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1. Introduction

We are interested in the Cauchy problem

{
( ∂ ∂ ) ( ) = ( )
(0 ) = 0( ) ∂ (0 ) = 1( )

(CP)

on [0 ]× R where

( ∂ ∂ ) = 2( ∂ ∂ ) + 1( ∂ ∂ ) + ( )

2( ∂ ∂ ) = ∂2 −
∑

=1

( )∂ ∂

1( ∂ ∂ ) =
∑

=1

( )∂

We assume that ∈ ∞([0 ]), and ∈ ([0 ]; ∞(R )); moreover

( ξ) =
∑

=1

( )ξ ξ ≥ 0 ∀ξ ∈ R ∈ [0 ]

It is well known that the question of the∞ well posedness of the Cauchy problem
for general linear weakly hyperbolic equations is not settled. Restricting our attention
to the second order equations, there are two main difficulties in studying ∞ well
posedness of the Cauchy problem:
1) For the Cauchy problem to be∞ well posed, the lower order term must be dom-
inated in a suitable sense by the principal part of the operator (the so called Levi con-
ditions). For instance

− = 0

is not solvable in ∞ but only in Gevrey class of order 2.
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2) Oscillations of the coefficients of the principal symbol with respect to the time
variable can destroy the solvability in∞. For instance, in [5] they show by an ex-
ample that the Cauchy problem for

− ( ) = 0

where the function ( ) is ∞ verifying (0) = 0, ( ) > 0 for > 0 and has an
infinite number of oscillations as↓ 0, may be not locally solvable in ∞.

Thus in order to obtain positive results concerning the∞ well posedness, some
additional assumptions both on the principal symbol and on the lower order terms are
needed.

It is well known that the Cauchy problem is∞ well posed for any lower order
term if and only if it is effectively hyperbolic (see [9] and its bibliography) . We recall
that the effective hyperbolicity on our operator is equivalent to

∂2 ( ξ) > 0

whenever ( ξ) = 0, or we can express the condition as

2∑

=0

|∂ ( ξ)| 6= 0 ∀|ξ| = 1 ∈ [0 ]

In this note we assume that there is∈ N, ≥ 2 such that

(1.1)
∑

=0

|∂ ( ξ)| 6= 0 ∀|ξ| = 1 ∈ [0 ]

If > 2 and ∂ (¯ ξ̄) = 0, 0 ≤ < , ∂ (¯ ξ̄) 6= 0 then as noted above (see [7])
the lower order term ( ξ) must verify some conditions for the Cauchy problem to
be ∞ well posed.

Let us denote

( ξ) =
∑

=1

( )ξ

and introduce the following assumption on ( ξ):

(1.2) |∂α ( ξ)| ≤ α ( ξ)γ |ξ|1−2γ

for any α with

(1.3) γ =
− 2

2( − 1)
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For simplicity we also assume that ( ξ) = 0 for | | ≥ with some > 0. Then
we have

Theorem 1.1. Assume(1.1), (1.2) and (1.3). Then the Cauchy problem(CP)
is ∞ well posed.

Note that a positive result in this direction is obtained in [2] where the authors
studied the lower order terms (ξ) and ( ) which are independent of . They
showed the ∞ well posedness of the Cauchy problem under the conditions (1.1)
and (1.2) with

γ =
1
2
− 1

Moreover in [1] the authors considered the case of first orderterm ( ξ) inde-
pendent of , but zero order term ( ) depending on all the variables, obtaining ∞

well-posedness under the conditions (1.1) and (1.2) with

γ >
1
2
− 1

In the special case that = 1, (ξ1) = 2 ξ2
1 and ( ξ1) = νξ1, ( ) = 0, a

necessary and sufficient condition for the∞ well posedness is (see [7], [10]) that

| ( ξ1)| ≤ −1|ξ1|

with some > 0. This shows thatγ = 1/2− (1/ ) is optimal.
We note that when = 2 any lower order term verifies (1.2). This is a special

case of effectively hyperbolic case as we remarked before. On the other hand we get
γ = 1/2 formally when = +∞. The condition (1.2) withγ = 1/2 is sufficient for the

∞ well posedness for any ( ξ) ≥ 0 and ( ξ) analytic with respect to and
, if the space dimension is equal to 1 (see [8]), or, for every≥ 1, if ( ξ) ≥ 0

and ( ξ) depend, analytically, only on (see [3]).

2. Preliminaries

Assume (1.1) at = 0:

(2.1)
∑

=0

|∂ (0 ξ)| 6= 0 ∀|ξ| = 1

Let us set

˜( ξ) =
( ξ)
|ξ|2
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so that˜( ξ) is homogeneous of degree 0 inξ and start with

Lemma 2.1. There exist > 0, δ > 0 such that for any|ξ| = 1 one can find
0 ≤ (ξ) ≤ so that we have

• |∂ (ξ)˜( ξ)| ≥ , | | ≤ δ

• ∂ ˜( ξ) = 0, 0≤ < (ξ), | | ≤ δ has at most (ξ) − roots with respect to .

We first prove

Lemma 2.2. Let |ξ̄| = 1 be fixed. Then there exist0 ≤ ≤ , > 0, δ > 0 and
a neighborhood ofξ̄ such that

• |∂ ˜( ξ)| ≥ , | | ≤ δ ξ ∈
• ∂ ˜( ξ) = 0, 0≤ < , ξ ∈ , | | ≤ δ has at most − roots with respect to .

Proof. If ˜(0 ξ̄) 6= 0 the assertion is clear with = 0. Assume˜(0 ξ̄) = 0. From
(2.1) there is 1≤ ≤ such that

∂µ˜(0 ξ̄) = 0 0≤ µ < ∂ ˜(0 ξ̄) 6= 0

Hence one can choose> 0, δ( ) > 0 and a neighborhood ( ) of ξ̄ so that

|∂ ˜( ξ)| ≥ | | ≤ δ( ) ξ ∈ ( )

Consider∂ ˜( ξ) for 0 ≤ < . Note that

∂ (∂ ˜)(0 ξ̄) = 0 0≤ < − ∂ − (∂ ˜)(0 ξ̄) 6= 0

By the Malgrange preparation theorem, one can findδ( ) and a neighborhood ( ) of
ξ̄ such that one can write

∂ ˜( ξ) = ( )( ξ)
[

− + ˜( )
1 (ξ) − −1 + · · · + ˜( )

− (ξ)
]

for | | ≤ δ( ), ξ ∈ ( ) where˜( )
µ (ξ̄) = 0 and ( )( ξ) 6= 0 (for | | ≤ δ( ), ξ ∈ ( )).

Thus we conclude that ifξ ∈ ( ), | | ≤ δ( ) then∂ ˜( ξ) = 0 has at most − roots
with respect to . Now taking

δ = min
0≤ ≤

δ( ) =
⋂

=0

( )

we get the desired assertion.
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Proof of Lemma 2.1. From Lemma 2.2, for any|ξ| = 1, there exist 0≤ (ξ) ≤
, (ξ) > 0, δ(ξ) > 0 and a neighborhood (ξ) of ξ such that

|∂ (ξ)˜( η)| ≥ (ξ) for | | ≤ δ(ξ) η ∈ (ξ)

∂ ˜( η) = 0 0≤ < (ξ) η ∈ (ξ) has at most

(ξ) − roots with respect to in| | ≤ δ(ξ)

Since{|ξ| = 1} is compact one can findξ1 . . . ξ so that

{|ξ| = 1} ⊂
⋃

=1

(ξ )

Let us set

0< δ = min
1≤ ≤

δ(ξ ) = min
1≤ ≤

(ξ ) > 0

Then for any|ξ| = 1 there is such thatξ ∈ (ξ ). Taking (ξ) = (ξ ) we get the
desired assertion.

For < we set

(2.2) ( )( ; ξ) = max

( |˜( )( ξ)| + |ξ|−1

|˜( )( ξ)| + |ξ|−1

|˜( )( ξ)| + |ξ|−1

|˜( )( ξ)| + |ξ|−1

)

where˜( )( ξ) = ∂ ˜( ξ). It is obvious that

|ξ| ≥ ( )( ; ξ) ≥ 1

with some > 0. We define ( )( ξ) as follows: let be fixed (which will be de-
termined later). We set

(2.3) ( )( ξ) = sup
−1∑

=0

log ( )( +1; ξ)

where supremum is taken over all sequences{ } =0 such that

(2.4) 0≤ 0 ≤ 1 ≤ · · · ≤ ≤

Note that ( )( ξ) is an increasing function in by definition so that ( )( ξ) is
differentiable almost everywhere and

( )( ξ) ≥ 0 a.e.
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Let us put

( ξ) =
∑

=0

( )( ξ)

Then we have

( ξ) ≤ log (2 + |ξ|)

with some > 0. We now recall that̃ ( ξ) is non negative:

˜( ξ) ≥ 0

For < we put

∗( ; ξ) = max

(˜( ξ) + |ξ|−2

˜( ξ) + |ξ|−2

˜( ξ) + |ξ|−2

˜( ξ) + |ξ|−2

)

Define ∗( ξ) by the same formula (2.3) where ( )( +1; ξ) is replaced by
∗( +1; ξ).

Lemma 2.3.
∗( ξ) and

( )( ξ) are temperate, that is we have

∗( ξ) ≤ log (2 + |ξ − η|) + ∗( η)
( )( ξ) ≤ log (2 + |ξ − η|) + ( )( η)

with some > 0, for |ξ|, |η| ≥ 1.

Proof. We prove the first assertion. We fix a small 0< ǫ ≪ 1. When |ξ − η| ≥
ǫ|ξ| we proceed as follows. Note that

˜( ξ) + |ξ|−2

˜( ξ) + |ξ|−2
≤ |ξ|2 ≤ ǫ−2 |ξ − η|2

This shows that

∗( ; ξ) ≤ ǫ−2|ξ − η|2 ≤ ′(2 + |ξ − η|)2

Since ∗( ; η) ≥ 1 one gets

(2.5) ∗( ; ξ) ≤ ′(2 + |ξ − η|)2 ∗( ; η)

Let { } =0 be any sequence verifying (2.4). Then we have

−1∑

=0

log ∗( +1; ξ) ≤ ′′ log (2 + |ξ − η|) +
−1∑

=0

log ∗( +1; η)
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by (2.5). Since the right-hand side is bounded by

′′ log (2 + |ξ − η|) + ∗( η)

and { } =0 is arbitrary we get the desired assertion.
We turn to the case|ξ − η| ≤ ǫ|ξ| and hence −1|ξ| ≤ |η| ≤ |ξ| with some

> 0. It is enough to show that

(2.6) ˜( ξ) + |ξ|−2 ≤ (2 + |ξ − η|)3[˜( η) + |η|−2]

Assume that (2.6) is proved. Then exchangingξ and η and taking = one gets

(2.7) [̃ ( ξ) + |ξ|−2]−1 ≤ (2 + |ξ − η|)3[˜( η) + |η|−2]−1

Thus from (2.6) and (2.7) we have

(2.8) ∗( ; ξ) ≤ 2(2 + |ξ − η|)6 ∗( ; η)

The rest of the proof is just a repetition of the case|ξ−η| ≥ ǫ|ξ|. We now prove (2.6).
Let us recall that ( ξ) is homogeneous of degree 2 with respect toξ. By the Glaeser
inequality one has

|∂ξ ( ξ)| ≤
√

( ξ)

Hence we have

( ξ) ≤ ( η) + |ξ − η|
√

( η) + |ξ − η|2

from the Taylor expansion. Since 2
√

( η) ≤ ( η) + 1 it follows that

(2.9) ( ξ) + 1 ≤ [ ( η) + 1](2 + |ξ − η|)2

Noting −1|ξ| ≤ |η| ≤ |ξ| and multiplying (2.9) by|ξ|−2 we get (2.6). This com-
pletes the proof of the first assertion.

To prove the second assertion we use the following inequality in place of (2.6):

(2.10) | ( )( ξ)| + |ξ|−1 ≤ (2 + |ξ − η|)(| ( )( η)| + |η|−1)

To see (2.10) let us putφ( ξ) = ˜( )( ξ)|ξ|2. Since

φ( ξ) = φ( η) + (ξ − η) · ∇ξφ( η + θ(ξ − η))

we have

|φ( ξ)| ≤ |φ( η)| + |ξ − η||ξ|
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because −1|ξ| ≤ |η + θ(ξ − η)| ≤ |ξ|. Thus we have

|φ( ξ)| + |ξ| ≤ |φ( η)| + |η| + ˜ |ξ||ξ − η| ≤ ˜ (|φ( η)| + |η|)(2 + |ξ − η|)

recalling −1|ξ| ≤ |η| ≤ |ξ|. Multiplying |ξ|−2 to the above inequality we get the
desired result.

In what follows we take = 2 + 1.

Lemma 2.4. There is > 0 and > 0 such that we have for anyξ

[ ∗( ξ) +
]
≥ | ′( ξ)|

( ξ) + 1

[ ( ξ) + ] ≥ |ξ|2/

( ( ξ) + |ξ|)1/

in | | ≤ δ.

Proof. We prove the second assertion. From Lemma 2.1 for anyξ there is (ξ)
such that the assertion of Lemma 2.1 holds. Let (ξ) = 0 then one has

˜( ξ) ≥ | | ≤ δ

In this case the assertion holds obviously if we take> 0 large because

( ξ) ≥ 0

We show the assertion when (ξ) ≥ 1. From Lemma 2.1 it follows that̃ ( )( ξ) and
˜( +1)( ξ), 0 ≤ ≤ (ξ) − 1 have at most zeros in| | ≤ δ. Choosing 0 = 0, =
and 1 ≤ 2 ≤ · · · ≤ −1 to be the zeros of̃ ( )( ξ) and ˜( +1)( ξ) in (0 ) we get

∫

0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1

=
−1∑

=0

log ( )( +1; ξ) ≤ ( )( ξ)

On the other hand we have

(2.11) log ( )( ; ξ) ≤
∫ |˜( +1)(τ ξ)|

|˜( )(τ ξ)| + |ξ|−1 τ

for any < (see [4], proof of Lemma 2.2). This shows that

( )( ξ) ≤
∫

0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1
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Hence one gets

(2.12) ( )( ξ) =
∫

0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1

for 0 ≤ ≤ (ξ) − 1.
Now we have

( ξ) =
∑

= (ξ)

( )( ξ) +
(ξ)−1∑

=0

( )( ξ)

≥
(ξ)−1∑

=0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1

(2.13)

We note that

|˜( (ξ))( ξ)|
˜( ξ) + |ξ|−1

=
|˜( (ξ))( ξ)|

|˜( (ξ)−1)( ξ)| + |ξ|−1
· |˜

( (ξ)−1)( ξ)| + |ξ|−1

|˜( (ξ)−2)( ξ)| + |ξ|−1
· · · |˜

(1)( ξ)| + |ξ|−1

˜( ξ) + |ξ|−1

≤




(ξ)−1∑

=0

|˜( +1)( ξ)| + |ξ|−1

|˜( )( ξ)| + |ξ|−1




(ξ)

≤


 (ξ) +

(ξ)−1∑

=0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1




(ξ)

≤


 +

(ξ)−1∑

=0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1




Since |˜( (ξ))( ξ)| ≥ in | | ≤ δ by Lemma 2.1 it follows that

(˜( ξ) + |ξ|−1)1/
≤


 +

(ξ)−1∑

=0

|˜( +1)( ξ)|
|˜( )( ξ)| + |ξ|−1




Thanks to (2.13), the right-hand side is estimated by

( + ( ξ))

and this proves the assertion.

Lemma 2.5. We have

|ξ|2/ ≤ ( ( ξ) + |ξ|2/ )1/2 |ξ|2/

( ( ξ) + |ξ|)1/
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Let γ = ( − 2)/2( − 1). Then we have

( ξ)γ|ξ|1−2γ ≤ ( ( ξ) + |ξ|2/ )1/2 |ξ|2/

( ( ξ) + |ξ|)1/

Proof. The first assertion is obvious because

( ( ξ) + |ξ|)1/

( ( ξ) + |ξ|2/ )1/2

is bounded since ≥ 2.
We prove the second assertion. Noticing 1−2γ−2/ = −2γ/ it suffices to show

( ( ξ)
|ξ|2

)γ

≤ ( ( ξ) + |ξ|2/ ) /2

( ξ) + |ξ|

or rather

( ξ) γ |ξ|−2γ( ( ξ) + |ξ|) ≤ ( ( ξ) /2 + |ξ|)

Since γ + 1− /2 = ( − 2)/(2( − 1)) = γ it is clear that

( ξ) γ+1|ξ|−2γ =
( ( ξ)

|ξ|2
)γ

( ξ) /2 ≤ ( ( ξ) /2 + |ξ|)

On the other hand, remarking that = 1/(2γ) > 1, = 1/(1 − 2γ) > 1 because
0 ≤ γ < 1/2 we have from the Young’s inequality that

( ξ) γ|ξ|1−2γ ≤ 2γ ( ξ) γ + (1− 2γ)|ξ|(1−2γ) ≤ ( ( ξ) /2 + |ξ|)

This proves the assertion.

3. Energy estimate

In this section we prove Theorem 1.1. We apply the Fourier transform with re-
spect to the space variable to the equation, thus we obtain the following ordinary dif-
ferential equation in , depending on the parameterξ

(3.1) ′′ + ( ξ) + ̂ +̂ = ̂

where denotes the Fourier transform of with respect to and the symbol ̂ de-
notes the Fourier transform with respect to .

We consider the following energy function

(3.2) E( ) =
∫

R

˜ ( ξ) ξ =
∫

R
( ξ) ( ξ) ξ
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with

( ξ) = | ′( ξ)|2 + ( ( ξ) + |ξ|2/ + 1)| ( ξ)|2

and

( ξ) = ( ξ)

where

( ξ) = − − ∗( ξ) − ( ξ)

Differentiating E( ) with respect to the time we have

E ′( ) =
∫

R

( ′( ξ) + ′( ξ) ( ξ)
)

( ξ) ξ

Note that

′ = 2 Re( ′′ ′) + 2 Re( ′ )( + |ξ|2/ + 1) + ′| |2

and using (3.1) we have

′( ξ) ≤ 2|̂|| ′| + 2|̂|| ′| + 2|̂|| ′| + 2|ξ|2/ | || ′| + 2| || ′| + | ′|| |2

Since

− ′ ≥ | ′( ξ)|
( ξ) + 1

+
|ξ|2/

( ( ξ) + |ξ|)1/
+ 1

from Lemma 2.5 it follows that

2|ξ|2/ | || ′| ≤ |ξ|2/

( + |ξ|)1/
(( + |ξ|2/ )| |2 + | ′|2) ≤ − ′( ξ) ( ξ)

Now we use the following estimates

2|̂|| ′| ≤ |̂|2 + 2|̂|| ′| ≤ |̂ |2 + 2| || ′| ≤

Thus we obtain

(3.3) ′ ≤ 2|̂|| ′| + |̂|2 − ′ + |̂|2

We now estimate

2
∫

(|̂( ξ)|| ′( ξ)| + |̂( ξ)|2) ( ξ) ξ
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Let us recall that

(3.4) |∂α ( ξ)| ≤ α ( ξ)γ |ξ|1−2γ

for everyα. We denote

̂( η ξ) =
∫

− η ( ξ)

Note that, by integration by parts, for any we have

(3.5) |̂( η ξ)| ≤ (2 + |η|)− ( ξ)γ |ξ|1−2γ

Lemma 3.1. Assume(3.4). Then we have

∫

|ξ|≥1
|̂( ξ)|| ′( ξ)| ( ξ) ξ ≤ −

∫
′( ξ) ( ξ) ( ξ) ξ

with some > 0.

Proof. Note that

2
∫

|ξ|≥1
|̂|| ′| ( ξ) ξ

≤
∫

|ξ|≥1

( + |ξ|)1/

|ξ|2/
|̂|2 ( ξ) ξ +

∫ |ξ|2/

( + |ξ|)1/
| ′|2 ( ξ) ξ

From Lemma 2.4 the second term of the right-hand side is bounded by

−
∫

′( ξ) ( ξ) ( ξ) ξ

Thus it is enough to show that

∫

|ξ|≥1

( ( ξ) + |ξ|)1/

|ξ|2/
|̂( ξ)|2 ( ξ) ξ ≤ −

∫
′( ξ) ( ξ) ( ξ) ξ

Note that

|̂( ξ)|2 =

∣∣∣∣
∫
̂( ξ − η η)̂( η) η

∣∣∣∣
2

≤
∫

(2 + |ξ − η|)− 1 η

∫
(2 + |ξ − η|) 1|̂( ξ − η η)|2|̂( η)|2 η
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≤
∫

(2 + |ξ − η|) 1|̂( ξ − η η)|2|̂( η)|2 η

From Lemma 2.3 it follows that

( ξ) ≤ (2 + |ξ − η|) 2 ( η)

It is easy to check that

( ( ξ) + |ξ|)1/

|ξ|2/
≤ (2 + |ξ − η|) 3

( ( η) + |η|)1/

|η|2/

for |ξ|, |η| ≥ 1. Then using these estimates one gets

∫

|ξ|≥1

( ( ξ) + |ξ|)1/

|ξ|2/
|̂( ξ)|2 ( ξ) ξ

≤
∫

(2 + |ξ − η|) 1+ 2+ 3
( ( η) + |η|)1/

|η|2/
|̂( ξ − η η)|2|̂( η)|2 ( η) ξ η

From (3.5) and Lemma 2.5 it follows that

(3.6) |̂( ξ − η η)|2 ≤ (2 + |ξ − η|)−2 ( ( η) + |η|2/ )
( ( η) + |η|)2/

|η|4/

We plug the estimate (3.6) into the above estimate to get

∫
(2 + |ξ − η|) −2 ( ( η) + |η|2/ )

( ( η) + |η|)1/
|η|2/ |̂( η)|2 ( η) ξ η

≤ ′
∫

( ( η) + |η|2/ )
( ( η) + |η|)1/

|η|2/ |̂( η)|2 ( η) η

where = 1 + 2 + 3 and we have taken so that − 2 < − . This proves the
assertion because

− ′( η) ≥ |η|2/

( ( η) + |η|)1/

Lemma 3.2. We have
∫

|̂( ξ)|2 ( ξ) ξ ≤
∫

|̂( ξ)|2 ( ξ) ξ

with some > 0.

Proof. Since ( ξ) ≤ 1(2 + |ξ − η|) 2 ( η) we see
∫

|̂( ξ)|2 ( ξ) ξ
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≤
∫

( ξ)
∫

|̂ ( ξ − η)||̂( η)|2 η ξ

∫
|̂ ( η1)| η1

≤ 1

∫∫
( η)|̂( η)|2|̂ ( ξ − η)|(2 + |ξ − η|) 2 η ξ

≤ 2

∫
( η)|̂( η)|2 η

∫
|̂ ( ξ)|(2 + |ξ|) 2 ξ

≤ 3

∫
( η)|̂( η)|2 η

Multiply the inequality (3.3) by ( ξ) and integrate with respect toξ. In view of
Lemma 3.1 and Lemma 3.2 one has

∫
′ ξ ≤ − ′′

∫
′ ξ +

∫
|̂|2 ξ

Taking ≥ ′′ in the definition of energy we conclude that

E ′( ) ≤
∫

|̂( ξ)|2 ( ξ) ξ
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