

Title	On the number of lattice points in the square $ x + y \leq u$ with a certain congruence condition
Author(s)	Yamamoto, Yoshihiko
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 9-21
Version Type	VoR
URL	https://doi.org/10.18910/8615
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

**ON THE NUMBER OF LATTICE POINTS IN THE
SQUARE $|x|+|y|\leq u$ WITH A CERTAIN
CONGRUENCE CONDITION**

YOSHIHIKO YAMAMOTO^{*)}

(Received December 11, 1978)

0. Introduction. Let $a(u; p, q)$ denote the number of lattice points $(x, y) \in \mathbb{Z}^2$ such that (i) $|x|+|y|\leq u$ (ii) $x+py \equiv 0 \pmod{q}$, where u, p , and q are given positive integers. It is easy to see that $a(u; p, q)$ is determined only by p modulo q , if q is fixed. Let p' be another positive integer. We always assume $(p, q)=(p', q)=1$ in the following, where $(\ , \)$ means the greatest common divisor. It is easy to see that we have $a(u; p, q)=a(u; p', q)$ for every positive integer u if $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$. We will prove, in the present paper, that the converse is valid:

Theorem 1. *Suppose $a(u; p, q)=a(u; p', q)$ for every positive integer u . Then $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.*

Our problem is related with a problem in differential geometry, and gives an answer to it. Consider a 3-dimensional lens space with fundamental group of order q . We ask whether the spectrum of the Laplacian characterizes the space as a riemannian manifold. This geometric problem can be reduced to a problem in number theory. A special case of our theorem, where q is of the form l^n or $2 \cdot l^n$ (l a prime number), has been shown (cf. Ikeda-Yamamoto [3]). Now our Theorem 1 gives a complete affirmative answer to the above geometric problem (see Section 7 below).

If a lattice point (x, y) satisfies the conditions (i) and (ii), so does the point $(-x, -y)$. Denote by $b(u; p, q)$ the number of lattice points (x, y) such that (i') $x \geq 0$ and $x+|y|=u$ (ii) $x+py \equiv 0 \pmod{q}$. Then we see easily that Theorem 1 is equivalent to

Theorem 2. *Suppose $b(u; p, q)=b(u; p', q)$ for every positive integer u . Then $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.*

We introduce rational functions $F_j(X)$ ($0 \leq j \leq q-1$);

$$F_j(X) = \frac{1}{(1-\zeta^j X)(1-\zeta^{pj} X)} + \frac{1}{(1-\zeta^j X)(1-\zeta^{-pj} X)},$$

^{*)} Supported by Grant-in-Aid for Scientific Research

where $\zeta = e^{2\pi i/q}$, a primitive q -th root of unity. The function $F_j(X)$ has the following expansion in X ;

$$\begin{aligned} F_j(X) &= \left(\sum_{x=0}^{\infty} \zeta^{jx} X^x \right) \left(\sum_{y=0}^{\infty} \zeta^{py} X^y \right) + \left(\sum_{x=0}^{\infty} \zeta^{jx} X^x \right) \left(\sum_{y=0}^{\infty} \zeta^{-py} X^y \right) \\ &= \sum_{x,y=0}^{\infty} \zeta^{j(x+py)} X^{x+y} + \sum_{x,y=0}^{\infty} \zeta^{j(x-py)} X^{x+y}. \end{aligned}$$

Put $G(X) = \sum_{j=0}^{q-1} F_j(X)$. Since $\sum_{j=0}^{q-1} \zeta^{jx} = q$ if $x \equiv 0 \pmod{q}$, $= 0$ otherwise; we see easily that the power series expansion of $G(X)$ is given by

$$G(X) = 2q + q \sum_{u=1}^{\infty} X^{qu} + q \sum_{u=1}^{\infty} b(u; p, q) X^u.$$

Define $F'_j(X)$ and $G'(X)$ in the same way, replacing p by p' . Then, theorem 2 is equivalent to

Theorem 3. *If $G(X) = G'(X)$, then we have $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.*

We shall prove theorem 3 in the rest of the paper.

1. Residues of $G(X)$. By the definition, we see $G(X)$ has a pole of order at most two at $X=1, \zeta, \dots, \zeta^{q-1}$. The point $X=\zeta^k$ is the pole of order two if and only if $k \equiv \pm kp \pmod{q}$ i.e. $k \equiv 0 \pmod{r_1}$ or $k \equiv 0 \pmod{r_2}$, where we put $r_1 = \frac{q}{(p-1, q)}$ and $r_2 = \frac{q}{(p+1, q)}$. Clearly $(p-1, p+1, q)=1$ or 2 according as q is odd or even. We put

$$(1-1) \quad \begin{cases} (p-1, q) = \varepsilon u_1, \\ (p+1, q) = \varepsilon u_2, \end{cases}$$

then $(u_1, u_2)=1$ and $q = \varepsilon u_1 u_2 r$, where $\varepsilon=1$ if q is odd, $\varepsilon=2$ if q is even. The singular part of Laurent expansion of $G(X)$ at $X=\zeta^{-k}$ is as follows;

$$(1-2) \quad \begin{cases} \frac{2}{(1-\zeta^k X)^2} & (u_1 r | k \text{ and } u_2 r | k), \\ \frac{1}{(1-\zeta^k X)^2} + \left(\frac{1}{1-\zeta^{-k(p+1)}} + \frac{1}{1-\zeta^{-k(s+1)}} \right) \frac{1}{1-\zeta^k X} & (u_1 r \not| k \text{ and } u_2 r \not| k), \\ \frac{1}{(1-\zeta^k X)^2} + \left(\frac{1}{1-\zeta^{k(p-1)}} + \frac{1}{1-\zeta^{k(s-1)}} \right) \frac{1}{1-\zeta^k X} & (u_1 r | k \text{ and } u_2 r \not| k), \\ \left(\frac{1}{1-\zeta^{k(p-1)}} + \frac{1}{1-\zeta^{k(s-1)}} + \frac{1}{1-\zeta^{-k(p+1)}} + \frac{1}{1-\zeta^{-k(s+1)}} \right) \frac{1}{1-\zeta^k X} & (u_1 r \not| k \text{ and } u_2 r \not| k), \end{cases}$$

where s is an integer such that $ps \equiv 1 \pmod{q}$, which is fixed in the following.

Lemma 1 (Chowla [2], Baker-Birch-Wirsing [1]). *Let c_1, \dots, c_{q-1} be rational numbers such that $c_j=0$ if $(j, q) \neq 1$ and $c_j=-c_{q-j}$ ($j=1, \dots, q-1$). If*

$$(1-3) \quad \sum_{j=1}^{q-1} \frac{c_j}{1-\zeta^j} = 0,$$

then $c_j=0$ for all j .

Proof. Operating the automorphism $\sigma_k: \zeta \mapsto \zeta^k$ of the q -th cyclotomic field $Q(\zeta)$ over Q to (1-3), we get

$$(1-4) \quad \sum_{j=1}^{q-1} \frac{c_j}{1-\zeta^{jk}} = 0 \quad \text{for every } k, \quad (k, q) = 1.$$

We can canonically extend the sequence c_1, \dots, c_{q-1} to an infinite sequence $\{c_j\}_{j \in \mathbb{Z}}$ periodically with period q , satisfying $c_j=0$ if $(j, q) \neq 1$ and $c_{-j}=-c_j$. Then, from (1-4), we have

$$(1-5) \quad \sum_{j=1}^{q-1} \frac{c_{jk}}{1-\zeta^j} = 0 \quad \text{for } k \in \mathbb{Z}.$$

Let χ be a Dirichlet character modulo q and put $d_j = \sum_{k=1}^{q-1} \chi(k) c_{jk}$. Then we get

$$(1-6) \quad d_j = \bar{\chi}(j) d_1 \quad \text{and}$$

$$(1-7) \quad \begin{aligned} \sum_{j=1}^{q-1} \frac{d_j}{1-\zeta^j} &= \sum_{j=1}^{q-1} \frac{1}{1-\zeta^j} \sum_{k=1}^{q-1} \chi(k) c_{jk} \\ &= \sum_{k=1}^{q-1} \chi(k) \sum_{j=1}^{q-1} \frac{c_{jk}}{1-\zeta^j} \\ &= 0. \end{aligned}$$

Clearly $d_1=0$ if χ is even; $\chi(-j)=\chi(j)$. In case χ is odd; $\chi(-j)=-\chi(j)$; we have, from (1-6),

$$(1-8) \quad \begin{aligned} \sum_{j=1}^{q-1} \frac{d_j}{1-\zeta^j} &= d_1 \sum_{j=1}^{q-1} \frac{\bar{\chi}(j)}{1-\zeta^j} \\ &= d_1 \sum_{j=1}^{q-1} \bar{\chi}(j) \left(\frac{1}{2} + \frac{1}{2} \cot \frac{j\pi}{q} \right) \\ &= \frac{d_1}{2} \sum_{j=1}^{q-1} \bar{\chi}(j) \cot \frac{j\pi}{q} \\ &= \frac{qd_1}{\pi} L(1, \bar{\chi}), \end{aligned}$$

where $L(s, \bar{\chi})$ is the Dirichlet's L -function. Since $L(1, \bar{\chi}) \neq 0$, by Dirichlet's theorem, we get, from (1-7) and (1-8), that $d_1=0$ in case χ is odd, too. There-

for $\sum_{j=1}^{q-1} \chi(j)c_j = 0$ for any character χ , hence $c_j = 0$ for every j . q.e.d.

Corollary. *The $\frac{1}{2}\varphi(q)$ values of cotangent $\cot \frac{k\pi}{q}$, $0 < k < \frac{q}{2}$ and $(k, q) = 1$, are linearly independent over \mathbb{Q} .*

In fact, since $\cot \frac{k\pi}{q} = \frac{i}{1-\zeta^k} - \frac{i}{1-\zeta^{q-k}}$, we get the linear independency of above cotangents directly from lemma 1.

2. Proof of Theorem 3. We may safely assume that $q > 4$, since theorem 1 is trivial for $q = 1, 2, 3$ and 4. Assume $G(X) = G'(X)$, then $G(X)$ and $G'(X)$ have the same Laurent expansion at every $X = \zeta^{-k}$. From (1-2), we get easily, after exchanging p' and $-p'$ if necessary;

$$(2-1) \quad \begin{cases} (p-1, q) = (p'-1, q) \text{ and} \\ (p+1, q) = (p'+1, q), \end{cases}$$

and

$$(2-2) \quad \begin{aligned} & \frac{1}{1-\zeta^{k(p-1)}} + \frac{1}{1-\zeta^{k(s-1)}} + \frac{1}{1-\zeta^{-k(p+1)}} + \frac{1}{1-\zeta^{-k(s+1)}} \\ &= \frac{1}{1-\zeta^{k(p'-1)}} + \frac{1}{1-\zeta^{k(s'-1)}} + \frac{1}{1-\zeta^{-k(p'+1)}} + \frac{1}{1-\zeta^{-k(s'+1)}}, \end{aligned}$$

for every integer k satisfying $k \not\equiv 0 \pmod{u_1r}$ and $k \not\equiv 0 \pmod{u_2r}$, where s' is an integer such that $p's' \equiv 1 \pmod{q}$. So we put

$$(2-3) \quad \begin{cases} (p-1, q) = (p'-1, q) = \varepsilon u_1, \\ (p+1, q) = (p'+1, q) = \varepsilon u_2, \\ q = \varepsilon u_1 u_2 r \text{ and } (u_1, u_2) = 1, \\ \varepsilon = 2 \text{ if } q \text{ is even, } \varepsilon = 1 \text{ otherwise.} \end{cases}$$

Since $(p-1, q) = (s-1, q)$ and $(p+1, q) = (s+1, q)$, we put

$$(2-4) \quad \begin{cases} p-1 = \varepsilon u_1 a \text{ and } p'-1 = \varepsilon u_1 a', \\ s-1 = \varepsilon u_1 b \quad s'-1 = \varepsilon u_1 b', \\ p+1 = \varepsilon u_2 c \quad p'+1 = \varepsilon u_2 c', \\ s+1 = \varepsilon u_2 d \quad s'+1 = \varepsilon u_2 d', \end{cases}$$

where a, b, a' and b' are integers prime to u_2r and c, d, c' and d' are those prime to u_1r . Put

$$I_k = \cot \frac{(p-1)k\pi}{q} + \cot \frac{(s-1)k\pi}{q} - \cot \frac{(p+1)k\pi}{q} - \cot \frac{(s+1)k\pi}{q}$$

$$= \cot \frac{ak\pi}{u_2r} + \cot \frac{bk\pi}{u_2r} - \cot \frac{ck\pi}{u_1r} - \cot \frac{dk\pi}{u_1r}$$

and

$$\begin{aligned} I'_k &= \cot \frac{(p'-1)k\pi}{q} + \cot \frac{(s'-1)k\pi}{q} - \cot \frac{(p'+1)k\pi}{q} - \cot \frac{(s'+1)k\pi}{q} \\ &= \cot \frac{a'k\pi}{u_2r} + \cot \frac{b'k\pi}{u_2r} - \cot \frac{c'k\pi}{u_1r} - \cot \frac{d'k\pi}{u_1r}. \end{aligned}$$

Then we get, from (2-2),

$$(2-5) \quad I_k = I'_k$$

for every integer k satisfying $k \not\equiv 0 \pmod{u_1r}$ and $k \not\equiv 0 \pmod{u_2r}$. It is sufficient that we prove the theorem in the following cases:

- (1) $q=odd$ or $2||q$; $u_1=u_2=1$,
- (2) (i) $q=odd$ or $2||q$; $u_1 \geq 3$,
(ii) $4||q$; $u_1 \geq 3$,
(iii) $8|q$; $u_1=even(\geq 2)$,
- (3) $4|q$; $u_1=2$ and $u_2=1$,

since the transposition of u_1 and u_2 is induced by replacing p and p' by $-p$ and $-p'$ respectively.

3. Case 1: $q=odd$ or $2||q$; $u_1=u_2=1$ ($q=\varepsilon r$ and $r=odd$).

From (2-5), we have $I_1=I'_1$ i.e.

$$\begin{aligned} (3-1) \quad & \cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{r} - \cot \frac{d\pi}{r} \\ &= \cot \frac{a'\pi}{r} + \cot \frac{b'\pi}{r} - \cot \frac{c'\pi}{r} - \cot \frac{d'\pi}{r}. \end{aligned}$$

We can apply Corollary of Lemma 1 to (3-1), since a, b, c, d, a', b', c' and d' are all prime to r .

Lemma 2. $I_1 \neq 0$.

Proof. Assume $I_1=0$. We see, by the Corollary, at least one of the following congruences must hold:

$$\begin{cases} a \equiv -b \pmod{r} & (1) \\ a \equiv c \pmod{r} & (2) \\ a \equiv d \pmod{r} & (3). \end{cases}$$

Case (1): Multiplied by ε , we have $p-1 \equiv -(s-1) \pmod{q}$. So $p(p-1) \equiv$

$-p(s-1) \equiv p-1 \pmod{q}$. Hence $(p-1)^2 \equiv 0 \pmod{q}$, so that $\varepsilon r | (\varepsilon a)^2$. Hence $r | \varepsilon$, since $(a, r) = 1$. As r is odd, $r = 1$ i.e. $q = \varepsilon \leq 2$, a contradiction with $q > 4$. Case (2): We have $p-1 \equiv p+1 \pmod{q}$, hence $2 \equiv 0 \pmod{q}$ i.e. $q | 2$, a contradiction with $q > 4$.

Case (3): We also have $b \equiv c \pmod{r}$; so $p-1 \equiv s+1$ and $s-1 \equiv p+1 \pmod{q}$; hence $p-s \equiv 2 \equiv -2 \pmod{q}$ i.e. $q | 4$; this contradicts $q > 4$ again. \square

By Lemma 2, we see that one of a , b , $-c$ and $-d$ is congruent to a' , b' , $-c'$ or $-d'$ modulo r , that is, multiplied by ε , the sets $\{p-1, s-1, -p-1, -s-1\}$ and $\{p'-1, s'-1, -p'-1, -s'-1\}$ have non-empty intersection in the residue classes modulo q ($= \varepsilon r$). This implies Theorem 3.

4. Case 2: (i) $q = \text{odd}$ or $2 \mid q$; $u_1 \geq 3$ ($q = \varepsilon u_1 u_2 r$ and u_1, u_2, r are all odd).
(ii) $4 \mid q$; $u_1 \geq 3$ ($q = 2u_1 u_2 r$, $2 \mid u_1 u_2$ and $r = \text{odd}$).
(iii) $8 \mid q$; $u_1 = \text{even}$ ($q = 2u_1 u_2 r$, $4 \mid u_1 r$ and $u_2 = \text{odd}$).

Take an integer k such that (a) $k \equiv -1 \pmod{u_2 r}$; (b) $(k, u_1 r) = 1$ and $k \not\equiv -1 \pmod{l'}$ for every odd prime divisor l of u_1 , $e = \text{ord}_l(u_1 r)$ i.e. $l^e \mid u_1 r$; if in case (iii), we further add (b)' $k \not\equiv -1 \pmod{2'}$, $f = \text{ord}_2(u_1 r)$. The existence of such k is assured by the assumption on u_1 . It follows from (2-5) that $I_1 + I_k = I'_1 + I'_k$. Hence we have:

$$(4-1) \quad \begin{aligned} & \cot \frac{c\pi}{u_1 r} + \cot \frac{d\pi}{u_1 r} + \cot \frac{ck\pi}{u_1 r} + \cot \frac{dk\pi}{u_1 r} \\ &= \cot \frac{c'\pi}{u_1 r} + \cot \frac{d'\pi}{u_1 r} + \cot \frac{c'k\pi}{u_1 r} + \cot \frac{d'k\pi}{u_1 r}. \end{aligned}$$

Now we can apply Corollary of Lemma 1 to (4-1). In the first place, we have

Lemma 3. *The following (1) or (2) do not hold in (4-1):*

(1) $c \equiv -d \pmod{u_1 r}$, $c' \equiv -d'$, $ck \equiv -dk$, or $c'k \equiv -d'k \pmod{u_1 r}$.
(2) $c \equiv -ck \pmod{u_1 r}$, $d \equiv -dk$, $c' \equiv -c'k$, or $d' \equiv -d'k \pmod{u_1 r}$.

Proof. If $c \equiv -d \pmod{u_1 r}$, we have, both hand sides multiplied by εu_2 , $p+1 \equiv -(s+1) \pmod{q}$, so that $p(p+1) \equiv -(1+p) \pmod{q}$. Since $(p+1, q) = \varepsilon u_2$, we have $p \equiv -1 \pmod{u_1 r}$. Hence $u_1 r \mid (p+1)$ i.e. $u_1 r \mid \varepsilon u_2 c$. Since $(u_1 r, c) = (u_1, u_2) = 1$, we have $u_1 \mid \varepsilon$. This is possible only in case (iii) with $u_1 = \varepsilon = 2$, so that $r \mid u_2$. Hence r is odd, this contradicts $4 \mid u_1 r$. If $c \equiv -ck \pmod{u_1 r}$, then $k \equiv -1 \pmod{u_1 r}$, this contradicts the choice of k . In the same way, we see that the other congruences are also impossible. \square

It is easy to see $p \equiv p' \pmod{q}$ or $p \equiv s' \pmod{q}$ if either c or d (resp. ck or dk) is congruent to c' or d' (resp. $c'k$ or $d'k$) modulo $u_1 r$. Hence we may assume that neither c nor d (resp. ck nor dk) is congruent to c' or d' (resp. $c'k$ or $d'k$) modulo $u_1 r$. Then we see, by Corollary of Lemma 1 and by Lemma 3, that only the

following cases may be possible in (4-1), after transposing p and s (resp. p' and s') if necessary:

- (A) $c \equiv -dk$, $d \equiv -ck$, $c' \equiv -d'k$ and $d' \equiv -c'k \pmod{u_1r}$.
- (B) $c \equiv -dk$, $c' \equiv -d'k$, $d \equiv c'k$ and $d' \equiv ck \pmod{u_1r}$.
- (C) $c \equiv c'k$, $d \equiv d'k$, $c' \equiv ck$ and $d' \equiv dk \pmod{u_1r}$.
- (D) $c \equiv c'k$, $d \equiv d'k$, $c' \equiv dk$ and $d' \equiv ck \pmod{u_1r}$.

Case (A):

From $c \equiv -dk$ and $d \equiv -ck \pmod{u_1r}$ follows $p+1 \equiv -(s+1)k$ and $s+1 \equiv -(p+1)k \pmod{q}$, so that $p \equiv s \equiv -k \pmod{u_1r}$ and $k^2 \equiv 1 \pmod{u_1r}$. As $k \equiv -p \equiv -1 \pmod{u_1}$, we have $k \equiv -1 \pmod{l^e}$ for every odd prime divisor l of u_1 , which contradicts the choice of k . Hence u_1 must be a power of 2, and this is possible only in case (iii). Then we have $k \equiv -p \equiv -1 \pmod{4}$ and $k^2 \equiv 1 \pmod{2^f}$, so that $k \equiv -1 \pmod{2^{f-1}}$. Furthermore we have $f \geq 3$ since, by the choice of k , we have $p \equiv -k \equiv 1 \pmod{2^f}$ while $p \equiv 1 \pmod{4}$. On the other hand, we have $(u_1r, u_2) = 1$, since $p \equiv -k \equiv 1 \pmod{r}$ and $p \equiv -1 \pmod{u_2}$. Therefore we get $p \equiv -k \equiv 1 \pmod{\frac{u_1r}{2}}$, $p \equiv -k \equiv 1 \pmod{u_1r}$ and $p \equiv -1 \pmod{u_2}$. In the same way, from $c' \equiv -d'k$ and $d' \equiv -c'k \pmod{u_1r}$, we have $p' \equiv 1 \pmod{\frac{u_1r}{2}}$, $p' \equiv 1 \pmod{u_1r}$ and $p' \equiv -1 \pmod{u_2}$. We see each one of p and p' is congruent to $1 + \frac{u_1r}{2}$ or $1 - \frac{u_1r}{2} \pmod{2u_1r}$, hence $p \equiv p'$ or $p \equiv s' \pmod{2u_1r}$, since we have $f \geq 3$ and $\left(1 + \frac{u_1r}{2}\right)\left(1 - \frac{u_1r}{2}\right) \equiv 1 \pmod{2u_1r}$. As $p \equiv s \equiv p' \equiv s' \equiv -1 \pmod{u_2}$, $q = 2u_1u_2r$ and $(2u_1r, u_2) = 1$, we have $p \equiv p'$ or $p \equiv s' \pmod{q}$.

Case (B):

From $c \equiv -dk$ and $c' \equiv -d'k \pmod{u_1r}$ follows $p \equiv p' \equiv -k \pmod{u_1r}$. That $p \equiv -k \equiv 1 \pmod{r}$ and $p \equiv -1 \pmod{u_2}$ implies $(u_1r, u_2) = 1$ or 2. From $d \equiv c'k \pmod{u_1r}$ follows $s+1 \equiv (p'+1)k \pmod{q}$. So $p+1 \equiv p(s+1) \equiv p(p'+1)k \equiv p(p+1) \equiv -p \equiv -(p+1)p^2 \pmod{u_1r}$. Hence $(p+1)(p^2+1) \equiv \varepsilon u_1c(p^2+1) \equiv 0 \pmod{u_1r}$ i.e. $\varepsilon(p^2+1) \equiv 0 \pmod{u_1r}$. We have $p^2 \equiv -1 \pmod{l}$ if there is an odd prime divisor l of u_1 , while $p^2 \equiv 1 \pmod{l}$ since $p \equiv 1 \pmod{u_1}$. Therefore u_1 must be a power of 2, this is possible only in case (iii). Then $p^2 \equiv -1 \pmod{2^{f-1}}$, so that $f=2$ since $f \geq 2$ by the assumption of (iii). As $p \equiv -k \pmod{u_1r}$, $p \equiv 1 \pmod{\varepsilon u_1}$ and $u_1r \equiv \varepsilon u_1 \equiv 0 \pmod{4}$, we have $k \equiv -1 \pmod{2^f}$, which contradicts the choice of k . Therefore case (B) is impossible.

Case (C) and (D):

We claim $pp' \equiv 1 \pmod{q}$ in these cases. From $c \equiv c'k$ and $d \equiv d'k \pmod{u_1r}$ follows $p+1 \equiv (p'+1)k$ and $s+1 \equiv (s'+1)k \pmod{q}$, so that $p'(1+p) \equiv p(1+p')k \equiv p(p+1) \pmod{q}$, hence we get $p \equiv p' \pmod{u_1r}$. Since $p \equiv p' \equiv 1 \pmod{\varepsilon u_1}$, we have $2 \equiv 2k \pmod{\varepsilon u_1}$, so $k \equiv 1 \pmod{u_1}$, while $k \equiv -1 \pmod{u_2r}$.

Hence we see $(u_1, u_2r)=1$ or 2. Let l be a prime divisor of q . It is enough to prove $pp' \equiv 1 \pmod{l^{\text{ord}_l(q)}}$.

In case $l=an odd prime$:

Since $p \equiv p' \pmod{u_1r}$, we get $p-p' \equiv (p+1)-(p'+1) \equiv \varepsilon u_2(c-c') \equiv \varepsilon u_2c'(k-1) \equiv 0 \pmod{u_1r}$, so that

$$(4-2) \quad o(u_2)+o(c')+o(k-1) \geq o(u_1)+o(r), \text{ where } o(\) = \text{ord}_l(\).$$

(a) If $l \nmid u_1$, then $l \nmid u_2r$ and $o(u_1)=o(q)$. Since $p \equiv p' \equiv 1 \pmod{\varepsilon u_1}$, we have $pp' \equiv 1 \pmod{l^{o(q)}}$.

(b) If $l \mid (u_2, r)$, then $l \nmid u_1$ and $k \equiv -1 \pmod{l}$ therefore from (4-2) $o(q) = o(u_2) + o(r)$. Since $c \equiv c'k \equiv -c' \pmod{r}$ and $o(u_2) \geq o(r)$, we get $pp' = (\varepsilon u_2c-1)(\varepsilon u_2c'-1) = \varepsilon^2 u_2^2 c c' - \varepsilon u_2(c+c') + 1 \equiv 1 \pmod{l^{o(q)}}$.

(c) If $l \mid u_2$ and $l \nmid r$, then $l \nmid u_1$ and $o(q)=o(u_2)$. Since $p \equiv p' \equiv -1 \pmod{\varepsilon u_2}$, we have $pp' \equiv 1 \pmod{l^{o(q)}}$.

(d) If $l \mid r$ and $l \nmid u_2$, then $l \nmid u_1$ and $0 = o(u_2) < o(u_1) + o(r) = o(r)$, this is impossible since we have from (4-2), $o(u_2) \geq o(u_1) + o(r)$.

In case $l=2$:

It is enough to prove only in case (ii) and (iii).

(a) Case (ii); we see $4 \mid q$ and $p \equiv p' \equiv 1$ or $-1 \pmod{4}$ according as u_1 is even or u_2 is even. Hence $pp' \equiv 1 \pmod{4}$.

(b) Case (iii); we have $o(q) = o(u_1) + o(r) + 1 \geq 3$ and $o(u_1) = 1$. We get $\text{Min}(o(u_1), o(r)) \leq 1$ since $k \equiv 1 \pmod{u_1}$ and $k \equiv -1 \pmod{u_2r}$.

(b-1) If $o(r)=0$, then we have $o(q)=o(u_1)+1$ and $p \equiv p' \equiv 1 \pmod{2u_1}$, so that $pp' \equiv 1 \pmod{2^{o(q)}}$.

(b-2) If $o(r)=1$, then $o(q)=o(u_1)+2$. Since $o(p-1)=o(p'-1)=o(u_1)+1=o(q)-1$, we have $p \equiv p' \equiv 1+2^{o(q)-1} \pmod{2^{o(q)}}$, so that $pp' \equiv 1 \pmod{2^{o(q)}}$.

(b-3) If $o(u_1)=1$, then $o(q)=o(r)+2 \geq 3$. Since we have $p+1 \equiv (p'+1)k \pmod{2^{o(q)}}$ and $p \equiv p' \pmod{2^{o(u_1r)}}$, we get $p+1 \equiv (p+1)k \pmod{2^{o(q)-1}}$. Hence $k \equiv 1 \pmod{2^{o(r)}}$, while $k \equiv -1 \pmod{2^{o(u_2r)}}$. So we have $1 \equiv -1 \pmod{2^{o(r)}}$, so that $o(r) \leq 1$. Since $o(q) \geq 3$, we get $o(r)=1$ and $o(q)=3$. It follows from $o(p-1)=o(p'-1)=2$ that $p \equiv p' \equiv 5 \pmod{8}$, hence $pp' \equiv 1 \pmod{2^3}$.

This completes the proof in Case 2.

5. Case 3: $4 \mid q$; $u_1=2$ and $u_2=1$ ($q=4r$ and $r=\text{odd} > 1$).

We see

$$I_1 = \cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{2r} - \cot \frac{d\pi}{2r},$$

$$I_{r+1} = \cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{(c+r)\pi}{2r} - \cot \frac{(d+r)\pi}{2r}.$$

By the duplication formula of cotangent, we get

$$I_1 + I_{r+1} = 2 \left(\cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{r} - \cot \frac{d\pi}{r} \right).$$

From (2-5), $I_1 + I_{r+1} = I'_1 + I'_{r+1}$. Halving both hand sides, we have

$$(5-1) \quad \begin{aligned} & \cot \frac{a\pi}{r} + \cot \frac{b\pi}{r} - \cot \frac{c\pi}{r} - \cot \frac{d\pi}{r} \\ &= \cot \frac{a'\pi}{r} + \cot \frac{b'\pi}{r} - \cot \frac{c'\pi}{r} - \cot \frac{d'\pi}{r}. \end{aligned}$$

Now we can apply Corollary of Lemma 1 to (5-1). In the first place we have

Lemma 4. *The following (1), (2) or (3) do not hold in (5-1):*

- (1) $a \equiv -b, c \equiv -d, a' \equiv -b', \text{ or } c' \equiv -d' \pmod{r}$.
- (2) $a \equiv c \text{ and } b \equiv d \pmod{r} \text{ or } a' \equiv c' \text{ and } b' \equiv d' \pmod{r}$.
- (3) $a \equiv d \text{ and } b \equiv c \pmod{r} \text{ or } a' \equiv d' \text{ and } b' \equiv c' \pmod{r}$.

Proof. (1) If $a \equiv -b \pmod{r}$, we have $4a \equiv -4b \pmod{q}$, i.e. $p-1 \equiv -(s-1) \pmod{q}$. Hence $p(p-1) \equiv -(1-p) \pmod{q}$, so that $p \equiv 1 \pmod{r}$ since $(p-1, q) = 4$. This implies $r=1$, i.e. $q=4$, a contradiction with $q > 4$.
(2) If $a \equiv c$ and $b \equiv d \pmod{r}$, we have $4a \equiv 4c$ and $4b \equiv 4d \pmod{4r}$, i.e. $p-1 \equiv 2(p+1)$ and $s-1 \equiv 2(s+1) \pmod{4r}$. Hence we get $p \equiv s \equiv -3 \pmod{4r}$. Then $1 \equiv ps \equiv 9 \pmod{4r}$, i.e. $r=1$ or $r=2$, a contradiction with $q > 4$ and $r=\text{odd}$.
(3) If $a \equiv d$ and $b \equiv c \pmod{r}$, we have $p-1 \equiv 2(s+1)$ and $s-1 \equiv 2(p+1) \pmod{4r}$. Multiplied by p , we have $p(p-1) \equiv 2(1+p)$ and $1-p \equiv 2p(p+1) \pmod{4r}$, i.e. $p^2-3p-2 \equiv 0$ and $2p^2+3p-1 \equiv 0 \pmod{4r}$. Hence $3p^2-3 \equiv 3(p-1)(p+1) \equiv 0 \pmod{4r}$. We have $3(p+1) \equiv 0 \pmod{r}$, so that $3 \equiv 0 \pmod{r}$, since $(p-1, 4r) = 4$ and $(p+1, 4r) = 2$. As $r \geq 3$, we have $r=3$ and $q=4r=12$. Since $p^2 \equiv 1 \pmod{12}$, $p^2-3p-2 \equiv 0 \pmod{12}$ implies $3p \equiv -1 \pmod{12}$, a contradiction.

The other cases can be checked in the same way.

q.e.d.

It is easy to see $p \equiv p' \pmod{q}$ or $p \equiv s' \pmod{q}$ if either a or b (resp. c or d) is congruent to a' or b' (resp. c' or d') modulo r . Hence we may assume that neither a nor b (resp. c nor d) is congruent to a' or b' (resp. c' or d') modulo r . Then, we see, by Corollary of Lemma 1 and by Lemma 4, that only the following cases may be possible in (5-1), after trasnposing p and s (resp. p' and s') if necessary:

- (A) $a \equiv c, a' \equiv c', b \equiv -d' \text{ and } b' \equiv -d \pmod{r}$.
- (B) $a \equiv d, a' \equiv d', b \equiv -c' \text{ and } b' \equiv -c \pmod{r}$.
- (C) $a \equiv c, a' \equiv d', b \equiv -c' \text{ and } b' \equiv -d \pmod{r}$.

(D) $a \equiv -c', b \equiv -d', a' \equiv -c$ and $b' \equiv -d \pmod{r}$.
 (E) $a \equiv -c', b \equiv -d', a' \equiv -d$ and $b' \equiv -c \pmod{r}$.

Case (A):

From $a \equiv c$ and $a' \equiv c' \pmod{r}$ follows $p \equiv p' \equiv -3 \pmod{q}$ (c.f. the proof of Lemma 4. (2)).

Case (B):

From $b \equiv -c'$ and $b' \equiv -c \pmod{r}$ follows $s-1 \equiv -2(p'+1)$ and $s'-1 \equiv -2(p+1) \pmod{q}$, so that $2p'+s \equiv -1$ and $2p+s' \equiv -1 \pmod{q}$. Hence we have $2pp'+1 \equiv -p$ and $2pp'+1 \equiv -p' \pmod{q}$, so that $p \equiv p'$ and

$$(5-2) \quad 2p^2+p+1 \equiv 0 \pmod{q}.$$

On the other hand, from $a \equiv d \pmod{r}$, we have $p-1 \equiv 2(s+1) \pmod{q}$, so that

$$(5-3) \quad p^2-3p-2 \equiv 0 \pmod{q}.$$

From (5-2) and (5-3), we have $7p \equiv -5 \pmod{q}$. Then $0 \equiv 7^2(p^2-3p-2) \equiv (7p)^2-21(7p)-98 \equiv 32 \pmod{q}$, so that $q \mid 32$ i.e. $r \mid 8$, a contradiction with $r=odd > 1$.

Case (C):

We have $p-1 \equiv 2(p+1)$, $p'-1 \equiv 2(s'+1)$, $s-1 \equiv -2(p'+1)$ and $s'-1 \equiv -2(s+1) \pmod{q}$. Hence $p \equiv -3$, $p'-2s' \equiv 3$, $2p'+s \equiv -1$ and $2s+s' \equiv -1 \pmod{q}$. From the last three congruences, we get $6 \equiv 2(p'-2s') \equiv 2p'-4s' \equiv -s-1-4(-2s-1) \equiv 7s+3 \pmod{q}$, so that $7s \equiv 3 \pmod{q}$ i.e. $3p \equiv 7 \pmod{q}$. Since $p \equiv -3 \pmod{q}$, we have $7 \equiv 3p \equiv -9 \pmod{q}$. Hence $q \mid 16$ i.e. $r \mid 4$, a contradiction.

Case (D):

From $a \equiv -c'$ and $a' \equiv -c \pmod{r}$ follows $p-1 \equiv -2(p'+1)$ and $p'-1 \equiv -2(p+1) \pmod{q}$, so that $p+2p' \equiv 2p+p' \equiv -1 \pmod{q}$. Hence $p \equiv p'$ and $3p \equiv -1 \pmod{q}$. From $b \equiv -d'$ and $b' \equiv -d \pmod{r}$, we get, in the same way, $3s \equiv -1 \pmod{q}$. Therefore $9 \equiv (3p)(3s) \equiv (-1)^2 \equiv -1 \pmod{q}$, so that $q \mid 8$ i.e. $r \mid 2$, a contradiction.

Case (E):

From $a' \equiv -d$ and $b' \equiv -c \pmod{r}$ follows $p'-1 \equiv -2(s+1)$ and $s'-1 \equiv -2(p+1) \pmod{q}$, so that $p'+2s \equiv -1$ and $s'+2p \equiv -1 \pmod{q}$. Hence $pp'+2 \equiv -p$ and $1+2pp' \equiv -p' \pmod{q}$. Eliminating pp' , we have

$$(5-4) \quad 2p-p' \equiv -3 \pmod{q}.$$

On the other hand, from $a \equiv -c' \pmod{r}$, we have

$$(5-5) \quad p+2p' \equiv -1 \pmod{q}.$$

From (5-4) and (5-5), we have $5p \equiv -7$ and $5p' \equiv 1 \pmod{q}$. Since $5^2(pp'+2) \equiv 5^2(-p) \pmod{q}$, we have $-7+50 \equiv 35 \pmod{q}$, so that $q \mid 8$, a contradiction.

This completes the proof in Case 3 and completes the proof of Theorem 3 also.

6. Appendix. We can prove Theorem 3, without Lemma 1, or without non-vanishing of Dirichlet's L-functions at $s=1$, directly from (2-5) in case q is a prime number ≥ 7 .

Assume q is prime ≥ 7 . Let $K=Q(\zeta)$, a cyclotomic field of degree $q-1$, and \mathcal{O} be the ring of algebraic integers of K . Then the prime q is totally ramified in K , more precisely, the principal ideal $(q)=q\mathcal{O}$ in \mathcal{O} is the $(q-1)$ -th power of prime ideal $(\lambda)=\lambda\mathcal{O}$; $(q)=(\lambda)^{q-1}$, where $\lambda=1-\zeta$ and the residue class field $\mathcal{O}/(\lambda)$ is isomorphic to $\mathbb{Z}/q\mathbb{Z}$. We have

$$\begin{aligned} 1-\zeta^k &= 1-(1-\lambda)^k \\ &= \lambda \sum_{j=1}^k \binom{k}{j} (-\lambda)^{j-1} \\ &= \lambda k \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{(-\lambda)^j}{j+1} \\ &= \lambda k \left(1 - \frac{k-1}{2} \lambda + \frac{(k-1)(k-2)}{6} \lambda^2 - \frac{(k-1)(k-2)(k-3)}{24} \lambda^3 \right. \\ &\quad \left. + \frac{(k-1)(k-2)(k-3)(k-4)}{120} \lambda^4 - \dots \right) \end{aligned}$$

for $k=1, 2, \dots, q-1$. Hence

$$\begin{aligned} (6-1) \quad \frac{\lambda}{1-\zeta^k} &= \frac{1}{k} \left(\sum_{j=0}^{k-1} \binom{k-1}{j} \frac{(-\lambda)^j}{j+1} \right)^{-1} \\ &= \frac{1}{k} \left(1 + \frac{k-1}{2} \lambda + \frac{k^2-1}{12} \lambda^2 + \frac{k^2-1}{24} \lambda^3 \right. \\ &\quad \left. - \frac{(k^2-1)(k^2-19)}{720} \lambda^4 - \dots \right), \end{aligned}$$

where the last series, as is easily seen from the fact that each $\binom{k-1}{j} \frac{1}{j+1} = \frac{1}{k} \binom{k}{j+1}$ is a λ -adic integer, converges λ -adically for $k=1, \dots, q-1$. From (2-5), we have

$$(6-2) \quad \lambda I_1 = \lambda I'_1.$$

As $\frac{\lambda}{1-\zeta^k}$ belongs to \mathcal{O} for $k=1, \dots, q-1$, both λI_1 and $\lambda I'_1$ are also in \mathcal{O} . Let

$$\begin{cases} \lambda I_1 = g_0 + g_1 \lambda + g_2 \lambda^2 + g_3 \lambda^3 + g_4 \lambda^4 + \dots \\ \lambda I'_1 = g'_0 + g'_1 \lambda + g'_2 \lambda^2 + g'_3 \lambda^3 + g'_4 \lambda^4 + \dots \end{cases}$$

be the λ -adic expansions of λI_1 and $\lambda I'_1$ respectively, where the representatives g_k and g'_k of $\mathcal{O}/(\lambda)$ are taken from $\{0, 1, \dots, q-1\}$. From (6-2), we have

$$(6-3) \quad g_k \equiv g'_k \pmod{q} \text{ for } k = 0, 1, \dots.$$

From (6-1), we get,

$$\begin{aligned} g_0 &\equiv \sum_k \frac{1}{k} \equiv \frac{1}{p-1} + \frac{1}{s-1} - \frac{1}{p+1} - \frac{1}{s+1} \\ &\equiv \frac{1}{p-1} + \frac{p}{1-p} - \frac{1}{p+1} - \frac{p}{1+p} \\ &\equiv -2 \pmod{q}, \\ g_1 &\equiv \frac{1}{2} \sum_k \left(1 - \frac{1}{k}\right) \equiv 2 - (-1) \equiv 3 \pmod{q}, \\ g_2 &\equiv \frac{1}{12} \sum_k \left(k - \frac{1}{k}\right) \equiv -\frac{1}{6} \pmod{q}, \\ g_3 &\equiv \frac{1}{24} \sum_k \left(k - \frac{1}{k}\right) \equiv -\frac{1}{12} \pmod{q}, \\ g_4 &\equiv -\frac{1}{720} \sum_k \left(k^3 - 20k + \frac{19}{k}\right) \equiv \frac{1}{120} (p^2 + s^2) - \frac{19}{360} \pmod{q}, \end{aligned}$$

where the summation is taken for $k=p-1, s-1, -p-1$ and $-s-1$, especially we see

$$\begin{aligned} \sum_k k &= (p-1) + (s-1) - (p+1) - (s+1) = -4 \\ \sum_k k^3 &= (p-1)^3 + (s-1)^3 - (p+1)^3 - (s+1)^3 \\ &= -6(p^2 + s^2) - 4. \end{aligned}$$

In the same way, we get

$$\begin{aligned} g'_0 &\equiv -2 \pmod{q}, \\ g'_1 &\equiv 3 \pmod{q}, \\ g'_2 &\equiv -\frac{1}{6} \pmod{q}, \\ g'_3 &\equiv -\frac{1}{12} \pmod{q} \text{ and} \\ g'_4 &\equiv \frac{1}{120} (p'^2 + s'^2) - \frac{19}{360} \pmod{q}. \end{aligned}$$

Comparing the case $k=4$ in (6-3), we have

$$(6-4) \quad p^2 + s^2 \equiv p'^2 + s'^2 \pmod{q}.$$

Since $ps \equiv p's' \equiv 1 \pmod{q}$, we have, from (6-4),

$$\begin{cases} (p+s)^2 \equiv (p'+s')^2 \pmod{q} \\ (p-s)^2 \equiv (p'-s')^2 \pmod{q}, \end{cases}$$

hence

$$(6-5) \quad \begin{cases} p+s \equiv \pm(p'+s') \pmod{q} \\ p-s \equiv \pm(p'-s') \pmod{q}, \end{cases}$$

where the signs are taken independently. Then we see easily, from (6-5), that

$$p \equiv \pm p' \text{ or } p \equiv \pm s' \pmod{q}.$$

Thus we get Theorem 3 for prime $q \geq 7$.

7. Spectrum of 3-dimensional lens spaces. In the course of the proof of Theorem 3, we have shown the following

Proposition. *Let q , p and p' be as in Section 0. Assume we have (2-1) and (2-2). Then $p \equiv \pm p'$ or $pp' \equiv \pm 1 \pmod{q}$.*

This proposition was the essential part of the proof of “Main Theorem” in [3] (cf. Lemma 4.4, Proposition 4.6), though only the case $q = l^n$ or $2 \cdot l^n$ had been shown there. Now we have proved completely

Theorem. *Let q be a positive integer. If two 3-dimensional lens spaces with fundamental group of order q are isospectral, then they are isometric to each other.*

References

- [1] A. Baker, B.J. Birch and E.A. Wirsing: *On a problem of Chowla*, J. Number Theory **5** (1973), 224–236.
- [2] S. Chowla: *A special infinite series*, Norske Vid. Selsk. Forh. **37** (1964), 85–87.
- [3] A. Ikeda and Y. Yamamoto: *On the spectra of 3-dimensional lens spaces*, Osaka J. Math. **16** (1979), 447–469.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan

