, Suppose now that ¥ has degree at least three. Then I has
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an identity and 1 = >}e;, #_>3, where the ¢, are orthogonal idempo-
1

tents which are primitive in the sense that the terms J;; (cf eq. (26))

of the Peirce decomposition have no idempotents other than the e¢;.

If =3 PBJ,, is the Peirce decomposition, then one can prove that,
<]

for every i,j=, Ju+y;+, is the Jordan algebra of a symmetric
non-degenerate scalar product. If follows that we can find a #,, such
that #?, —=e¢,+e;. We can therefore apply the structure theorem,
Th. 9.1 (cf. the remark following this theorem). Let ® be the alter-
native (or associative) algebra with involution furnished by this
theorem. If © has a radical &, then & is a self-adjoint ideal. Then,
by Th. 7.1, & has a proper ideal ==0, contrary to assumption. It
follows that ©® is semi-simple so that ® is a direct sum of simple
algebras. In fact, it is now clear that either ® is simple or ® is a
direct sum of two anti-isomorphic simple algebras. If we make use
of the fact that the self-adjoint elements are in the nucleus and that
the ¢, are primitive we see that the only possibilities for ® are the
following :

A. © is a direct sum of two one dimensional algebras. B. D is
one dimensional. C. © is a quaternion algebra (= ®,) with the
involution whose self-adjoint elements are the elements of ®. E. ®
is the Cayley algebra and the involution in ® is the one whose set
of self-adjoint elements is ®. Accordingly, we speak of a simple
Jordan algebra of fype A, B, C or E. Of course, the last occurs only
if # =3. The corresponding algebra is usually denoted as M§. By
Th. 8.1, this type of construction really does give a Jordan algebra
and by Th. 8.2, this algebra is exceptional. The other simple Jordan
algebras which we have listed are all special.

Suppose now that & is a central simple Jordan algebra over an
arbitrary base field ®. Then if Q is the algebraic closure of @, Jq
is simple and hence is one of the algebras which we have listed. If
&, is one dimensional then so is J. If J, is of degree two then it
is easy to see that J is the algebra of a non-degenerate symmetric
scalar product. If {g is of degree at least three and is special, then
it is the set of self-adjoint elements of a matrix algebra ®, (z the
degree) with a canonical involution. Hence, by Th. 12.1, & itself is
the set of self-adjoint elements of an associative algebra A with an
involution. One sees easily that 2 is either simple or a direct sum
of two anti-isomorphic simple algebras.?”? If J, is ME then it has

22) These results are due to Kalisch [21] and to F. D. and N. Jacobson [15].
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been shown by Schafer [317] that ¥ is the set of self-adjoint elements
of C, where C is a Cayley algebra and the involution is canonical in

C, and is based on the usual involution in C.

18. Representation theory for the exceptional cases

In this section we shall determine the birepresentations of the
exceptional simple alternative algebras C and the exceptional simple
Jordan algebras M§.

Theorem 18.1. Let C be a Cayley algebra over an arbitrary field @
and let M be an alternative bimodule for C. Then WM = WM P, where
WM, is a wunital sub-bimodule and W, is the sub-bimodule annihilated on
both sides by C. Amny unital sub-bimodule is a direct sum of sub-bimodules
which are isomorphic to C.

Proof. We have the Peirce decomposition I = M, DM, PM,,
@I, relative to the identity of C. Now the sub-bimodules M, and
9M,, are associative. Since C is simple and not associative, it follows
that these are 0. Hence if we set I, = M,,, M, = M,,, we obtain
the first statement. We now assume that 9t = 9, is unital. Let
a— L,, a— R, denote the birepresentation and let 2, and £, denote
the Lie algebras of linear transformations generated by {L,} and {R,}
respectively. Then £, = ®1+8,’ where 2, is the ideal generated by
the €, with @ in C,, the set of skew elements relative to the usual
involution in C. Similarly £, =®1+%,”. Let & denote the Lie alge-
bra generated by the L, and the R,. Since we can deduce from (9)

that

[LaRb] = % (Rab—na_[RaRb‘])
(90) 1
== 9 (Lba—ab—[LaLb])

we see that £/, £,/ are ideals in & We observe next that ¢ —> L,,
a — R, define special representations of the Jordan algebra C, and we
recall that this is the Jordan algebra of a non-degenerate scalar
product in C,. Hence by the theory of Clifford algebras, these repre-
sentations are completely reducible. Assume, for the moment, that
Wt =C and consider the two representation ¢ - L,, a — R, of C,.
We assert that these are not equivalent. Otherwise, we have a 1-1
transformation S in C such that R, = S™'L,S, that is, (xS)a = (ax) S
holds for all @, x in C. Then (ax)S?= (aS)(xS). If we set a =1 this
gives (1S5)(xS) = (xS)(1S). Hence 1S=ol, s€®. We may now nor-
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malize S so that 1S=1. Then xS?= xS or S?=S. This implies that
S=1. Thus we have L, = R, which is clearly impossible. We there-
fore see that the Clifford algebra 1,(C,) has two inequivalent 8 dimen-
sional unital representations. Thus 1,(C,;) is a direct sum of two
central simple algebras A, where A is a central division algebra of
h? dimensions and kk =8. The irreducible representations of this
algebra are realized in a space of /4’4 dimensions. Hence Z%k < hk
and so k=1, k=8, A =®. Hence the irreducible representations of
1,(C,) are in 8 dimensional spaces and consequently ¢ — L., a — R,
give the two inequivalent irreducible representations. We recall also
that, by Prop. 13.3, the Lie algebra generated by the mappings
R,=L,+R,, acC,, is simple. We have the relation

(91) [[Eaﬁb] ﬁc}:ﬁd, d = {{bc}a}—{b{ca})}

for a,b, ¢ in C,. We return now to the general unital bimodule M.
Since @ - L,, a — R, are special representations of C,, L,==0 and
R,==0 for some a, beC,. Otherwise, we should have a unital repre-
sentation of the Clifford algebra 1U,(C,;) in a one dimensional space.
Thus 8,/ and &, are =0. By (90) and Prop. 13.3, R, — L, and
R, - R, determine isomorphisms. Hence £, and £, are simple Lie
algebras. Since these are ideals in the Lie algebra £ so is their
intersection. Hence either £/=2%, or £/ N\ &, =0. In the latter
case [L,R,] =0 for all @ and . Thus the birepresentation is associa-
tive and we have a contradiction. We have therefore proved that
L/ =28/, 8 =28,. Now we know that the set £, is completely
reducible since @ — L, is a special representation of C,. Hence our
bimodule is completely reducible and its irreducible sub-bimodules
are just the irreducible invariant subspaces relative to the L,. We
suppose finally that 9% is an irreducible unital bimodule. Then our
reasoning shows that it is 8 dimensional and ¢ — L,, a - R, are
irreducible special representations of C,. They are therefore equiva-
lent to one of the representations ¢ — L,, a — R, acting in C. Hence
we may as well identify the space I with C and we may take
L,=1, or L,=vr, where [/,, v, now denote the multiplications in C.
Assume first that we have L,=1/,. Then, by (90), [L.R,]=[L.7,]
for all ¢, bcC,. Since 2,/ is simple and contains the R, and 7, this
implies that R, =7,. It follow§ that M and C are identical. Next
assume that L, =7,. Then, by (90), R, satisfies

[raRb] == % (rba—ab_[rarb]) .



60 N. JACOBSON
On the other hand, we can deduce from (89) that
[ra ’ —lb—rb] = ’%‘ (7'va-a»—[rarb]) .

It follows that R, = —(/,+7,) for all beC,. Let {bb} = F1l. Then
Bx = xR, = x{R,R,} = b*x+ xb*+ 2bxb = Bx+2bxb. Hence bxb =0 for
all x and so 6* =0 for all be C,. This contradicts the fact that the
scalar product associated with C, is non-degenerate. Hence L,=7,
is impossible and the only irreducible bimodule is essentially C. This
completes the proof.z®

We shall apply the result we have just obtained to determine the
modules for the exceptional simple Jordan algebras. To do this we
shall consider the following question: If 9% is a unital bimodule for
C in how many ways can one introduce an involution in 9% so that
the self-adjoint elements are in the nucleus 9t of M? In order to
determine N we consider a direct decomposition of M into irreducible
sub-bimodules 9M,. Then N is the sum of the nuclei of the M,. If
N, is the nucleus of M,, N, corresponds to the nucleus ®1 of C
under an isomorphism of C onto 9M,. It follows that the elements u
of the nucleus can also be characterized by the property au = ua for
all aeC. Now suppose that we have an involution m —m in M so
that M becomes a C-bimodule with involution. Then 9 is mapped
into itself by this involution. If the induced mapping is not the
identity then we have a non-zero element # e such that & = —u.
Then if a€C,, au = ua = au. Hence aucN. If we refer to the iso-
morphism of the M, with C we see that this is impossible for a==0.
Thus #=wu for all ucRN. Hence au = —au for all ueN, acC,.
This implies that the 9, are isomorphic with C even as bimodules
with involution and 9t as bimodule with involution is a direct sum
of copies of C.

Theorem 18.2. Let X be an exceptional simple Jordan algebra (fintte
dimensional) and let S be a Jordan module for ¥. Then W is a direct
sum of a unital submodule and a submodule annihilated by . Any unital
X-module is a dirvect sum of submodules isomorphic to .

Proof. The first statement follows from the Peirce decomposition

23) The foregoing proof has the same basié idea as that of Theorem 11.1, namely, the
subordination of the alternative theory to the Jordan thoory. It is possible to derive this
result also by strictly alternative methods based on properties of the Peirce decomposition,
Cf, Zorn [37], Albert [5].
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and the fact that & is simple and not special. We suppose now that
‘0t is unital and, for the present, we assume that the involution in
the matrix algebra over C giving & is standard. Then according to
Th. 10. 3, M determines a unital C-bimodule § with involution such
that the self-adjoint elements of ¥ are in the nucleus. Hence % is
a direct sum of copies of C. This implies that I is a direct sum of
copies of & This proves the theorem if the involution defining ¥ is
standard. Also we see that in this case the universal associative
algebra () of the representations is simple, for its representations
are completely reducible and there is just one irreducible representa-
tion. Now if & is arbitrary then we can find an extension P of the
base field so that &, is given by a standard involution. Then
N(X)p = U(Ip) is simple. Hence U() is simple. This implies that
the representations of § are completely reducible and that in the
sense of isomorphisms we have only one irreducible representation.
This is, of course, the regular representation. Hence the theorem
holds for arbitrary .

19. Representation of separable algebras

A finite dimensional alternative or Jordan algebra is said to be
separable if it is semi-simple and its center is a direct sum of
separable fields. If 2 is such an algebra and Q is the algebraic
closure of the base field, then 2, is semi-simple. In the preceding
section we have determined the bimodules for the exceptional central
simple alternative and Jordan algebras. We consider next another
particular case of separable algebras, namely, the non-exceptional
central simple algebras.

Theorem 19.1. Let U be a central simple associative algebra of n?
dimensions. Then every alternative bimodule for N is completely reducible.
If n==2, every irreducible alternative bimodule is associative and there
are three classes (in the sence of isomovphism) of irreducible bimodules.
If n=2 then N has four classes of irreducible alternative bimodules,
three of which ave associative and one a Cayley bimodule.

Proof. Suppose first the base field & is algebraically closed.
Then A = ®,. If M is an alternative bimodule, then we have the
Peirce decomposition WM = M, & M,, B M,, P M,,. M,, is annihi-
lated left and right by A; M, (M,,) is an associative right (left)
A-module and so is completely reducible. Wi, is unital. Hence if
n==2 this is associative and so it can be considered as a right
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module for the associative algebra ®,x®,. Hence it is completely
reducible. If »=2 then IN,, is a direct sum of an associative bi-
module and a Cayley bimodule (Th. 11.1). The associative part is
completely reducible as before. Also it is clear from the definition
of a Cayley bimodule that the lattice of sub-bimodules of a Cayley
bimodule coincides with the lattice of sub-modules of the associative
right module (or representation) used to construct the Cayley bimodule.
Hence it is completely reducible. Since a simple associative algebra
possesses just one irreducible right (left) module it is clear that if
n==2 then ®, has three classes of irreducible bimodules. If #=2
then any two Cayley bimodules are isomorphic if and only if the
associative right modules used to define them are isomorphic. Hence
in this case we have one additional class of irreducible bimodules.
This proves the result for algebraically closed base fields. Also, in
this case, we see that the universal associative algebra U(®,) of the
birepresentations is semi-simple and we can determine its structure.
Thus each class of irreducible birepresentation accounts for a simple
component of U(®,). Hence if #z=4=2 then N(®,) is a direct sum of
three simple algebras and if # =2 then U(®,) is a direct sum of four
simple algebras. Now let the base field be arbitrary and let Q be its
algebraic closure. Then N(A)g =U(WUg) =N(Q,) since ;=L,. Hence
N(A) is semi-simple and the bimodules are completely reducible.
Now U has an irreducible associative right (left) module and an
irreducible associative unital bimodule. Evidently no two of these are
isomorphic. If #=2 we have also an irreducible Cayley bimodule.
Hence N(A) is a direct sum of at least three simple components if
n==2 and of at least four simple components if » =2. Since U(A)q
is a direct sum of three or four components in these two cases it is
clear that N(A) is a direct sum of exactly three simple algebras if
n==2 and of exactly four simple algebras if z=2. Since these
correspond to the irreducible bimodules we have indicated, the latter
give a complete list of sub-bimodules. This completes the proof.

We note also that we can calculate the dimensionality of ().
Thus the dimensionality of a simple component is the dimensionality
of the enveloping associative algebra of the corresponding irreducible
bimodules. Hence if #==2 then dim W(A) = n*+n>+n* = n*(n*+2) and
if #=2 then dim (A) = 28.

We shall say that a central simple Jordan algebra & is of degree
k if Jg is of degree & for Q the algebraic closure of the base field.

PROPOSITION 19.1. Let I be a special central simple Jordan algebra
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of degree »>3. Then every Jordan module for & is completely
reducible.

Proof. The theory of Peirce decomposition reduces the consider-
ations to special modules and unital modules. Since the universal
associative algebra is either simple or a direct sum of two simple
algebras, the special modules are completely reducible. We consider
next the unital modules and we suppose at first that the base field
is algebraically closed. Let 9% be unital and let ©® be the associative
algebra associated with ® in the structure theory (§17), so that D is
either a direct sum of two algebras of dim 1 (type A), is of dim 1
(type B) or is the matrix algebra @, (type C). The involution in D
in the first case exchanges the two component algebras and in the
last it has the form a — fr(a)—a so that the self-adjoint elements are
the elements of ®. We introduce the algebra &, the cross product
(DxD, P,1) defined in §10. In the first case, ® is a direct sum of
a quaternion algebra and four one dimensional algebras. In the
second, @ is a direct sum of two algebras of order one and in the
third @ is a direct sum of two matrix algebras ®,. These results
are easily proved and we leave the details to the reader. If » >3
we can reduce the discussion of 9% to that of an associative D-
bimodule with involution and then to a right module for &. Since &
is semi-simple all of these are completely reducible. If #=3 we
have to consider also alternative ®-bimodules with involution such
that the self-adjoint elements are in the nucleus. Now the alternative
bimodules for the algebra © we are considering are all associative
except for ® = ®,. In the associative cases (types A, B) we again
get a reduction to right @-modules and complete reducibility holds.
We have to consider finally alternative ®,-bimodules with involutions.
Hence let B be a unital alternative bimodule for ®,. Then P=P, PP,
where 93, is associative and %3, is a Cayley bimodule. It is easy to
see that the nucleus of 3, is 0. Hence 93, is the nucleus of . On
the other hand, the only element z, in 9, such that az, = z,@ for all
ac®, is 2, =0. Hence B, can be characterized as the set of ele-
ments z in B such that ez = za for all . It now follows that if X
has an involution then both P, and %, are self-adjoint. Hence $, is
an associative ®,-bimodule with involution and is completely reducible
since & is semi-simple. Now in 3, we require the self-adjoint
elements to be in the nucleus. Since the nucleus is 0 the involution
maps every element into its negative. Hence every sub-bimodule is
self-adjoint. It follows that 3, is completely reducible as bimodule
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with involution. Thus we see that complete reducibility holds also
for type C, #=3. This completes the proof for algebraically base
fields. As in the alternative case, the use of universal associative
algebra of the representations permits us to extend the result to
arbitrary base fields.

The proof of the foregoing theorem gives an enumeration of the
classes of irreducible unital modules in the algebraically closed case.
Thus the consideration of the structure of & shows (via Th. 10.3,
10.4) that if & is of type A, there are five such classes and if J is
of type B or of type C with #» >3 there are two. If J is of type C
with #=3 then there are three. Thus let 8 be an irreducible
Cayley bimodule for &,. Then we can make % into a bimodule with
an involution by defining Z= —x for all x€$3. Then the self-adjoint
elements of the split null extension § = ®, P P are multiples of 1.
Hence they are in the center of §. It follows that ¥ determines an
irreducible unital module for the simple Jordan algebra & of type C
with »=3. We remark also that the corresponding split null ex-
tension is a new exceptional Jordan algebra of 21 dimensions.

Using the information just obtained we can determine the number
of classes of irreducible modules for special central simple algebras
of degree #_>3 over an arbitrary base field. In several case we can
determine quite explicitly the irreducible modules. In addition to
the results in the algebraically closed case, we shall need to investi-
gate the structure of the universal associative algebra U(J).

We say that the Jordan algebra & is of type A,B,C or E if g
is of type A, B,C or E for Q the algebraic closure of the base field.

It is known that any algebra of types B or C is isomorphic to the
algebra © of self-adjoint elements of a central simple associative
algebra A with an involution (of first kind).*® If the degree of o is
n, then dim © =#n(r+1)/2 for type B and dim © =»(2z—1) for type
C. The universal associative algebra of $ is % and the fundamental
involution is the involution defining . The dimensionality of U is
n® for type B and 4#* for type C. If & is of type A either & is
isomorphic to an algebra ,, A central simple associative or & is
isomorphic to the algebra  of self-adjoint elements of a simple
associative algebra 2 with an involution of second kind. Accordingly,
we say that I is of fype A, or type A,;. The universal associative
algebra of I = A, of type A, is the direct sum A P A where W is

24) The results stated without proof in this section can be found in F.D. and N.
Jacobson [15].
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anti-isomorphic to 2. The universal associative algebra of I =9 of
type A,; is A, the fundamental involution is the given one. For
central simple Jorden algebras of type A and degree » we have
dim § =#»* and dim U,(J)=2#%. Coversely, the constructions we
have indicated here always yield central simple Jordan algebras of
type A, B or C.

PropoOSITION 19.2. Let 2 be a finite dimensional central simple
associative algebra with an involution and let $ denote the set of
self-adjoint elements, & the set of skew elements. Assume deg ©>3.
(1) Then the subalgebra U®(D) of A @ A generated by the elements
hR1+1 Rk heDH coicides with the set B of elements invariant
under the exchange automorphism P. (2) WP =, . _,, D P..rpy, if
dimUA =7? (3) © and & are non-isomorphic irreducible unital modules
for 9.

Proof. (1) Assume first that the base field ® is algebraically
closed. Then A =D, where either D = ® or D = ®, with involution
a —-tra—a. In either case Prop. 7.3 shows that & =[99]. Hence,
by Th. 10.3, U®(H)=B. The usual extension of the base field
argument shows that this holds for arbitrary base field ®. (2) By
(1) dim U® = r*(*+1)/2. Since A is central simple, the mappings
x — {xh}, xeUA, heD determines a faithful representation of U,
Evidently © and & are invariant subspaces for this representation.
Their dimensionalities are 7»(7+1)/2, »(r—1)/2, respectively, for type
B and r(r—1)/2, r(r+1)/2 for type C. Accordingly the sum of the
squares of these dimensionalities is dim U$®. It follows that the
induced set of linear transformations in  and & are the complete
sets in these spaces. Hence U® =~ ®_._,, P P, (cf. the proof of
Th. 16.1). (3) This is an immediate consequence of (2).

ProposITION 19.3. Let U be a central simple associative algebra
of n*~>4 dimensions and let B denote the subalgebra of A ® A of
elements invariant under the automorphism P. Then B is a direct
sum of two central simple algebras of dimensionalities #*(z+1)?/4 and
and #*(n—1)*/4.

Proof. If the base field is algebraically closed 2 = ®, has an
involution which gives an algebra of type B and degree ”>3. Hence
Prop. 19.2 (2) shows that B=o,,_,, P P, - If ® is arbitrary
and Q is its algebraic closure, then B =Q,,_p,p DB Luuine- Hence
either B is simple or it is a direct sum of two simple algebras. On
the other hand, it is well known that if a simple algebra remains
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semi-simple on extension of the base field to its algebraic closure,
then the extended algebra is a direct sum of isomorphic simple
algebras.” Hence B is a direct sum of two simple algebras. These
become complete matrix algebras on extension of the base. Hence
they are central. Also it is clear that their dimensionalities are as

indicated.

PROPOSITION 19.4. Let U,  and & be as in Prop. 19.2 and let
@ — @ be the involution in 2. (1) Then the linear transformations

x — {xa}, xeA, acN
x—>xa+ax, x€9, acl
(92) x—>xa+dax, x€&, acU
x—>ax+xa, x€9, ac
x—>ax+xa, x€&, aeU

- give the five irreducible unital representations of A,. (2) The algebra
UP»(A) coincides with the subalgebra B of U(A)RQULA) of elements
invariant under P.

a 0

Proof (1). We represent 2, as the subset of matrices A = <0 a)

in the matrix algebra 2,. Then X — {XA}, Xe U, defines a faithful
representation of U®(A). We can decompose U, as a direct sum of
six invariant subspaces whose matrices are, respectively,

(a 0> (0 0) <0 h) (0 s) <O 0> <0 0)

0 0/, \0 «/, \O 0/, \O 0/, \# 0/, \s O

where ae?, ke, s€S. The first and second are isomorphic and
irreducible, since 2, is simple. Hence we drop the second. The first
and last four are isomorphic to the modules defined by (92). If we
restrict ¢ in (92) to belong to  then the last four modules become
the irreducible $-modules considered in Prop. 19.2 (3). Hence these
are also irreducible for 2. Since our representation of UX(A) in A,
is faithful and since U (2A) is semi-simple (Prop. 19.1), the five
irreducible modules we have displayed include all the irreducible
unital modules for $». Now if the base field is algebraically closed,
then we have seen that there are five non-isomorphic unital modules
for U{». Hence the modules we have defined are not isomorphic in
this case. Clearly, this implies that they are not isomorphic for any
base field. (2). We can calculate dim U{® as the sum of the squares

25) See, for example, Jacobson, Theory of Rings, p. 115.
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of the dimensionalities of the five irreducible modules. Comparison
with dim B proves that UP(A) = B.

The simplest class of examples of simple associative algebras
with involutions of second kind are the matrix algebras P, where P
is a quadratic extension of the base field ®. Here we take the
involution ¢ — & where the ’ denotes the transpose and @ is the
matrix obtained from «¢ by taking the conjugation in P of the ele-
ments of 2. We observe that ¢ —- a4’ and @ —-a& commute. We shall
now consider a class of algebras with involutions of second kind
which is somewhat more general than that of the algebras P, .

PROPOSITION 19.5. Let U be a simple associative algebra of
dimensionality 2#% n_>3, with center P a quadratic extension of the
base field. Suppose that U has an involution ¢ — &’ of first kind and
an automorphism @ —-a& of period two which commutes with the
given involution and which induces an automorphism ==1 in P. Then
a — @ is an involution of second kind. Let  be the set of self-
adjoint elements of this involution. Then the linear transformations

(93) x—>xh+hx, ¥ =2x, he
x— xh+hx, ¥ =—x, hed

define three non-isomorphic irreducible unital modules for 9. Every
irreducible unital $-module is isomorphic to one of these.

Proof. We use the automorphism o¢:a@ — @ to define the crossed
product = (A, s,1). Let ¢ be an element which we adjoin to 2 to
form &, so that ca =dc, c*=1. One verifies that § is central simple.
Hence x — {xk}, x€F, he D defines @ 1—1 representation of the semi-
simple associative algebra U{?(9). We have four invariant subspaces
whose elements are, respectively, €9, s skew (s’ = —s), xc with
x’ = x and xc¢ with "= —x. There exists an element x in P such
that 7= —p. Multiplication by this element gives an isomorphism
between the first two of our spaces. The sum of the squares of the
dimensionalities of one of these and the last two is #*+#n°(n+1)?/2
+n*(n—1)2/2 =n*(2n*+1). It follows from Prop. 19.4 (2) that this
equals dim U®(9). The proof can now be completed along the lines
which we have used in Prop. 19. 4.

We can now prove the following result.

Theorem 19.2. Let & be any special central simple Jordan algebra
of degree w_>3 over an arbitvary base field. Then the associative algebra
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W(Y) is semi-simple and we have the following table on its structure

type dims. of simple components of N () dim 11 ()
Ay nnd nt, nin—1)°/4, n*(n—1)*/4, n*(n+1)*/4, w*(n+1)°/4 n?(2n*+3)
A 2n’, n*, w*(n—1)*/2, n*(n+1)*/2 n*(2n*+3)
B n?, n*(n—1)*/4, n*(n+1)*/4 : n*(n*+3)/2
C,n>3 4n?, n*(2n—1)%, n*(2n+1) 2n*(4n* +3)
C,n=3 36, 225, 441, 36 738

Proof. The semi-simplicity of U(J) is a consequence of Prop.
17.1. If & is of type U then the extension of the base field argu-
ment and Prop. 17.4 (2) show that U{®(J) is the subalgebra B of
I, Q@ U,(¥) of elements invariant under P. If I is of type Ay,
S =9A,, A central simple and U,(F) =A P A where A is anti-isomor-
phic to A. Then L, QU =(A QA P A QW) P (A QA D (W QW)
and P exchanges A QWA and W Q A and induces in A R A and A QW
the same kind of exchange mapping. Now A QW = &,z and by
Prop. 17.3, 3N\ (A ® A) and BN\ (A ® W) are direct sums of central
simple algebras of dimensionalities #?(#+1)?/4 and #*(n—1)*/4. Hence
we have proved everything for type A;. Next let ¥ be of type Ay;
so that ¥ = 9 the set of self-adjoint element in the simple algebra
2 with an involution of second kind. Then U,(J)=W has center
which is a quadratic extension of the base field. Hence A QA
=9A, P A, where A, is simple of #* dimensions over its center P,
which is two dimensional. Let B be the subalgebra defined before.
If we extend the base field ® to its algebraic closure Q, then the
preceding discussion shows that By is a direct sum of five simple
algebras and that, for the center P, & P,, we have dim (P, ® P,)o N\
By) = 3. These two facts imply that P maps each 2; into itself,
induces the identity mapping in one of the P,, say P,, and induces
an automorphism of period two in the other. It follows that B N\ 2,
is a central simple algebra of #* dimensions. Hence (BN, is a
direct sum of two simple algebras of #n?*(#+1)?/4 dimensions and two
of n?(n—1)?/4 dimensions. It is easy to see that this can happen
only if BN\, is a direct sum of two simple algebras having centers
which are quadratic fields and having dimensionalities #*(n+1)2/4
and #*n—1)?/4 over these. This proves the assertions about & of
type Ay . If § is of type B or C, # >>3 then the results follow from
Prop. 19.1, 19.2 and the fact that the universal associative algebra
() is simple. We consider finally type C, # = 3. If the base field
is algebraically closed then we have seen that there exists an irredu-
cible module which is not a submodule of a sum of two commuting
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special modules. The dimensionality of the corresponding simple
components of U() is 36. The usual argument with universal asso-
ciative algebras shows that this is valid also for arbitrary base field.

The results which we have obtained for the various types of
central algebras can be put together to obtain the irreducible bimo-
dules for separable alternative and Jordan algebras. We shall not
attempt to make this explicit but shall be content to derive the
following fundamental result.

Theorem 19.3. If N 1s a separable alternative algebra orv a known
separable Jordan algebra of finite dimensions, then every bimodule for U
15 completely reducible.

Proof. It suffices to prove this for algebraically closed base fields.
Write A=A, PpA, P --- A, where the 2, are simple. If A 1s
alternative then we know that 2, = ®,, or = C the Cayley algebra.
The theorem is therefore an immediate consequence of the Peirce
decompositions, Ths. 11.1 and 19.1. Now suppose that U is Jordan.
Since we are assuming that the structure of % is known, the 2, ate
either one dimensional or have degrees >2. The Peirce decomposi-
tions reduce the considerations to three cases: (1) special 2;-modules,
(2) unital modules which are sums of two commuting special modules,
one of which is an 2;-module and the other an 2,-module, i==j
and (3) unital 2;-modules. The result is clear for (1). In case (2),
M defines a representation of U (2,)R@U,(A,). Since this algebra is
semi-simple, M is completely reducible. In (3), complete reducibility
is trivial for one dimensional algebras. It follows for algebras of
degree 2 from Th. 16.1 and 16.2 and for algebras of degree >3
from Th. 18.2 and Prop. 19.1. This completes the proof.

Yale University
(Received December 17, 1953)

Bibliography
1. A. A. Albert, On a certain algebra of quantum mechanics, Ann. of Math., 35
(1934), 65-73.

2. ——, A structure theory for Jordan algebras, Ann. of Math., 48 (1947), 446-467.

3. ——, A note on the exceptional Jordan algebra, Proc. Nat. Acad. Sci., 36
(1950), 372-374.

4. ——, A theory of power associative commutative algebras, Trans. Amer. Math

Soc., 69 (1950), 503-527.

——, On simple alternative rings, Can. J. of Math., 4 (1952), 129-135.

A.S. Amitsur, On the identities of PI rings, Proc. Amer. Math. Soc, 4, (1953),
27-35.

(92}

S



70

10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.
21.

22,

23.

24.

25.

26.

27.
28.

29.

30.

31,

N. JACOBSON

G. Ancochea, On semi-automorphisms of division algebras, Ann. of Math., 48
(1947), 147-154. :

G. Birkhoff, Representability of Lie algebras, etc.. Ann. of Math., 38 (1937),
326-332.

G. Birkhoff and P. Whitman, Representations of Jordan and Lie algebras, Traus.
Amer. Math. Soc., 61 (1949), 116-136.

R. Brauer and H. Weyl, Spinors in n dimensions, Amer. J. of Math., 57 (1935),
425-449.

C. Chevalley and R. D. Schafer, The exceptional simple Lie algebras &, and s,
Proc. Nat. Acad. Sci., 36 (1950), 137-141.

R. J. Duffin, On the characteristic matrices of covariant systems, P#4ys. Rev.,
54 (1938), 1114.

S. Eilenberg, Extensions of general algebras, Annales de la Société Polonaise de
Mathématique, 21 (1948), 125-34.

H. Freudenthal, Oktaven, Ausnahmengrup pen und Oktavengeometrie, Utrecht 1951.

F. O. Jacobson and N. Jacobson, Classification and representation of semi-simple
Jordan algebras, Trans. Amer. Math. Soc. 65 (1949), 141-169.

N. Jacobson, Cayley numbers and simple Lie algebras of type G, Duke Math. ].,
5 (1939), 775-783.

——, Classes of restricted Lie algebras of characteristic p, I, Amer. J. of Math.
63 (1941), 481-515.

——, Isomorphisms of Jordan rings, Amer. J. of Math., 70 (1948), 317-326.

H

——, Derivation algebras and multiplication algebras of semi-simple Jordan
algebras, Amn. of Math., 50 (1949), 866-874.
——, Lie and Jordan triple systems, Amer. J. of Math., 17 (1949), 149-170.

’

——, General representation theory of Jordan algebras, Trans. Amer' Math. Soc.,
70 (1951), 509-530.

N. Jacobson and C. E. Rickart, Jordan Homomorphism of Rings, Trans. Amer.
Math. Soc., 69 (1950), 479-502.

——, Homomorphisms of Jordan rings of selfadjoint elements. Trans. Amer.
Math. Soc., 72 (1952), 310-322.

P. Jordan, Uber die Multiplikation quanten-mechanischer Gréssen, Zeitschrift
Sfiir Physik, 80 (1933), 285-291.

P. Jordan, J.von Neumann and E. Wigner, On an algebraic generalization of
the quantum mechanical formalism, Ann. of Math., 35 (1934), 29-64.

G. K. Kalisch, On special Jordan algebras, Trans. Amer. Math. Soc., 61 (1947),
482-494.

I. Kaplansky, Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521-527.

W. H. Mills, A theorem on the represention theory of Jordan algebras, Pacific J.
of Math., 1 (1951), 255-264.

R. Moufang, Zur Struktur von alternativen Korpern, Math. Anna. 110 (1937), .
416-430.

A.J. Penico, The Wedderburn principal theorem for Jordan algebras, Trans.
Amer. Math. Soc., 70 (1951), 404-421.

R. D. Schafer, The exceptional simple Jordan algebras, Amer. J. of Math., 70

(1948), 82-94.



32.

33.
34.

35.

36.

37.

Structure of alternative and Jordan bimodules 71

——, Representations of alternative algebras, Trans. Amer.Math. Soc., 72 (1952),
1-17.

W. Specht, Gesetze in Ringen 1, Math Zeitschr. 52, (1950), 557-589.

N. Svartholm, On the algebras of relativistic quantum mechanics, Proc. of the
Royal Physiographical Soc. of Lond, 12 (1942), 94-108.

E. Witt, Theorie der quadratischen Formen in beliebigen Korpern, Journal fiir
die Reine und Angewandete Mathematik, 176 (1937), 31-44.

——, Treue Darstellung Liescher Ringe, J. Reine Angew. Math., 177 (1937)

152-160.
M. Zorn, Theorie der Alternativen Ringe, Abk. Mat. Semi. Hamburg. Univ. 8

(1930), 123-147.








