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Abstract
Up to a finite étale covering, we classify smooth projective 3-folds X with κ(X) = −∞ ad-

mitting a nonisomorphic étale endomorphism in the case where there exists an FESP Y• con-
structed from X by a sequence of blowing-downs of an ESP and an extremal ray R• of fiber
type on NE(Y•) such that the pair (Y•,R•) is of type (C1) or (C0).
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1. Introduction

1. Introduction
This is the second of a series of articles which provide proofs of results announced in [6].

We shall use the same notation as in [6]. Let us review the background briefly. By an étale
sequence of constant Picard number (‘ESP’ for short) W• = (vn : Wn → Wn+1)n∈Z of smooth
projective k-folds Wn, we mean that for any n ∈ Z,

• vn is a nonisomorphic finite étale covering, and
• the Picard number ρ(Wn) is constant.

In [6], we have applied the minimal model program (called ‘MMP’, for short) to the con-
stant ESP X• = (X, f ) induced from a nonisomorphic étale endomorphism f : X → X of
a smooth projective 3-fold X with κ(X) = −∞ and constructed an FESP Y• from X• by a
sequence of blowing-downs of an ESP (cf. [6, Corollary 1.2]). Hereafter, an endomorphism
of a projective variety Z means a surjective morphism (holomorphic map) from Z to itself.
Though our étaleness assumption seems to be quite restrictive at first glance, the structure of
such varieties is not so simple when compared with the case of κ(X) ≥ 0 (cf. [3], [4]). The
main purpose of our series of articles is to study structures of smooth projective 3-folds X
with negative Kodaira dimension which admit a nonisomorphic étale endomorphism. One
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2 Y. Fujimoto

of the difficulties is that there may exist infinitely many extremal rays of NE(X). Here by an
extremal ray R, we always mean a KX-negative extremal ray of NE(X). Furthermore, it is not
so sure that we can find an extremal ray R of NE(X) which is preserved by a suitable power
f k (k > 0) of a given étale endomorphism f : X → X. Hence the MMP does not necessarily
work compatibly with étale endomorphisms. Thus we adapt a method to study the rough
structure of the original endomorphism f : X → X through the FESP Y• constructed from
X by a sequence of blowing-downs of an ESP (cf. [6, Definition 3.7]). Here the letter ‘F’
in the FESP means that there exist extremal rays R• of fiber type on NE(Y•). In particular,
we shall focus our attention to the finiteness of extremal rays, which is equivalent to the
finiteness of extremal rays of divisorial type. Once if we know the finiteness of the set of
extremal rays, then replacing f by its suitable power f k (k > 0), we can run again the MMP
compatibly with étale endomorphisms and obtain another constant FESP (Y, g) induced from
a nonisomorphic étale endomorphism g : Y → Y . We will consider this problem in several
stages. For example, in Part I, we showed the finiteness of extremal rays in the case where
there exists an FESP (Y•,R•) of type (C1) or (C0) constructed from X by a sequence of
blowing-downs of an ESP (cf. [6, Theorem 1.4]).

In this Part II article, we shall study the structure of a nonisomorphic étale endomorphism
f : X → X in the case where there exist an FESP Y• constructed from X by a sequence of
blowing-downs of an ESP and extremal rays R• = (Rn)n (⊂ NE(Y•)) of fiber type such that
(Y•,R•) is of type (C1) or (C0), that is, the contraction morphism ϕn := ContRn : Yn → Sn

associated to the extremal ray Rn (⊂ NE(Yn)) is a conic bundle over a smooth algebraic
surface Sn of κ(Sn) = 1 for any n or of κ(Sn) = 0 for any n (cf. [6, Definition 3.6]).

Fortunately, in this case, we can run the MMP to the constant FESP X• := (X, f ) compat-
ibly with étale endomorphisms; In fact, the following have been proved in [6].

• There exist at most finitely many extremal rays of NE (X) (cf. [6, Theorem 1.4]).
• If we replace f by its suitable power f k(k > 0), there exist a birational morphism
π : X → Y which is a succession of blowing-ups along elliptic curves and a noniso-
morphic étale endomorphism g : Y → Y of a smooth projective 3-fold Y such that
π ◦ f = g ◦ π (cf. [6, Corollary 8.1]).
• Any extremal ray R of NE(Y) is of fiber type and the contraction morphism ϕ :=

ContR : Y → S associated to R is a conic bundle over a smooth algebraic surface S
with κ(S) = 1 or 0. i.e., The FESP (Y,R) is of type (C1) or (C0).

Hereafter, we call π : X → Y ‘a sequence of equivariant blowing-downs’ of X to the constant
FESP Y . The following theorem is our main result.

Theorem 1.1. Let f : X → X be a nonisomorphic étale endomorphism of a smooth
projective 3-fold X with κ(X) = −∞. Let Y• := (Y, g) be a constant FESP constructed from
X• := (X, f ) by a sequence of equivariant blowing-downs π : X → Y. Let R be an extremal
ray of fiber type on NE(Y) such that the FESP (Y,R) is of type (C1) or (C0).

Then, up to a finite étale covering, X satisfies one of the following conditions. (More
precisely, replacing f by its suitable power f k(k > 0), there exist a finite étale Galois cov-
ering X̃ → X of X and a nonisomorphic étale endomorphism f̃ : X̃ → X̃ which is a lift of
f : X → X. If we replace f : X → X by f̃ : X̃ → X̃, then X satisfies one of the following.)

(1) X is isomorphic to the direct product of an irrational uniruled surface and an elliptic
curve.



Étale Endomorphisms of 3-Folds. II 3

(2) X � Y and X is a P1-bundle over an abelian surface.
(3) ψ : Y → B is a fiber bundle over a smooth curve B of genus g(B) ≥ 1 whose fiber is

the Atiyah surface S over an elliptic curve E.
(4) There exists a smooth morphism ψ : Y → B onto a smooth curve B of genus g(B) ≥ 1

such that

• the general fiber of ψ is isomorphic to the Atiyah surface S over an elliptic curve E,
• the special fiber of ψ is isomorphic to the direct product E × P1, and
• there exists a fiber bundle structure Φ : Y → E over an elliptic curve E.

Furthermore, the π-exceptional divisors Θ := Exc(π) are simple normal crossings of elliptic
ruled surfaces. In the case (3), π(Θ) are canonical sections s∞ of some fibers of ψ. In the
case (4), π(Θ) are canonical sections s∞ of the general fiber of ψ or fibers of the second
projection E × P1 → P1 from the special fiber of ψ to P1.

Here by r, we denote a unique indecomposable vector bundle of rank r and degree 0 on
an elliptic curve E with Γ(E,r) � 0 (cf. [1]). We are particularly interested in the case
of r = 2. We call the P1-bundle PE(2) over E associated with 2 the ‘Atiyah surface’ and
denote it by S. Furthermore, by the canonical section s∞, we mean the unique section of S
with zero self-intersection number (cf. [6, Definition 5.1]). Actually, we can say more; In
the case (3) and (4) in Theorem 1.1, X is a fiber bundle over an elliptic curve E (cf. Remark
4.8). This fact will be proved in our subsequent Part III article.

Now, we shall state the idea of the proof of Theorem 1.1. We may assume that all the
extremal rays of X are of divisorial type. Since there exist finitely many extremal rays
of NE(X), we can take a constant FESP Y• = (Y, g) induced from a nonisomorphic étale
endomorphism g : Y → Y . Then the reduction explained in [6, Section 9] can be applied to
our situation. For the sake of simplicity, we assume that π : X � Y . By replacing X by its
suitable finite étale Galois covering X̃ of X, we may assume the following;

• ϕ : Y → S is a P1-bundle over the product S := B × E of an elliptic curve E and a
curve B of genus g(B) ≥ 1.
• If we set ψ := p ◦ ϕ ◦ π : X → B and ψ′ := p ◦ ϕ : Y → B for the first projection

p : S → B, then ψ ◦ f = ψ and ψ′ ◦ g = ψ′. i.e., Both f and g are nonisomorphic
étale endomorphisms over B.

By construction, there is induced a nonisomorphic étale endomorphism gt := g|Yt : Yt →
Yt on each smooth fiber Yt := ψ′−1(t) (t ∈ B) which is a P1-bundle over E. Applying
the technique called ‘Atiyah reduction’ (cf. Proposition 2.2), we may assume that Yt is
isomorphic to either the Atiyah surface S or the product of P1 and an elliptic curve for any
t ∈ B. Let Λ be a subset of B consisting of points t ∈ B such that Yt � S. Then we can show
that Λ is a Zariski open subset of B (cf. Lemma 2.3). If Λ = ∅, then a suitable finite étale
covering X̃ of X is isomorphic to the product of an irrational uniruled algebraic surface and
an elliptic curve (cf. Theorem 3.2). If Λ � ∅, then ϕ : Y → S has a section (cf. Lemma
4.1) and the FESP Y can be described explicitely in terms of vector bundles on the surface
S = B×E. In fact, Y is isomorphic to PS(), where  is a rank two vector bundle on S which
is an unsplit extension of S by the line bundle p∗	 for some 	 ∈ PicB with nonnegative
degree (cf. Proposition 4.2). With the aid of this description, we can finish the proof of
Theorem 1.1 (cf. Theorems 4.7, 5.1).
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2. Basics concerning an FESP of type (C1)

2. Basics concerning an FESP of type (C1)
Let f : X → X be a nonisomorphic étale endomorphism of a smooth projective 3-fold

X with κ(X) = −∞. Suppose that there exists an FESP (Y•,R•) of type (C1) constructed
from X by a sequence of blowing-downs of an ESP. In view of [6, Theorems 1.4 and 9.3],
replacing f by its suitable power f k(k > 0), there exits a nonisomorphic étale endomorphism
f̃ : X̃ → X̃ which is a lift of f : X → X. Then if we further replace X by X̃, we may assume
that there exist Cartesian morphisms of constant ESPs

X• = (X, f )
π−→ Y• = (Y, g)

ϕ−→ S• = (S, u)

such that the following condition (C1) is satisfied:
(1) π : X → Y is a sequence of equivariant blowing-ups of a smooth projective 3-fold Y

along elliptic curves.
(2) ϕ : Y → S is a P1-bundle over the product S := C × E of a smooth curve C with

g(C) ≥ 2 and an elliptic curve E.
(3) u = idC × α for some non-zero group homomorphism α : E → E.
(4) By ϕ, the centers of the blowing-up π are mapped onto fibers of the first projection

p : S→ C.
We begin with an easy lemma.

Lemma 2.1. For any t ∈ C, the surface Yt := (p ◦ ϕ)−1(t) is isomorphic to either PE(),
the Atiyah surface S or PE(E ⊕ 	t), where  is a stable vector bundle of rank 2 on E and
	t ∈ Pic0(E) is of finite order.

Proof. Since g : Y → Y is a relative endomorphism over C, we infer that deg (g|Yt ) =
deg g = deg f > 1. Thus the restriction g|Yt of g to Yt gives a nonisomorphic étale endomor-
phism of the elliptic ruled surface Yt. Hence, the claim follows by [6, Propositions 4.1, 4.8
and 5.10]. �

Let μn : E → E be a multiplication mapping by a positive integer n. We set X̃ := X×E,μn E
and Ỹ := Y ×E,μn E respectively. Since μn ◦ α = α ◦ μn, f : X → X (resp. g : Y → Y)
can be lifted to a nonisomorphic étale endomorphism f̃ : X̃ → X̃ (resp. g̃ : Ỹ → Ỹ) such
that Ỹ• := (Ỹ , g̃) is the constant FESP constructed from of X̃ by a sequence of equivariant
blowing-downs. Furthermore, there also exists a Cartesian morphism of constant ESPs

X̃• = (X̃, f̃ )
π̃−→ Ỹ•

ϕ̃−→ S• = (S, u)

which satisfies the conditions (C1) as above. The following proposition considerably sim-
plifies the arguments.

Proposition 2.2 (Atiyah reduction). There esists some positive integer n such that for any
t ∈ C, the surface Ỹt := (p ◦ ϕ̃)−1(t) is isomorphic to either the Atiyah surface S over E or
the product P1 × E.

Proof. If Yt � PE() for a stable vector bundle  on E, then [6, Proposition 4.4] implies
that Yt ×E,μ2 E � E × P1 for a multiplication mapping μ2 : E → E by two. If Yt � S, then
[6, Lemma 4.13] implies that S ×E,μk E � S for a multilication mapping μk : E → E by any
integer k > 0. If Yt � PE(E ⊕ 	t), then by [6, Corollary 4.9], ord(	t) divides deg(α), or
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deg(α + idE), or deg(α − idE), where α : E → E is a nonisomorphic group homomorphism
of E induced from f : X → X. In particular, ord(	t) is bounded above by a positive con-
stant which is independent of the choice of t ∈ C. Let n be a least common multiple of
2, deg(α), deg(α + idE) and deg(α − idE). Then n satisfies the desired property. �

Hence by replacing f : X → X by its suitable lift f̃ : X̃ → X̃ as in Proposition 2.2,
hereafter we may assume that Yt := (p ◦ ϕ)−1(t) is isomorpic to either S or P1 × E for any
t ∈ C. By Λ(⊂ C), we denote the set of points t ∈ C such that Yt := (p◦ϕ)−1(t) is isomorphic
to S. By construction, if t � Λ, then Yt � P1 × E.

Lemma 2.3. The set Λ is a Zariski open subset of C.

Proof. For a relative tangent sheaf ΘY/C , let us consider the coherent sheaf  := (p ◦
ϕ)∗ΘY/C on C. Then there exists a canonical homomorphism  ⊗ C(t) → H0(Yt,ΘYt ) for
Yt := (p◦ϕ)−1(t). We define the Z-valued function, τ on C by τ(t) := dimH0(Yt,ΘYt ) (t ∈ C).
Since a holomorphic vector field H0(Yt,ΘYt ) of Yt is naturally isomorphic to the Lie algebra
Lie(Aut0(Yt)) of the automorphism group Aut0(Yt), we see that τ(t) = dim Aut0(Yt). Hence
by [8, Lemma 10], we see that

τ(t) =

⎧⎪⎪⎨⎪⎪⎩
2, t ∈ Λ,
4, t � Λ.

Since τ is upper semi-continuous by the upper semi-continuity of cohomology, Λ is a Zariski
open subset of C. �

Hence, under the condition (C1) our situation is divided into two cases:
• Case (C1,a): If Λ � ∅, then Y → C is a smooth morphism whose general fiber Yt is

isomorphic to S. Furthermore, Y → C is a fiber bundle if and only if Λ = C.
• Case (C1,b): If Λ = ∅, then Y → C is a fiber bundle whose fiber is isomorphic to
P1 × E.

Remark 2.4. In the Case (C1,a), if Λ � C, then Y → C is a smooth morphism but is not a
fiber bundle. That is, a jumping phenomenon occurs; i.e.,

Yx �
⎧⎪⎪⎨⎪⎪⎩
P1 × E, x � Λ,

S, x ∈ Λ.
In fact, we have constructed such an example in our previous particle, Part I (cf. [6, Remark
8.3]).

3. Classifications in the case (C1,b)

3. Classifications in the case (C1,b)
First, we study the structure of X in the case where there exists a constant FESP Y• = (Y, g)

of type (C1,b) constructed from X• = (X, f ) by a sequence of equivariant blowing-downs.

Proposition 3.1. Let f : X → X be a nonisomorphic étale endomorphism of a smooth
projective 3-fold X with κ(X) = −∞. Suppose that there exists a constant FESP Y• = (Y, g)
of type (C1,b) constructed from X• = (X, f ) by a sequence of equivariant blowing-downs.
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Then the following hold:

(1) There exists an isomorphism Y � T × E over T , where q : T → C is a P1-bundle.
(2) Let p : Y → T be the first projection. Then there exists a relative automorphism

v ∈ Aut(T/C) over C such that p ◦ g = v ◦ p.

Proof. Since all the fibers Yt of ψ over t ∈ C are isomorphic, ψ : Y → C is a holomorphic
fiber bundle over C by the theorem of Fischer–Grauert [2]. Since the relative anti-canonical
bundle −KY/C is ψ-free, there is induced an elliptic fibration

α : Y � T ⊂ PC(ψ∗(−KY/C))

over a P1-bundle q : T → C so that ψ = q ◦ α. This elliptic fibration α is an elliptic fiber
bundle, since for all t ∈ C, α|Yt : Yt → P1 is a trivial elliptic bundle over P1. Since −KY/C

is ψ-free and KY/C ∼ g∗KY/C , there is induced a relative automorphism v ∈ Aut(T/C). In
summary, there exists the Cartesian diagram below

Y
g−−−−−→ Y

α

⏐⏐⏐⏐⏐�
⏐⏐⏐⏐⏐�α

T
v−−−−−→ T

q
⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�q

C C

,

such that the following hold:
(1) g : Y → Y is a nonisomorphic étale endomorphism of Y .
(2) α : Y → T is an elliptic fiber bundle over a smooth surface T whose fiber is an

elliptic curve E.
(3) v : T � T is a relative automorphism of T over C.
(4) q : T → C is a P1-bundle over a smooth curve C of genus g(C) ≥ 2.
(5) The composite map ψ := q ◦ α : Y → C is a fiber bundle whose fiber is isomorphic

to P1 × E.
For the composite map ϕ′ : Y

ϕ−→ S = C×E
p2−−→ E, let us consider the canonical morphism

Ψ := α × ϕ′ : Y → T × E. Then by construction, Ψ is an isomorphism, since Ψ is of degree
one when restricted to each fiber of ψ. Thus the proof is finished. �

Next, we state the structure theorem in the case where there exists an FESP of type (C1,b)
constructed from X by a sequence of equivariant blowing-downs.

Theorem 3.2. Let f : X → X be a nonisomorphic étale endomorphism of a smooth
projective 3-fold X with κ(X) = −∞. Suppose that there exists a constant FESP Y• = (Y, g)
of type (C1,b) constructed from X by a sequence of equivariant blowing-downs. Then the
following hold:

(1) There exists an isomorphism X � S×E over a surface S, where E is an elliptic curve
and S is birational to the product C × P1 of a smooth curve C of genus g(C) ≥ 2 and
P1.

(2) There is induced an automorphism u : S � S over C such that p0 ◦ f = u ◦ p0 for the
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first projection p0 : X → S.

In particular, X satisfies the condition (1) in Theorem 1.1.

Proof. Applying Proposition 3.1, there exists a Cartesian diagram

X
f−−−−−→ X

π

⏐⏐⏐⏐⏐�
⏐⏐⏐⏐⏐�π

Y
g−−−−−→ Y

p
⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�p

T
v−−−−−→ T

which satisfies the following conditions:
• π : X → Y is a sequence of equivariant blowing-ups along elliptic curves.
• q : T → C is a P1-bundle over a smooth curve C with g(C) ≥ 2.
• There exists an isomorphism Y � T ×E over T for an elliptic curve E and p : Y → T

is the first projection.
• v : T � T is an automorphism over C.

Hereafter, we shall use the same notation as in Section 2 (cf. [6, Corollary 1.2]) concerning
the construction of an FESP. Let πi : Xi → Xi+1 for 0 ≤ i ≤ n − 1 be the blowing-up of
Xi along an elliptic curve Ci(⊂ Xi) such that π = πn−1 ◦ · · · ◦ π0 : X → Y . (Here we set
X0 := X and Xn := Y .) Furthermore let fi : Xi → Xi be an induced nonisomorphic étale
endomorphism of Xi. Then f −1

i (Ci) = Ci for each i. Now we show that the blowing-up
center Cn (⊂ Xn := Y) of πn−1 is some fiber of p. The proof is by contradiction. Suppose
that p(Cn) is a curve on T . Since g−1(Cn) = Cn and v is an automorphism of T , we infer
that deg (Cn/p(Cn)) = deg g · deg (Cn/p(Cn)). This contradicts the assumption that deg g =
deg f > 1. Let Sn−1 be the blown-up of Sn := T at the point p(Cn). Then Xn−1 � Sn−1×E and
there is induced an automorphism vn−1 : Sn−1 � Sn−1 over C such that pn−1◦ fn−1 = vn−1◦ pn−1

for the first projection pn−1 : Xn−1 → Sn−1. By applying the same argument inductively, we
infer that:

• There exists an isomorphism X � S × E over S, where S is birational to T := Sn.
• There is induced an automorphism u : S � S over C such that p0 ◦ f = u ◦ p0 for the

first projection p0 : X → S.
Thus the proof is finished. �

4. Classifications in the case (C1,a)

4. Classifications in the case (C1,a)
In this section, we shall study the structure of a nonisomorphic étale endomorphism

f : X → X in the case where there exists a constant FESP Y• = (Y, g) of type (C1,a) con-
structed from X by a sequence of equivariant blowing-downs. First, we shall describe the
structure of Y in terms of vector bundles on an elliptic ruled surface. Hereafter, we use the
same notation as in Section 2. The following lemma is crucial.

Lemma 4.1. Let f : X → X be a nonisomorphic étale endomorphism of a smooth projec-
tive 3-fold X with κ(X) = −∞. Let Y• := (Y, g) be a constant FESP of type (C1,a) constructed
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from X by a sequence of equivariant blowing-downs. Then there exists a smooth irreducible
divisor D of Y which satisfies the following three conditions.

(1) D is a section of the P1-bundle ϕ : Y → S := C × E.
(2) The intersection D ∩ Yt equals the canonical section s∞ of S (resp. a fiber of the first

projection P1 × E → P1) if t ∈ Λ (resp. if t � Λ).
(3) g−1(D) = D.

Proof. Let p : S = C × E → C be the first projection and set ψ := p ◦ ϕ : Y → C. Since
−KS ∼ 2s∞ by [6, Proposition 5.2], we infer that h0(S,(−KS)) � C. Hence by the base
change theorem, there exists an isomorphism

ψ∗Y(−KY) ⊗ C(t) � H0(S,(2s∞)) � C
for any t ∈ Λ. Since ψ∗Y(−KY) is a torsion free sheaf on a curve C, it is an invertible sheaf
on C. Let

Ψ : ψ∗ψ∗Y(−KY)→ Y(−KY)

be the canonical homomorphism of Y-modules. Then

Y(−KY) � ψ∗ψ∗Y(−KY) ⊗ Y(G)

for some effective divisor G on Y . For t ∈ C, there exists an exact sequence of sheaves;

0 −→ Y(−KY) ⊗Y (−Yt) −→ Y(−KY) −→ Y(−KY)|Yt −→ 0.

Taking direct images, we obtain the following exact sequence;

0 −→ ψ∗Y(−KY) ⊗C C(−t) −→ ψ∗Y(−KY) −→ H0(Yt,(−KYt )).

Thus there exists an injective homomorphism

ψ∗Y(−KY) ⊗ C(t) ↪→ H0(Yt,(−KYt )).

Now there exists the following commutative diagram:

ψ∗ψ∗Y(−KY)|Yt

Ψt−−−−−→ Y(−KY)|Yt⏐⏐⏐⏐⏐�
⏐⏐⏐⏐⏐�

Yt ⊗C (ψ∗Y(−KY) ⊗ C(t)) −−−−−→ Yt (−KYt ),

where Ψt is the restriction of Ψ to Yt (t ∈ C) and two vertical arrows are isomorphisms.
Thus Ψt is a non-zero homomorphism. Hence for any t ∈ C, G|Yt is effective and Yt is not
contained in Supp G. By construction, G|Yt = 2s∞ for any t ∈ Λ. Hence G = 2D + F for a
prime divisor D on Y such that D|Yt = s∞ for any t ∈ Λ and an effective divisor F supported
on the fibers of p ◦ ϕ : Y → C over C \Λ. On the other hand, since F is not contained in any
Yt, we see that F = 0 and G = 2D. Furthermore, since g∗KY � KY and ψ ◦ g = ψ, we have

g−1(D) = D and thus g−1(D|Yt ) = D|Yt . The composite map ϕ|D = ϕ◦ i : D
i−→ Y

ϕ−→ S = C×E
is a birational morphism. We have the following commutative diagram:
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D
g|D−−−−−→ D

ϕ|D
⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�ϕ|D

S
u−−−−−→ S

p1

⏐⏐⏐⏐⏐�
⏐⏐⏐⏐⏐�p1

C C.
We show that ϕ|D : D → S is an isomorphism. Suppose that there exists an irreducible

curve Δ(⊂ D) which is contracted to a point on S by ϕ|D. Then by the above Cartesian
diagram, we see that (gk)−1(Δ) is also ϕ|D-exceptional for a positive integer k. Note that
u : S → S is a nonisomorphic étale endomorphism. If we let k → ∞, then D contains
infinitely many ϕ|D-exceptional curves which are disjoint. Thus a contradiction is derived.
Hence ϕ|D : D → S is a finite morphism, and hence an isomorphism by Zariski’s main
theorem. Hence D is a section of ϕ and G = 2D. Since (D|Yt , g) is a constant ESP of an
elliptic curve such that the inclusion (D|Yt , g) ↪→ (D, g) is Cartesian, [6, Proposition 6.9]
shows that for t ∈ C \ Λ, D|Yt is a fiber of the first projection Yt � P1 × E → P1. Thus we
are done. �

The following proposition describes the structure of the FESP Y in terms of vector bundles
on S.

Proposition 4.2. Let p : S := C × E → C be the first projection. Then there exists an
unsplit exact sequence of vector bundles on S

(1) 0 −→ p∗	 −→ 
q−→ S −→ 0

which satisfies the properties below:

(i) 	 is a line bundle of nonnegative degree on C with h0(C, 	) > 0.
(ii) If Λ � C, then deg 	 > 0.

(iii) The surjection q corresponds to the section D of ϕ in Lemma 4.1.
(iv) There exists an isomorphism Y � PS() over S = C × E.
(v) u∗ �  and the extension class η ∈ Ext1(S, p∗	) of (1) is preserved by u : S → S

up to scalar.

Proof. There exists the following exact sequence of sheaves:

(2) 0 −→ Y −→ Y(D) −→ D(D) −→ 0.

We take the direct image of (2) and set  := ϕ∗Y(D). Since R1ϕ∗Y = 0, we obtain the
following exact sequence of sheaves:

(3) 0 −→ S −→  −→ ϕ∗D(D) −→ 0.

By construction, Y � PS( ) and ϕ∗D(D)|St is isomorphic to the normal bundle of D ∩ Yt

in Yt for each t ∈ C, which is trivial. Hence ϕ∗D(−D) � p∗(	) for some line bundle 	 on
C. We set  :=  ⊗S p∗	. Then after tensoring p∗	 with (3) , we obtain the above exact
sequence (1). We set St := p−1(t) for t ∈ C. Then the restriction of (1) to St � E gives the
following exact sequence:
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(4) 0 −→ E −→  |St −→ E −→ 0.

Since Yt � PE( |St ), we see that

 |St �
⎧⎪⎪⎨⎪⎪⎩
2, t ∈ Λ,
E ⊕ E , t � Λ.

Since (4) unsplits for t ∈ Λ, (1) also unsplits. The assertions (iii) and (iv) are obvious by
construction. The former assertion in (v) follows immediately from the fact that g−1(D) = D.
By the Künneth formula, there exist isomorphisms

(5) Ext1
S

(S, p∗	) � H1(S, p∗	) � {H0(C, 	) ⊗ H1(E,E)} ⊕ {H1(C, 	) ⊗ H0(E,E)}.
Let η ∈ Ext1

S
(S, p∗	) be the extension class of (1). Then η = η1 + η2 for some unique η1 ∈

H0(C, 	) ⊗ H1(E,E) and η2 ∈ H1(C, 	) ⊗ H0(E,E). Note that the group homomorphism
α : E → E acts on both vector spaces Hi(E,E) (i = 0, 1) as a multiplication by a common
non-zero constant μ ∈ C×. Hence u∗η = μη and the latter assertion in (v) has been proved.
By Leray’s spectral sequence, there also exists the following exact sequence of sheaves on
C;

0 −→ H1(C, p∗p∗	) −→ H1(S, p∗	) −→ H0(C,R1 p∗p∗	) � H0(C, 	) ⊗ H1(E,E) −→ 0.

Since Λ � ∅ by assumption, we see that η1 � 0. Hence h0(C, 	) > 0 and deg 	 ≥ 0. Thus
the assertion (i) is proved. Moreover, η1 vanishes exactly at the points of C \ Λ. Hence, if
Λ � C, then we have deg 	 > 0. Thus the assertion (ii) has been proved and we are done.

�

Corollary 4.3. We assume the same condition as in Proposition 4.2. Then the following
hold.

(1) By the composite map α : Y
ϕ−→ S := C × E

q−→ E, Y is a fiber bundle over the elliptic
curve E.

(2) For a point a ∈ E, let Ta : E � E be an automorphism of E defined by ζ �→ ζ + a.
Then for any a ∈ E, there exists ga ∈ Aut(Y) such that α ◦ ga = Ta ◦ α.

Proof. Hereafter, we use the same notation as in the proof of Proposition 4.2. Set Wt :=
α−1(t) for t ∈ E. Then the restriction of (1) gives the exact sequence of sheaves on C;

0 −→ 	 −→  |Wt −→ C −→ 0,

whose extension class is given by η2|C for η2 ∈ H1(C, 	) ⊗ H0(E,E). Since the non-zero
section of H0(E,E) is nowhere vanishing, η2|C can be taken to be constant. Hence for any
t ∈ E, Wt � PC(η2|C) is isomorphic to each other. Thus by [2], Y is a fiber bundle over E.
We set T̃a := idC × Ta ∈ Aut(S). Pulling back the exact sequence (1) in Proposition 4.2 by
T̃a, we get the following exact sequence of vector bundles on S

(6) 0 −→ p∗	 −→ T̃a
∗
 −→ S −→ 0,

whose extension class is given by ηa := T̃a
∗
η ∈ Ext1(S, p∗	). Then ηa = η, since in the

isomorphism (5), Ta acts on Hi(E,E) (i = 0, 1) trivially. Hence T̃a
∗
 �  and there exists

an isomorphism Ya := Y ×E,Ta E � PS(T̃a
∗
) � PS() =: Y . Then the canonical projection
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Ya → Y gives an automorphism ga of Y with α ◦ ga = Ta ◦ α. Thus we are done. �
The converse to Proposition 4.2 also holds;

Lemma 4.4. Suppose that there exists an unsplit exact sequence (1) of vector bundles on
S := C × E which satisfies the condition (i) in Proposition 4.2. Then Y := PS() admits a
nonisomorphic étale endomorphism.

Proof. Let η ∈ Ext1
S

(S, p∗	) be the non-zero extension class of (1), which can be
decomposed as η = η1 + η2 for some unique η1 ∈ H0(C, 	) ⊗ H1(E,E) and η2 ∈ H1(C, 	) ⊗
H0(E,E). For an integer n ≥ 2, let μn : E → E be a multiplication mapping by n and set
u := idC × μn : S → S. Pulling back the exact sequence (1) by u, we obtain the following
exact sequence of vector bundles on S

0 −→ p∗	 −→ u∗ −→ S −→ 0,

whose extension class is given by u∗η ∈ Ext1(S, p∗	). Then u∗η = nη, since μn acts on
both vector spaces Hi(E,E) (i = 0, 1) as a scalar multiplication by n. Hence there exists an
isomorphism Ỹ := Y ×S,u S � PS(u∗) � PS() =: Y . Then the canonical projection Ỹ → Y
induces a nonisomorphic étale endomorphism of Y . �

Remark 4.5. The assertions (i) and (ii) in Proposition 4.2 are related to the jumping phe-
nomenon that ‘the Atiyah surface S degenerates to the product of P1 and an elliptic curve’
exactly at the points of C where η1 ∈ H0(C, 	) ⊗ H1(E,E) (as in the proof of Proposition
4.2) vanishes (cf. Remark 2.4).

The following lemma describes the centers of the equivariant blowing-up π : X → Y of
an FESP Y .

Lemma 4.6. Let f : X → X be a nonisomorphic étale endomorphism of a smooth projec-
tive 3-fold X with κ(X) = −∞. Suppose that there exists a constant FESP (Y, g) of type (C1)
or of type (C0). Let

π• : (X, f )
π(0)

−−→ · · · −→ (X(i−1), f (i−1))
π(i−1)

−−−→ (X(i), f (i)) −→ · · · π
(k−1)

−−−−→ (Y, g)

be a sequence of equivariant blowing-downs, where we set

(X(0), f (0)) := (X, f ), (X(k), f (k)) := (Y, g)

and π(i−1) is (the inverse of) the blowing-up of X(i) along an elliptic curve Ci(⊂ X(i)) for each
1 ≤ i ≤ k. Then for any i, the π(i−1)-exceptional divisor Δi is isomorphic to either S or an
ellptic ruled surface PCi( ⊕ 	i) for some torsion line bundle 	i on Ci.

Proof. By construction, we have ( f (i))∗Ri = Ri for each extremal ray Ri of NE(X(i))
such that π(i) = ContRi . In Particular, ( f (i))−1(Δi) = Δi for each i. Thus there is induced a
nonisomorphic étalle endomorphism f (i)|Δi : Δi → Δi of Δi. Then by [6, Propositions 1,1,
4.8 and Remark 3.2], we see that Δi � S or Δi � PCi( ⊕ 	i) for some torsion line bundle 	i

on Ci. �

Now we state our main theorem in this section.
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Theorem 4.7. Let f : X → X be a nonisomorphic étale endomorphism of a smooth
projective 3-fold X with κ(X) = −∞. Suppose that there exists a constant FESP Y• = (Y, g)
of type (C1,a) constructed from X• := (X, f ) by a sequence of equivariant blowing-downs.
Then X satisfies the condition (3) or (4) in Theorem 1.1.

Proof. There exist Cartesian morphisms of constant ESPs

X• = (X, f )
π−→ Y• = (Y, g)

ϕ−→ S• = (S, u)

which satisfy the condition (C1) in Section 2. By assumption, Λ � ∅. Let

π : X =: X(0) π(0)

−−→ X(1) −→ · · · −→ X(i) π(i)

−−→ X(i+1) −→ · · · π
(k−1)

−−−−→ X(k) := Y

be a sequence of equivariant blowing-downs to a constant FESP Y , where π(i−1) is (the in-
verse of) the blowing-up along an elliptic curve C(i) on X(i). The structure of Y is described
in Lemma 4.1 and Proposition 4.2. By construction, there exists a nonisomorphic étale en-
domorphism f (i) : X(i) → X(i) such that f (i)−1(C(i)) = C(i) for all i. Applying the same method
as in the proof of [6, Proposition 7.8], we shall seek for the candidate of C(i). First we con-
sider the case of i = k. Since g−1(C(k)) = C(k) for g := f (k), with the aid of [6, Lemma 2.6],
we see that u−1(Dk) = Dk for Dk := ϕ(C(k)). Since u = idC × α : S → S is a nonisomor-
phic étale endomorphism, Dk is an elliptic curve which is some fiber of the first projection
p : S→ C. Hence if we set x := p(Dk) ∈ C, then C(k) is contained in the elliptic ruled surface
Yx := ψ−1(x) for ψ := p ◦ ϕ : Y → C. Since g−1(Yx) = Yx, there is induced a nonisomorphic
étale endomorphism g|Yx : Yx → Yx and (g|Yx)

−1(C(k)) = C(k). By [6, Proposition 6.9], we see
that if x � Λ (resp. x ∈ Λ), then C(k) equals the canonical section s∞ of S over E (resp. some
fiber of the second projection C × P1 → P1). Applying [6, Lemmas 2.6, 6.10, Corollary 7.9
and Proposition 7.10] successively, we infer the following:

• The π-exceptional locus Exc(π) are simple normal crossing divisors.
• Any irreducible component of Exc(π) is isomorphic to either S or the P1-bundle
PC(i) ( ⊕ 	i) for a torsion line bundle 	i ∈ Pic(C(i)).
• The image of C(i) in Y equals the canonical section s∞ of S (resp. the fiber of the

second projection C × P1 → P1) if x ∈ Λ (resp. x � Λ).
Hence each C(i) is contained in the proper transform Δi of Yx or Exc(π j) for some j ( j > i).
If Δi � S (resp. Δi � PC j(⊕ 	 j)), then C(i) = s∞ (resp. C(i) is a multisection of Δi → C j). In
any case, each C(i) dominates C. Then applying Proposition 4.2, Corollary 4.3 and Lemma
4.6, we see that X is of type (3) or of type (4) in Theorem 1.1. �

Remark 4.8. If X is of type (3) or of type (4) in Theorem 1.1, we can show that the
composite map ρ : X

π−→ Y
ϕ−→ S � C × E

q−→ E is a fiber bundle over E. Applying Corollary
4.3 (2), we shall prove this fact in our subsequent article; Part III.

5. Classifications in the case (C0)

5. Classifications in the case (C0)
In this section, we shall study the structure of a nonisomorphic, étale endomorphism

f : X → X which admits an FESP (Y•,R•) of type (C0) constructed from X• = (X, f ) by a
sequence of equivariant blowing-downs. Since essentially the same arguments as in the case
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of type (C1) can be applied to this case, we shall only sketch the outline.

Theorem 5.1. Let f : X → X be a nonisomorphic étale endomorphism of a smooth
projective 3-fold X with κ(X) = −∞. Suppose that there exists an FESP (Y•,R•) of type
(C0) constructed from X by a sequence of equivariant blowing-downs. Then X is of type
(1), (2), (3) or (4) in Theorem 1.1.

Proof. By [6, Corollary 8.1], replacing X by a suitable finite étale covering X̃ of X, we
may assume that there exist Cartesian morphisms of constant ESPs

X• = (X, f )
π−→ Y• = (Y, g)

ϕ−→ A• = (A, u)

such that the following condition (C0) is satisfied:
(1) π : X → Y is a sequence of equivariant blowing-ups of a smooth projective 3-fold Y

along elliptic curves.
(2) ϕ : Y → A is a P1-bundle over an Abelian surface A.
If π is an isomorphism, then X is a P1-bundle over A and is of type (2) in Theorem 1.1.

Hence, hereafter we may assume that π is not an isomorphism. Then, applying [6, Theorem
9.5], if we replace f by its suitable power f k, we may further assume the following:

(3) A is isomorphic to the direct product E′ × E of elliptic curves.
(4) u = idE′ × μ for a nonisomorphic group homomorphism μ : E → E.
(5) The centers of the blowing-up π are mapped by ϕ onto fibers of the first projection

p : A→ E′.
If we set ψ := p ◦ ϕ : Y → E′, then ψ is a smooth morphism. Applying the same

argument as in the proof of Lemma 2.1, any fiber Yt := ψ−1(t) of ψ is isomorphic to one of
the following: PE(), S or PE(E ⊕ 	t), where  is a stable vector bundle of rank 2 on E and
	t ∈ Pic0(E) is of finite order. Then it follows from Proposition 2.2 that if we replace X by its
suitable finite étale covering, we may assume the following: any Yt is isomorphic to either
S or P1 × E. By Λ(⊂ E′), we denote the set of points t ∈ E′ such that Yt � S. Then by the
same argument as in the proof of Lemma 2.3, Theorems 3.2 and 4.7, we infer the following:

• Λ is a Zariski open subset of E′.
• If Λ = ∅, then X is of type (1) in Theorem 1.1.
• If Λ � ∅, then X is of type (2), (3) or (4) in Theorem 1.1.

Thus we are done. �

Proof of Theorem 1.1. The proof follows immediately from Theorems 3.2, 4.7 and 5.1.
�
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