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Abstract
We derive a holomorphic spinor representation formula for spacelike surfaces of

constant mean curvature 1 in de Sitter 3-space, and use it to construct examples of
spacelike catenoids and trinoids with constant mean curvature 1.

1. Introduction

Spacelike surfaces of constant mean curvature (CMC) in pseudo-Riemannian space
forms share many interesting properties in common with CMC surfaces in Riemann-
ian space forms. In particular, there exist representationtheorems by null holomorphic
maps for minimal surfaces in Euclidean 3-spaceE3 [15], CMC 1 surfaces in hyper-
bolic 3-spaceH3(�1) [5] [20], spacelike maximal surfaces in Lorentzian 3-space L3

[10] [14], and spacelike CMC 1 surfaces in de Sitter 3-spaceS3
1(1) [1] [12], which

enable us to use the powerful complex function theory for studying those surfaces.
Even though it is invaluable to have a large collection of examples for a well-

developed surface theory, not many examples ofglobal spacelike surfaces of CMC 1
in S3

1(1) are known to this date. A reason might be that, unlike the Riemannian counter-
parts, spacelike CMC 1 surfaces inS3

1(1) are not complete in general, and people
have not paid much attention. The only complete spacelike surfaces of CMC 1 inS3

1(1)
are totally umbilic flat surfaces [2] [17].

If we allow some sort of singularities, however, for CMC surfaces in pseudo-
Riemannian space forms we may expect to have many interesting examples. For ex-
ample, Umehara and Yamada recently studied maximal surfaces with singularities in
L3 and showed that there are interesting examples of such surfaces [24]. For spacelike
surfaces inS3

1(1), R. Aiyama and K. Akutagawa noted in [1] that the same nullholo-
morphic map produces both CMC 1 surfaces inH3(�1) and spacelike CMC 1 surfaces
in S3

1(1), hence there is a local one-to-one correspondence between them. The first
named author further developed local theories of CMC 1 spacelike surfaces inS3

1(1)
[12] [13] in comparison with the CMC 1 surfaces inH3(�1). Through their study it
is naturally expected thatglobal CMC 1 spacelike surfaceswith some sort of singu-
larities may be obtained by transferring the data for CMC 1 surfaces in hyperbolic
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Fig. 1. Horosphere, catenoid, trinoid in the hollow ball model
of S3

1(1). See the last paragraph in Section 2 for the description
of the hollow ball model. The three circles represent the future
ideal boundary.

3-space if the period problem can be solved.
One of the interesting classes of CMC surfaces are trinoids. Umehara and

Yamada gave a full classification of irreducible CMC 1 trinoids in H3(�1) [23]. Then,
Bobenko, Pavlyukevich, and Springborn developed a representation formula for CMC 1
surfaces inH3(�1) in terms of holomorphic spinors and derived explicit formulae for
CMC 1 catenoids and trinoids inH3(�1) in [4]. Since the pioneering work of Bryant
in 1987 [5], the main technique of constructing CMC 1 surfacesin H3(�1) has been
Bryant’s representation theorem, or variants of it, which consists of finding a null holo-
morphic 9 by integrating9�1d9 given in terms of a holomorphic function and a
holomorphic one-form. Bobenko, Pavlyukevich, and Springborn noted that it is more
efficient to integrate (d9)9�1 given in terms of spinors when one wants to find an
explicit formula of9. The basic reason for this phenomenon is that the data (d9)9�1

is geometric, and is well defined on the same Riemann surface as the conformal im-
mersion that9 represents. Rossman, Umehara, and Yamada already knew and used
the equation (d9)9�1 to construct CMC surfaces inH3

1(�1) [18], but they interpreted
it as the data for the dual surface. The second named author also integrates (d9)9�1

to construct Bj̈orling representation formulae for CMC 1 surfaces inH3(�1) and in
S3

1(1) [25].
Motivated by the results of [4], we develop in this article a representation for-

mula for CMC 1 spacelike surfaces inS3
1(1) in terms of holomorphic spinors, and

use it to derive explicit formulae for CMC 1 spacelike surfaces of two-noid or trinoid
type in S3

1(1). In the process, we rediscover the horosphere type surfaces as degenerate
catenoids, which already appear in [2] [17]. In our work, we were able to use without
significant modifications many ideas and complicated computational results carried out
in [4]. We are certainly indebted to them for their work.

A substantial amount of our work is to determine when the explicit solutions of
the spinorial equation derived in [4] parameterized on the universal cover ofĈnf0;1g
or of Ĉ n f0;1;1g can produce CMC 1 surfaces inS3

1(1). We could completely char-
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acterize when they do.1 It turns out that the period problem for CMC 1 two-noids and
trinoids in S3

1(1) can be solved in much more cases than for CMC 1 two-noids and
trinoids in H3(�1). Furthermore, we found that, in contrast toH3(�1), there appear
to be catenoidal ends inS3

1(1) with abnormal behavior. It oscillates between the future
and past ideal boundaries ofS3

1(1) infinitely many times. See Fig. 2 and comments be-
fore Definition 10. So there exists a much richer structure for two-noids and trinoids
in S3

1(1) than inH3(�1).

Note that a spacelike surface has a natural orientation. In computing the mean cur-
vature in this article, we choose the future, or past, pointing unit normal vector field
if a secondary Gauß mapg satisfiesjgj < 1, or jgj > 1, respectively. The precise
definition of g is given in Section 4. Ifjgj = 1, we get singularities. The existence of
singularities distinguishes the theory of global spacelike surfaces in pseudo-Riemannian
spaces from the theory of complete surfaces in Riemannian spaces. See Fig. 1, where
a catenoid is clipped so that the conic singularity is visible. Ferńandez, Ĺopez, and
Souam studied maximal surfaces with isolated singularities in L3 [6]. Umehara and
Yamada gave full criteria for a singularity of maximal surfaces inL3 to be a cuspidal
edge or a swallowtail [24]. Clarifying the nature of the singularities for CMC 1 sur-
faces inS3

1(1) requires further study. Recently, Fujimori developed in [7] a theory of
spacelike CMC 1 surfaces with singularities inS3

1(1), and constructed numerous exam-
ples by transferring the CMC 1 surfaces inH3(�1) with a holomorphic null lift with
the monodromy representation in U(1).

Construction and classification of trinoids in de Sitter three-space are not complete
yet, since in this article we assume above all things that theeigenvalues of the mono-
dromy matrices are not half integers as in [4]. Further casesas well as the study of
singularities will be studied in [8] with a different method.

2. Preliminaries

Let L4 be the Minkowski 4-space with rectangular coordinatesx0; x1; x2; x3 and
the standard Lorentzian metrich ; i of signature (�;+;+;+) given by the quadratic
form �(x0)2 + (x1)2 + (x2)2 + (x3)2. The de Sitter 3-spaceS3

1(1) is a complete time-
like pseudo-Riemannian 3-manifold of sectional curvature1 that can be realized as the
hyperboloid of one sheet inL4:

S3
1(1) =

�
(x0; x1; x2; x3) 2 L4 : �(x0)2 + (x1)2 + (x2)2 + (x3)2 = 1

	:
Let SO(3;1)+ be the identity component of the special Lorentz group

SO(3;1) =
�
A 2 GL(4;R) : detA = 1; hAv;Awi = hv;wi for any v;w 2 L4

	:
1Recently, S. Fujimori found out that we missed one case for two-noids [8].
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v = (x0; x1; x2; x3) 2 L4 can be identified with the 2� 2 Hermitian matrix

�
x0 + x3 x1 + i x2

x1� i x2 x0 � x3

�
=

3X
�=0

x���;
where�� are the Pauli spin matrices

�0 =

�
1 0
0 1

� ; �1 =

�
0 1
1 0

� ; �2 =

�
0 i�i 0

� ; �3 =

�
1 0
0 �1

� :
In terms of the corresponding matrices, the inner producth ; i of L4 satisfies

hv; vi = �detv:
Under this identification, de Sitter 3-spaceS3

1(1) is represented as

S3
1(1) = fg�3g� : g 2 SL(2;C)g; where g� := ḡt :

The complex special linear group SL(2;C) acts isometrically onL4 via theC1 action:

SL(2;C)� L4! L4; (g; v) 7! gvg�; g 2 SL(2;C); v 2 L4:
This action induces a double covering SL(2;C)! SO(3;1)+ of the identity com-

ponent of the special Lorentz groupSO(3;1).
Any smooth spacelike surface inS3

1(1) has a natural orientation. Given a smooth
spacelike surfacef : M ! S3

1(1), we choose a conformal structure with local coor-
dinatesz = x + iy such that the future pointing unit normal vector fieldN satisfies
det(N; fx; fy; f ) > 0. The first and second fundamental forms are

I = hd f;d f i = eu dz d̄z = eujdzj2; II = �hd f;d Ni = Q dz2 + Heu dz d̄z + Q̄ dz̄2;
where the quadratic 1-formQ dz2 := h fzz; Nidz2 is the Hopf differential and H :=
2e�uh fzz̄; Ni is the mean curvature. The Gauß-Weingarten equations are

(1) fzz = uz fz� QN; fzz̄ = �1

2
eu f � 1

2
HeuN; Nz = �H fz� 2e�u Q fz̄:

For visualization, we identifyS3
1(1) with the hollow balle��=2 < q

y2
1 + y2

2 + y2
3 <

e�=2 via the following formula [25]:

yk =
etan�1 x0q

1 + x2
0

xk; k = 1;2;3:
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3. An adapted spinor frame representation

Let f : M ! S3
1(1) be as in the previous section. Then, by the doubling cover-

ing, there exists a liftF : U ! SL(2;C), called a local adapted framing off , of the
orthonormal frame field

F =
�
N;e�u=2 fx;e�u=2 fy; f

�
: M ! SO(3;1)+;

whereU is an oriented and simply-connected open set inM, such that

(2) F�0F� = F F� = N; F�1F� = e�u=2 fx; F�2F� = e�u=2 fy; F�3F� = f:
Note that trF F� > 0 for any F 2 SL(2;C), henceF F� is future pointing.

Let � = F�1 d F = F�1Fz dz + F�1Fz̄ dz̄: TU ! sl(2;C) be the Maurer-Cartan
form. By calculating (fz)z; ( fz)z̄; Nz from (2) and comparing the results with (1),
we see
(3)

F�1Fz =

0
B�

uz

4
�1

2
(H + 1)eu=2

�Qe�u=2 �uz

4

1
CA ; F�1Fz̄ =

0
B� �uz̄

4
�Q̄e�u=2

�1

2
(H � 1)eu=2 uz̄

4

1
CA :

The Maurer-Cartan equationd� +� ^� = 0 and the Gauß-Codazzi equations

(4) uzz̄� 1

2
(H2� 1)eu + 2e�u QQ̄ = 0; Qz̄ =

1

2
eu Hz

are equivalent. We immediately see thatf : M ! S3
1(1) has constant mean curvature

if and only if the Hopf differential is holomorphic, i.e.,Qz̄ = 0.
We observe from (2) that

d f = fz dz+ fz̄ dz̄ = eu=4F

�
0 dz
dz̄ 0

� �
eu=4F

��:
Let 8 := eu=4F . Then the spinor

(5) 8�pdz 0
0
p

dz̄

�

is well-defined globally on the Riemann surfaceM, while F is not. (For more details,
see, for example, [12].) Note that det8 = eu=2. In sum, we have

Theorem 1. A smooth conformal spacelike immersion f: M ! S3
1(1) defines,

uniquely up to sign, a spinor (5) on M such that locally

(6) f = e�u=28�38�; d f = 8� 0 dz
dz̄ 0

�8�; N = e�u=288�:
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Furthermore, det8 = eu=2 and8 satisfies the following Lax equations
(7)

8�18z =

0
� uz

2
�1

2
(H + 1)eu=2

�Qe�u=2 0

1
A ; 8�18z̄ =

0
B� 0 �Q̄e�u=2
�1

2
(H � 1)eu=2 uz̄

2

1
CA :

Conversely, consider a spinor on M given locally by(5). Suppose that8 satisfies(7)
where eu=2 := det8. Then the formulae(6) describe a conformally parameterized
spacelike surface inS3

1(1).

4. A holomorphic spinor representation for spacelike surfaces of CMC 1

Let f : M ! S3
1(1) be as in Theorem 1, and suppose further thatf has CMC 1

with respect to the (future pointing) unit normalN.
Let 8 =

�
P R
Q S

�
be the one given by the theorem. From the second equation in (7),

we see that the entriesP and Q are holomorphic spinors onM. From the first equa-
tion in (7), we see

Pz =
uz

2
P� Qe�u=2R; Qz =

uz

2
Q� Qe�u=2S;

hence the holomorphic spinors are related to Hopf differential by the equation

PzQ� PQz = Q:
The Gauß-Codazzi equations (4) withH = 1 are invariant under the transformation

(8) Q! �Q; eu ! j�j2eu for any � 2 C n f0g:
Thus, every CMC 1 spacelike surfacef in S3

1(1) has a two-parameter familyf� of de-
formations (8) within the CMC 1 class. LetF� : U ! SL(2;C) be the corresponding
lift and let 8� := eu=4F�. Then, det8� = eu=2 and

(9) 8�1� (8�)z =

0
BB�

uz

2
�j�jeu=2

� �j�je�u=2Q 0

1
CCA ; 8�1� (8�)z̄ =

0
BB�0 � �̄j�je�u=2Q̄

0
uz̄

2

1
CCA :

Note that

(10) 81 = 8 =

�
P R
Q S

� :
Now let �! 0 while � > 0. The corresponding equations

det80 = eu=2; 8�1
0 (80)z =

0
� uz

2
0

�e�u=2Q 0

1
A ; 8�1

0 (80)z̄ =

0
�0 �e�u=2Q̄

0
uz̄

2

1
A
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have solutions of the form

(11) 80 =

�
p q̄
q p̄

� ;
where p and q are holomorphic spinors on the universal covereM of M, and we
see that

(12) eu=2 = jpj2� jqj2; Q = pzq� pqz:
Note that this impliesjp=qj > 1.

Proposition 2. 9 := 818�1
0 : eM ! SL(2;C) is holomorphic, and satisfies:

9z = 9 �pq �p2

q2 �pq

� ;(13)

9z =

�
PQ �P2

Q2 �PQ

�9;(14)

where p;q are the holomorphic spinors oneM given by(11), and P;Q are the holo-
morphic spinors on M given by(10). Furthermore, f = 9�39�.

Proof. 9 is holomorphic since9z̄ =
�818�1

0

�
z̄ = 81

�8�1
1 (81)z̄�8�1

0 (80)z̄
�8�1

0 =
0. Now we observe that

9z = 81
�8�1

1 (81)z�8�1
0 (80)z

�8�1
0 = eu=281

�
0 �1
0 0

�8�1
0 :

Thus, using det80 = det81 = eu=2,

9�19z = eu=280

�
0 �1
0 0

�8�1
0 ; 9z9�1 = eu=281

�
0 �1
0 0

�8�1
1 ;

from which (13), (14) follow. Since8�1
0 �3(8�

0)�1 = e�u=2�3, we have 9�39� =
e�u=281�38�

1 = f .

Consider the maximal analytic extension of9, and call it again9. Recall that the
metric of f = 9�39� is I = eujdzj2 = (jpj2� jqj2)2jdzj2. Since (12) impliesjp=qj > 1,9 must be restricted on an appropriate domain ineM in order for9�39� to be smooth
(and connected). However, note that

e�u=2808�
0 =

1jp=qj2� 1

0
BBB�

1 +

����pq
����
2

2
p
q

2

�
p
q

�
1 +

����pq
����
2

1
CCCA ;
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henceN = e�u=2818�
1 = 9(e�u=2808�

0)9� is past pointing ifjp=qj < 1.
It turns out that still on other regions ofeM , 9�39� is of CMC 1 with respect

to the future pointing unit normal ifjp=qj > 1, but with respect to the past pointing
unit normal if jp=qj < 1. That is,9�39� has singularities on regions ofeM wherejp=qj = 1 but is smooth and of CMC 1 elsewhere. Combining all these we can state a
global representation theorem. Recall that

SU(1;1) := fU 2 SL(2;C) : U�3U� = �3g =

��
b̄ a
ā b

�
: a;b 2 C; bb̄� aā = 1

� :
Theorem 3. Let f : M ! S3

1(1) be a smooth spacelike surface inS3
1(1) of CMC 1

with respect to the future pointing unit normal, and let P;Q be the holomorphic
spinors on M given inProposition 2.Then f = 9�39�, where9 is a solution of the
equation(14). 9 is unique up to right multiplication bySU(1;1).

Conversely, let P and Q be two holomorphic spinors with the same spin struc-
ture on a Riemann surface M. Suppose that9 : eM ! SL(2;C) is a solution to the
equation(14) where eM is the universal cover of M. Then f := 9�39� : eM ! S3

1(1)
defines a smooth spacelike immersion intoS3

1(1) on the region of eM wherej(9�1 d9)12=(9�1 d9)22j 6= 1, and it is of CMC1 with respect to the

8>>><
>>>:

future pointing unit normal vector field if

���� (9�1 d9)12

(9�1 d9)22

���� > 1;
past pointing unit normal vector field if

���� (9�1 d9)12

(9�1 d9)22

���� < 1:
The equation (13) can be rewritten, by lettingg = (9�1d9)12=(9�1 d9)22 = p=q

and! = (9�1 d9)21 = q2 dz, as

9�1 d9 =

�
1 �g

g�1 �1

�
g!:

The mapg, or its inverse in some articles, is called thesecondary Gauß map. In fact,
there is a 1 : 1 correspondence, so-calledLawson type correspondence, between space-
like CMC 1 surfaces inS3

1(1) and spacelike maximal surfaces inL3, and the mapg
coincides with the projected Gauß map of corresponding spacelike maximal surface in
L3. See [12] for more details. The ordered pair (g; !) of a holomorphic mapg and
a holomorphic 1-form! is used as theWeierstraß datafor the CMC 1 spacelike sur-
face f in [12]. However,g and ! are not well-defined on the same Riemann surface
M on which the conformal spacelike immersionf is defined (they are well-defined
on the universal covereM of M). On the other hand, the hyperbolic Gauß mapG =
(d99�1)12=(d99�1)22 = P=Q and the holomorphic 1-form� = (d99�1)21 = Q2 dz
are well-defined on the Riemann surfaceM itself. (In some articles, the hyperbolic
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Gauß map is defined to beQ=P.) In terms of these, the equation (14) can be written

(d9)9�1 =

�
1 �G

G�1 �1

�
G�:

In this paper, the ordered pair (G; �), or equivalently (P;Q), is used as the Weierstraß
data for CMC 1 spacelike surfacef . Note that in [12], (G; �) is used as the
Weierstraß data not for the immersionf itself but for thedual CMC 1 spacelike sur-
face f ℄.

Note that if9 is a solution of (14) and9i := �i9, then

9 0
19�1

1 =

��PQ Q2

�P2 PQ

� ; 91�39�
1 = �1

�9�39�� � �1 ;
9 0

29�1
2 =

��PQ �Q2

P2 PQ

� ; 92�39�
2 = �2

�9�39�� � �2 ;
9 0

39�1
3 =

�
PQ P2

�Q2 �PQ

� ; 93�39�
3 = �3

�9�39�� � �3 :
Since we will use the techniques and results of [4], we will consider the following
form of the spinor equation in the rest of this paper:

(15) 9 09�1 =

�
PQ P2

�Q2 �PQ

� :
Note that�3

�
x0+x3 x1+i x2

x1�i x2 x0�x3

� � �3 =
�

x0+x3 �x1�i x2�x1+i x2 x0�x3

�
. That is, the action of�3 on L4 maps

(x0; x1; x2; x3) to (x0;�x1;�x2; x3).

5. Catenoids

In this section, we describe some CMC 1 surfaces which we call catenoids, moti-
vated by [4]. They are the images of

9�39� : Ĉ n f0;1g ! S3
1(1)

where9 satisfies (15) with

P =
p0

z
+ p1; Q =

q0

z
+ q1; where p0; p1;q0;q1 2 C and p0q1 � p1q0 6= 0:

It should be remarked thatp0 or q0 may be 0. The case ofp0q1 � p1q0 = 0 will be
treated in the next section.
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A particular solution of (15) with these data is (cf. [4])

9(z) := cB(z)

�
z1=2 0
0 z�1=2

�
C

�
z� 0
0 z��

�

where

� =
1

2

p
1 + 4(p0q1 � p1q0); c =

r
p0q1 � p1q0

2� ;

B(z) =

0
BB�

p0

z
+ p1 p0

p0q1 � p1q0

��q0

z
+ q1

� �q0

p0q1 � p1q0

1
CCA; C =

0
B�

2�� 1

2(p0q1 � p1q0)

�(2� + 1)

2(p0q1 � p1q0)

1 1

1
CA:

The general solution is9R(z) := 9(z)R with R 2 SL(2;C). This 9R is in general
not well defined onĈ n f0;1g. Suppose9R transforms toe9R as z traverses once
around 0 counterclockwise. Then,e9R = 9RMR, where the monodromy matrixMR is�R�1

�
e2� i� 0

0 e�2� i� � R. And, e9R�3e9�
R = 9R�39�

R if and only if MR�3M�
R = �3. Note

that p0q1 � p1q0 6= 0 implies � 6= �1=2. Now we classifyR such that9R�39�
R is

well defined onĈ n f0;1g. In the following, R� = R n f0g.
Theorem 4. (i) If � 2 (1=2)Z but � 6= �1=2, then MR�3M�

R = �3 for any
R 2 SL(2;C).

(ii) If � 2 R n (1=2)Z, then MR�3M�
R = �3 if and only if R =

�
es 0
0 e�s

�
S or R =�

0 es�e�s 0

�
S for some s2 R and S2 SU(1;1).

(iii) If � 2 (1=2)Z� i R�, then MR�3M�
R = �3 if and only if R= 1=p2

�
e�i �e�i

e��i e��i

�
S for

some� 2 R and S2 SU(1;1).
(iv) If � 2 R n (1=2)Z� i R�, then MR�3M�

R 6= �3 for any R2 SL(2;C).

Proof. From the definition ofMR, we have thatMR�3M�
R = �3 if and only if

(16) R�3R� =

�
e2� i� 0

0 e�2� i�
�

R�3R� �e2� i� 0
0 e�2� i�

�� :
(i) follows immediately. Now suppose� 2 C n (1=2)Z and R 2 SL(2;C) satis-

fies (16). Since R�3R� is Hermitian, we may writeR�3R� =
�

r11 r12

r12 r22

�
for some

r11; r22 2 R and r12 2 C. Then (16) is equal to

(17)

�
r11 r12

r12 r22

�
=

�
e2� i (���̄)r11 e2� i (�+�̄)r12

e�2� i (�+�̄)r12 e�2� i (���̄)r22

� :
Since detR�3R� = �1, at least one ofr11 and r12 is nonzero. If both of them are
nonzero, then (1;1)-components imply that� � �̄ 2 Z and (1;2)-components imply
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Fig. 2. Catenoid withp0 = �q1 = 1 and p1 = q0 = 0, and� =�=2. The figure is the image ofz = rei � where e�3 < r < e3,
0� � � � and 1< r < e3, 0� � � � , respectively.

that � + �̄ 2 Z, hence 2� 2 Z, which is not under consideration. So we may assume
without loss of generality that exactly one of them is nonzero.

Supposer11 6= 0. Thenr12 = 0, and (1;1)-components of (17) imply that� 2 R.

Since detR�3R� = �1, we haveR�3R� = � � e2s 0
0 �e�2s

�
for somes 2 R. (ii) follows.

Supposer11 = 0. Then,r12 6= 0, which imply thatRe� 2 (1=2)Z. ((iv) follows.) If
r22 6= 0 in this case, then� 2 R, hence� = Re� 2 (1=2)Z, which is not a case under

consideration. Therefore,R�3R� =
�

0 e2�i

e�2�i 0

�
for some� 2 R, and (iii) follows.

It is clear that for any � 2 C there are p0; p1;q0;q1 with � = (1=2)�p1 + 4(p0q1 � p1q0).
Through computer graphics we see only conic singularities occur. At this moment

we are not completely sure if they are the only kind of singularities that are allowed
for catenoids, though we believe that is the case.

The most interesting phenomenon is the behavior of the ends when � 2 (1=2)Z�
i R�. The ends oscillate between the future and past boundaries of S3

1(1). The right pic-
ture in Fig. 2 shows half of the end atz = 1. See Section 7 where we provide a
complete analysis of the behavior of arbitrary catenoidal ends.

6. When catenoids degenerate

In this section, we consider solutions9 of (15) with P = p0=z+ p1;Q = q0=z+q1
with p0q1 � p1q0 = 0. Note that the condition implies thatQ = �P or P = �Q for
some� 2 C. This again implies that the hyperbolic Gauß map is constant, (which
characterizes the horospheres inH3(�1)). They arise as the catenoids constructed in
the previous section degenerate asp0q1 � p1q0! 0.

Consider (15) with

(18) P =
p0

z
+ p1; Q = �P; p0; p1; � 2 C:
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By changing z to 1=z if necessary, we may assume without loss of generality that
p0 6= 0. Following [9, pp.79–81] and [4, Lemma 1], we see that ifp1 = 0 then9 = AB Pz3 is a particular solution of (15) with (18) and that ifp1 6= 0 then

9 = AB P

0
B�
p

z 0

0
1p
z

1
CA
0
BB�
r

2
p1
p0

0

0
r

p0

2p1

1
CCA
0
�1

1

2

p1
p0

z

0 1

1
A�1 lnz

0 1

�

is a particular solution of (15) with (18), where

A :=

0
B�

p0 0

��p0
1

p0

1
CA ; B :=

�
z�1=2 0

0 z1=2
� ; P =

�
1 �1
0 1

� ; 3 =

0
BB�

1

2
0

0 �1

2

1
CCA :

The general solution of (15) with (18) is9R := 9R with R 2 SL(2;C). Now we
classify R with which 9R�39�

R is well defined onĈ n f0g.
Theorem 5. (i) If p1 = 0, then9R�39�

R is well defined onĈnf0g for any R=� r1 r2
r3 r4

� 2 SL(2;C). If jr3j 6= jr4j, then it is spacelike everywhere on̂C n f0g, complete,
totally umbilic, flat, unique up to an isometry ofS3

1(1) and a coordinate change z!
az, and has constant hyperbolic and secondary Gauß maps. If jr3j = jr4j, the image
of the map is a lightlike line.
(ii) Suppose p1 2 C n f0g. Then9R�39�

R is well defined onĈ n f0;1g if and only if

R =
�

(r +1)=2 (r�1)=2
1 1

�
S or R=

�
(1�r )=2 (1+r )=2�1 1

�
S for some r2 R and S2 SU(1;1). In

this case, the image of the map is a lightlike line.

Proof. Whenp1 = 0 and R =
� r1 r2

r3 r4

�
, A�19R�3(A�19R)� is

0
BB�

����r1� r3

z

����
2 � ����r2� r4

z

����
2

(r1r3� r2r4 ) +
jr4j2� jr3j2

z

(r1r3� r2r4) +
jr4j2� jr3j2

z
jr3j2� jr4j2

1
CCA :

Its image is a lightlike line ifjr3j = jr4j. Otherwise, it is complete and spacelike every-
where onĈ n f0g, and the claims follows from [17] or [2]. The secondary Gauß map
is �r4=r3.

Now assumep1 6= 0. The monodromy matrixM of 9 is M =
�

1 2� i
0 1

�
, hence

MR�3M�
R = �3 if and only if R�3R� = M R�3R�M� if and only if R�3R� = � � r 1

1 0

�
.
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The formula for R follows. In this case, we see that

A�19R�3R�9�(A�1)� =

0
BBB�

�� p
2p1=p0p
2p1=p0p

2p1=p0p
2p1=p0

0

1
CCCA

where�� is a certain real valued function ofz. Therefore the image is a lightlike line.

The case whereP = �Q can be treated similarly.

7. Catenoidal and horospherical ends

Motivated by the previous examples, we define the following:

DEFINITION 6. Suppose that for a local coordinatez,

(19) P =
a�1

z
+ a0 + o(1); Q =

b�1

z
+ b0 + o(1)

and that a solution of (15) with these data provides a well defined map from a neigh-
borhood ofz = 0 into S3

1(1). We call the image of the neighborhood a catenoidal end
if a�1b0� a0b�1 6= 0, or a horospherical end ifa�1b0� a0b�1 = 0 anda�1b�1 6= 0.

Note that we donot requirea�1b�1 6= 0 for catenoidal ends.
Let 9 be a solution of (15) with (19). Thene9 := B�1A�19, where A =�

a�1 0�b�1 1=a�1

�
and B =

�
1=pz 0

0
p

z

�
, satisfy (cf. [4, Lemma 1])

(20) e9 0e9�1 =
1

z

0
BB�

1

2
+ r 1

�r 2 �1

2
� r

1
CCA+O(1) for z! 0, where r = a�1b0�a0b�1:

There are two cases we need to consider in findinge9. Let � :=
p

(1=4) + r . Note that�
(1=2)+r 1�r 2 �(1=2)�r

�
= P3P�1 where3 =

� � 0
0 �� � and

P =
1

4
p

1 + 4r

0
BBBB�

1

2
+

r
1

4
+ r

1

r

 
1

2
�
r

1

4
+ r

!

r

 
1

2
�
r

1

4
+ r

!
1

2
+

r
1

4
+ r

1
CCCCA :
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Lemma 7 ([9, pp.79–81]). (i) If � 2 C n (1=2)Z, then there is a particular so-
lution of (20) in the form

e9(z) = P8(z)z3
where8(z) is holomorphic at z= 0 with 8(0) = I .
(ii) If � 2 (1=2)Z, then there is a particular solution of(20) in the form

e9(z) = P1

0
B�
p

z 0

0
1p
z

1
CA P2

0
B�
p

z 0

0
1p
z

1
CA � � � Pj2�j

0
B�
p

z 0

0
1p
z

1
CA8(z)

�
1 f (z)
0 1

�

where Pi 2 SL(2;C), 8(z) is holomorphic at z= 0, and f(z) is either 0 or ln z de-
pending upon the coefficients ai ;b j . (When� = 0, only the last two terms survive.)

Corollary 8. (i) [4, Corollary 2] If � 2 C n (1=2)Z, then there is a parti-
cular solution 9 of (15) with (19) whose monodromy matrix M around z= 0 is� � e2� i� 0

0 e�2� i� �.

(ii) If � 2 (1=2)Z, then there is a particular solution9 of (15) with (19) whose
monodromy matrix M around z= 0 is (�1)1+j2�j � 1 �

0 1

�
where� is 0 or 2� i .

Note that both cases in (ii) have appeared in the previous twosections.
The general solution is9R := 9R for R 2 SL(2;C). Now we classifyR with

which the catenoidal end is well defined on a punctured neighborhood ofz = 0. Argu-
ing exactly as in the proof of Theorems 4 and 5, we have the following proposition,
where we assume� 2 C n (1=2)Z to make the situation simple.

Proposition 9. (i) If � 2 R n (1=2)Z, then there is no period if and only if R=�
es 0
0 e�s

�
S or R=

�
0 es�e�s 0

�
S for some s2 R and S2 SU(1;1).

(ii) If � 2 (1=2)Z�i R�, then there is no period if and only if R= (1=p2)
�

e�i �e�i

e��i e��i

�
S

for some� 2 R and S2 SU(1;1).
(iii) If � 2 R n (1=2)Z � i R�, then the period problem cannot be solved for any R2
SL(2;C).

When � 2 (1=2)Z� i R�, the catenoidal ends behave in an interesting way asz!
0. To observe it, we note that ifz� 0, then8(z) � I hence

A�19R�39�
R(A�1)� � (B P)z3 � 0 e2�i

e�2�i 0

�
z̄3̄(B P)�

=

0
� P11p

z

P12p
z

P21
p

z P22
p

z

1
A
0
BB�

0 e2�i z�
z̄�̄

e�2�i z̄�̄
z� 0

1
CCA
0
BBB�

P11p
z̄

P21
p

z̄

P12p
z̄

P22
p

z̄

1
CCCA ;
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where Pi j is the (i; j ) entry of P. Therefore

tr
�
A�19R�39�

R(A�1)�� � 2Re

(
P11P12jzje2�i

z̄�̄
z� + P21P22jzje2�i z�

z̄�̄
)

= 2Re

(
r P11P12

"
z�

r jzje2�i z� +
r jzje2�i z�

z�
#)

where we have usedr P11P12 = (1=r )P21P22. Let us restrictz to be real and positive.
If we write r = eA+i B , � = � + i�, z = es > 0 for A; B; �; �; s 2 R, then

z�
r jzje2�i z� +

r jzje2�i z�
z� = 2 cosh (A + s) cos (B + 2� + 2s�)

+ 2i sinh(A + s) sin(B + 2� + 2s�):
We immediately see that if� 6= 0, then tr

�
A�19R�39�

R(A�1)��, hence the time com-
ponent of9R�39�

R, oscillates between1 and�1 as s approaches�1. This means
that the end oscillates between the future and past ideal boundaries ofS3

1(1) indefi-
nitely, and the singularities accumulate at the end.

Therefore we define the following:

DEFINITION 10. (i) A catenoidal end is “normal” if� 2 R n (1=2)Z.
(ii) A catenoidal end is “abnormal” if� 2 (1=2)Z� i R�.

It is clear that this definition does not depend upon the representation ofP and Q.

8. Trinoids

In this section, we describe some CMC 1 surfaces which we call trinoids, moti-
vated by [4]. They are the images of

9�39� : Ĉ n f0;1;1g ! S3
1(1)

where9 satisfies (15) with

(21) P =
p0

z
+

p1

z� 1
+ p1; Q =

q0

z
+

q1

z� 1
+ q1;

where p0; p1; p1;q0;q1;q1 2 C, and there are no periods forz = 0;1;1.
The existence and properties of the solutions of the equation (15) with data (21) is

presented in [4] in detail, which we summarize here for the convenience of the read-
er: Let

� =
1

2

�
1�p1 + 4hp;qi01 + 4hp;qi10

� ;
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� =
1

2

hp;qi10(1� 2�)� hp;qi01hp;qi01 + hp;qi10
;


 = hp;qi01
� hp;qi111 +

1�
� ;

Æ =
1hp;qi01

1 + hp;qi01�1� hp;qi01hp;qi10 + (1 + hp;qi11)� ;
� = 2hp;qi01

�
1� k

hp;qi111
� ;

k = 1 hp;qi01hp;qi10�1�12 + hp;qi10hp;qi01hp;qi11 ;
�1 = � p1hp;qi101 ; �2 =

q1hp;qi101 ;
�1 =

p0hp;qi111 ; �2 = �q0hp;qi111 ;
1 = hp;qi10hp;qi01 + hp;qi10hp;qi11 + hp;qi01hp;qi11;

hp;qii j = pi q j � p j qi for i; j = 0;1;1;
� =

p�2 + 
 Æ; � =
p

(� + �)2 + 
 Æ;
a = � + � + �; b = � + � � �; c = 2�;

D(z) :=

�
P �1z�Q �2z + �2

�0B�
p

z� 1 0

k

z
p

z� 1

1p
z� 1

1
CA
0
�2�� 0

1 1

1
A ;

and

8(0)(z)

:=

0
BB�
�2� + 1Æ z�(z�1)� 2F1(a;b; c; z) z1��(z�1)� 2F1(a� c+ 1;b� c+ 1; 2� c; z)

z1+�(z�1)� 2F1(a + 1;b+ 1;c+ 2;z)
2��1
 z��(z�1)� 2F1(a� c;b� c;�c; z)

1
CCA

where 2F1(a;b; c; z) is the hypergeometric function. 8(0) has branch points at0;1;1.
We choose the branch cuts from1 to 1 along the positive real axis and from0 to 1
along the negative real axis. If

(22) �; � ; � 2 C n 1

2
Z;

then9(z) := D(z)8(0)(z) is a particular solution of the differential equation(15) with
P;Q as in (21), and the monodromy matrices of9(z) as z traverses once around
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0;1;1, respectively, are as follows:

M0 =

�
e2� i� 0

0 e�2� i�
� ; M1 = M�1

0 M�1
1 ;

M1 =

0
BB�

e2� i ��2i
sin�asin�b

sin�c

2� i
 2��1

2�+1

02(�c)0(�a)0(�b)0(a�c)0(b�c)

2� iÆ 2�+1

2��1

02(c)0(a)0(b)0(c�a)0(c�b)
e2� i � +2i

sin�(c�a)sin�(c�b)

sin�c

1
CCA:

We assume (22) in the rest of this article. The general solution of (15) with (21)
is 9R = D(z)8(0)(z)R with R 2 SL(2;C). Now we want to classifyR with which9R�39�

R is a well defined map fromĈ n f0;1;1g into S3
1(1). We first observe that9R = D8(0)R transforms toe9R := D8(0)M�R as z traverses once aroundz� counter-

clockwise. Then

e9R�3e9�
R = D8(0)M�R�3

�
D8(0)M�R

��
= D8(0)M�R�3R�M�� �8(0)�� D�;

9R�39�
R = D8(0)R�3R� �8(0)

��
D�:

Therefore,9R�39�
R is well defined onĈ n f0;1;1g if and only if

(23) R�3R� = M�R�3R�M�� for � = 0;1;1:
Now we classify R which satisfies (23). It is best done in terms of the�; � ; �. We
first state a nonexistence result, which follows immediately from Proposition 9.

Lemma 11. If at least one of�; � ; � belongs to(R n (1=2)Z) � i R�, the period
problem cannot be solved.

Since we are assuming (22), there remain only the following four cases, after a
suitable change of coordinates if necessary:
(1) (eee case)�; � ; � 2 R n (1=2)Z.
(2) (eeh case)�; � 2 R n (1=2)Z and � 2 (1=2)Z� i R�.
(3) (hhe case)�; � 2 (1=2)Z� i R� and � 2 R n (1=2)Z.
(4) (hhh case)�; � ; � 2 (1=2)Z� i R�.
“e” and “h” stand for elliptic and hyperbolic, respectively[8]. An end9�39 is called
elliptic, parabolic, or hyperbolic if the monodromy matrixof the lift 9 is conjugate in
SU(1;1) to an elliptic, parabolic, hyperbolic matrix, respectively.

In each case, the trinoid has three normal ends, two normal and one abnormal
ends, two abnormal and one normal ends, or three abnormal ends, respectively.

We first prove an auxiliary lemma. Recall thata = � + � +�, b = � + � ��; c = 2�.
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Lemma 12. Consider(sin�a sin�b)= sin�c and (sin�(a�c) sin�(b�c))= sin�c.
(1) In the eee and eeh case, both of them are real.
(2) In the ehh and hhh case, both of them are purely imaginary.

Proof. Note that ifn 2 Z and y 2 R n f0g, then

cos 2� �1

2
n + yi

� 2 R; sin 2� �1

2
n + yi

� 2 i R:
Now we observe

sin�a sin�b =
1

2
fcos 2�� � cos 2�(� + � )g;

sin�(a� c) sin�(b� c) =
1

2
fcos 2�� � cos 2�� g:

These are real in all the four cases. On the other hand, sin�c = sin 2�� is real in the
eee and eeh cases, but is purely imaginary in the hhe and hhh cases. Therefore the
conclusion follows.

Theorem 13. (i) In the eee and eeh cases, the period problem(23) can be
solved if and only if

(24) sin�a sin�bsin�(a� c) sin�(b� c) > 0:
When(24) holds, R 2 SL(2;C) solves(23) if and only if

R =

�
r 0
0 r�1

�
S or R=

�
0 r�r�1 0

�
S

for some S2 SU(1;1) and

r =

 ����2� � 1

2� + 1

����
2 �2

j
 j2 1

4�2

j0(�a)0(�b)0(a� c)0(b� c)j�2j0(�c)j4(csin�c)2

sin�a sin�bsin�(c� a) sin�(c� b)

!1=42R+:
(ii) In the hhe and hhh cases, the period problem(23) can be solved for any�; � ; �.
R solves(23) if and only if

(25) R =
1p
2

�
e�i �e�i

e��i e��i

�
S

for some� 2 R as in the proof and an arbitrary S2 SU(1;1).

REMARK 14. Note that the sign of sin�a sin�bsin�(a� c) sin�(b� c) in (24)
above is different from the sign of that in [4, Theorem 6 (ii)].
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Proof. It is enough to find allR’s such thatR�3R� = M�R�3R�M�� for � = 0;1.
Let’s first consider the eee and eeh cases. Proposition 9 applied to the endz = 0

implies that

R =

�
r 0
0 r�1

�
S or R =

�
0 r�r�1 0

�
S

for somer > 0 and S 2 SU(1;1). Now consider the end atz = 1. If we write M1 =�
M11 M12

M21 M22

�
, then the above two equations andR�3R� = M�R�3R�M�� imply

(26)

�
r 2 0
0 �r�2

�
=

�
M11 M12

M21 M22

��
r 2 0
0 �r�2

��
M11 M21

M12 M22

�

=

�
r 2M11M11� r�2M12M12 r 2M11M21� r�2M12M22

r 2M21M11� r�2M22M12 r 2M21M21� r�2M22M22

� :
By comparing the (1;2)-components, we conclude that

r 4 =
M12M22

M11M21
:

We have from Lemma 12 that

M11� M22 = e2� i � � 2i
sin�a sin�b

sin�c
� e�2� i � + 2i

sin�(c� a) sin�(c� b)

sin�c
;

hence

M11� M22 = 2i sin 2�� +
2i

sin�c
(sin(�c� �a) sin(�c� �b)� sin�a sin�b)

= 2i sin 2�� � 2i sin�(a + b� c):
Since a + b � c = 2� , we haveM11 = M22. On the other hand, since0(x)=0(�x) =
1=j0(�x)j2 � �=�xsin�x

�
, we have

M12

M21
=

����2� � 1

2� + 1

����
2 �2

j
 j2
� �
 Æ

ab(c� a)(c� b)

�

� j0(�a)0(�b)0(a� c)0(b� c)j�2j0(�c)j4(csin�c)2

sin�a sin�bsin�(c� a) sin�(c� b)
:

We have

(27) 
 Æ =
ab(c� a)(c� b)�4�2

:
from 
 Æ = � 2� �2, � = (�2 + � 2� �2)=(�2�), and the definitions ofa;b; c. So�
 Æ=(ab(c� a)(c� b)) > 0 from (27) and the fact that� 2 R n (1=2)Z. Also,
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(csin�c)2 > 0 sincec = 2�. Therefore,M12=M21 > 0 if and only if (24) is satisfied.
Conversely, we see that ifr as in the statement of the Theorem, then (26) is satisfied.
By combining all the above arguments, we complete the proof for eee and eeh case.

Now we consider the hhe and hhh cases. Proposition 9 applied to the endz = 0
implies that the period problem atz = 0 can be solved if and only if

(28) R�3R� =

�
0 e2�i

e�2�i 0

�
for some � 2 R:

If we write M1 =
�

M11 M12

M21 M22

�
as before, then (23) withz = 1 is equal to

�
0 e2�i

e�2�i 0

�
=

�
M11 M12

M21 M22

��
0 e2�i

e�2�i 0

��
M11 M21

M12 M22

� :
By comparing the four components of this matrix equation, weconclude that the pe-
riod is solvable atz = 1 if and only if

(29) � M12

M12

M11

M11
= � M21

M21

M22

M22
=

M12M21

1� M11M22
=

1� M22M11

M21M12
= e4�i :

Note that the first term in (29) has modulus 1. We first show thatthe first three equal-
ities of (29) are true in any hhh and hhe case.

We immediately see from Lemma 12 that

M11;M22 2 R;
and, from Lemma 12, formulas (27) and0(x)0(�x) = ��=(sin�x) , that

M12M21 =
�4�2


 Æ (0(c)0(�c))2

0(a)0(�a)0(b)0(�b)0(c� a)0(a� c)0(b� c)0(c� b)

= 4
sin�a sin�b

sin�c

sin�(a� c) sin�(b� c)

sin�c2 R:
The first equality of (29) is now obvious. Both the left and theright hand sides of the
second equality in (29) are equal to�M21=M21 since

1� M11M22 = 1� M11M22 = �M12M21:
Finally,

RHS of the third equality in (29) =
�M12M21

M21M12
= � M12

M12
= � M21

M21

= RHS of the second equality

= LHS of the third equality:
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Since the first three equalities always hold in the hhe and hhhcases, the matrix

(1=p2)
�

e�i �e�i

e��i e��i

�
where� makes the fourth equality true solves the period problem.

Now we want to classify the values ofp0; p1; p1 and q0;q1;q1 which yield
given �; � ; �. It is convenient to use the following quantities

c0 = (p1q0 � p0q1) + (p0q1 � p1q0);
c1 = (p1q0 � p0q1) + (p1q1 � p1q1);
c1 = (p0q1 � p1q0) + (p1q1 � p1q1);

(30)

which are related to�; � ; � (from [4, p.80]) by

(31) � =
1

2
�
r

c0 +
1

4
; � =

r
c1 +

1

4
; � =

r
c1 +

1

4
:

Lemma 15. For any c = (c0; c1; c1)T 2 C3 n f~0g there are p= (p0; p1; p1)T

and q = (q0;q1;q1)T in C3 which solve(30). ep;eq is also a solution if and only if�epeq � = A
� p

q

�
for some A2 SL(2;C).

Proof. Given a nonzero vectorx = (x0; x1; x1)T 2 C3 n f~0g, define

Ax =

0
��x1 + x1 x0 �x0�x1 x0 + x1 �x1

x1 x1 �x0 � x1

1
A :

Then,
(1) the rank ofAx is 2,
(2) x is a basis of the null space ofAx,
(3) Nx = (x0 + x1 + x1;�x0� x1 + x1;�x0 + x1� x1)T is normal to the column space
of Ax,
(4) for any x; y we haveAx y = �Ayx.
Now we see that (30) is equal toc = Aq p, which has a solution if and only ifc is
perpendicular toNq. This is equivalent to saying thatq is in the following plane� C3

(c0� c1 � c1)x + (c0� c1 + c1)y + (c0 + c1� c1)z = 0:
So, we just choose a nonzeroq from this plane. Then there must existp which satis-
fies the equation.

By switching the roles ofq and p, we see thatp must lie in this plane also. Fur-
thermore, if p = tq for some t 2 C, then Aq p = t Aqq = 0 6= c. Therefore p and q
are linearly independent. Now supposeep;eq also solve (30). Then they must be in the
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above plane, henceep = a1 p + a2q, eq = a3 p + a4q for somea1;a2;a3;a4 2 C. Now we
see that

c = Aa3 p+a4q(a1 p + a2q) = (a1a4 � a2a3)Aq p = (a1a4 � a2a3)c:
So we conclude thata1a4 � a2a3 = 1. It is obvious that ifep;eq are of the form men-
tioned above, then they solve (30).
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