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1. Introduction

It is well-known that the generator A of a time-homogenous Markov process in
R™ is typically given by a Lévy-type operator

Ap(z) = Z Zb + c(z)p(x)
i,j=1
{y, Voo(z)) o (o
(1.1) +/R"\{0} (w(r +y) — () - T e ) w(z,dy), ¢ € Cg°(R™).

This follows immediately from the fact that the generator of a transition semigroup
satisfies the positive maximum principle, i.e. for any ¢ in the domain of the generator
and zo € R™ such that p(z9) = sup,cg~ ¢(z) > 0 we have Ap(zo) < 0 and by
a result of Ph. Courrége [4] which characterizes the operators satisfying the positive
maximum principle as operators of type (1.1). But Courrége gave also another equiva-
lent representation of this class of operators as pseudo differential operators

(12)  Ap(z) = —p(z, D)p(z) = - / e p(2,6) - p(E) &, ¢ € CF(R™),

defined by a symbol p : R™ x R® — C having the crucial property that for fixed
z € R" the function p(z,-) is a continuous negative definite function (see section 2
for the definition). Such symbols we briefly call negative definite symbols. Here ¢ =
Jgn e~ =8 () dx denotes the Fourier transform and d¢ = (27)~ "™ d¢. Conversely, if
the symbol is a continuous negative definite function for every fixed z € R" then the
operator —p(z, D) satisfies the positive maximum principle on C§°(R").

The relation between (1.1) and (1.2) is given by the Lévy-Khinchin formula, see
[2], which represents the continuous negative definite functions p(z,-) (for fixed z) in
terms of the coefficients a;;(x), b;(z), c¢(x) and the Lévy-measures pu(z,dy) of (1.1).
In this paper we focus on the representation (1.2) as a pseudo differential operator and
look for conditions purely in terms of the symbol p(z,£) implying that the operator
—p(z, D) actually generates a Markov process. We are interested in particular in the
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case that the second order diffusion part might vanish completely and the non-local
integro-differential part in (1.1) becomes dominating. As a final result we will deter-
mine a class of operators generating Feller semigroups (see Theorem 5.7).

In the particular case of a symbol p(z,£) = p(£) which is independent of z the
operator —p(D) generates a convolution semigroup and the corresponding process is
a Lévy process. Moreover the negative definite symbol function p(§) is nothing but
the characteristic exponent of the Lévy process and in this way a complete ono-to-one
correspondence between negative definite functions and Lévy processes is given (see
[14] for a probabilistic interpretation of the symbol in the general case). Even in this
simple z-independent case the most standard example of symmetric a-stable processes
show that the corresponding symbol p(¢) = |£]|*, 0 < a < 2, is not differentiable un-
less o = 2, i.e. in the case of Brownian motion. From this we see that it is an intrinsic
property of the regarded symbol class that they are in general not differentiable with
respect to £. Hence these symbols do not fit into any known symbol class of pseudo
differential operators and we cannot apply pseudo differential calculus without further
considerations.

For that reason many approaches to Lévy-type operators besides those which study
the case of a dominating diffusion term either concentrate on the representation (1.1)
with certain integrability conditions on the Lévy-kernel u(z,dy) (see [24], [27], [21])
or they make some homogenity assumptions on the symbol with respect to £ and often
consider perturbations of a-stable and so-called stable-like processes (see [17], [18],
[1], [23], [16], [19], [15]). For symmetric stable processes perturbed by singular drifts
see also [26] and [25].

In [11], [12], [13] N. Jacob took a general continuous negative definite function
a?(€) as the starting point and considered symbols p(z,£) defined in terms of this
function. Thus these symbols are typically not differentiable with respect to €. In this
situation the Lévy process associated to a? deals as a kind of model process for the
jump process generated by the operator —p(z, D) with "variable coefficients". Besides
the existence of a corresponding transition semigroup Jacob’s approach also yields L2-
estimates for the generator which also have some probabilistic consequences for the
process. However the perturbation argument used there allows only small perturbations,
in particular the oscillations of the symbol must vanish asymptotically as |z| — oo.
For the same type of generators in [7], [8], [9] the process and the semigroup are
constructed via the martingale problem. By this method the strict oscillation bounds
of [12] and [13] can be avoided and the result is applicable to a much larger class of
symbols, but the useful L2-estimates can not be obtained in this way.

The starting point in this paper is different since we want to construct a calculus
of pseudo differntial operators similar to the classical case of Hormander classes S7’s,
i.e. symbols satisfying the estimate

(1.3) |62 88p(x,€)| < cap(l + |¢[*)/Dmmelelt8I8D -, g € NG,
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where 0 < § < p < 1 and m € R gives the order of the symbol. Hérmander type
symbols are no good choice in general for the operators we have in mind, but anyhow
such calculus typically yields estimates in L2-context and on the other hand needs no
oscillation bounds for the symbols. In this way it combines in a sense the advantages
of both upper approaches.

Again we look at a general Lévy-process as a model case leading to symbols
which are not differentiable. But differentiability of the symbol in particular with re-
spect to £ is indispensable for a symbolic calculus. Therefore we first decompose the
symbol into a differentiable part and a remainder part which is considered as a per-
turbation. For that purpose the Lévy-measures of the kernel u(z,dy) in (1.1) are split
into a part supported in a bounded neighbourhood of the origin and a part supported
on the complement. Due to the fact that most of the mass of a Lévy-measure typically
is concentrated around the origin, it turns out that the latter part defines a low order
perturbation of the operator. In particular under quite natural assumptions this pertur-
bation is a bounded operator on the space of continuous functions as well as on L2.
For example the property that an operator generates a Feller semigroup is stable under
such perturbations and also L?-estimates are preserved. These aspects are discussed in
more detail in the paper [10].

We therefore focus on symbols with Lévy-measures supported in a bounded neigh-
bourhood of the origin. Recall that in probability theory this assumption is often made
from the very beginning and corresponds to the fact that the jumps of the associ-
ated process are bounded. It turns out that these symbols are differentiable with re-
spect to &, see Prop. 2.1. But in order to get a symbolic calculus with good asymp-
totic expansions, it is important that moreover the derivatives satisfy certain growth
estimates at infinity. In the case (1.3) of Hormander type symbols in S7%, ¢ > 0,
6?65 p(z,€) is estimated by powers of (1 + |¢°)!/2 and the power decreases when
|a| is growing. This lead to asymptotic expansion: series of symbols of decreasing
order. In the situation of symbols considered here it now turns out, and this is the
crucial point, that the derivatives satisfy estimates similar to (1.3): When we define the
class of symbols in terms of the fixed continuous negative definite function a® and let
A(€) = (1 + a?(€))'/? then we have

(1.4) |0¢p(z,€)| < caX?2lD o e N,

where the weight function (1 + |£[%)!/2 is replaced by A(€) and (k) = k A 2. This
behaviour follows only by the fact that p(x,£) is a negative definite symbol. Therefore
it is natural to define for every continuous negative definite function a? symbol classes
SZ,""\, m € R, given by

(1.5) |6g82p(x, €)| < capA™ el o, 8 € NG,

which in the case m = 2 typically contain negative definite symbols.
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Symbol classes defined by general so-called basic weight functions A(£) had been
considered before by H. Kumano-go (see [20]), but his assumptions on A are not satis-
fied by continuous negative definite functions in general. Therefore the major part of
the work that has to be done is to show that arguments similar to those in [20] can be
applied in the situation here. For that purpose we have to exploit certain estimates for
continuous negative definite functions that replace estimates for the basic weight func-
tions used in [20]. This will be done in section 3 where a symbolic calculus for S:,"”‘
is established and expansion formulas are proven. Since the estimate in (1.5) do not
improve for |a| > 2 these expansion will not be asymptotic, i.e. the series contains
only a finite number of terms of decreasing order, whereas the subsequent terms do
not improve the expansion. See also the paper [22] of M. Nagase where he also con-
siders basic weight functions and the case of a general behaviour of the derivatives of
the symbol in terms of a general function g. In his paper Nagase also lines out how
the technique of Friedrichs symmetrization applies to his class of symbols. In section
4 we adapt this procedure to our situation proving also in our case a Friedrichs sym-
metrization and a sharp Gérding inequality.

In the final section we prove as an application that elliptic elements in the class
Si”\ give examples of generators of Feller semigroups. For that purpose as in the pa-
pers [12], [13] of Jacob we use the Hille-Yosida theorem and prove in particular the
existence of the resolvent of the operator. This means we look for solutions of the
equation (p(z,D) + 7)u = f for some 7 > 0 in appropriate function spaces. The
calculus developed so far is then applied to this problem and gives the solution via an
approach by modified Hilbert space methods.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknow-
ledged.

2. Some properties of negative definite functions
A function 9 : R® — C is called a negative definite function if for all m € N and all
m-tuples (£1,...,6™), & € R™, 1 < j < m, the matrix

(W(E) +P(E) — (& — €))ijm1,..m

is positive Hermitian, i.e. for all cy,...,c, € C

D @(E) +9(&) - (& - &) ag; > 0.

1,j=1

In the following we will restrict to real-valued negative definite functions for simplicity
and the term negative definite function always implies real values. For more details
and examples concerning negative definite functions and the following results we refer
to the monograph [2].
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The set of negative definite functions forms a convex cone and we have

P(§) 2 4(0) > 0.

If 4 is moreover continuous, then there is a constant ¢, such that

@.1) P(E) < cp(1+ [€]%).

The following inequality is a very useful substitute for the triangle inequality. Let 1
be a negative definite function, then

22) Y2E+n) <9 +92(m), EneR™
As a consequence we have the following analogue of Peetre’s inequality (see [6])

@3 2 < 1+ ve - )

Finally recall the important Lévy-Khinchin formula: Every (real-valued) continuous
negative definite function 1 has a representation

@4 WO =cra@+ [ (1= costy,Om(d),

where ¢ > 0 is a constant, ¢ > 0 is a quadratic form and p is a symmetric Borel
measure on R™ \ {0} called the Lévy-measure having the property that

ly|®
p(dy) < oo.
/R"\{O} 1+ Jy|?

This correspondence is one-to-one.

In general a continuous negative definite function is not differentiable. In order to
define reasonable symbol classes we therefore have to restrict to a subclass of conti-
nuous negative definite functions. We have the following result.

Proposition 2.1. Let ¢ : R™ — R be a continuous negative definite function with
Lévy-Khinchin representation (2.4). Suppose that for | > 2 all absolute moments

M, = / lyl' u(dy)
R™\{0}

of the Lévy-measure exist. In particular this holds when suppy is bounded. Then ) is
infinitely often differentiable and we have the estimate
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Y(§) a=0
(2.5) |029(8)] < cpar § ¥H2(€) if lal=1, aeNg,
1 |a| > 2

where cg = 1, ¢1 = (2M3)1/2 +2A1/2, ¢, = My + 2A and ¢, = M, for | > 2 and A
is the maximal eigenvalue of the quadratic form of v in (2.4).

Proof. For a = 0 there is nothing to prove. Let |a| > 1. We may consider all
terms in the representation (2.4) of i separately. The constant term is trivial and the
estimate (2.5) is well-known for the quadratic form with constants ¢; = 2A'/2, ¢, =
2A and ¢ = 0 for [ > 2. So we may restrict to the integral part in (2.4) and assume
that

w(E) = / (1 = cos(y, ) u(dy)-
R™\{0}

.

Since the moments M;, | > 2 are bounded, we may exchange differentiation and inte-
gration and find

ou© =~ [y eoslD iy, Ou(a),

which gives for |a| = 1 by Cauchy-Schwarz inequality

1/2 1/2
106,6(6)] < / il u(dy) | / sin(y, €)u(dy)
R™\{0} R™\{0}

1/2 1/2
( / lylzu(dy)) : (2 [ a- cos(y,o)u(dy))
R™\{0} R™\{0}

(2M2)*/2 - /2 (¢)

IN

and for |a| > 2
|ogw(6)| < / |y“|lcos(|“[)(§,y)lﬂ(dy)
R"\{0}
< [l ) = M. 0
ReEmARK 2.2. By [8], Lemma 2.2, there is a bounded measure v, on R™ \ {0}

such that the continuous negative definite function y + |y|?> /(1 + |y|?) has the Lévy-
Khinchin representation
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lyl®
— = (1 = cos(y, &))vn(d€)
T+1yl°  Jrm\{0)

and
/ (1+ ¢[2)n(d€) < oo.
R™\{0}

Consider in the situation of Proposition 2.1 a family of continuous negative definite
functions (v;)ic; with Lévy-measures y; supported in a fixed ball Bg(0). Then for
1>2

! |Z/|2
M, = i(d ————u;(d
' /BR<0>\{0} Wl () < ene /Bn(o)\{o} 1+ IyIQ)u( v
Seni [ oy O oo ) ) ema [ i@ valde)

R™\{0}

Moreover for the largest eigenvalue A; of the quadratic form g¢; of 1); we have

A; = sup ¢;(§) < sup ¥;(§).
le|<1 lel<1

Therefore, if all v;, ¢ € I, are uniformly bounded by a fixed continuous negative defi-
nite function 1, i.e.

Yi(§) <9(§)  forall £ € R,

the same constant c|,| may be chosen in (2.5) for all ;.

3. The symbol classes ST and Sy**

We consider the case of negative definite symbols which are real-valued. The idea
to get good estimates for operators of type (1.2) is as in [8] and [13] to require that
the symbol satisfies upper and lower estimates in terms of a fixed continuous negative
definite function. For that purpose fix for the following a continuous negative definite
function

a:R" >R

with Lévy-measure supported in some bounded set. This support condition for the
Lévy-measure is no restriction since we will consider only symbols with this property
and the same cut-off procedure that we will apply to symbols can be applied to a?.

Our symbol class will be defined in terms of the function a? or equivalently, but
in a more convenient way, by the square root

3.1 A(€) = (1 +a*(€))*2.
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Furthermore to simplify the notation we introduce
3.2 olk) =kAN2, keNp.

Consider a symbol p(z,£) as in the introduction, i.e. p: R™ x R" — R is continuous
and £ — p(x,&) is negative definite for all z € R™. Then the Lévy-Khinchin formula
yields

P8 = @) +a@ O+ [ (1 cosly, )tz ),

where ¢, ¢, and p satisfy for each z € R™ the same conditions as the corresponding
terms in (2.4). Let 8 € C§°(R™), 0 < # < 1, be a some even cut-off function such
that #(z) = 1 in a neighbourhood of the origin. Having in mind Proposition 2.1 we
decompose

p(z,€) = p(z,£) + pr(z,8)

by splitting its Lévy-measures into a leading term
p(@,€) = cla) + a(e. ) + [ o (L €056, 006) e )
n\{0

and a remainder term
pr(e,)= [ (1= cos(y,) (1 - ) u(z, dy)
R*\{0}

Then p and p, : R™ x R™ — R are continuous functions and for fixed z € R" nega-
tive definite with respect to ¢ (see (3.5) and (3.6) in the proof of Lemma 3.6 in [8]
for the continuity of p and p,, the particular choice of § does not affect that proof).

Furthermore Proposition 2.1 applies to the symbol p(z, ).
Suppose that j(z, &) is comparable with a2(€) in the sense that

(3.3) Bz, €) < c(1+d*(€)).

Then with the notation of Remark 2.2 we have

2

lyl )
1-6 Jdy) < dy) < v
/R"\{“}( w)ute ) < C/R"\{o} 1+ Jy|? i dy) < c/nn\{o} Bl &) vald)

<e / (1 + a(€)) va(dt).
R™\{0}

Therefore the Lévy-measures (1 — 8(y))p(z,dy) of p.(zx,£) have uniformly bounded
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mass and the representation (1.1)

Pl DIp) == [ (6l +1) ~ (@)1~ 0w) e )

shows that p,(z, D) is bounded as an operator on the spaces of bounded Borel mea-
surable functions and bounded continuous functions. Moreover, under a mild additional
conditions C (R™), the set of continuous functions vanishing at infinity, is invariant
and typically the operator is bounded on L?(R"), see also [10]. Therefore as men-
tioned in the introduction we regard p.(z,D) as a perturbation of p(z,D), which
doesn’t change the major results we have in mind and we will look in following to
the part p(z,£) which contains the typically dominating part of the Lévy-measure con-
centrated around the origin.
By Proposition 2.1 we see

cap(z, &)A/DC=elleD) < ¢ (1 + a?(£))1/2—e(laD)
ca)\(g)@—e(lal))

G4 |6gp(z,6)]

IN

with a constant ¢, not depending on x by Remark 2.2. The estimate (3.4) reflects the
typical behaviour of negative definite symbols and in order to define a proper symbol
class it is quite natural to assume the same estimate for the derivates 8°p(z,£) of the
symbol. Therefore for m € R we define SZ")‘ to be the class of symbols of order m
consisting of all C'*°-functions p(z, ) : R” x R™ — C such that

(3.5 0g0%p(z,8)| < capM@m D, g eR®, £€R”, a,f €N,
For example the condition with m = 2 is fulfilled if the Lévy-kernel of p(z,&) has
densities with respect to a certain Lévy-measure fi, i.e. u(z,dy) = f(z,y) i(dy), such
that f(-,y), y € R™\ {0}, is uniformly bounded in C{°(R") and also the coefficients
of ¢(z,&) and c(z) are in C°(R™).

Let us also define the larger symbol class Sg' A which is an analogue of the
Hormander class Sg, consisting of symbols such that
(3.6) Iaé’afp(z,{ﬂ <co )™, zeR" £€eR", o,f€Ng.
First we remark that A™({) gives a generic example of symbols in SZ"’\.

Lemma 3.1. For m € R and a € Ny we have

G |0gA™(€)| < car(€)melleh,

In particular \™ € S:,"*’\.
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Proof. By Proposition 2.1 we know
681+ a?(€))] < call + a?(€))1/2elle)

and therefore

92(1 +a%(¢))

—(1/2)e(laf) — —o(lal)
1+ a2(f) ca(l+ az(f)) 1/2e = caA(§)

(3.8)

holds. Next note that by induction on || using Leibniz rule we have

OEA™(€) = Fg[(1+a*(©))™?]

el 9 (1 + a(¢))
— (1+G,2(£))m/2 Z (al’ ..,a|a|,m H 1+a2a )

a1+...+a|a,—a

where a;,...,q)q € Ng, and therefore

la|

,afa’\m(f)l < caA™(€) Z H,\ e(lexil)

ayt...taj o =a i=1

UGEEED DR G

a1+...+a|°‘|=a

IN

coam—ellaD

IN

by subadditivity of p. O
Clearly for two symbols p; € Sg’* A= 1,2, by Leibniz rule we have

(9 |02l )@ < ¢ 3 |0g 08 mi(s,0)|- |0" 6 pa(z. )

< eAmEmR(g),

ie pi-p2 €85 1+m2.X and (S7"*)mer forms an algebra of symbols in the usual sense.
For symbols in S;””\ and S(']"”\ we denote the corresponding classes of operators de-
fined by

pa D)g(a) = [ eOp(a,€) - p(e)

by ¥7* and ¥, As usual we write D = (D,,,...,D,.) = (=ib,,,...,—i0;, ).
By (2.1) the operators are well defined on S(R™) and moreover for v € S(R"), a,3 €
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Ng and N > ||+ m+n

o (o [ e=0ptwguerte) | = oz ([ e=nz e 0a(0at)|

ST (;)(g)(zﬁ) =908 DZ'plz, €) D)

a1 tags= o(

P1+PB2=

e[ @ ame- Y fopace|a

[vI<lel

c/ﬂ(g)lﬁHm—ng.sup e }: IBgﬁ(E)’

€R™
¢ IvI<lal

IA

IA

Here we use the usual notation

€ =@+ eH)2

Since the Fourier transform is continuous on S(R™) this gives

Proposition 3.2. An operator p(z,D) € ¥J"* maps S(R™) continuously into it-

self.

Let us recall the definition of oscillatory integrals (see [20, Chapt.1.6]). A
C*-function g on R™ x R"™ is called of class A if the estimates

(3.10) [02089(n,y)| < capm™ PN y)", a8 € NG

hold for suitable m € R, 0 < § < 1 and 7 > 0. In this case the oscillatory integral is
defined by

(3.11) Os — / / e {WMg(n,y) dydn = lim / / e~ @M x(en, ey)g(n, y) dydn.

e—0

where x € S(R™ x R™) having the property x(0) = 1. The oscillatory integral is well-
defined for any g of class .4 and independent of the particular choice of the function

X-
If we choose [,l' € Ny sufficiently large (depending on m, § and 7) the oscillatory
integral coincides with the ordinary integral

(.12) 05—/ / =) g(n ) dyd
= /" /n e—i(ym)<y>_2z’ (Dn)m’ {<77>_2I<Dy>2lg(7l,y)} dydn.
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Moreover the following partial integration rule holds
(3.13) Os — / / e~ @Mng(n,y) dydn

= Os —/ / e~ Deg(n,y)dydn, o€ Nj.

We introduce the class of double symbols SJ"*"™*, m;,m; € R, in terms of the

weight function X consisting of all p € C°(R™ x R” x R™ x R") satisfying

(3.14) 8?856?185,(1)(35,5@',5')' < Capor g ME™ -AE)™, a,B,a',8 €Ny

For p € S’ ™A we define the corresponding operator

(3.15) p(x, Dy, x', Dy )u(x)
= /n /n /" ei((w_m()’£)+i(z,’£l)p(l’7f,fl)l,f’)ﬁ(fl)df’dzldﬁ.

for all u € S(R™). As in the classical situation it turns out that double symbols de-
termine the same classes of operators ¥g' A as simple symbols, but they are a very
useful tool for their investigation. More precisely we have

Theorem 3.3. Let p € S(',"’m”’\ and u € S(R™). Then the iterated integral in
(3.15) exists and defines a pseudo differential operator in the class V' +tmoA - More-

over
3.16)  pule,€) = Os - / / e OMp(z, €+, + y, €)dydn
Rﬂ n

is a symbol in Sg' +mX and defines the same operator, i.e.
p(@, Dy, x', Dot )u = pr(z, D)u
for all uw € S(R™).
Note that by (2.3) and (2.1)
0505 p(, € + 1,2 +y,6)] < A(E+mA™ (€) < AT (O™ () < ce (™.

Therefore the integrand in (3.16) is of class .4 and the integral is well defined.
pr(z,€) is called the simplified symbol of p(z,&,z',¢').

RI;IMARK 3.4. The oscillatory integral in (3.16) actually defines a symbol p, in
Sm+mA To see this we use the representation (3.12) for the oscillatory integral. For



CALCULUS FOR PSEUDO DIFFERENTIAL OPERATORS 801

[,I' sufficiently large we get by exchanging differentiation and integration, (3.14) and
(2.3)

A

G |g0pue. O] < cos [ [ )TN+ A (9 dydy
< caﬁ’\m+ml (©).

Moreover note that the constants c,g are expressed in terms of the constants coga/g
for the double symbol in (3.14). In particular, if a family of double symbols satisfies
(3.14) uniformly for each a, 8,a’, 3, then also the simplified symbols satisfy an esti-
mate (3.17) with uniform constants c,g.

Proof of Theorem 3.3. We adapt the consideration in [20], Chapter 2, to our
situation. Choose x € S(R™ x R™) such that x(0) = 1 and note that (see [20, Lemma
1.6.3])

(3.18) 8,‘,’65[)((577, ey)] < cap(n) 1N (y) 1P uniformly for 0 <e < 1.

For 0 <e <1 let pe(z,§,2',&') = x(e(§-¢'),e(z' —x))p(z, €, 2',£'). Then by Leibniz
rule and (3.18) have

(3.19) 0g 020 00 po(2,6,2', )| < Capar a ATON ()
with constants c4 g,o/,s independent of €. Define

pu,s(xagax,7€/) = pE(xaé.azlaél)a(gl)
tue@ &) = [ & p, (o600

Tu,e(T,8) =/ e~ 0, (2,€,1")dz’

and fix [,ng € N such that 2 > n + my and 2no > n. Note that ‘(=€) =
(z')=2m0 (D)2 (=€) Thus for all |#'| < 2 by partial integration and Leibniz rule

08 que (,6,2')| < |02 / <x’>'2"°e"""f')<De>“’"°pu,e(z,s,x’,f')df"
(3.20) < Cpuno AT (E) () T2,

where the estimate is again uniform in e. Therefore r, . is well defined and as above

'Tu,e(zvé)l

IA

(&2 / (D) g, (2,6, 2')de’

Cp,u,l,ng A™(E) - <€>—2l < Cp,u,l,no,/\<€>—2l+m+

(3.21)

IN
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uniformly in g, where the last inequality follows from (2.1). Thus the integral

pe(x’ Dzazl,Dz’)u(z) = / ei(z‘s)ru,s(z‘,é’)d&

n

exists. In particular for € = 0 we see that the iterated integral in (3.15) is well defined.
Moreover, since the estimates (3.20) and (3.21) are uniform w.rt. 0 < e < 1, we find
by a successive application of Lebesgue’s theorem

p(x, Da, ', Do )u(z) = / / / (== i py (2,6, ', €)dE dode
n n n E—>
- lim / / / i(@=a) O+ (€ o ¢)ae dude

e—0

I

: I}
(3.22) !%ps(x, D.,z', Dy )u(x).

For € > 0 define

(323)  pr.e(z,6) = / /]R e @M x(en, ey))p(z, € + 1, +y, E)dydy,
Then by definition of the oscillatory integral

(3.24) lim pr < (,€) = pr(z, )

and moreover by partial integration for [;,l] € Np such that 2l; > |m| +n, 2l; > n

[ [ e,

X {(y)'z"‘ (Do) x(en, ey)p(a, € + 0,z +y, E)} dydn'

lpLe(z,€)| =

IN

e [ [ e+ mam ©)dyan

P OL

=A™ (g)

IA

uniformly in 0 < € < 1. Therefore by (3.24)
(325) lim py(z, D)u(z) = pu(z, D)u(z), u € S(R").
On the other hand substituting ' =z +y and & = ¢’ + 7 shows

pe(e, Doy, Doula) = [ [ [ e, o 6,00 ) o'
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- / / / . @) =Wy (en, ey)p(x, £ + 0,z + y, £)a(€')dE dydn

= [ e (o)
(3.26) = pr.c(z, D)u(a).

Thus combining (3.22), (3.25) and (3.26) gives
p(z, Dy, x', Dy )u(z) = pr(z, D)u(z). O
Theorem 3.3 has a series of useful corollaries. First we consider the composition

of two operators.

Corollary 3.5. Let p; € S7“*, m; € R, i = 1,2. Then py(z,D) o pa(z, D) €
\IJ(’)"l+m2x>\'

Proof. Put p(z,¢,2',€") = pi(x,£) - pa(z',€). Then p € ST*™>*. Therefore
pr(z,D) € ™2} and for u € S(R™)

pl(.’L‘,D) Opz(.’l,',D)u(:L‘)
_ / ei(w,ﬁ)pl(x’é‘) e—i(w’,ﬁ)/ ei(z"fl)p2(z',5’)&(&')d§’dz'd§
n R" R™
= p(z, Dy, z', Dy )u(z) = pr(z, D)u(z). O

Let (-,-)o be the inner product in LZ(R™). Then we have for the formally adjoint
operator
Corollary 3.6. Let p € S5, Then there is a p* € S such that
(p(z, D)u,v)o = (u,p*(z, D)v)o
for all u,v € S(R™).

Proof. Define p(z,&,2',¢') = p(«',€). Then p € S(')"‘O)‘ and as in the proof of
Corollary 2.2.5 in [20]

(e, Dyuodo = [ [ e Op(a (et - v’

= /n /n e @8y (z) {/R" e“‘”"“p(z',{)@dx'} dzd€
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= —i(z—z',f) / N '
/Rn u(z) /" /,. e p(z', &)v(z")dz'dedx

= [ [ [ [ e enGr e g asas
R™ n n n
= (u’ﬁ(z,Dwvwl,Dz')D)m

which proves the corollary with p*(x, D) = p1(z, D). Here we applied Fubini’s theo-
rem several times. This is possible in particular since

= (@7 | [ S ODL (e, o)
< c€)7*A™(O)

[ O, ot

is integrable w.r.t. £ for ng € N sufficiently large. OJ

Summarizing we find that |J, \Il{,"”\ is an algebra of pseudo differential opera-
tors with multiplication o and involution * that respects the graded structure given by

(ST mers i€

v e e
0740 W el 74
o uyt CogptA
Next we extend the domain of the operators. Corollary 3.6 immediately implies by

duality that p(z, D) € \I'(’)"”\ has a continuous extension p(z, D) : S'(R™) —» S'(R")
defined by

(p(z, D)u,v) = (u,p*(z,D)v), u€S'(R"),veSR").

The order m of an operator p(z,D) € \IIZ,""\ has a natural interpretation in terms of
mapping properties between Sobolev spaces.
For that purpose we introduce a scale of anisotropic Sobolev spaces which are de-

fined in terms of the function \:
H**R"™) = {u € S'(R") : llull, , < oo}, se€R,

where

e = (/R () la()f* d£> N

Note that H**(R") coincides with the space H*/2:*(R") defined in [11], in particu-
lar H%*(R") = L?(R™) and S(R") is dense in H**(R™) for all s € R.
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Theorem 3.7. A pseudo differential operator with symbol p € Sg"’\ is a continu-
ous operator

p(:l,‘,D) . Hs+m,A(Rn) N Hs,)\(Rn)
for all s € R and we have

(3.27) lp(z, D)ull, y < cllullyyp for all w € HF™(R™).

Proof. It is sufficient to prove (3.27) for u € S(R™). First suppose s = m = 0.
Then p € Sg”\ has bounded derivatives and by the well-known L2-continuity result of
Calder6n and Vaillancourt [3] we find

llp(z, D)ully < cllully

with a constant ¢ depending only on the constants c,g in (3.6) for |al, |3] < 3. Next
suppose s = 0 and m arbitrary. Then

pa.D)ua) = [ e Op(@ A OI©a(e)dg

and p(z,{)A"™(€) is a symbol in Sg”\. Therefore
llp(z, D)ully < c|IA™(D)ully = cllullp,» -

Finally for the general case observe that \*(D) o p(z, D) € w3+"‘»* by Corollary 3.5
and thus

lle(z, D)ull, 5 = lIA*(D)p(z, D)ully < c|lull,ym,x - U

ReMARk 3.8. Observe that from the above proof, Corollary 3.5 and Remark 3.4
it is clear that the same constant ¢ in (3.27) may be chosen for a family of pseudo
differential operators which satisfy (3.6) uniformly.

The symbol classes Sg* * lead to a reasonable algebra of pseudo differential opera-
tors, but are bad symbol classes in the sense that all derivatives of the symbols are
estimated by the same power m of A(¢) as in the case of Hormander class Sg, and
not by a smaller power. Therefore we cannot expect asymptotic expansion formulas
for this type of symbols. On the other hand the symbols of class S:,"”\ have a some-
what better behaviour of their derivatives with respect to £. This will yield expansion
formulas including terms up to order 2. We consider the expansion of the simplified
symbol.
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Theorem 3.9. Given a double symbol p € ST*™** such that

(3.28) a?p(m’ 5’ w/’gl) € San'fe(lal)vm(7>‘

holds for all « € Ny. Then for all N € N the simplified symbol p; satisfies

1 m+m'—o(N),
3.29) pr(z,€) — Z apo((z.,g) €sr +m'—o( ))\,
la|<N
where
(3.30) P (T, &) = gagp(x’fvxlafl)lm’:w c S6n+m’_g(la|),)\.
&'=¢

Proof. 'We modify the argument given in [22]. By Taylor formula we have

P(%f*"?az"‘%f) = Z %Tag p(.’L’,g,.’II-FZ,{I)IE,:&
laj<N

n
+N Z ?p’)‘(z‘v Z, €7 ”’)
lv|I=N

with
1
p’)’(x$z’€! 77) = /0 (1 - t)N—lag p($7£ + tn»iﬂ + Z7EI)‘E’:{ dt
and therefore by (3.16)

1 —i(z aga
pr(z,§) = E JOS_/ / e~ =y Of p(z, &2 + 2,8)| o dzdn

|a|<N
N —i(zm) :
+ Y —=0s- e "2 MnYp, (x, 2,€,m)dzdn
I'ylzN 7. n n
1 N
= > @O+ ) 592(@.0).
lal<N & =N T
We have to show that
(3.31) I, =po € SPHm—elelA 4 <« N

and

(3.32) J, € SptmimeN)A
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Let || < N and choose x1,x2 € C§°(R™) such that x; and x» equal 1 in a neigh-
bourhood of the origin. Then by definition of I, and (3.13)

I, = Og —/ / e"i(z’")n"c’i? p(z, &z + 2,8 )| dzdn

= 0 - / / e=i=M DGR p(z,€,3 + 2, €)1 dad

tig [ e emxa(e2) D3 0 plas €, € rm s dad

e—0 €' =¢

511_13'(1) o X2(€Z)E ( )D a& p(.’l? E’ ’g)lze—wz—z dz

Dg’a? p((l),f,.’l}l,f )lz':z = pa(z’é)a
§'=¢

because x2(€2)e™™x1(2/€) converges to the unit mass at 0 as ¢ — 0, and p, €
sgtm meleDA by (3.28),
Moreover for |y| = N we have by (3.28), (2.3) and (2.1)

0207 000} py (2, 2,€,1)|

1
[ a-oriozaratey (o pio+ s+ 5 €le)
0

IN

1
ot 5 / Am=e(N) (€ 4 i) - X" (€)d

1
Carat 5.3 AT EN (A (€) / Alm=e)l (1) dt

IN

< Corar B A AT W) (£) L (pyIm—e(N)],

Hence again by (3.12) for I,ng € N, 2l > N + |m — o(N)| + n, 2n9 > n,
|0802 7, (z, ©)|
[ [ eema @y { @) (ool .z, 6] Yz

cl,a,,@/ / <,’7>—2l+N+|m~g(N)| . (Z>—2no)\(€)m+m'—g(N)dzdn
RVI n

< oA (E)mm me),

IA

which gives (3.32). O

ReMARK 3.10. The proof also shows that p, and the remainder term p; —

2 jaj<n (1/@!)pq are in the class Sm+m —ellahA 4nd Sm+m ~eMA " respectively, and
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satisfy estimates (3.6) with constants ¢, that depend only on the constants co g,or g
in (3.14) of the double symbol p(z, &, z’,&') itself.

We apply Theorem 3.9 to the double symbols of the composition of two pseudo
differential operators and of the formally adjoint operator, see Corollaries 3.5, 3.6 and
their proofs, and obtain

Corollary 3.11. Let p; € SZ,""’\, p2 € S:,”W\ and p € S;"”\. Then the symbols

pe and p* of the composition p.(z, D) = pi(x, D) o pa(x, D) and the formally adjoint
p*(z,D) = p(z, D)* satisfy

pc(z,E) = pl(‘T,{) 'p2($a£) + Zaijpl(xa f) : Dsz2(z7£) +p1'1 (.’Ii,é)

j=1
and
P(2,6) = p(z,8) + Y 0, Dz;p(x,€) + pry (2, 6),
Jj=1
where p,, € Sg*™ 7> and p,, € S;N

In particular the highest order terms are given by the product and the conjugate
of the symbols.

Remark 3.12. Since p(k) < 2, (3.29) gives no better results for N > 2. In this
sense we obtain expansion formulas with terms up to order two. Obviously this result
is due to the choice of the function g(k) = kA2, which is determined by the behaviour
of negative definite symbols. Of course the statement itself does not depend on the
specific choice of ¢ and choosing another increasing subadditive function g : Ng — R,
will not affect the proof.

4. Friedrichs symmetrization

It is well-known that a pseudo differential operator with real symbol is in general no
symmetric operator if the symbol depends on z, but there is a modification that is
symmetric and differs from the original operator only by a lower order perturbation.
This modification can be constructed explictly by the so-called Friedrichs symmetriza-
tion. The purpose of this section is to show by the results obtained in the previous
section that also for symbols in S:,”’)‘ a Friedrichs symmetrization is available. For that
end fix a function ¢ € C§°(R™) such that ¢ is even, non-negative, supported in the
unit ball By(0) and [p. ¢°(0)do =1 and define

@.1) F(£,¢) = A€)™™* - q((¢ - &) - X72(¢)).
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For a symbol p € S{,"’* let us define its Friedrichs symmetrization to be the double
symbol pr not depending on z given by

pr(&,a,€) = / F(&,Qp(a!, O F (€, ¢)dc.
Rﬂ
Then we have ’

Theorem 4.1. Let p € S7*. Then
42) |02 0f6L pr(€,a',€)| < car g, A 1/DeD (g) . A= (/DD (g1).

In particular pp € Sg' X and the simplified symbol pp | € Sg' . Moreover, ifp €
S:,"”‘ we have
4.3) p—prL €55

First we prove
Lemma 4.2. For all 3 € N} we have

@4 HFEQ) =XO™ D wpaml(€

[vI<18]
<y

(-0 rl/?(o)” (o) - 037090,

where pg.~ ~, € SJ(I/Z)Q(WD"\.

Proof.  Obviously (4.4) holds true for 8 = 0 with ¢g 0,0 = 1. Note that

B A™(€) = mA™(AT(E) - O, A(€)-

Proceeding by induction we differentiate (4.4)

8,0/ F(£,¢)

a9 3 { [+ 9, 0] (€ - 0 A 720

|7|<lﬂ|
<y

x (07)((€ = ¢) - A72(€))
+ P L O(E= Q) - ATVHE)™MTH - (87g)((€ - ¢) - ATH2(9))
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+ 45 L (OE=Q) - AT2O) - (0 g)((6 - ¢) - ATH2(9))
F U (€ Z( (€= 0 A @) (€ - O A 2(E)
with
WO = =020 © - (1 + 21) 2005 M6,
Y5 11 (6) = B¢, 08,3, (),
Y (6 = 1AV gy (6),
Yo (€) = A~ 1”(5)% 1 (€),
Y5 (€)= —-A 1(6)0e, A(€)p,v.m (6),

O]

which is of the form claimed in (4.4) and we have to check that 1/1'3’%71

86(1/2)(2(lﬁl+1))v\’ =1

see Lemma 3.1. Since g9, =1 we see for

py) € lin{A"H2 A"

B =0 that

166;"\} c S(;l/?)‘»

€

.,5. Note that A~1/2 € S5/ and A~19g, 1 € S5,

which also implies <pg’.,m € Sgl/z"\ for |3| = 1. Next note that 9, \~1/2 € 853/2"\

and 8, (\18\) € S5

the algebra property (3.9) of the symbols we find for [3| =1 that wﬁ v € Syt A

But S, LA s stable under taking derivatives and therefore again (3.9) yields 1

Sy for all |8] > 2 by induction.
Proof of Theorem 4.1.

2 080F pr(€, o', )|

- | | otFe.00zpe 00 Fie

SAOTNE) TSN D

|'r|<|ﬂ| 5% |<|ﬂ |
71 <Y

(l)
Byvm

,C)dé)

l‘pﬁ,%‘n (E) : ‘pﬂ’,w','y.; (§I)| :

{/ e (€= 0 XM (€ ) - A7)

€' —¢[<AM2(€)

(89)((€ = ¢) - A 2(£)(8" ) (¢

~ ) - ATY2(¢") - 82 p(a’, C)dC

, which yields 0, pg,4,y, € S—g’/2 * for |,3| = 1. Thus by

€
O

By Lemma 4.2 and the support properties of ¢ we have
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@.5) < carppAE)TANE) T AN(E)TW/DUBN N (g~ W/De(F D) g

where

I= /l&—qs,\‘/?(g) (ﬁp(z',()’dg,

&' =¢|<at/2(€)
Observe that by (2.2) and (2.1) for |o] < 1

AE+ A2 (€o) < AE) + AAY2(€)o)
< A(E) +c(1+ X2 o))
(4.6) < cA(§).

Hence using the substitution ¢ =&+ A/2(€) -0 we find by Cauchy-Schwarz inequality

, \2 1/2
( / 02/ pta',0) d<> ( / 1d<>
[€=CI<AY/2(¢) €' =ClI<A/2(¢)

1/2 1/2
_ A/ (g) (/ 8% p(a', € + A2 (¢) ,U)r’ da’) A€ (/ da)
ol<t lo|<1

AP (€A (ENA™(8),

which together with (4.5) gives (4.2). O

||

IN

IN

In order to prove (4.3) we need the following
Lemma 4.3. Let p e S, t € R and o € R™. Then

@7 0202 (p(x, € + tAV2(€) - 0))

= S Vs (O)O28]D)(z, € + AV2(E) - 0) - (to)™,

lvI<18]
1<y

where ., 5, € S5

Proof.  Since also 8%p(z,&) € S{,"”\ for all @ € N as well, we may replace p
by 0%p and assume o = 0. With 1990 = 1 there is nothing to prove for 8 = 0. Let
£ =€ +tAY2(€) - 0. Then by induction

8.00p(,6) = 3 {ae,wﬁ,m @)@, 8) - (t0)"

[vI<18]
71 <y
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+Y8,v.m ({)(aéH-E.-p) (.’b,g) - (to)m
+ Z YBvm (6)(ag+5kp)(l‘, E) . 351,)\1/2(6) . (ta-)71+6k },

k=1

which proves the lemma, since ¢, \1/2 € Sg*. |

Proof of (4.3). By the expansion formula (3.29) (replace o(-) by (1/2)o(-),
which does not affect the proof) and (4.2) we know that

-1\
PF,L — PF0 — Z PFa €Sy .

le]=1
Thus it is enough to prove
(4.8) pra €SI for Jo| =1
and
4.9) pro—p €SP,

Let |a| = 1. Then
OgF(€,m) =g (N /4(O)al(n - OA"V2(©)))
= A4 [—%q((n = OXT2(©) - AT EFEAE)

+D (Bea) (1= OATV2E)) - (me — &) - AT 2O (€)og A (8)

k=1

~(0° (- A7) A7)
and consequently with o = (5 — )A"1/2(¢)
= D3¢ pr(é,x ,5)],_3 / O F(&n) - DIp(z,m)F (&, n)dn
= —TATOENE) - / (o) D2p(z, € + NV2(E)o)do
+ Z MR- [ 010kalo) - ale)DEpla, €+ A(E)o)do

—ATV2(g) - / (0°9)(9)a(0) D3p(z, & + N/*(§)0)do
= Il + I2 + I3
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We consider each term separately. Observe that [, ¢*(0)D2p(z, &+ A1/2(€)o)do is a
symbol in S0 , since using Lemma 4.3 and (4.6)

208 [ (o)Dipla e+ N (o)
R'l

< ’ / ¢*(0)20f Dep(z, € + N/*(€)0)do
]Rn
< S sl / ¢*(o) |(628§’D::p) (z,& + \/2(6)0)| |07 | do
<ol R”
1<y
: c/ @M+ N (©o)mdo < ¢ / ¢ (0)do - A™(€) = A™(£)
n ]Rﬂ-

and A719gA € Sy gives I € S§1
Analogously

/ ok0kq(0) - (o) DEp(z, € + NV/2(€)0)do € ST

and thus by )\1/23?/\'1/2 € Sy we have I, € S
Moreover concerning I3 we have by Taylor formula

[ 0*4(0)a(0)D20(e. &+ NV (E)o)do
= / 8°¢(0)q(0)do - DEp(z, €)

+A12(g) / 0°¢(0)q(o Zak / (86, D2p) (. € + AV/2(¢)ta)dtdo.

By the symmetry of ¢ the first term vanishes and we find for the derivatives of the
second integral using again Lemma 4.3

1
0%0f / 8%q(0)q(o)oy - /0 (8, DEp) (x, € + AV/2(¢)to)dtdo

| 1ol

1
’ / 10°q(0)a(0)o] - / APL(E + N2(€)to)dtdo < ¢~ AL (€).
R™ 0

IN

26¢ (D30g,p) (2,€ + N/2(€)to) | dtdo

IA

Hence [g. 8%q(0)q(0)D2p(z, €& + A/?(€)o)do is in S~ /22 " which means I; €
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So' ~12 and we have (4.8). Let us turn to (4.9). By Taylor formula we find
pro(@ &) = [ P(@)pla,6+XQ0)do
Rﬂ-
= [ ¢@fpeo+ X0 o 000,
k=1

! 2
+ / -ty W\(§)<ﬂ(agp)(sa,§+t,\1/2(5)a)dt}da.

0 vl=2

By the symmetry of ¢ the integral over the first order term again vanishes and there-
fore

pro(z,§) — p(w,§)
= Z —A / / 1-1t)q o"(agp)(x £+t/\1/2(§)a)dtda

|v|= 27

Using again Lemma 4.3 and (4.6) we see as above that the integral defines a symbol
in Sg*~ ~22 which gives (4.9) O

The next theorem summarizes the important properties of the Friedrichs sym-
metrization.

Theorem 4.4. Assume p € S(']"’A is real-valued. Then pp(D,,x', D) is a sym-
metric operator on S(R™). If moreover p(z,€) is non-negative, then pr(D,,x',D,)
is non-negative.

Proof. This is clear, because for u, v € S(R")
(pF(Dgz,z', Dy

/n e (/n /n =i )+ p (€ o € a(e )df’dz') (2)o(@)dz

= [ [ [ eener [ pempte mEE man (e ds 5@

= /n /" p(z/,n) /n;n ei(t'yfl)F(gl,n)ﬁ(gl)d{' . /]Rn ei(z’,f)F(E’n)ﬁ({)d{dndx,. 0

5. Generators of Feller semigroups

In this section we want to apply the results of the previous sections to pseudo diffe-
rential operators with negative definite symbols. In particular we assume the symbols
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to be real-valued. As we have seen it is a natural condition to assume that the symbols
are of class SZ’A for some convenient A\(£). To prove that a pseudo differential opera-
tor fulfills the assumptions of the Hille-Yosida theorem and therefore is the generator
of an operator semigroup to most extent amounts to solve the equation

(GN))] plz,D)u+T1u = f.

We will solve this problem for elliptic elements in S'Q"”\. In order to apply modified
Hilbert space methods we need some estimates for the operator and the corresponding
bilinear form. As an application of the Friedrichs symmetrization we first prove the
sharp Garding inequality which gives a first non-trivial lower bound for the bilinear
form.

Theorem 5.1. Let p € S;”)‘ be nonnegative. There is a K > 0 such that
Re(p(z, D)u,u)o > —K [[ullf\_y 2.0
Proof. By Theorem 4.1 we know that p(z, D) —pp(D,,z', D) is of order m —
1. Since p(z,&) > 0 we have by Theorem 4.4

Re(p(z, D)u,u)o=Re(pr (D, ', Dy )u,u)o + Re((p(z, D) — pr(Dz, ', Dyr))u, u)o
>Re(A"""V/2(D)(p(z, D) - pr(Ds, ', Dar))u, A"~ D/2(D)u)

Z_K”u“?m~1)/2,)\‘ =
We are interested in further bounds for the bilinear form, in partcular in the ellip-
tic case.
Theorem 5.2, Let p € S:,"”\ be real-valued. Then
(5.2) |(p(z, D)u,v)o| < cllullpyan - [[0llmj2ns  w v € S(RT)
and the bilinear form extends continuously to H™/2*(R™). If moreover
(5.3) p(z,€) 2 6A™(6), ¢l > R,
for some § > 0 and some R > 0, then for m > 1 the Gdrding inequality
(54) Re(p(z, D)u,u)o > dlull?, oy — cllulll 1), u€H™> R"),

holds.
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Proof. We know that
|(p(z, D)u, u)o| = [(A"™/*(D)p(x, D)u, \™*(D)u)o| < cllttllm/pp - 10llmjar >

since A\=™/2(D) o p(z, D) is of order m/2.
Now assume (5.3). Let p,(z,€) = p(z, &) + 7. Then for 7 sufficiently large

pr(z,8) > 6A™ ()
holds for all £ € R™. We put ¢(z, &) = p,(z,£) — 6A™(€) > 0. Theorem 5.1 implies

Re(p(z, D)u,u)o — 8 [ull®, o0 + 7 llull? = Re(q(z, Dy, wo > ~K [fullZ,,_y 5 - O

Let us turn next to estimates for the operator itself. The operator p(z, D) € ¥ A
is a continuous operator between the Sobolev spaces H**(R"), see Theorem 3.7, i.e.
llp(z, D)ull, x < cllull,ym - If moreover (5.3) holds, we even have a converse in-
equality.

Theorem 5.3. Let p € Sg‘”\ be real-valued and assume the ellipticity condition
(5.3). Then for s € R such that m+s > 1/2

2 2
(5.5) & llulls+m,,\ < |lp(z, D)U”s,A +c ”u”§+m—(1/2),/\ :

Proof. Let g,(z,€) = p(z,£)2A%5(€) > 62X2(m+3)(¢) for |¢| large. By Corollary
3.11 we know that the highest order term in the expansion of the symbol of p*(z,¢)

is given by p(z, ) = p(z, €). Thus
lIp(z, D)ull} , = (X*(D)p(=, D)u, \* (D)p(z, D)u)o
= (p* ($7 D))‘zs (D)p(:c, D)ua u)O = Re(qs (:l‘, D)ua u)O + Re(q(:t:, D)u, U)o,

where g(z, D) € sg""“)"’*. Hence Theorem 5.2 implies

2 2 2 2
”p(.’l}, D)u”s,)\ 2 62 “u”m-}-s,/\ —C ||u”m+s—(l/2),)\ - cl ||u“m+s—(1/2),)\ * 0

To prove regularity results for solutions of (5.1) we will have to use certain com-
mutators involving Friedrichs mollifiers. We introduce the Friedrichs mollifier J. :
L?(R™) — L*(R™), € > 0, defined by J.u = j. * u, where

co-e/=e*=1)  for lz] < 1

. . (T n .
je@)=¢7 (3), s €R", and J(z):={ . for o] > 1
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and co is chosen such that [;. j(z)dz = 1. Because of (Jou)(¢) = j(e€) - 4(€) and
j € S(R™), we have J.u € H¥*(R™) for all s > 0 and, if moreover u € H:*(R™),
Jeu = u in HH2(R™) as € — 0, since j(0) = 1.

Obviously J. is a pseudo differential operator with symbol j(€£) in Sg’)‘ and the con-
stants co g in the corresponding estimate (3.5) are uniformly bounded for 0 < ¢ < 1,
cf. [20], Lemma 1.6.3. Let p € S:,"”\. We consider the commutator

[p(a:,D),JE] :p(a:,D)JE - Jep(z',D).

Recall that the commutator is described by the difference of the double symbols
p(z,&) - j(e€') and j(€) - p(z',&'). Since the highest order terms in the expansion se-
ries (3.29) cancel, [p(z, D), J;] is an operator of order m — 1. Moreover the remaining
terms of the expansion are controlled uniformly with repect to ¢, see Remark 3.8 and
Remark 3.10. Therefore we get

Proposition 54. Let p € S:,"”‘ and s € R. There is a constant ¢ > 0 not depend-
ing on 0 < € <1 such that

Ilp(z, D), Jeull, 5 < ellll e -

We summarize the results obtained so far and solve equation (5.1).

Theorem 5.5. Let p € S:,""\, m > 2 be a real-valued symbol, s > 0 and assume
that (5.3) holds. If T > 0 is sufficiently large, then for f € H**(R™) there is a unique
solution u € H*+*™*(R™) of the equation

p(z,D)u+ Tu = f.

Proof. By Theorem 5.2 we know that
(u,v) = ((p(va) + T)ua U)O

is a continuous coercive bilinear form on H™/2*(R"™) for 7 large enough. Thus there
is a unique weak solution u € H™/2*(R") of

((p(z, D) + T)u,v)o = (f,v)o for all v € H™/22(R™)

and the proof is complete, if we show that u € H**™*(R"™). Let u. = J.u. Then
ue € Ht™X(R™) for all t <5, 0 < ¢ < 1 and by Therorem 5.3 and Proposition 5.4
we have

”Ue”t+m,,\ < cllp(z, D)Jeullt,A + CI|JE"||t+m—(1/2),A‘
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< c||Je(p(=z, D) + T)u”t,)\ + c“JEu”t,,\ +c|l[p(z, D), Js]u”t,)\ + C”Jeu”t+m_(1/2),)‘
< C”Jsf“t,A + C”“”m + c”“”t+m—1,,\ + c””|lt+m—(1/2),A
< ellifllgn +ellllypm—q2n -

So u € Ht+m=(1/2:A(R™) implies that (uc)o<e<1 is bounded in H*+™*(R™). Since
ue — u in HH™~(/2MR™) as ¢ — 0, this implies u € H**™*(R™). A recursive
application of this conclusion starting with ¢ = (1 — m)/2 proves the theorem. O

Recall the theorem of Hille-Yosida—Ray [5] for generators of Feller semigroup-
s, i.e. strongly continuous, positivity preserving contraction semigroups on the space
Co(R™) of continuous functions vanishing at infinity:

Theorem 5.6. Let A: D(A) = Cx(R"™) be a linear operator in Coo(R™). Then
A is closable and the closure generates a Feller semigroup if and only if
(i) D(A) is dense,
(ii)) A satisfies the positive maximum principle on D(A) and
(iii) for some T > 0 the range of T — A is dense.

We finally state our result about generators of Feller semigroups. For that purpose
we have to assume that there is a constant r > 0, arbitrarily small, but strictly positive
such that

(5.6) A(E) > clel”

for some ¢ > 0 and |£| large. This is a non-degeneracy condition for operators in
A, Under this condition for s > n/2r the dense and continuous embedding (see

[12h
H*(R") < Coo (R™)
holds. Now we have

Theorem 5.7. Assume that (5.6) holds. If p(z,&) is a negative definite symbol of
class Sg”\ and moreover

p(z,€) > X% (€)

for some § > 0 and || large, then —p(z, D) has an extension that generates a Feller
semigroup.

Proof. Choose s > n/2r. Then the operator A = —p(z, D) : H**2*(R") —
H*)(R") C Cs(R™) is a densely defined operator in Co,(R™) with domain
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H*+2X(R™) und thus A fulfills condition (i) of Theorem 5.6. Moreover by the result
of Courrége A satisfies the positive maximum principle on C§°(R™) and therefore al-
so on H*t2X(R™), see [12], Theorem 9.3. This is (ii) of Theorem 5.6 and finally (iii)
is the claim of Theorem 5.5. O

REMARK 5.8. Note that the estimates for p(z, D) proven in Section 5 imply that

the probabilistic consequences for the associated process as they are stated for instance
in [12], Section 11, do also hold in this case.
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