

Title	On the number of lattice points in the square $ x + y \le u$ with a certain congruence condition
Author(s)	Yamamoto, Yoshihiko
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 9- 21
Version Type	VoR
URL	https://doi.org/10.18910/8615
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON THE NUMBER OF LATTICE POINTS IN THE SQUARE $|x|+|y| \le u$ WITH A CERTAIN CONGRUENCE CONDITION

Yoshihiko YAMAMOTO*)

(Received December 11, 1978)

0. Introduction. Let a(u; p, q) denote the number of lattice points $(x, y) \in \mathbb{Z}^2$ such that (i) $|x|+|y| \leq u$ (ii) $x+py \equiv 0 \pmod{q}$, where u, p, and q are given positive integers. It is easy to see that a(u; p, q) is determined only by p modulo q, if q is fixed. Let p' be another positive integer. We always assume (p, q) = (p', q) = 1 in the following, where (,) means the greatest common divisor. It is easy to see that we have a(u; p, q) = a(u; p', q) for every positive integer u if $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$. We will prove, in the present paper, that the converse is valid:

Theorem 1. Suppose a(u; p, q) = a(u; p', q) for every positive integer u. Then $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.

Our problem is related with a problem in differential geometry, and gives an answer to it. Consider a 3-dimensional lens space with fundamental group of order q. We ask whether the spectrum of the Laplacian characterizes the space as a riemannian manifold. This geometric problem can be reduced to a problem in number theory. A special case of our theorem, where q is of the form l^n or $2 \cdot l^n$ (l a prime number), has been shown (cf. Ikeda-Yamamoto [3]). Now our Theorem 1 gives a complete affirmative answer to the above geometric problem (see Section 7 below).

If a lattice point (x, y) satisfies the conditions (i) and (ii), so does the point (-x, -y). Denote by b(u; p, q) the number of lattice points (x, y) such that (i') $x \ge 0$ and x+|y|=u (ii) $x+py\equiv 0 \pmod{q}$. Then we see easily that Theorem 1 is equivalent to

Theorem 2. Suppose b(u; p, q)=b(u; p', q) for every positive integer u. Then $p\equiv \pm p'$ or $pp'\equiv \pm 1 \pmod{q}$.

We introduce rational functions $F_j(X)$ $(0 \le j \le q-1)$;

$$F_{j}(X) = \frac{1}{(1-\zeta^{j}X)(1-\zeta^{pj}X)} + \frac{1}{(1-\zeta^{j}X)(1-\zeta^{-pj}X)},$$

^{*)} Supported by Grant-in-Aid for Scientific Research

where $\zeta = e^{2\pi i/q}$, a primitive *q*-th root of unity. The function $F_j(X)$ has the following expansion in X;

$$F_{j}(X) = \left(\sum_{x=0}^{\infty} \zeta^{jx} X^{x}\right) \left(\sum_{y=0}^{\infty} \zeta^{pjy} X^{y}\right) + \left(\sum_{x=0}^{\infty} \zeta^{jx} X^{x}\right) \left(\sum_{y=0}^{\infty} \zeta^{-pjy} X^{y}\right)$$
$$= \sum_{x,y=0}^{\infty} \zeta^{j(x+py)} X^{x+y} + \sum_{x,y=0}^{\infty} \zeta^{j(x-py)} X^{x+y}.$$

Put $G(X) = \sum_{j=0}^{q-1} F_j(X)$. Since $\sum_{j=0}^{q-1} \zeta^{jx} = q$ if $x \equiv 0 \pmod{q}$, = 0 otherwise; we see easily that the power series expansion of G(X) is given by

$$G(X) = 2q + q \sum_{u=1}^{\infty} X^{qu} + q \sum_{u=1}^{\infty} b(u; p, q) X^{u}.$$

Define $F'_{i}(X)$ and G'(X) in the same way, replacing p by p'. Then, theorem 2 is equivalent to

Theorem 3. If G(X) = G'(X), then we have $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.

We shall prove theorem 3 in the rest of the paper.

1. Residues of G(X). By the definition, we see G(X) has a pole of order at most two at $X=1, \zeta, \dots, \zeta^{q-1}$. The point $X=\zeta^k$ is the pole of order two if and only if $k\equiv \pm kp \pmod{q}$ i.e. $k\equiv 0 \pmod{r_1}$ or $k\equiv 0 \pmod{r_2}$, where we put $r_1=\frac{q}{(p-1,q)}$ and $r_2=\frac{q}{(p+1,q)}$. Clearly (p-1, p+1, q)=1 or 2 according as q is odd or even. We put

(1-1)
$$\begin{cases} (p-1, q) = \varepsilon u_1, \\ (p+1, q) = \varepsilon u_2, \end{cases}$$

then $(u_1, u_2)=1$ and $q=\varepsilon u_1 u_2 r$, where $\varepsilon=1$ if q is odd, $\varepsilon=2$ if q is even. The singular part of Laurent expansion of G(X) at $X=\zeta^{-k}$ is as follows;

(1-2)
$$\begin{cases} \frac{2}{(1-\zeta^{k}X)^{2}} & (u_{1}r|k \text{ and } u_{2}r|k), \\ \frac{1}{(1-\zeta^{k}X)^{2}} + \left(\frac{1}{1-\zeta^{-k(p+1)}} + \frac{1}{1-\zeta^{-k(s+1)}}\right) \frac{1}{1-\zeta^{k}X} & (u_{1}r \not k \text{ and } u_{2}r|k), \\ \frac{1}{(1-\zeta^{k}X)^{2}} + \left(\frac{1}{1-\zeta^{k(p-1)}} + \frac{1}{1-\zeta^{k(s-1)}}\right) \frac{1}{1-\zeta^{k}X} & (u_{1}r|k \text{ and } u_{2}r \not k), \\ \left(\frac{1}{1-\zeta^{k(p-1)}} + \frac{1}{1-\zeta^{k(s-1)}} + \frac{1}{1-\zeta^{-k(p+1)}} + \frac{1}{1-\zeta^{-k(s+1)}}\right) \frac{1}{1-\zeta^{k}X} & (u_{1}r \not k \text{ and } u_{2}r \not k), \end{cases}$$

where s is an integer such that $ps \equiv 1 \pmod{q}$, which is fixed in the following.

Lemma 1 (Chowla [2], Baker-Birch-Wirsing [1]). Let c_1, \dots, c_{q-1} be rational numbers such that $c_j=0$ if $(j, q) \neq 1$ and $c_j=-c_{q-j}$ $(j=1, \dots, q-1)$. If

(1-3)
$$\sum_{j=1}^{q-1} \frac{c_j}{1-\zeta^j} = 0,$$

then $c_j = 0$ for all j.

Proof. Operating the automorphism $\sigma_k: \zeta \mapsto \zeta^k$ of the *q*-th cyclotomic field $Q(\zeta)$ over Q to (1-3), we get

(1-4)
$$\sum_{j=1}^{q-1} \frac{c_j}{1-\zeta^{jk}} = 0 \quad \text{for every } k, \quad (k, q) = 1.$$

We can canonically extend the sequence c_1, \dots, c_{q-1} to an infinite sequence $\{c_j\}_{j \in \mathbb{Z}}$ periodically with period q, satisfying $c_j=0$ if $(j, q) \neq 1$ and $c_{-j}=-c_j$. Then, from (1-4), we have

(1-5)
$$\sum_{j=1}^{q-1} \frac{c_{jk}}{1-\zeta^j} = 0 \quad \text{for } k \in \mathbb{Z}.$$

Let X be a Dirichlet character modulo q and put $d_j = \sum_{k=1}^{q-1} X(k) c_{jk}$. Then we get

(1-6)
$$d_j = \bar{\chi}(j)d_1$$
 and

(1-7)
$$\sum_{j=1}^{q-1} \frac{d_j}{1-\zeta^j} = \sum_{j=1}^{q-1} \frac{1}{1-\zeta^j} \sum_{k=1}^{q-1} \chi(k) c_{jk}$$
$$= \sum_{k=1}^{q-1} \chi(k) \sum_{j=1}^{q-1} \frac{c_{jk}}{1-\zeta^j}$$
$$= 0.$$

Clearly $d_1=0$ if χ is even; $\chi(-j)=\chi(j)$. In case χ is odd; $\chi(-j)=-\chi(j)$; we have, from (1-6),

(1-8)

$$\sum_{j=1}^{q-1} \frac{d_j}{1-\zeta^j} = d_1 \sum_{j=1}^{q-1} \frac{\overline{\chi}(j)}{1-\zeta^j} \\
= d_1 \sum_{j=1}^{q-1} \overline{\chi}(j) \left(\frac{1}{2} + \frac{1}{2} \cot \frac{j\pi}{q}\right) \\
= \frac{d_1}{2} \sum_{j=1}^{q-1} \overline{\chi}(j) \cot \frac{j\pi}{q} \\
= \frac{qd_1}{\pi} L(1, \overline{\chi}),$$

where $L(s, \bar{X})$ is the Dirichlet's *L*-function. Since $L(1, \bar{X}) \neq 0$, by Dirichlet's theorem, we get, from (1-7) and (1-8), that $d_1=0$ in case X is odd, too. There-

Ү. Үамамото

for
$$\sum_{j=1}^{q-1} \chi(j) c_j = 0$$
 for any character χ , hence $c_j = 0$ for every j . q.e.d.

Corollary. The $\frac{1}{2}\varphi(q)$ values of cotangent cot $\frac{k\pi}{q}$, $0 < k < \frac{q}{2}$ and (k, q) = 1, are linearly independent over Q.

In fact, since $\cot \frac{k\pi}{q} = \frac{i}{1-\zeta^k} - \frac{i}{1-\zeta^{q-k}}$, we get the linear independency of above cotangents directly from lemma 1.

2. Proof of Theorem 3. We may safely assume that q>4, since theorem 1 is trivial for q=1, 2, 3 and 4. Assume G(X)=G'(X), then G(X) and G'(X) have the same Laurent expansion at every $X=\xi^{-k}$. From (1-2), we get easily, after exchanging p' and -p' if necessary;

(2-1)
$$\begin{cases} (p-1, q) = (p'-1, q) \text{ and} \\ (p+1, q) = (p'+1, q), \end{cases}$$

and

(2-2)
$$\frac{1}{1-\zeta^{k(p-1)}} + \frac{1}{1-\zeta^{k(s-1)}} + \frac{1}{1-\zeta^{-k(p+1)}} + \frac{1}{1-\zeta^{-k(s+1)}} \\ = \frac{1}{1-\zeta^{k(p'-1)}} + \frac{1}{1-\zeta^{k(s'-1)}} + \frac{1}{1-\zeta^{-k(p'+1)}} + \frac{1}{1-\zeta^{-k(s'+1)}},$$

for every integer k satisfying $k \equiv 0 \pmod{u_1 r}$ and $k \equiv 0 \pmod{u_2 r}$, where s' is an integer such that $p's' \equiv 1 \pmod{q}$. So we put

(2-3)
$$\begin{cases} (p-1, q) = (p'-1, q) = \mathcal{E}u_1, \\ (p+1, q) = (p'+1, q) = \mathcal{E}u_2, \\ q = \mathcal{E}u_1u_2r \text{ and } (u_1, u_2) = 1, \\ \mathcal{E} = 2 \text{ if } q \text{ is even, } \mathcal{E} = 1 \text{ otherwise.} \end{cases}$$

Since (p-1, q)=(s-1, q) and (p+1, q)=(s+1, q), we put

(2-4)
$$\begin{cases} p-1 = \varepsilon u_1 a \text{ and } p'-1 = \varepsilon u_1 a', \\ s-1 = \varepsilon u_1 b & s'-1 = \varepsilon u_1 b', \\ p+1 = \varepsilon u_2 c & p'+1 = \varepsilon u_2 c', \\ s+1 = \varepsilon u_2 d & s'+1 = \varepsilon u_2 d', \end{cases}$$

where a, b, a' and b' are integers prime to u_2r and c, d, c' and d' are those prime to u_1r . Put

$$I_k = \cot \frac{(p-1)k\pi}{q} + \cot \frac{(s-1)k\pi}{q} - \cot \frac{(p+1)k\pi}{q} - \cot \frac{(s+1)k\pi}{q}$$

$$= \cot \frac{ak\pi}{u_2 r} + \cot \frac{bk\pi}{u_2 r} - \cot \frac{ck\pi}{u_1 r} - \cot \frac{dk\pi}{u_1 r}$$

and

$$I'_{k} = \cot \frac{(p'-1)k\pi}{q} + \cot \frac{(s'-1)k\pi}{q} - \cot \frac{(p'+1)k\pi}{q} - \cot \frac{(s'+1)k\pi}{q}$$
$$= \cot \frac{a'k\pi}{u_{2}r} + \cot \frac{b'k\pi}{u_{2}r} - \cot \frac{c'k\pi}{u_{1}r} - \cot \frac{d'k\pi}{u_{1}r}.$$

Then we get, from (2-2),

$$(2-5) I_k = I'_k$$

for every integer k satisfying $k \equiv 0 \pmod{u_1 r}$ and $k \equiv 0 \pmod{u_2 r}$. It is sufficient that we prove the theorem in the following cases:

- (1) q = odd or $2||q; u_1 = u_2 = 1$,
- (2) (i) q = odd or $2||q; u_1 \ge 3$,
 - (ii) $4||q; u_1 \ge 3$,
 - (iii) $8|q; u_1 = even(\geq 2)$,
- (3) $4||q; u_1=2 \text{ and } u_2=1$,

since the transposition of u_1 and u_2 is induced by replacing p and p' by -p and -p' respectively.

3. Case 1: q=odd or $2||q; u_1=u_2=1$ ($q=\varepsilon r$ and r=odd). From (2-5), we have $I_1=I'_1$ i.e.

(3-1)
$$\cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{r} - \cot \frac{d\pi}{r}$$
$$= \cot \frac{a'\pi}{r} + \cot \frac{b'\pi}{r} - \cot \frac{c'\pi}{r} - \cot \frac{d'\pi}{r}.$$

We can apply Corollary of Lemma 1 to (3-1), since a, b, c, d, a', b', c' and d' are all prime to r.

Lemma 2. $I_1 \neq 0$.

Proof. Assume $I_1=0$. We see, by the Corollary, at least one of the following congruences must hold:

$$\begin{cases} a \equiv -b \pmod{r} & (1) \\ a \equiv c \pmod{r} & (2) \\ a \equiv d \pmod{r} & (3) . \end{cases}$$

Case (1): Multiplied by ε , we have $p-1 \equiv -(s-1) \pmod{q}$. So $p(p-1) \equiv$

 $-p(s-1) \equiv p-1 \pmod{q}$. Hence $(p-1)^2 \equiv 0 \pmod{q}$, so that $\mathcal{E}r \mid (\mathcal{E}a)^2$. Hence $r|\varepsilon$, since (a, r)=1. As r is odd, r=1 i.e. $q=\varepsilon \leq 2$, a contradiction with q>4. Case (2): We have $p-1 \equiv p+1 \pmod{q}$, hence $2 \equiv 0 \pmod{q}$ i.e. q|2, a contradiction with q>4.

Case (3): We also have $b \equiv c \pmod{r}$; so $p-1 \equiv s+1$ and $s-1 \equiv p+1 \pmod{q}$; hence $p-s\equiv 2\equiv -2 \pmod{q}$ i.e. q|4; this contradicts q>4 again. q.e.d.

By Lemma 2, we see that one of a, b, -c and -d is congruent to a', b', -c' or -d' modulo r, that is, multiplied by \mathcal{E} , the sets $\{p-1, s-1, -p-1, -p-1, s-1, -p-1, s-1, -p-1, -p-1, -p-1, s-1, -p-1, -p-1,$ -s-1 and $\{p'-1, s'-1, -p'-1, -s'-1\}$ have non-empty intersection in the residue classes modulo $q (= \varepsilon r)$. This implies Theorem 3.

- 4. Case 2: (i) q = odd or $2||q; u_1 \ge 3$ ($q = \varepsilon u_1 u_2 r$ and u_1, u_2, r are all odd).
- (ii) $4||q; u_1 \ge 3 \ (q=2u_1u_2r, 2||u_1u_2 \text{ and } r=odd).$
- (iii) $8|q; u_1 = even (q = 2u_1u_2r, 4|u_1r \text{ and } u_2 = odd).$

Take an integer k such that (a) $k \equiv -1 \pmod{u_2 r}$; (b) $(k, u_1 r) = 1$ and $k \equiv -1$ (mod l^{ℓ}) for every odd prime divisior l of u_1 , $e = \operatorname{ord}_l(u_1 r)$ i.e. $l^{\ell} || u_1 r$; if in case (iii), we further add (b)' $k \equiv -1 \pmod{2^f}$, $f = \operatorname{ord}_2(u_1 r)$. The existence of such k is assured by the assumption on u_1 . It follows from (2-5) that $I_1 + I_k = I'_1 + I'_k$. Hence we have:

(4-1)
$$\cot \frac{c\pi}{u_1 r} + \cot \frac{d\pi}{u_1 r} + \cot \frac{ck\pi}{u_1 r} + \cot \frac{dk\pi}{u_1 r}$$
$$= \cot \frac{c'\pi}{u_1 r} + \cot \frac{d'\pi}{u_1 r} + \cot \frac{c'k\pi}{u_1 r} + \cot \frac{d'k\pi}{u_1 r}.$$

Now we can apply Corollary of Lemma 1 to (4-1). In the first place, we have

Lemma 3. The following (1) or (2) do not hold in (4-1): (1) $c \equiv -d \pmod{u_1 r}, c' \equiv -d', ck \equiv -dk, or c'k \equiv -d'k \pmod{u_1 r}.$ (2) $c \equiv -ck \pmod{u_1 r}, d \equiv -dk, c' \equiv -c'k, or d' \equiv -d'k \pmod{u_1 r}.$

Proof. If $c \equiv -d \pmod{u_1 r}$, we have, both hand sides multiplied by $\mathcal{E}u_2$, $p+1 \equiv -(s+1) \pmod{q}$, so that $p(p+1) \equiv -(1+p) \pmod{q}$. Since (p+1, q) $=\varepsilon u_2$, we have $p \equiv -1 \pmod{u_1 r}$. Hence $u_1 r \mid (p+1)$ i.e. $u_1 r \mid \varepsilon u_2 c$. Since $(u_1 r, c)$ $=(u_1, u_2)=1$, we have $u_1|\varepsilon$. This is possible only in case (iii) with $u_1=\varepsilon=2$, so that $r|u_2$. Hence r is odd, this contradicts $4|u_1r$. If $c \equiv -ck \pmod{u_1r}$, then $k \equiv -1 \pmod{u_i r}$, this contradicts the choice of k. In the same way, we see that the other congruences are also impossible. q.e.d.

It is easy to see $p \equiv p'$ or $p \equiv s' \pmod{q}$ if either c or d (resp. ck or dk) is congruent to c' or d' (resp. c'k or d'k) modulo u_1r . Hence we may assume that neither c nor d (resp. ck nor dk) is congruent to c' or d' (resp. c'k or d'k) modulo u_1r . Then we see, by Corollary of Lemma 1 and by Lemma 3, that only the

following cases may be possible in (4-1), after transposing p and s (resp. p' and s') if necessary:

- (A) $c \equiv -dk, d \equiv -ck, c' \equiv -d'k$ and $d' \equiv -c'k \pmod{u_1 r}$.
- (B) $c \equiv -dk$, $c' \equiv -d'k$, $d \equiv c'k$ and $d' \equiv ck \pmod{u_1 r}$.
- (C) $c \equiv c'k, d \equiv d'k, c' \equiv ck \text{ and } d' \equiv dk \pmod{u_1 r}$.
- (D) $c \equiv c'k, d \equiv d'k, c' \equiv dk \text{ and } d' \equiv ck \pmod{u_1 r}$.

Case (A):

From $c \equiv -dk$ and $d \equiv -ck \pmod{u_1 r}$ follows $p+1 \equiv -(s+1)k$ and $s+1 \equiv -(p+1)k \pmod{q}$, so that $p \equiv s \equiv -k \pmod{u_1 r}$ and $k^2 \equiv 1 \pmod{u_1 r}$. As $k \equiv -p \equiv -1 \pmod{u_1}$, we have $k \equiv -1 \pmod{l'}$ for every odd prime divisor l of u_1 , which contradicts the choice of k. Hence u_1 must be a power of 2, and this is possible only in case (iii). Then we have $k \equiv -p \equiv -1 \pmod{4}$ and $k^2 \equiv 1 \pmod{2^f}$, so that $k \equiv -1 \pmod{2^{f-1}}$. Furthermore we have $f \geq 3$ since, by the choice of k, we have $p \equiv -k \equiv 1 \pmod{2^f}$ while $p \equiv 1 \pmod{4}$. On the other hand, we have $(u_1r, u_2) = 1$, since $p \equiv -k \equiv 1 \pmod{r}$ and $p \equiv -1 \pmod{u_2}$. Therefore we get $p \equiv -k \equiv 1 \pmod{\frac{u_1r}{2}}$, $p \equiv -k \equiv 1 \pmod{u_1r}$, and $p \equiv -1 \pmod{u_2}$. In the same way, from $c' \equiv -d'k$ and $d' \equiv -c'k \pmod{u_1r}$, we have $p' \equiv 1 \binom{u_1r}{2}$, $p' \equiv 1 \pmod{u_2}$. We see each one of p and p' is congruent to $1 + \frac{u_1r}{2}$ or $1 - \frac{u_1r}{2} \pmod{2u_1r}$, hence $p \equiv p'$ or $p \equiv s' \pmod{2u_1r}$, since we have $f \geq 3$ and $(1 + \frac{u_1r}{2}) (1 - \frac{u_1r}{2}) \equiv 1 \pmod{2u_1r}$. As $p \equiv s \equiv p' \equiv s' \equiv -1 \pmod{u_2}$, $q = 2u_1u_2r$ and $(2u_1r, u_2) = 1$, we have $p \equiv p'$ or $p \equiv s' \pmod{q}$.

Case (B):

From $c \equiv -dk$ and $c' \equiv -d'k \pmod{u_1 r}$ follows $p \equiv p' \equiv -k \pmod{u_1 r}$. That $p \equiv -k \equiv 1 \pmod{r}$ and $p \equiv -1 \pmod{u_2}$ implies $(u_1 r, u_2) = 1$ or 2. From $d \equiv c'k \pmod{u_1 r}$ follows $s+1 \equiv (p'+1)k \pmod{q}$. So $p+1 \equiv p(s+1) \equiv p(p'+1)k \equiv p(p+1) (-p) \equiv -(p+1)p^2 \pmod{u_1 r}$. Hence $(p+1) (p^2+1) \equiv \varepsilon u_2 c(p^2+1) \equiv 0 \pmod{u_1 r}$ i.e. $\varepsilon(p^2+1) \equiv 0 \pmod{u_1 r}$. We have $p^2 \equiv -1 \pmod{l}$ if there is an odd prime divisor l of u_1 , while $p^2 \equiv 1 \pmod{l}$ since $p \equiv 1 \pmod{u_1}$. Therefore u_1 must be a power of 2, this is possible only in case (iii). Then $p^2 \equiv -1 \pmod{u_1 r}$, $p \equiv 1 \pmod{\varepsilon u_1}$ and $u_1r \equiv \varepsilon u_1 \equiv 0 \pmod{4}$, we have $k \equiv -1 \pmod{2^r}$, which contradicts the choice of k. Therefore case (B) is impossible.

Case (C) and (D):

We claim $pp'\equiv 1 \pmod{q}$ in these cases. From $c\equiv c'k$ and $d\equiv d'k \pmod{u_ir}$ follows $p+1\equiv (p'+1)k$ and $s+1\equiv (s'+1)k \pmod{[q]}$, so that $p'(1+p)\equiv p(1+p')k\equiv p(p+1) \pmod{q}$, hence we get $p\equiv p' \pmod{u_ir}$. Since $p\equiv p'\equiv 1 \pmod{\varepsilon u_i}$, we have $2\equiv 2k \pmod{\varepsilon u_i}$, so $k\equiv 1 \pmod{u_i}$, while $k\equiv -1 \pmod{u_2r}$. Hence we see $(u_1, u_2 r) = 1$ or 2. Let *l* be a prime divisor of *q*. It is enough to prove $pp' \equiv 1 \pmod{l^{\operatorname{ord}_l(q)}}$.

In case l=an odd prime:

Since $p \equiv p' \pmod{u_1 r}$, we get $p - p' \equiv (p+1) - (p'+1) \equiv \mathcal{E}u_2(c-c') \equiv \mathcal{E}u_2c'(k-1)$ $\equiv 0 \pmod{u_1 r}$, so that

$$(4-2) o(u_2) + o(c') + o(k-1) \ge o(u_1) + o(r), \text{ where } o() = \operatorname{ord}_{l}().$$

(a) If $l|u_1$, then $l \not\upharpoonright u_2 r$ and $o(u_1) = o(q)$. Since $p \equiv p' \equiv 1 \pmod{\varepsilon u_1}$, we have $pp' \equiv 1 \pmod{l^{o(q)}}$.

(b) If $l|(u_2, r)$, then $l \not\mid u_1$ and $k \equiv -1 \equiv 1 \pmod{l}$ therefore from (4-2) $o(q) = o(u_2) + o(r)$. Since $c \equiv c'k \equiv -c' \pmod{r}$ and $o(u_2) \ge o(r)$, we get $pp' = (\varepsilon u_2 c - 1) (\varepsilon u_2 c' - 1) = \varepsilon^2 u_2^2 c c' - \varepsilon u_2 (c + c') + 1 \equiv 1 \pmod{l^{o(q)}}$.

(c) If $l|u_2$ and $l \not\mid r$, then $l \not\mid u_1$ and $o(q) = o(u_2)$. Since $p \equiv p' \equiv -1 \pmod{\varepsilon u_2}$, we have $pp' \equiv 1 \pmod{l^{o(q)}}$.

(d) If l|r and $l \not\mid u_2$, then $l \not\mid u_1$ and $0 = o(u_2) < o(u_1) + o(r) = o(r)$, this is impossible since we have from (4-2), $o(u_2) \ge o(u_1) + o(r)$.

In case l=2:

It is enough to prove only in case (ii) and (iii).

(a) Case (ii); we see 4||q and $p \equiv p' \equiv 1$ or $-1 \pmod{4}$ according as u_1 is even or u_2 is even. Hence $pp' \equiv 1 \pmod{4}$.

(b) Case (iii); we have $o(q) = o(u_1) + o(r) + 1 \ge 3$ and $o(u_1) = 1$. We get $Min(o(u_1), o(r)) \le 1$ since $k \equiv 1 \pmod{u_1}$ and $k \equiv -1 \pmod{u_2 r}$.

(b-1) If o(r)=0, then we have $o(q)=o(u_1)+1$ and $p\equiv p'\equiv 1 \pmod{2u_1}$, so that $pp'\equiv 1 \pmod{2^{o(q)}}$.

(b-2) If o(r)=1, then $o(q)=o(u_1)+2$. Since $o(p-1)=o(p'-1)=o(u_1)+1=o(q)-1$, we have $p\equiv p'\equiv 1+2^{o(q)-1} \pmod{2^{o(q)}}$, so that $pp'\equiv 1 \pmod{2^{o(q)}}$. (b-3) If $o(u_1)=1$, then $o(q)=o(r)+2\geq 3$. Since we have $p+1\equiv (p'+1)k \pmod{2^{o(q)}}$. (mod $2^{o(q)}$) and $p\equiv p' \pmod{2^{o(u_1r)}}$, we get $p+1\equiv (p+1)k \pmod{2^{o(q)-1}}$. Hence $k\equiv 1 \pmod{2^{o(r)}}$, while $k\equiv -1 \pmod{2^{o(u_2r)}}$. So we have $1\equiv -1 \pmod{2^{o(r)}}$, so that $o(r)\leq 1$. Since $o(q)\geq 3$, we get o(r)=1 and o(q)=3. It follows from o(p-1)=o(p'-1)=2 that $p\equiv p'\equiv 5 \pmod{8}$, hence $pp'\equiv 1 \pmod{2^3}$.

This completes the proof in Case 2.

5. Case 3: $4||q; u_1=2 \text{ and } u_2=1 \text{ (}q=4r \text{ and } r=odd>1\text{)}.$ We see

$$I_{1} = \cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{2r} - \cot \frac{d\pi}{2r},$$
$$I_{r+1} = \cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{(c+r)\pi}{2r} - \cot \frac{(d+r)\pi}{2r}$$

By the duplication formula of cotangent, we get

$$I_{1}+I_{r+1} = 2\left(\cot\frac{a\pi}{r}+\cot\frac{b\pi}{r}-\cot\frac{c\pi}{r}-\cot\frac{d\pi}{r}\right).$$

From (2-5), $I_1+I_{r+1}=I'_1+I'_{r+1}$. Halving both hand sides, we have

(5-1)
$$\cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{r} - \cot \frac{d\pi}{r}$$
$$= \cot \frac{a'\pi}{r} + \cot \frac{b'\pi}{r} - \cot \frac{c'\pi}{r} - \cot \frac{d'\pi}{r}.$$

Now we can apply Corollary of Lemma 1 to (5-1). In the first place we have

Lemma 4. The following (1), (2) or (3) do not hold in (5-1):

- (1) $a \equiv -b, c \equiv -d, a' \equiv -b', or c' \equiv -d' \pmod{r}$.
- (2) $a \equiv c \text{ and } b \equiv d \pmod{r}$ or $a' \equiv c' \text{ and } b' \equiv d' \pmod{r}$.
- (3) $a \equiv d$ and $b \equiv c \pmod{r}$ or $a' \equiv d'$ and $b' \equiv c' \pmod{r}$.

Proof. (1) If $a \equiv -b \pmod{r}$, we have $4a \equiv -4b \pmod{q}$, i.e. $p-1 \equiv -(s-1) \pmod{q}$. Hence $p(p-1) \equiv -(1-p) \pmod{q}$, so that $p \equiv 1 \pmod{r}$ since (p-1, q) = 4. This implies r=1, i.e. q=4, a contradiction with q>4. (2) If $a \equiv c$ and $b \equiv d \pmod{r}$, we have $4a \equiv 4c$ and $4b \equiv 4d \pmod{4r}$, i.e. $p-1 \equiv 2(p+1)$ and $s-1 \equiv 2(s+1) \pmod{4r}$. Hence we get $p \equiv s \equiv -3 \pmod{4r}$. Then $1 \equiv ps \equiv 9 \pmod{4r}$, i.e. r=1 or r=2, a contradiction with q>4 and r=odd. (3) If $a \equiv d$ and $b \equiv c \pmod{r}$, we have $p(p-1) \equiv 2(s+1) \pmod{4r}$. Multiplied by p, we have $p(p-1) \equiv 2(1+p)$ and $1-p \equiv 2p(p+1) \pmod{4r}$, i.e. $p^2-3p-2\equiv 0$ and $2p^2+3p-1\equiv 0 \pmod{4r}$. Hence $3p^2-3\equiv 3(p-1)(p+1)\equiv 0 \pmod{4r}$. We have $3(p+1)\equiv 0 \pmod{4r}$, so that $3\equiv 0 \pmod{r}$, since (p-1, 4r) = 4 and (p+1, 4r) = 2. As $r \geq 3$, we have r=3 and q=4r=12. Since $p^2 \equiv 1 \pmod{12}$, $p^2-3p-2\equiv 0 \pmod{12}$ implies $3p \equiv -1 \pmod{12}$, a contradiction.

The other cases can be checked in the same way.

q.e.d.

It is easy to see $p \equiv p'$ or $p \equiv s' \pmod{q}$ if either *a* or *b* (resp. *c* or *d*) is congruent to *a'* or *b'* (resp. *c'* or *d'*) modulo *r*. Hence we may assume that neither *a* nor *b* (resp. *c* nor *d*) is congruent to *a'* or *b'* (resp. *c'* or *d'*) modulo *r*. Then, we see, by Corollary of Lemma 1 and by Lemma 4, that only the following cases may be possible in (5-1), after trasnposing *p* and *s* (resp. *p'* and *s'*) if necessary:

- (A) $a \equiv c, a' \equiv c', b \equiv -d' \text{ and } b' \equiv -d \pmod{r}$.
- (B) $a \equiv d, a' \equiv d', b \equiv -c' \text{ and } b' \equiv -c \pmod{r}$.
- (C) $a \equiv c, a' \equiv d', b \equiv -c' \text{ and } b' \equiv -d \pmod{r}$.

Ү. Үамамото

(D)
$$a \equiv -c', b \equiv -d', a' \equiv -c \text{ and } b' \equiv -d \pmod{r}$$
.
(E) $a \equiv -c', b \equiv -d', a' \equiv -d \text{ and } b' \equiv -c \pmod{r}$.

Case (A):

From $a \equiv c$ and $a' \equiv c' \pmod{r}$ follows $p \equiv p' \equiv -3 \pmod{q}$ (c.f. the proof of Lemma 4. (2)).

Case (B):

From $b \equiv -c'$ and $b' \equiv -c \pmod{p}$ follows $s-1 \equiv -2(p'+1)$ and $s'-1 \equiv -2(p+1) \pmod{q}$, so that $2p'+s \equiv -1$ and $2p+s' \equiv -1 \pmod{q}$. Hence we have $2pp'+1 \equiv -p$ and $2pp'+1 \equiv -p' \pmod{q}$, so that $p \equiv p'$ and

(5-2)
$$2p^2 + p + 1 \equiv 0 \pmod{q}$$

On the other hand, from $a \equiv d \pmod{r}$, we have $p-1 \equiv 2(s+1) \pmod{q}$, so that

(5-3)
$$p^2 - 3p - 2 \equiv 0 \pmod{q}$$
.

From (5-2) and (5-3), we have $7p \equiv -5 \pmod{q}$. Then $0 \equiv 7^2(p^2 - 3p - 2) \equiv (7p)^2 - 21(7p) - 98 \equiv 32 \pmod{q}$, so that $q \mid 32$ i.e. $r \mid 8$, a contradiction with r = odd > 1.

Case (C):

We have $p-1\equiv 2(p+1)$, $p'-1\equiv 2(s'+1)$, $s-1\equiv -2(p'+1)$ and $s'-1\equiv -2(s+1) \pmod{q}$. Hence $p\equiv -3$, $p'-2s'\equiv 3$, $2p'+s\equiv -1$ and $2s+s'\equiv -1 \pmod{q}$. (mod q). From the last three congruences, we get $6\equiv 2(p'-2s')\equiv 2p'-4s'\equiv -s-1-4(-2s-1)\equiv 7s+3 \pmod{q}$, so that $7s\equiv 3 \pmod{q}$ i.e. $3p\equiv 7 \pmod{q}$. Since $p\equiv -3 \pmod{q}$, we have $7\equiv 3p\equiv -9 \pmod{q}$. Hence q|16 i.e. r|4, a contradiction.

Case (D):

From $a \equiv -c'$ and $a' \equiv -c \pmod{r}$ follows $p-1 \equiv -2(p'+1)$ and $p'-1 \equiv -2(p+1) \pmod{q}$, so that $p+2p' \equiv 2p+p' \equiv -1 \pmod{q}$. Hence $p \equiv p'$ and $3p \equiv -1 \pmod{q}$. From $b \equiv -d'$ and $b' \equiv -d \pmod{r}$, we get, in the same way, $3s \equiv -1 \pmod{q}$. Therefore $9 \equiv (3p) (3s) \equiv (-1)^2 \equiv -1 \pmod{q}$, so that $q \mid 8$ i.e. $r \mid 2$, a contradiction.

Case (E):

From $a' \equiv -d$ and $b' \equiv -c \pmod{p}$ follows $p'-1 \equiv -2(s+1)$ and $s'-1 \equiv -2(p+1) \pmod{q}$, so that $p'+2s \equiv -1$ and $s'+2p \equiv -1 \pmod{q}$. Hence $pp'+2 \equiv -p$ and $1+2pp' \equiv -p' \pmod{q}$. Eliminating pp', we have

(5-4)
$$2p - p' \equiv -3 \pmod{q}$$
.

On the other hand, from $a \equiv -c' \pmod{r}$, we have

(5-5)
$$p+2p' \equiv -1 \pmod{q}$$
.

18

From (5-4) and (5-5), we have $5p \equiv -7$ and $5p' \equiv 1 \pmod{q}$. Since $5^2(pp'+2) \equiv 5^2(-p) \pmod{q}$, we have $-7+50 \equiv 35 \pmod{q}$, so that q|8, a contradiction.

This completes the proof in Case 3 and completes the proof of Theorem 3 also.

6. Appendix. We can prove Theorem 3, without Lemma 1, or without non-vanishing of Dirichlet's L-functions at s=1, directly from (2-5) in case q is a prime number ≥ 7 .

Assume q is prime ≥ 7 . Let $K=Q(\zeta)$, a cyclotomic field of degree q-1, and \mathcal{O} be the ring of algebraic integers of K. Then the prime q is totally ramified in K, more precisely, the principal ideal $(q)=q\mathcal{O}$ in \mathcal{O} is the (q-1)-th power of prime ideal $(\lambda)=\lambda\mathcal{O}; (q)=(\lambda)^{q-1}$, where $\lambda=1-\zeta$ and the residue class field $\mathcal{O}/(\lambda)$ is isomorphic to Z/qZ. We have

$$\begin{aligned} 1 - \zeta^{k} &= 1 - (1 - \lambda)^{k} \\ &= \lambda \sum_{j=1}^{k} \binom{k}{j} (-\lambda)^{j-1} \\ &= \lambda k \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{(-\lambda)^{j}}{j+1} \\ &= \lambda k \left(1 - \frac{k-1}{2} \lambda + \frac{(k-1)(k-2)}{6} \lambda^{2} - \frac{(k-1)(k-2)(k-3)}{24} \lambda^{3} \right. \\ &\qquad \left. + \frac{(k-1)(k-2)(k-3)(k-4)}{120} \lambda^{4} - \cdots \right) \end{aligned}$$

for k=1, 2, ..., q-1. Hence

(6-1)
$$\frac{\lambda}{1-\zeta^{k}} = \frac{1}{k} \left(\sum_{j=0}^{k-1} {\binom{k-1}{j}} \frac{(-\lambda)^{j}}{j+1} \right)^{-1}$$
$$= \frac{1}{k} \left(1 + \frac{k-1}{2} \lambda + \frac{k^{2}-1}{12} \lambda^{2} + \frac{k^{2}-1}{24} \lambda^{3} - \frac{(k^{2}-1)(k^{2}-19)}{720} \lambda^{4} - \cdots \right),$$

where the last series, as is easily seen from the fact that each $\binom{k-1}{j} \frac{1}{j+1} = \frac{1}{k} \binom{k}{j+1}$ is a λ -adic integer, converges λ -adically for $k=1, \dots, q-1$. From (2-5), we have

(6-2)
$$\lambda I_1 = \lambda I'_1$$
.
As $\frac{\lambda}{1-\zeta^k}$ belongs to \mathcal{O} for $k=1, \dots, q-1$, both λI_1 and $\lambda I'_1$ are also in \mathcal{O} . Let
 $\begin{cases} \lambda I_1 = g_0 + g_1 \lambda + g_2 \lambda^2 + g_3 \lambda^3 + g_4 \lambda^4 + \cdots \\ \lambda I'_1 = g'_0 + g'_1 \lambda + g'_2 \lambda^2 + g'_3 \lambda^3 + g'_4 \lambda^4 + \cdots \end{cases}$

be the λ -adic expansions of λI_1 and $\lambda I'_1$ respectively, where the representatives g_k and g'_k of $\mathcal{O}/(\lambda)$ are taken from $\{0, 1, \dots, q-1\}$. From (6-2), we have

(6-3)
$$g_k \equiv g'_k \pmod{q}$$
 for $k = 0, 1, \cdots$.

From (6-1), we get,

$$g_{0} \equiv \sum_{k} \frac{1}{k} \equiv \frac{1}{p-1} + \frac{1}{s-1} - \frac{1}{p+1} - \frac{1}{s+1}$$

$$\equiv \frac{1}{p-1} + \frac{p}{1-p} - \frac{1}{p+1} - \frac{p}{1+p}$$

$$\equiv -2 \pmod{q},$$

$$g_{1} \equiv \frac{1}{2} \sum_{k} \left(1 - \frac{1}{k}\right) \equiv 2 - (-1) \equiv 3 \pmod{q},$$

$$g_{2} \equiv \frac{1}{12} \sum_{k} \left(k - \frac{1}{k}\right) \equiv -\frac{1}{6} \pmod{q},$$

$$g_{3} \equiv \frac{1}{24} \sum_{k} \left(k - \frac{1}{k}\right) \equiv -\frac{1}{12} \pmod{q},$$

$$g_{4} \equiv -\frac{1}{720} \sum_{k} \left(k^{3} - 20k + \frac{19}{k}\right) \equiv \frac{1}{120} \left(p^{2} + s^{2}\right) - \frac{19}{360} \pmod{q},$$

where the summation is taken for k=p-1, s-1, -p-1 and -s-1, especially we see

$$\sum_{k} k = (p-1) + (s-1) - (p+1) - (s+1) = -4$$

$$\sum_{k} k^{3} = (p-1)^{3} + (s-1)^{3} - (p+1)^{3} - (s+1)^{3}$$

$$= -6(p^{2} + s^{2}) - 4.$$

In the same way, we get

$$g'_{0} \equiv -2 \pmod{q},$$

$$g'_{1} \equiv 3 \pmod{q},$$

$$g'_{2} \equiv -\frac{1}{6} \pmod{q},$$

$$g'_{3} \equiv -\frac{1}{12} \pmod{q} \text{ and }$$

$$g'_{4} \equiv \frac{1}{120} (p'^{2} + s'^{2}) - \frac{19}{360} \pmod{q}.$$

Comparing the case k=4 in (6-3), we have

(6-4)
$$p^2 + s^2 \equiv {p'}^2 + {s'}^2 \pmod{q}$$
.

Since $ps \equiv p's' \equiv 1 \pmod{q}$, we have, from (6-4),

$$\begin{cases} (p+s)^2 \equiv (p'+s')^2 \pmod{q} \\ (p-s)^2 \equiv (p'-s')^2 \pmod{q}, \end{cases}$$

hence

(6-5)
$$\begin{cases} p+s \equiv \pm (p'+s') \pmod{q} \\ p-s \equiv \pm (p'-s') \pmod{q}, \end{cases}$$

where the signs are taken independently. Then we see easily, from (6-5), that

$$p \equiv \pm p' \text{ or } p \equiv \pm s' \pmod{q}$$
.

Thus we get Theorem 3 for prime $q \ge 7$.

7. Spectrum of 3-dimensional lens spaces. In the course of the proof of Theorem 3, we have shown the following

Proposition. Let q, p and p' be as in Section 0. Assume we have (2-1) and (2-2). Then $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.

This proposition was the essential part of the proof of "Main Theorem" in [3] (cf. Lemma 4.4, Proposition 4.6), though only the case $q=l^n$ or $2 \cdot l^n$ had been shown there. Now we have proved completely

Theorem. Let q be a positive integer. If two 3-dimensional lens spaces with fundamental group of order q are isospectral, then they are isometric to each other.

References

- [1] A. Baker, B.J. Birch and E.A. Wirsing: On a problem of Chowla, J. Number Theory 5 (1973), 224–236.
- [2] S. Chowla: A special infinite series, Norske Vid. Selsk. Forh. 37 (1964), 85-87.
- [3] A. Ikeda and Y. Yamamoto: On the spectra of 3-dimensional lens spaces, Osaka J. Math. 16 (1979), 447-469.

Departmenf of Mathematics Osaka University Toyonaka, Osaka 560, [apan