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Abstract

We analyse analytic properties of nonlocal transition semigroups associated with a class of sto-
chastic differential equations (SDEs) in R? driven by pure jump—-type Lévy processes. First, we
will show under which conditions the semigroup will be analytic on the Besov space B) q(Rd)
with 1 < p,g < o0 and m € R. Secondly, we present some applications by proving the strong
Feller property and give weak error estimates for approximating schemes of the SDEs over
the Besov space BZ"O,OO(R‘J)' The choice of Besov spaces is twofold. First, observe that Besov
spaces can be defined via the Fourier transform and the partition of unity. Secondly, the space
of continuous functions can be characterised by Besov spaces.

1. Introduction

The purpose of the article is to show smoothing properties for the Markovian semigroup
generated by stochastic differential equations driven by pure jump—type Lévy processes. To
be more precise, let L = {L(¢) : t > 0} be a family of Lévy processes. Let us consider the
stochastic differential equations of the form

dX*(1) b(X*(t-)) dt + o(X*(+-))dL(¢),
X*0) = x, xeR4

(1.1)

where o : RY — L(RY,RY) and b : RY — R¢ are Lipschitz continuous. Under this assump-
tion, the existence and uniqueness of a solution to equation (1.1) is well established, see for
e.g. [2, p. 367, Theorem 6.2.3]. Let (P);>o be the Markovian semigroup associated to X
defined by

(1.2) (P.f) (x) :=E[f(X*()], t>0, xeR

Then, it is known that (7;)»¢ is a Feller semigroup (see [2,Theorem 6.7.2]) and its infini-
tesimal generator is given by

Au(x) = f ¢ ea(n, X Fu)E) dE u e SR,
Rd

where Fu denotes the Fourier transform of u, S(R) denotes the Schwartz space of infinite
often differentiable functions, where all derivatives decrease faster than any power of |x| as
|x| tends to infinity, and the symbol a is defined by
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1 M X
(1.3) a(x, ) = ~lim _E [fXO 1], xeR!, geR’
3

In [15], the first two named authors investigate the analytic properties of the Markovian
semigroup generated by an SDE driven by a Lévy process (see Theorem 2.1 in [15]). These
type of results are used to solve several applications which arise in fields related to proba-
bility theory such as nonlinear filtering theory [14], or stochastic numerics (see section (6)).
In [16], the author introduced a so-called Sobolev index and showed that the evolution prob-
lem associated with a Lévy process with Sobolev index @ has a unique weak solution in the
Sobolev space H%/?. In this article, we put a further step and investigate under which con-
straints the corresponding Markovian semigroup (7;),»¢ driven by an SDE with pure jump
noise forms an analytic semigroup in the Besov spaces B} q(Rd) with 1 < p,g < oo and
m € R. Here, we used Besov-spaces due to two reasons. First, Besov spaces are quite
general; one covers on one side the space of continuous functions and on the other side the
scale of Hilbert spaces L*(R?) and H;(Rd), s € R (see [49, 2.3.5] or [38, p. 14]). Even, if we
exclude in our results the case where g = oo or p = oo, by embedding Theorems (see [38, p.
30-31]), one gets easily good estimates for B;,W(Rd), s ¢ N, a space which coincides with
C Z(R" ). In this way, we can use the analyticity property of the Markovian semigroup (P;);>0
in Besov spaces to obtain the strong Feller property of (P;);»o. The strong Feller property
of the Markovian semigroup associated with R?-valued SDEs plays an important role in the
long time behaviour or within the proof of the uniqueness of an invariant measure of solution
processes. So, our first motivation for this paper was to study the regularity of the Markov-
ian semigroup (P;);»o (e.g. see Corollary (5.1) and Corollary (5.4)) associated with equation
(1.1). In particular, we were interested in getting weak assumptions on the coefficients b and
o. The second motivation was to study the Monte-Carlo error of an approximation of an
SDE driven by Lévy noise. To be more precise, it enables us to obtain an explicit estimate
of the distance between the semigroup associated with the original problem (1.1) and the
semigroup associated with certain approximations of the original problem.

In [22, Theorem 2.2] and [36], the authors derive some estimates on the density of the
solution of an SDE driven by a Lévy process. These estimates are uniform in space and are
related to our results, see Corollary 5.2. In [28], the authors consider the non-symmetric
jump processes and construct the heat kernel. For this heat kernel, the authors deduce some
upper bound as well estimates for its fractional derivative and estimates of its gradient.
In [5], the authors represent their main result as the propagation of the regularity of the
Markovian semigroups induced by the solution process of an SDE driven by a Brownian
motion and a Lévy process. In particular, they show that for all k € N there exists a constant
C > 0 depending on the operator a and 7 > 0 such that

sup [P fllwe, < Cllfllwe
0<t<T

for all f € C}(R?). Here ||fllic is the supremum norm of f and its first k derivatives.
In the case of k£ = 0, this means that the semigroup (P,);»o is a Feller semigroup. Kiihn,
[33], investigates the Feller property of the Markovian semigroup for unbounded diffusion
coeflicients, see also [40] and [41] for related works by the authors. In [31], the analyticity of
the Markovian semigroup (P;):»¢ is proven for SDEs with only additive noise; the noise has
to have a very special form. Notice also that in [12], the authors derive a Bismuth-Elworthy-
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Li type formula for Lévy processes in Hilbert spaces. In [23], the authors get nice estimates
on the density of solution processes driven by pure Lévy processes. They investigated the
case in R?, d > 1, where the Lévy measure is only supported by the axes and have different
exponents. Also, they give some short time estimates for the density.

The paper is organised as follows. In section 2, we give a short review of the symbols
associated with the SDEs driven by Lévy processes and introduce some notations. In section
3, we give a short introduction to pseudodifferential operators and fix the notation. In sec-
tion 4, we study under which conditions on the symbol, the semigroup (P;),s¢ is an analytic
semigroup in a general Besov space B, q(Rd), 1 < p,q < oo. The motivation for our main
results, i.e. the two applications to solution processes of stochastic differential equations, are
presented in section 5 and 6. As the first application, we verify under which constrains the
semigroup (P;)0 is strong Feller. As a second application, we calculate the rate of con-
vergence for the Monte Carlo error for SDEs driven by a pure Lévy process; the theoretical
result is also verified by some numerical experiments. Finally, in section A, we give a short
overview of pseudo-differential operators and investigate under which condition the operator
of a symbol is invertible.

NotatioN 1.1. For a multi-index @ = (aq,a2,...,a,) € N'let || = a1 + --- + a, and
a! = a!---a,!. For an element ¢ € R”, let £* be defined by £]"&)” - - - £,". Moreover for a
function f : R? — C we write 6% f(x) for

6(]/
(9)61(9)62 cee (?xdf(x)'

In addition, let us define the brackets (-) : R 2 & > (&)Y = (1 + |§|2)§ € R. Following
inequality, also called Peetres inequality, is used on several places

(x+y) e, xyeRY seRr.

Let X be a non empty set and f,g : X — [0,00). We set f(x) < g(x), x € X, iff there
exists a C > 0 such that f(x) < Cg(x) for all x € X. Moreover, if f and g depend on a
further variable z € Z, the statement for all z € Z, f(x,z) < g(x,2), x € X means that for
every z € Z there exists a real number C,; > 0 such that f(x,z) < C,g(x, z) for every x € X.
Also we set f(x) < g(x), x € X, iff f(x) < g(x) and g(x) < f(x) for all x € X. Finally, we
say f(x) 2 g(x), x € X, iff g(x) < f(x), x € X. Similarly as above, we handle the case if the
functions depend on a further variable.

Let S(R?) be the Schwartz space of infinite often differentiable functions where all deriva-
tives decrease faster than any power of |x|, as |x| tends to infinity. Let S ’(R?) be the dual of
S(RY).

If m € N we define

Cp®RY) = {f € CURY) : D"f € CYR?), la| < m}
endowed with the norm

Fley == > 1D"fles.

lal<m

Let s € R\ N, then we put s = [s] + {s}, where [s] is an integer and O < {s} < 1. Then
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lo=s] <Y lx — y|{s}

CZ(Rd) = {f c C}[}S](Rd) . Z Sup |Daf(-x) - Daf(y)| < OO}

equipped with the norm

g = Ul + > sup ZLE D@L

jo1=1s} w oyl

In order to define Besov spaces as given in [38, Definition 2, pp. 7-8] (compare also to [48])
let us choose first a function ¢ € S(R?) such that 0 < y(x) < 1, x € R¢ and

l,//(x):{ 1, %f x| <1,

3
0 if |x> 5.

Then, let us put

Po(x) = Y(x), xe R,

1(x) = Y(3)—yx), xeRY,

$ix) = ¢ 27y, xeRY, j=2,3,....
Since we need it later on let
(1.4) Ul = supp(¢1).

We will use the definition of the Fourier transform 7 = F*! and its inverse 7! as [38, p.
6]. In particular, with (-, -) being the scalar product in R, we put

P = a7 [ 0D fdx, g e SED.g R
R4

With the choice of ¢ = {¢ j};oz() as above and F and F~! being the Fourier and the inverse

Fourier transformations (acting on the space S ’(R?) of Schwartz distributions) we have the

following definition.

DeriNiTioN 1.1. Let s € R, 0 < p < o0 and f € S"(RY). If 0 < ¢ < oo we put

|f|B;}q — (Z 2S]£]

J=0

l

ol

e, “ors],)

jEN

2. Symbols, their definitions and properties

In this section, we give a short review of symbols coming up as Hoh’s and Lévy’s symbols
while dealing with processes generated by Lévy processes. Besides, we introduce some
notations. Throughout the remaining article, let L = {L*(¢) : t > 0,x € R} be a family
of Lévy processes L*, where L* is a Lévy process starting at x € R?. Then L generates a
Markovian semigroup (P;);»0 on C »(RY) by

Pif(x) == Bf(LY 1), e ChRY).
Let A be the infinitesimal generator of (P;)»o acting on C7(R¢) defined by



THE ANALYTICITY OF MARKOVIAN SEMIGROUP 19

1
2.1) Af:=lime (Pi=Py) f, [ € CiRY.
n—
Another way of defining A is done by Lévy symbols (see [20, 16]). In particular, let
1 .
Y@ = ~In(E D), £ e R

Observe that we have (see e.g. [2, p. 42] and [39])

0@ = [ (9 1= it L) vido), g
RA\{0}

If L is a pure jump process with symbol ¢, then the infinitesimal generator defined by (2.1)
can also be written as

(2.2) AN = - fR EEOF N, fe SRY.

The operator A, usually denoted in the literature by ¢ = (D), is well defined in Cg(Rd),
has values in B,(RY) (bounded Borel functions in R¢) and satisfies the positive maximum
principle (see e.g. [24, Theorem 4.5.13 ]). Therefore, A generates a Feller semigroup on
CZ"(Rd) and a sub-Markovian semigroup on L*(R¢) (see e.g. [25, Theorem 2.6.9 and Theo-
rem 2.6.10]). To characterise the symbol, we introduce the generalised Blumenthal-Getoor
index (see [7]).

DermiTion 2.1. Let L be a Lévy process with symbol ¢ and ¢ € C’g(Rd \ {0}) for some
k € Ny. Then the Blumenthal-Getoor index of order k is defined by
‘ 1)
s:=inf{A: lim — =0;.

150 Ec0 |§|/l—|01|

lerl<k

Here a denotes a multi-index. If & = co then Blumenthal-Getoor index of infinity order is

defined by
, G
s = inf A lim ———— =0¢.
250 1€l —oc0 |§|1—|Ft\

« is a multi—index

ReMARK 2.1. For a function ¢ : RY — R, the limit limg_, ¥(£) is a sloppy formulation
and means actual

sup lim Y (AE),

) A—0

where U’ defined in (1.4). This can be easily seen by analysing, e.g. the proof of the bound-
edness of the corresponding operator and realizing that the estimate comes up in analysing
the summands after decomposing the operator in its dyadic partition of the unity.

Remark 2.2. The Blumenthal-Getoor index of order infinity is defined for the sake of
completeness. We are interested in weakening the assumption on the symbol, i.e., reducing
the order k.

To analyse properties of the Markovian semigroup (7;),>0 and to define the resolvent of
the associated operator y/(D), the range of the symbol is of importance.
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DeriniTion 2.2. Let Rg(y¥) be the essential range of i, i.e.
Ra(y) :={y € C| Leb({s € R? : [W(s) —y| < €}) > 0 for each € > 0}'.

Finally, to characterize the spectrum of the associated operator, one can introduce the type
of a symbol.

DeriniTioN 2.3. We call a symbol ¢ is of type (w, 0), w € R, 6 € (0, 2), iff
-Ra(y) c C\ {w} + Zoi1, where X, :={ze€ C\{0}:|arg(z)| <}, o €][0,n].

Remark 2.3. If a symbol i is of type (0, 6), then there exists a constant ¢ > 0 such that

IFWE)) < cRy(é), &EeR

The condition above is often called sector condition of the symbol .

Before presenting a typical example, we introduce stable processes, compare [39, Chapter
3].

DErINITION 2.4. A probability measure i on R is infinitely divisible, if for any positive

integer n € N, there exists a probability measure s, on R such that u = ,uﬁl")*.z

Observe, due to the independent increments of a Lévy process, the distribution function
L(?), t > 0, for any Lévy process is an infinitely divisible probability measure.

DermntTion 2.5 (SEE Sato [39, Chapter 3]). An infinite divisible probability measure yu is
stable, if for any a > 0, there exist numbers » > 0 and ¢ € R such that

A = p(bz) €9, z e R,

Here, i denotes the characteristic function of the probability measure u, i.e. f(z) =
Jo € u(dx), z € RY. The measure y is called strictly stable, if for any a > 0 there ex-
ists a number b > 0 such that

f(2)* = pbz), zeR

DeriNiTION 2.6. Let {X(f) : t > 0} be a Lévy process on R?. It is called a stable or strictly
stable process, if the distribution for X(1) is a stable, respectively, a strictly stable infinite
divisible measure.

ExawmpiE 2.1. Let L be a one dimensional strictly a—stable process. In particular, L be a
real-valued Lévy process with initial value Ly = O that satisfies the self-similarity property

L/t L1, vi>o.

Then, its symbol is given by (&) = c|€]|*, the parameter « is called the exponent of the
process (see [39, Section 14, p. 77]). Let o and b be two Lipschitz continuous functions on
R. Then, for @ > 1, the symbol

Here, Leb denotes the Lebesgue measure.
2The symbol * denotes the convolution of two probability measures.
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a(x, &) = |o(x)é" + ib(x)é

is of type (0, 6). If o is bounded away from zero, then the generalized Blumenthal-Getoor
index is a.

Exawmpre 2.2. Let @ € (0,2) and L be a symmetric a—stable process without drift. The
symbol ¢ of L is given by

Y =g,
the upper and lower index is «, and ¢ is of type (0, 6) for any ¢ > 0.

Remark 2.4. Let H be a Hilbert space. For A € C\ Ra(y) := { € C : 3¢ with y(&) = ¢}
we have (see Theorem 1.4.2 of [18])

1
IR, (D) ey < dist(Ra(y), 1)

Moreover, the set Rg(y) equals the spectrum of the generator A.

For different examples of Lévy processes and their symbols, we refer to [6], [8], [15],
[32], or [44]. In case there is no dependence on the space variable, one can derive proper-
ties of the Markovian semigroup directly using the range of the symbol. Given a solution
process of an SDE, usually, the associated infinitesimal generator of the Markovian semi-
group depends on the space variable x. In particular, for x € R let X = {X*(r) : t > 0}
be a R%-valued solution of the SDE given in (1.1) and, as before let (P,);»( be the associ-
ated Markovian semigroup defined in (1.2). Let ¢ be the Lévy symbol of the Lévy process
L = {L(¢) : t > 0}. Then, one can show (see Theorem 3.1 [43]), that the infinitesimal gen-
erator of the Markovian semigroup associated to X* has the symbol a : R x R? — C given
by

(2.3) a(x,&) = Yo'(x)&), (& eR xR

Let a;(x, &) and ax(x, &) be two given symbols. Due to the dependence on x, the correspond-
ing operators a;(x, D) and a,(x, D) do not necessarily commute. Therefore, many techniques
working for operators induced by symbols being independent of the space variable x do not
work for operators induced by symbols depending on the space variable x. Especially, tricks
relying on the Bony’s paraproduct gets much more demanding.

In our main result Theorem 4.2 we show under which conditions on the symbol ¢ and
on the coefficients o and b the Markovian semigroup (7)o is an analytic semigroup in
general Besov spaces B;,q(Rd). To be more precise, we show if ¢ is bounded away from
zero, o and b are smooth enough, and y is of type (0,6), 6§ < g, sufficiently smooth, and
having Blumenthal-Geetor index ¢ € (1,2) of sufficiently high order, then the Markovian

semigroup is analytic on B;’q(Rd) for p,q € [1, 00).

The choice of Besov spaces is twofold. First, observe that Besov spaces can be defined
via the Fourier transform and the partition of the unity (see the paragraph notation or [38,
Definition 2, pp. 7-8]). Now, since the operator associated with the symbol a(x, £) can be
represented by a kernel of the form



22 P.W. FernanDO, E. HAUSENBLAS AND K. FAHIM

ax.Df W = [ Kx-pfwdy. xew,
R{
where the kernel is given by the inverse Fourier transform?

k(x,z) = Feo: [a(x, 6)] (2),

Besov spaces come up naturally. Secondly, the strong Feller property is defined via the space
of continuous functions C;(Rd), which is related to the Besov space fo,’w(Rd) for s # 0. So,
it suggests by itself to use Besov spaces and embedding Theorems to prove the strong Feller
property for (P;)so.

3. A short introduction to pseudo-differential operators

In this section, we shortly introduce the main definition of pseudo—differential operators
and their symbols. Also, we present the definitions and Theorems which are necessary for
our purpose. For a detailed introduction on pseudo—differential operators and their symbols
in the context of partial differential equations we recommend the books [1, 34, 45, 51, 47,
17], or the monograph of Kumano-go [30], in the context of Markov processes we recom-
mend the books [24, 25, 26] or the survey [9, 29]. Here, we closely follow the book of Abels

[1].

DerniTioN 3.1. Let p, 6 be two real numbers such that 0 < p < 1 and 0 < 6 < 1. Let
S/’f’ 6(Rd x R?) be the set of all functions a : R x RY — C, where
o a(x, &) is infinitely often differentiable, i.e. a € C;"(Rd x R%);
o for any two multi-indices @ and g there exists a constant C, g > 0 such that

af;,a‘ia(x, &) ler—gy| < Capllyel)" Py, xeRL ety 2 1.

We call any function a(x, &) belonging to UmeRngo(Rd ,R%) a symbol. For many estimates,
one does not need that the function is infinitely often differentiable. It is often only necessary
to know the estimates with respect to ¢ and x up to a particular order. For this reason, we
introduce the following classes.

DermiTioN 3.2 (coMPARE [51, p. 28]). Let m € R. Let Az o, 5(Rd, R%) be the set of all
functions a : R? x R? — C, where
o a(x, &) is kj—times differentiable in & and k, times differentiable in x;
o for any two multi-indices @ and 8 with |a| < k; and |B| < k», there exists a constant
Cop > 0 depending only on « and g such that

0 Fa(x.6) lo—ey| < Caplby) " PUDP, e RLE Uiy 2 1.

Moreover, we introduce a semi—norm in AZT ko 6(Rd ,RY) by

llall.

kykpp.0

= sup sup
la|<ky,|BI<ky (x,&€)ERIXVXR

FLRa(x, &) le=ery | (VEV AP, ae AL, ROXRY,

Fenela(e, 6)1@) = [, e a(x, &) dé.
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We have seen in the introduction that, given a symbol, one can define an operator. In case
the symbol ¢ is a Lévy symbol, the operator defined by (2.2) is an infinitesimal generator
of a semigroup of a Lévy process. In case one has an arbitrary symbol, the corresponding
operator can be defined similarly.

Dermnition 3.3 (compare [51, p.28, Def. 4.2]). Let a(x, &) be a symbol. Then, a(x, &)
corresponds to an operator a(x, D) being defined by

(a(x, D) u) (x) := f Da(x, &) &) dé, xeR?, ue S(RY)
R4
and being called pseudo—differential operator.

In most applications, one is interested in inverting the operator a(x, D). Here, the symbol
has to be elliptic, a terminus being the subject of the next definition.

DErINITION 3.4 (cOMPARE [34, p. 35]). A symbola € SZf 5(Rd xR?) is called globally elliptic,
if there exists a number r > 0,

Vel s la(x,yOl, y=r E€ Uy, xeRY

In the appendix, we will see that we need upper estimates not only for the symbol itself
but also for its derivatives. Therefore, we have to introduce a more sophisticated definition
of ellipticity.

DEermNtTION 3.5 (COMPARE [34, p. 35]). Let m, p, 6 be real numbers with 0 < 6 < p < 1. The
class Hypfhkz’ .. 5(Rd x R¥) consists of all functions a(x, &) such that

o a(x, &) is k;—times differentiable in & and k, times differentiable in x;
o there exists some r > 0 such that

()" s la(x,yél, yzr é€Vi, xeR’,

and for an arbitrary multi-indices a and 3 there exists a constant C, g > 0 with

T ha(x,€)|,._ | < Canllye)" "),

foerRd,fel/'l,yZ r.

In addition, for ki, k, € Ny, we define the following semi—norm given by

a0, [ (el )P,

lallgypr = sup  sup limsup
20 alsk JBlsks xeRd €€V y—00

1 ‘ ]
a(x, &) e=ye

In appendix A, we present some theorems and corollaries being necessary for the proof.

4. Analyticity of the Markovian semigroup in general Besov spaces

Given a function space X over R? we are interested under which conditions on the coeffi-
cients o, b and the symbol ¢, the Markovian semigroup (P;);>0 generates an analytic semi-
group on X. Here, one has first to verify that (7;),»¢ generates a strongly continuous semi-
group. The Hille—Yosida Theorem gives the necessary and sufficient conditions which have
to be satisfied by a semigroup to be strongly continuous. Let us assume that X is a Banach
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space. For an operator A, let p(A) represent the resolvent set, i.e. p(A) = {1 € C: (U —A)is
invertible } and 0(A) = C \ p(A). Now, if (A, D(A)) is closed, densely defined, and for any
A € C with R > 0 one has A € p(A) (compare [13, Theorem 3.5, p. 73], or [35, Theorem
1.5.2]) and

1
4.1 R(1,A <%
4.1) IR(A, A)llzex %) R
then A generates a strongly continuous semigroup on X. Secondly, to show that this strongly
continuous semigroup is analytic, one has to show either that (compare [13, Theorem 4.6,

p. 101])
4.2) M = sup |[tAP||rxx) < o0,

>0

or that there exists a constant C > O such that

(4.3) IR + it : Allrcex) 9>0,%,7eR

7’
Let S(A) = {{(x*,Ax) : x € D(A),x € X%, |x| = 1,|x*] = 1,{x",x) = 1} be the numerical
range of an operator A. If X is a Hilbert space and o constant, S(A) can be characterized
by the Rg(W) := {a(x,&) € C : x,& € R4}, where a(x, £) := y(o! (x)€). Since the range of ¢
contains the numerical range S(A) of A, we have (see Remark 2.4)

1
4.4 R(1,A S V=
4.4) IR(A, Al x) dstL S
Hence, for X = Hz’"(Rd) and o(x) = o0, one can show by analysing the numerical range,
which is here given by

S(a(x, D)) = {(x,a(x, D)x) : x € dom(a(x, D)), |x|pers = 1, (x. )y = 1},

and some purely geometric considerations, the analyticity of the semigroup (P;)o in X.
Here (, ) represents the inner product in Hg"(Rd). In fact, choosing a complex number
A =3¢+ ir with 9 > 0 and 7 € R, and using that the symbol  is of type (0, 8), we obtain by
the following series of computations (see Theorem 3.9 [35, Chapter I])

IR(A, a(x, D))”L(H’;(R"),H;’(]Rd)) = IR + it, a(x, D))|IL(H’2”(R‘1),H’2"(R‘1))
1 1 1
< = < — < =
dist(4, S(a(x, D))) — dist(4, p(a(x, D))) dist(4, p(a(x, D)))
3 1 < cosf C
Cdist@ + it pla(x, D))~ il [l

where C = cos 6. These calculations imply that (P;),»o in X is an analytic semigroup in X.

This result can be generalised to arbitrary Besov spaces. The motivation to analyse the
analyticity of the Markovian semigroup in Besov spaces comes from the aim to investi-
gate the strong Feller property of the Markovian semigroup. Since one has the embedding
C'RY) c Bio’oo(Rd) (s # 0), it is natural to switch to Besov spaces. The disadvantage is,
abandoning the Hilbert space setting, the numerical range gets more complicated, and it is
better to use other methods.
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Remark 4.1. Using the abstract theory of classic books such as, e.g. [35, 13, 48], we
can prove the following two Theorems for the pseudo—differential operator induced by a
simple Lévy process by proving that all assumptions of the corresponding theorems (e.g.
Theorem 5.2 [35, Chapter II], Theorem 3.9 [35, Chapter I], Theorem 2.3.3 [48, p.48], etc.)
are satisfied. In our case, the underlying stochastic process is not a simple Lévy process,
but a solution of stochastic differential equations. Therefore, we apply the same method
to prove Theorem 4.1. In particular, we prove that all assumptions of the corresponding
theorems (Theorem 5.2 [35, Chapter 1], Theorem 3.9 [35, Chapter 1], Theorem 2.3.3 [48,
p.48], etc.) are satisfied.

Theorem 4.1. Let us assume that
o the symbol a(x, &) belongs to Ag didd +3;1’0(Rd x RY), where 1 < 6 <2,
o the symbol a(x, &) belongs to Hypg didd +3;1,O(Rd x RY),
o and is of type (0,6), 0 < 6 < 7.
Then, for all 1 < p,q < o0 and m € R, the operator a(x, D) generates an analytic semigroup
(P)iso in B (RY).

Let L = {L(¢) : t > 0} be a family of Lévy processes and let us consider the stochastic
differential equations of the form

dX*(t) = bX'(t-))dt+ o(X*(t—=))dL(2),
X*0) = x, xeR?,

where o : RY - LR . RY and b : RY — R? are Lipschitz continuous. Let (7)o be
the Markovian semigroup of X defined in (1.2). Applying Theorem 4.1 to the infinitesimal
generator of (P;);»o gives following Theorem.

Theorem 4.2. Let us assume that the symbol s is of type (0,0), 0 < 0 < Z, and
l’[/ € Agd+4,d+3;l,O(Rd X Rd) N HJ’Pgd+4,d+3;1,o(Rd X Rd),

where 1 < 6 < 2 is the Blumenthal-Getoor index of order 2d + 4 of L. In addition, let us
assume that

o o€ CIHRY),

o and b € C{¥([R),

o and that there exists a number ¢ > 0 such that

inf o(x) > cl.
xeR4

Then, for all 1 < p,q < oo and m € R, the Markovian semigroup (P;) defined in (1.2) is
analytic in By q(Rd).

Remark 4.2. The restriction that p has to be strictly smaller than infinity comes from the
fact that the space of Schwarz functions S(R¢) is not dense in BZ,  (RY).

Proof of Theorem 4.1:.  For simplicity, let us denote B} q(Rd) by X. Let us assume
that the symbol ¢ and the coefficients o and b are infinitely often differentiable. We first
show that the operator (P;)»o generates a strongly continuous semigroup on X by proving
the required conditions in the Hille—Yosida Theorem. Theorem 2.3.3, p.48 in [48], gives us
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that the Schwarz space S(RY) is dense in X. In addition, it is straightforward to show that
S(RY) ¢ dom(a(x, D)). This immediately gives that dom(a(x, D)) is dense in X.

Before starting, let us split the operator a(x, D) into two operators in the same way as it is
done in Theorem 7.1. Let R € N sufficiently large such that

R > 6X lall g1

and <|§|)5 < la(x, &) for all x € RY and £ € R? with |£] > R. In addition, let y € CZ"(R(J; ) such
that

0 ifl¢g <1,

Mg:{1 il > 2,

and put b(x,¢) = a(x, &)1 — x(¢/R)) and a(x, &) = a(x,&)x(E/R). We will show that
A = a(x, D) generates an analytic semigroup on X. Due to Theorem 2.1 [35, Chapter 3.2, p.
80] and since B = b(x, D) is bounded on X, it follows that A = A + B generates an analytic
semigroup on X.

First, we will show that (a(x, D), dom(a(x, D))) is closed in X. Let {v, : n € N} C
dom(a(x, D)) be a sequence such that lim,,,., v, = vin dom(a(x, D)) and lim,,_,, @(x, D)v,
= w in X. To show that (a(x, D), dom(a(x, D))) is closed in X, we have to show that
a(x, Dyv = w. Suppose that |a(x, D)v — w|x # 0. In particular, there exists a constant C>0
such that |a(x, D)v— w|x > C. There exists a number o € N such that for all n > ng, we have

A

C
4la(x, D )”L( dom(x,0)).x)

v = al domax.py <

and

A

C
|a(x, D), — wlx < 1

Since a(x, D) is a linear and bounded operator on dom(a(x, D)), we have
la(x, D)v — wlx < |a(x, D)v — a(x, D)valx + la(x, D)v, — wix

3 N ¢

< ||a(x, D)”L( dom(&(x’D))’X)w - Unl dOIIl(Zt(x,D)) + Ia(x, D)Un - le < 5

Since this is a contradiction, we conclude that w = a(x, D)v. Next, we show that there exists
a constant C > 0 such that

_ C
4.5) IR(A, a(x, D)l xx) < ok A€ Loz
Here, we will apply Theorem 7.1 to get the estimate. In order to do this, first, note that the
norm of A + a(x, &) in /{2‘; ad +3’;1’0(Rd x R) does not depend on A. Hence,
”/l * a”"i;dlﬂ,dﬂzlﬂ - ”a”"i;dlﬂ.dﬁ;l,o ’ /l € 20+% ’

Next, we have to estimate the norm of the operator A + a(x,¢) in Hypg didds3: 1’O(Rd x RY).
That means, for any multi-indices |a| < 2d + 4 and |8] < d + 3 we have to estimate

.

/l -
sup ] A+a(x.é)

»)
Ae 9+%
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By straightforward calculations it can be shown that this entity is bounded. Here, it is
essential that a(x, D) satisfies the sectorial condition, i.e. that there exists a ¢ > 0 such that
|3 (@a(x, &) < c|R(@(x, ). We will consider the case where |a| = |8] = 0. Separating the
real and imaginary part we set 4 = A; + idy and a(x, &) = ¥ (x, &) + iy(x, £). Now we have

1 _ A+ ¢ (v, 6) _ A+ Y, &)
A+a(x,€) (U + (62 + (L + ¥, 6) (4 + Y1, 6) + (A + Ya(x, 6)*
In particular, simple calculations give
‘ ! ‘ N H G HP + (b +P( )P 1
A+ax, 617 (U + (66 + (L +Ya(x, 6 ~ &

for 4; > 1. Next, we will consider the case where || = |8| = 1, thatisleta = kand 8 = [
with k, [ € {1, ...,d}. Then,

9,0 L] %8 29,a(x£)05a(x.8)
v | T Arawmor T Aramé)

For simplicity, we will not separate the real and imaginary part. In this way we get

r! 71

1
——| < n +
/l+Zz(x,§)” | '{m+1|2 A+ 1P

where in the Definition 3.5, it is only necessary that there exists some r > 0 such that
JED™ < la(x, &)| for & € R with |£] > r. Similarly, we could get the bound for the general
case where for multi-indices satisfying only || < 2d+4 and |8| < d+3. By an application of
Theorem 7.1 we know that (4.5) is satisfied. In particular, that there exists a constant C > 0
such that

|/l| 6x,a§k

} < C(r),

. C
(4.6) IR(A, a(x, D))l xx) < ok

Finally it remains to show that the semigroup (P;)>o is analytic over X. Now pick 4 =
T+it e Zorz such that ¢ > 0 and 7 € R. From the estimate (4.6), we easily see that,

/l € Z@.{_%.

Cas

7l
Then by applying the Theorem 5.2 [35, Chapter II] we could conclude that the Markovian
semigroup is an analytic semigroup over X. |

IR + i, a(x, D)l x %) < A€ Loz

By analysing the proof of [46, p. 58], it can be seen that the condition of the differentia-
bility at the origin can be relaxed. Here, it is essential to mention that the proof relies on the
Theorem 2.5 [21, p. 120] (see also Theorem 4.23 in [1]), from which we can see that the
extension of the Theorem 9.7 of [51] to symbols, whose derivatives have a singularity at {0}
is possible. Moreover, analysing line by line of the proof of Theorem 9.7 in [51], one can
give an estimate of the norm of the operator.

5. The first application: the strong Feller property

Let L = {L(¢) : t > 0} be a family of Lévy processes and let us consider the stochastic
differential equations of the following form
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dX*(1) b(X*(t-)) dt + o(X*(t—=))dL(2),
X*0) = x, xeR?,

(5.1

where o : RY —» L(RYR%) and b : R? — R< are Lipschitz continuous. By Cg(Rd) we
denote the set of all real valued and uniformly continuous functions on R? equipped with
the supremum—norm. A Markovian semigroup (P,),so of a process is Feller, iff Pu € C)(RY)
for all u € CY(R?) and 7 > 0, and is strongly continuous in zero, i.e. lim,jo [P — ulco = 0
forevery u € Cg(Rd). The Markovian semigroup (P;)r»o of a process is called strong Feller,
iff for all f € B,(RY) andt > 0, P,f € Cg(Rd). In this section we will prove under certain
assumptions the strong Feller property of the Markovian semigroup, see e.g. [42, p. 30].
Now, we can state our first result.

Theorem 5.1. Let L be a square integrable Lévy process with Blumenthal-Getoor index
0 € (1,2) of order 2d + 4 and bounded moments of all order. Let o € CZ+3(R‘1), such that
o is bounded away from zero (see Theorem 4.1) and b € CZ”(R"). Then, for any y € R,
1 <p<oandl < g < oo, there exists a constant C > 0 such that we have

C
(5.2) |PIM|BY S - |M|B}/ 5 > O.

12 P.q

The estimate (5.2) can be used to prove the strong Feller property of (P;);0.

Corollary 5.1. Let us assume that L is a square integrable Lévy process with Blumenthal—
Getoor index 6, 0 € (1,2), of order 2d + 4. Let o € Cg+3(Rd) is bounded away from zero and
be CZ+3(Rd). Then, the process defined by (5.1) is strong Feller. In particular, for all y > 0
and n = [£] + 1, we have

(nC)"
|p,u|cz(Rd) t— |M|L°°(Rd) . t>0.

Before presenting the proof of Corollary 5.1, we want to illustrate its applicability. Let us
define the density p : [0, 00) x RY x RY — R, for the process X by

P(X (1) € A) = f pix,y)dy, AeF®RY, t>0, and x € R%.
A

Observe, for any x,y € RY, we have

pi(x,y) = (Pi6:)(y).
By Corollary 5.1, we get also estimates for the density p of X.

Corollary 5.2. Let us assume that L is a square integrable Lévy process with Blumenthal—
Getoor index 1 < 6 < 2 of order 2d + 4, o € C,‘f+3(Rd) is bounded away from zero, and
be CZ” (RY). Then, the density of the process is arbitrary often differentiable. In particular,
for any 0 € N there exists a number n = [9%1] + 1 such that we have for any multi-index a of
length 0

(01

6(1/

C(n d)

Pi(x, )‘

Proof of Corollary 5.1. Fixn € N and p € [1, c0) such that y < nd — %. Fix1<g<o
arbitrary. Then, we know for y ¢ Ny (see [38, p. 14])
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C(RY) = BL, (RY).

d
Secondly, we apply the embedding B;Tq” (R?) — B (R?) (see [38, Chapter 2.2.3], [I,
Section 6.4]), and, finally, we apply Theorem 5.1 n times to get,
(nc)ﬂ

|u| y+47m5 .

n P
t B,,

[Pale; < 1Pl < \Pai g = |(Po)'u

P4 P4

d <
By means of [1, Excercise 6.25, Corollary 6.14] we get for k = % —-nd+vy
L*(R") = L’(RY) <= B) ,(R") < B |(R),

By fixing ¢ = 1 we obtain

(nC)" (nC)" (nC)"
|P1M|CZ < n |M|By+%—n§ = M |M|By+%—no‘ = m |M|L°° .
Pl p.1
The last line gives the assertion. m|

Proof of Corollary 5.2. Fix p € (1,00). We know 6, € B;,i(Rd), where p’ is the
conjugate of p (see [10, Formula B.2]). Let 6 € Ny. A function u is € times continuous
differentiable, if u € C/(RY). Since B)!,(RY) < CI(R?) for y; = 6 + %, we have to estimate
|P,5XIB%_14. Let n € N that large that n6 > 8 + d. Then y; — né < —(d - %). Now, we have

C\" C\"
Py < () Wil < (5) 1l

d

where y, < —(d - %). Since 6, € B[_,; R9), the right-hand side is bounded. m]

Proof of Theorem 5.1. First, note that by Proposition 2.1. [20, p. 793], the symbol i of
the Lévy process is infinitely often differentiable. If the coefficient o is independent from
the space variable x, then it is possible to write the symbol of the semigroup (7). directly
as (V). If o depends on the space variable x, such a nice representation of the symbol
of the semigroup does not exists. We overcome this obstacle by using the representation of
the semigroup (7)o in terms of the contour integral, since we have it already successfully
applied in [11] and [19]. Let &' € (0, 0), p € (0, 00), and let

_ (1L.M) (2,M) (3)
Ty(o, M) = 1"9,7[) + Fg,’p + Fe,,p,
where Fg) and Fg) are the rays re/G*) and re”G*%), p < r < M < o, and Fg) = plei,
0 0 »
a €[5 —0,5+¢] It follows from [35, Theorem 1.7.7] and Fubini’s Theorem that for
t>0andv € B) ,(R?) we have

1
Pu= lim — f e"R(A : a(x, D))vdA,
M—oo 2771 Ty (o, M)

where R(A : a(x, D)) denotes the inverse of a(x, A, D) := Al + a(x, D). Due to Theorem
4.2 and the assumption of Theorem 5.1, we know that (7;),» is an analytic semigroup in
B;,Q(Rd). Therefore, for any element v € B,y,,q(Rd), the limit exists and is well defined. Let
ue BZ,;,‘S(R") and {v, : n € N} be a sequence such that v, € B}, ,(R?) and v, — u in BZ;;S(R").

By a change of variables, we obtain
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) 1
lim |— f e"R(A : a(x, D))v,dA
M=eo | 278 Jr,, (o,11) B,
. 1 M ey F n e
< lim —f e 7 R(=e7 "G a(x, D)) v, 2t dr
M—eo | 27it J, t 8,
) 1 M aty T inig I
+ lim —f e R(=€G*) a(x, D)) v,e "G dr
M—oo | 2771t o s B
Pq
1 AL , .
+ Ty epeﬁR(Be"B,a(x,D))vnp_le"gdﬁ
mit J_x_g s 5
P

The Minkowski inequality gives
i o0
2tm J,
i oo
2tm J,

—rsing’

(5.3)

R(;e‘i(§+"'), a(x, D))v,

dr
Bl

dr

—rsin@’

R4, a(x, D),

BPa‘I

ap

BI’«‘I

p—l 3+

p_ P cosh ‘R(’f ¢® a(x, D)),
2t7r _ 72_f —y t

We analyse the right-hand side of the estimate above by analysing the operator R(’—;e’ﬁ',
a(x, D)) and applying Theorem 7.1. Before doing that, we have to calculate the seminorm
of A+ a(x, &) in the space of hypoelliptic operators. In this way, we require the following
estimate. Similar to p. 11 in [15], we can see that for A € 29+g,

QA7 + IE)° < 1A+ a(x, ).

The above result is due to the fact thata € Hypg 10: 1’O(Rd xR%), the idenitity (2.3), and since
o is bounded away from zero. Therefore, there exists a number r > 0 such that we know

A+ a(x, )7 < QU7 + )70 < (e,

for all ¢ € R? with r < |&]. In this way we obtain

< C(0,6) (€D,

1 1 1
’/1 + a(x, f)‘ = ’/l + w(G(X)Tf)‘ = ‘/l +{(o(0)TEY
Letk € {1,...,d}. Then
! ” _ | daax.8) < (en!
A+a(x, &) (A+alx, )™ [(A+ (€)°)?
Next, let k,l € {1,...,d}. Then,

O¢, < C(o,0) (e

52 a(x,f) 20 )
0¢,0¢, 1 }: &iéi N c,a(x, £)0g a(x, &)

A+axé) | (A+alx6)) (A +a(x, £))

Hence, we have

1 (len°—2 (len°—2
(R < C(o,6
1+ alx, f)” = @0 {u e A+ ()

Let @ = (a1, - ,ax) be a multi-index. By observing the pattern of the above derivative we

0¢ 0, } < C(o, 5)(I€N 2.
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can identify the general derivative 6?[#%] and get the following estimate. There exist
C1,Cs, - Cly > 0 depending on o~ and 6 such that

1
2 |(l<Cia+ =lal=1/ &\olal-lal
P /l+a(x,§)]l 114 +al &
+Cold + al—l(l|<€:>5(lf¥|—1)—lal + Csd + a|—|r1|+1<§>5(|r1|—2)—|0| 4ot Clld + a|—2<§>6—|al_
Therefore
1
@ —6+|a| <Cil1+ —lal-1 Slal-6
P —/l+a(x,§)”<§> <Cild+d] &

+ Cold + a[1(EYNN20 4 C314 + |30 L Oyl + a2
Using the fact that there exists some r > 0 such that we have for all x € R¢ with [¢] > r
_ 1 - -
A+ a(x, )7 < (A7 +1ED70 < D,

we obtain

@
3

———— | < (Cy + Cy + .. C)ED ™ < (€)Y < C(o, R,
/l+a(x,§)”<§> <(Ci+ Gy l)XIED ™ S €N < C(0,9)
The last line shows that A + a(x, &) € Hyp), 100 R XRY.

It remains to estimate the norm of the symbol A + a(x, £) in /f]isz; 1,0(Rd x R?) with k; =
2d+4,k, = d+3. Due to the fact that one has to take at least once the derivative with respect
to £, the constant A has no influence on the norm in f(,isz_l oR?x R?). Since, we have for

a€ A} . R xR and

lA+allg = sup sup  [9%60(A + a(x, £))| (€N,
Mkal0 clal<ky Bk (x,£)eRIXRE
where k; = 2d + 4,k, = d + 3, we can conclude that A + a(x, &) € Aé;11+4 a0 XRY).

Going back to (5.3) we can conclude by our discussion before by

lim
M-

2mi

1
— f e"R(A : a(x, D))v,dA
Ty (0,M)

Y
BIMI

C(o,6 L C(o,0 L
(@,9) e~rsind [vn] gr-sdr + (@,9) e rsin? |vn| gr-sdr
2t P pa 2t P pa

Co,op™" 7 o
+ M P CosB |Un|37-§ dap
2t iy P4

C(0,0)
2im lonl -

Taking the limit n — oo, we get

1 C(o,06
lim |— f "R : a(x, D)udl| < C@.9) ] -0,
M—co 271'1 Ty (0.M) B[y)q 2[’71’ ) X%
which is the assertion. O

The following Corollary is a consequence of Theorem 5.1.
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Corollary 5.3. Let L be a square integrable Lévy process with Blumenthal-Getoor index
6 €(1,2)of order2d + 4. Let o € Cd+3(Rd) be bounded away from zero and b € C‘”S(R")
Let m(D) be a pseudo—differential operator such that m(¢) € S O(Rd xR with0 < k < 1.
Then, there exists a constant C > 0 such that for any 0 <y < &£ v ¢ N, and t > 0 we have

C
[Py m(D) ulcyay < 7 |t oo ey -

Proof. The proof is a combination of the proof of Theorem 5.1 and Corollary 5.1. Due
to this reason, we include only the essential steps of the proof. We have already shown that

A+ a(x,€) € Hypg, 0.1 0R! X R) N A5 4,51 oR X RY).

As already observed in the proof of Theorem 5.1, we have the following representation of
the semigroup

J "

|P,m(D)u| = = lim
P B7/ D
P9

q

— f e"R(A : a(x, D))m(D)ud

Similarly as in the proof of Theorem 5.1 we can write

. 1
lim |~— f eYR(A : a(x, D)) m(D)uda|
M= | 271 Jr,, (o.M B
+ r (T 4 T 4
< lim f O)R(—e—’(fg),a(x, D)) m(D) u e > dr
Moo | 27it o t 7
rq
(5 + r .= 7 . T v
+ lim —f T RCCE), a(x, D)) m(D) u e G dr )
M—eo | 27it J, Ry g

%
P
B.U#

1 ; . .
o f " RCE &P, a(x, DY) m(D) up~'ePdp
A

L f —rsin¢’
2tr

R(§e-f<%+"'>,a(x, D))m(Dyu| ., dr

12

1 °° - i
+—f e rsing R(Ke’(fJ'g),a(x,D))m(D)u . dr
2ir J, t 5
-1 5+0 )
L B \REe® a(x, DY) m(D)u| _, dp.
2[71' _g_e/ t B;’qp

Note again that the semi-norms

||/l + a“Hysz,o;lﬁO(RdXRd) and ||/l + a||A2a1!+4d+3 Lo

do not depend on A. In this way, by separating m(D) and R(fe’(%w), a(x, D)) and applying
Theorem (7.1) we get

1 « ing
< —rsin @ D d
“oun ), ¢ D el
1 00 p_l g+9
b —rsm(-) Im(D) l/t| dr + — epcosﬁ |m(D) u| y+77§ d,B

Y+ o d_s
2t J, B 2t J_ g

1“1 1”1
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1 00 ’ 1 —+9'
[— f “rsind gy — e cosh dﬁ} Im(D)ul 4,y < Im(D) ul .
Im o 2in -5-0 pq M
Since m(¢) € S¥ ;(R? x RY) we get
C
7 |m(D) u| 7+%_(5 < 7 ” ”S1 0 | | y+ﬁ—§+K
Pq [“1
C
S - Iul y+%—(5+){ .

t

P9

Now we are following the same argument of the proof of Corollary 5.1 to complete the
argument. Fix y < (n—1)0 —«x—d and let p > 1 such that % <(n-1)0-k-y.Fix1 <g <o
arbitrary. Then, we know, firstly (see [38, p. 14])

C'RY) = B, (RY), yeN.

Secondly, we apply the embedding B ”(Rd) — B, M(Rd) (see [38, Chapter 2.2.3], [1,
Section 6.4]), and, finally, we apply Theorem 5.1 n times to get,

(5.4 [Py m(D) ulcy < |Prm(D)ulpy, ) < |Prm(D) u|By+%
Pq
C n
= |P)' m(D)u| ,.4 < (ntn) |M| P

Pa By, q

By means of [1, Excercise 6.25, Corollary 6.14],
d
B), \(R") = BJ) |(R)) = C'(RY) = L*(R),

where 6 = né — % —y+kand p’ = p%l. Now, applying [1, Lemma 6.5] and the duality
property of the Besov spaces give that

n—1)0+k
BY, (RY) > Lo(RY) > B4 (R = Bl @Y o BT R,
Finally by fixing g = 1 we get
(n )" (nC)" (nC)"
|Pt m(D) ulCZ < |u| 7+——Vl5+/< =T |u| BRI l‘—" |M|L°°
p 1 Pl
This completes the proof. O

If L is an « stable process, the problem appears that only the moments up to p < « are
bounded. Therefore, the symbol is not necessarily uniformly differentiable up to order d + 1
in any neighbourhood of ¢ = 0. However, if @ > 1, then this problem can be solved.

Corollary 5.4. Let L be a Lévy process L with Blumenthal-Getoor index 1 < § < 2 of
order 2d + 4. Let o € CZ+3(Rd) be bounded away from zero and b € CZ+3(R‘]). Then, the
Markovian semigroup (P;)>0 of the process defined by (5.1) is strong Feller.

Proof of Corollary 5.4. In order to deal with the large jumps we decompose the Lévy
process into a Lévy process recollecting the jumps smaller than one and a second Lévy
process, recollecting the jumps larger than one. In doing so, we split the Lévy measure. Let
vo be the Lévy measure defined by
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vo : BRY) 3> U H v(U N Z),

and v; be the Lévy measure defined by
vi: BR) > U - vUNZ,

where Zop = {z € R : |7l < 1} and Z; = {z € R? : |z] > 1}. Since the proof of this theorem
mainly rely on the analysis of the decomposition of the small and large jumps it is important
to decompose also the probability space U = (Q, F, {F;}eo,7), P). Let fjp be a compensated
Poisson random measure on (Zy xR, B(Zy)® B(R.)) over A = (Q°, FO, {T’,O}te[oj], PY) with
intensity measure vy where

F' = o(n(B, 10, s]) : B € B(Zy),s € [0,T]}
andfor0<r<T
F = o{n(B,[0,s]) : B € B(Zy),s € [0,1]}.

Furthermore, let 77; be a compensated Poisson random measure on (Z; X R, B(Z;) ® B(R.))
over A = (Q, !, {F Y ci0.71, P!) with finite intensity measure v; where

F! = o{n(B,[0,s]) : B B(Zy),s € [0,T]}
and for0<r<T
F! = o{n(B,[0,s]) : B € B(Z)),s € [0,1]}.

LetQ:=(Q'°xQYH, F:=F'@F,F, :=F'®F!,P=P°@P' andE = E°®E!. We denote
the to vy and v; associated Lévy processes by Ly and L;. It is clear by the independent
scattered property of a Poisson random measure, that L, and L; are independent. Since v, is
a finite measure, L; can be represented as a sum over its jumps. In particular, let p = v;(R),
{r, : n € N} be a family of independent exponential distributed random variables with
parameter p,

n

(5.5) T,= ) 7, neN,

=

and {N(¢) : t > 0} be the counting process defined by

N@) = Z liz,e(D)s 12 0.
j=1
Observe, for any ¢ > 0, the random variable N(?) is a Poisson distributed random variable
with parameter pt. Let {Y, : n € N} be a family of independent, vy/p distributed random
variables. Then the Lévy process L; given by (see [37, Chapter 3])

f
Ll(l)z‘ffZﬁl(dz,ds), t>0,
0 Jz,

—zot for N(t) = 0,
Ll(t) = N()
ijl Yj—zot for N(t) >0,

can be represented as
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where zp = fR . z2v1(dz). Let (PP) the Markovian semigroup of the solution process X given
by

X3 (1)
(5.6) { X30)

b(Xo(1-)) dt + o(Xo(1—))dLo(2),
x, xeR4

Now, we have for u(t) = E¢(X(¢)), where X is the solution to the original equation (5.1), the
following identity

N

(5.7) u(t) = B(PP$)(x) +E D Py Byu(T]) - f PP Du(s)[zol ds,
i=1 0

where (B,¢)(x) = ¢(x + y) — ¢(x). To verify formula (5.7), observe that in the time interval
[0, T1) the solution of u is given by

!
ut)y = Pop)(x)+ f P Du(s)zolds, te[0,T].
0
In particular, u solves on the time interval [0, 7) the equation

() a(x, Dyu(t) + Du(t)zg, te€][0,Ty),

(5.8)
u@ = ¢.

Let us denote the solution of (5.8) on the first time interval [0, 7] by u;. At time T the first

large jump occurred. Hence, on the time interval [T, T5), u solves

(59 { i(t) a(x, D)u(t) + Du(t)zy, te (T, T),
) M(Tl) = Eul(Tl,-+Y1).

Let us denote the solution of (5.9) by u,. The variation of constant formula gives for ¢t €
(T1,T>)

!
ur(t) = Py ur(Th) + f PP Duy(s) zo ds.

T,
Let us put
n, iftel0,T),
u(t) = u(n, i [0,T7)
ux(t), ift € [T,T>).
Since

T
w(Ty) =P ¢+ f Py, Du(s) 2o ds,
0

and uy(Ty, x) = u(T1, x + Y}), x € RY, it follows

u(t)

T
2 7 P%¢ + P " fo P%_SDu(s) 20ds

!
+ f Py Du(s)zods + EPy 7 u(Ty - + Y1) — EPY ;. u(Ty ).
T,

!
Pl + fo Py Du(s)zods + BP ;. [u(Ty .-+ Y1) —u(T},)].
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Repeating these calculations successively for all time intervals gives formula (5.7).
Since, given N(¢) = k, the random variables {Y1, Y>,..., Y} and {T, T», ..., T}} are mu-
tually independent and 7}, i = 1,.. ., k, are uniform distributed on [0, ¢], it follows that

N

E > Pl ByuT) = Z P(N(t) = k) E
i=1

N(t)
ZEI [P, Byu(T)) | N(t) = k]}

= ZP(N(t) = k) E!
k=1

Z P>, Byu(T))
=1

= ZP(N(t) =k) E! [ft PtO_SByu(s)] ,
k=1 0

where Y is distributed as vo/p. Thus, we get fory <6 — 1

’
Y
B

[ !
=|P% +C f P B,u(s)ds + f P° Du(s)[zo] ds
0 0

(Ol

where (B,¢)(x) = fRd [¢(x + y) — p(x)] vo(dy) and C is a constant depending on p and vy. By
applying Minkowski inequality and Theorem 5.1, resp. Corollary 5.3 with m(D) = D and
> y+1+d +1

m(D)u = B,u, gives for some p > 1 with n

1 ! !
u@lsy,, < 1ol + f [P Byus)|, ds+ ol f |P) Du(s)|,, ds
0 e 0 o

1 ' —n ' -n
< ~lola, + Ko f (1= 5" gy, ds + Kolzol f (t— " u(s)lgy ds

f(t— s)” ”ds] [f ()| BZm ds]T
|¢|BQW, E= [fl (5) I‘;ZO‘OO dS]

T B A oA
@l < —1dl,y + | (S)lBy ds.
b T g B Lo

|¢|B0 + K(1 + |z0])

Rearranging gives

A simple application of Gronwall’s Lemma gives

lu(lpr,, < Ct, p,n)lglpo -

By the definition of BY, . (R?), it follows that the process is strong Feller. o

6. The second application: Error Estimates for Monte-Carlo Simulation

Given the intensity (or Lévy) measure of a Lévy process, in most of the cases, one does
not know the distribution of L(7) for a fixed time point + > 0. However, simulating sto-
chastic differential equations driven by a Lévy process using the explicit or implicit Euler-
Marayuama scheme, one has to simulate the increments A”L := L(nt) - L((n—1)7) for7 > 0
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small. Here, one can apply several strategies to simulate the random variables AL, n € N,
to generate a so-called Lévy walk. In general, the distribution of AKL is not known, such
that AXL cannot be simulated directly. One way is to cut off the jumps being smaller than
a given & and to simulate the corresponding compound Poisson process directly. Now, one
has two possibilities, to neglect the small jumps or to replace the small jumps by a Gaussian
random variable. Doing so, one gets a new Lévy process, denoted by L. This method was
introduced by Tsuchiya [50]. Asmussen and Rosinki [3] investigated the process generated
only by the small jumps. They investigate under which conditions this process converges in
distribution to a Wiener process. Hence, one can improve the weak error by not neglecting
the small jumps and simulating instead of the small jumps a Wiener process. The second
advantage is that replacing the small jumps by a Wiener process leads to the fact that the
Markovian semigroup of the approximation is analytic. Therefore, the error for ¢ small
improves. This we will present it in this section theoretically and verify practically.

To be more precise, let us cut off all jumps being in the unit ball with radius €, denoted in
the following by B,, i.e, let B, = {z € R? : |7| < &}, || denotes a norm on R¥. Then, A”L is the
sum over N random variables {Y7, ..., Yy}, where N is Poisson distributed with parameter
v(R? \ B,) and the random variables {Y;,..., Yy} are identical and mutually independent
distributed with

AY0B) N
v(B;)
Now, we can replace the neglected small jumps by increments of a Wiener process. Here,
the rate of convergence for the strong error will not be improved. However, calculating the
weak error the quality of the approximation will be improved. One of the reason is that the
Markovian semigroup of the approximation where the small jumps are approximated by a
Wiener process is analytic. To explain the implication of this, let us consider the function
¢ : R 3 x> L4 00)(x). Then, for 7 > 0 we know P (X;° > a) = El|4.)(X;*), where X solves
the stochastic differential equation (b : RY — R? are Lipschitz continuous, o > 0)

dX™(t) b(X™(t=))dt + o(X™(t-)) dL(1),
X*0) = x9, xp€R.

(6.1)

Let us denote the approximation of X, where we replaced the small jumps by a Wiener pro-
cess, by X. Then, the function ¢ : R 3 xo > Ell[,)(X;°) is infinitely often differentiable and
we can use the Taylor approximation to get a nice error estimate. In this way, the analyticity
of the Markovian semigroup has a strong impact on the quality of the approximation.

Fix a truncation parameter O < € < 1. Let us define the approximate Lévy measure
v B[R)> C - v(CNBY).

Let L, be the Lévy process induced by truncating the small jumps. In particular, L, is a Lévy
process having intensity v*. Not to neglect the small jumps, we generate at each time-step
k € N a Gaussian random variable AKW,, where

(6.2) AW, ~ N(0.2%(e)71y) with 2 (g) = f . y)v(dy),
B

where I; denotes the d-by-d identity matrix. Then, the increments of the Lévy process are
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approximated by
(A%Ley + AW, AlLey + AW, A2Ley + A2W,, ... AELey + ASW, ).

In the following we give an error estimate of the two processes X and X*, where X solves
(6.1) and X™ solves

63 [ d&O = bED@Dd+ o RPNALAD + TR (=)AWeD),
' X©0) = xo, x €R%

Here W, is a Wiener process with covariance X(g). We suppose that the Lévy process is a
self-decomposable Lévy process. In particular, we assume that L(1) is self~decomposable.

DErINITION 6.1. A probability measure on R? is self-decomposable, iff for any b > 1,
there exists a probability measure p, on R? such that

az) = pb™ ' 2)ppz),  ze R

By Theorem 15.10 of [39, p. 95], we know that there exists

o a finite measure A on the sphere S = {x € R? : |x| = 1}
o and a measurable function k : S X Rt — R(J; , decreasing in the second variable,

such that the Lévy measure v of L has the following representation

v(B) = ffoo 1 g(rx)k(r, x)? Aldx), Be B(Rd).
S JO

Again let us define the corresponding Markovian semigroups. Let (7;);>o be the Markovian
semigroup of the process (6.1), i.e.

(6.4) Pp(xo) = Ep(XO(t), t=0, xR,

and let (7518),20 be the Markovian semigroup of the process (6.3), i.e.

(6.5) Pep(xg) = EpX>(1), >0, xo€R

The first proposition shows that the semigroup (f)f)tzo of the approximation X is analytic on
By (RY).

Proposition 6.1. Let L be a Lévy process, such that L(1) has a self-decomposable distri-
bution. Let a € (1,2) be the Blumenthal-Getoor index of L. In particular, we assume that
there exists a finite measure A on S and a measurable function k : S X R™ — R,
varying at zero and monotone decreasing for x — oo in the second variable such that

slowly

v(B) = f f Lk, x)% Adx), Be BRY).
S J0

Let us assume that there exists some co > 0 such that A({|{x,e;)| > cos(n/4)}) > co for
j=1,...,d wheree; = (e},e?, .. ,e?) with e’;. =0iff j+ kand ej: = 1. Let us assume that
o€ CZ”(R") is bounded away from zero, i.e. o-(x) > 6l for all x € RP, and b € CZ+3(Rd).
o Then, for all 1 < p,q < oo, the Markovian semigroup (73;”“),20 is an analytic semi-
group in B’;fq(Rd)for allm e R.
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o Let (D) be a pseudo—differential operator with symbol 9(&), where ¥ € S’f’O(RdXR‘])
with k € R. Then, we have for u € B q(Rd)

(6.6) |PE(D)u g

B" S
12

IMIB’,ﬁ;”*K'
ReMARK 6.1. By Theorem 14.3 [39], the Lévy process L from Proposition 6.1 is a—stable
and the Blumenthal-Getoor index and « coincides.

As mentioned before, due to the fact that the Markovian semigroup is analytic, the weak
error can be improved.

Theorem 6.1. Let us assume that o € CZ+3(R‘1) and b € CZ+3(R"). Let o be bounded
away from zero and let @ € (1,2) be the Blumenthal-Getoor index of L. Then, for 6 =

2@ —1), r1,r € (0,1) such that ri + r, > 1 and 2r; > r, with 6| = ‘% and &, = 8(r; — %2),

||7)t _ f)[é: | < Ct2((5—1)(r| +r2)_18(2_6).

“L(B:EO,BQW
To illustrate Theorem 6.1 we postponed the proofs of Theorem 6.1, Proposition 6.1, and
present the following simulations. Here, we took as underlying process

{ dX>(z) —aX*(t=)dt + dL(t),

(67) X"0) = x9, xp€R,

where a = 3 and (L;).»¢ is a strictly a—stable process, where we specify the value of « later
and let run a from one to two (see Figure 5). Note, a coincide with the Blumenthal-Getoor
index of L, compare Remark 6.1.

In addition, we compared the error for different a, i.e. we let run « from one to two (see
Figure 5). Summarizing, there is a significant improvement by adding a Wiener process. In
particular, we approximate this process once by cutting off the small jumps and replacing
the small jumps by an independent Wiener process described by

dXX () —aX2(t=)dt + dL (1) + dW.(2),
X20) = x0, x0€R,

(6.8)

and secondly, by only cutting off the small jumps, i.e. by

dXX (1) —aX2(t=)dt + dL.(1),
)_(;‘0 (0) = Xxp, Xo€R.

(6.9)

Let (P));»0 be the Markovian semigroup of the process (6.7), i.e.
(6.10) Pip(xg) = Ep(X™(r), t=0,
let (73,‘5)20 be the Markovian semigroup of the process (6.8), i.e.
(6.11) PP (xo)

and, finally,

E¢p(X2(t), =0,

(6.12) Pie(xo) E¢(X2 (1), t=>0,
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be the Markovian semigroup of the process (6.9). We simulate the Markovian semigroup
for two different functions

2
X
$1(x) := 1,505 and ¢r(x) = T3 2 x€R.

In Figure 1 and Figure 2, we simulate P;¢;(xo), ﬁfqﬁ,»(xo), 73f¢,-(x0) and the absolute error
of approximations 7_)f¢,~(x0) and 73f¢,-(x0) for @ = 1.05 and a sample size 6x 107 with varying
€. Here, one can observe that, if & decreases, then the error also decreases. In Figure 3 and
Figure 4, we simulate P;¢;(x), f’fgbi(xo), T_)fgbi(xo) and the absolute error of approximations
Pegi(xo) and Pfei(xo), i.e. [Pi(xo) = PF i(xo)| and [Pigi(x0) — Pfi(xo)| for & = 0.1; sample
size 1.5x10% xo = O and xo = 0.45;i = 1,2; and @ = 1.05, 1.95. It is observed that replacing
the small jumps by a Wiener process improves the quality of the approximation. Especially,
if @ is closed to two. This we could also verify by Figure 5, where we simulate the logarithm
of absolute error of ﬁf(/)i(xo) and 73f¢i(x0) fori=1,2, xop = 0 and xo = 0.45.

Before presenting the proof, we want to give some remarks. Note, that (P;);»0 has gener-
ator given by the symbol a(x, &) = y(o(x)"¢) and (P,)s0 has generator given by the symbol
as(x,€) = Ye(0(0)T€) — 32 N0 (D) E, 0(x)" &), where

Ye(é) = f €9 — 1 — iy, E)v(dy), & eRY,
RY\B,
and

() = fB (Y, y) v(dy).

Proof of Proposition 6.1. Let us assume that the support of v belongs to {x € R? | |x < 1}.
Since the large jumps are simulated precisely, this is no restriction. The symbol for the
approximation is given by

1
as(x, &) = Y(o(0)'é) - 522(e><a(x>Tf, o (x)" ),

where

dr
1+a A(dy)

r

1
VelE) = fs f (€9 _ 1~ ir(y, &) k(r.1)

and

& d
26 = [ [ trmken S aa,
s Jo r

The aim in the following calculations is to show that a.(x, ) belongs to Hypy, 4 4.5. I’O(Rd X
R9). Throughout this proof, we denote by C a varying positive constant. First, we will show
that for any & € U there exist some constants R > 0 and C > 0 such that

2
305,78 = Welo @78 - ZXAX (600D 2 ChI. £€ Ui, y= R

Let &£ € U7 and &' = y¢. By the Euler identity, we obtain
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Fig. 1. (A) The Markovian semigroups P;¢;(xo), 73f¢1(x0) and the abso-
lute error of the approximations f3f¢1(x0) for xo = 0 and ¢ is varying; (B)
the Markovian semigroups P;¢1(xo), 73f¢1(x0) and the absolute error of the
approximations 7_)f¢1 (xp) for xp = 0 and € varying; (C) the Markovian semi-
groups P (xp) and ﬁfg{)z(xo) and the absolute error of the approximations
f3f¢2(x0) for xo = 0 and & varying; (D) the Markovian semigroups P;¢»(xo)
and 73f¢2(x0) and the absolute error of approximations 73f¢2(x0) for xp =0

and € varying.
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Using the fact that |a + ib| > |a| and cos(a) < 1 for all @, b € R we obtain

lae(x, &)

1
S fs f (1 — cos(r{y, () &) k(r, )

d

r

r
1+a /l(dy )

41
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+% (&)o' o(0)E)

1
= WA+ SN0 ¢ o) e

Note, that there exists some constant ¢y > 0 such that for all 1 < j < d we have A({x €
S 1 Kx,ej)| > cos(n/4)}) > co. Let us write & = &y, where ¢ € Uj. Then, due to the
shape of U7, there exists some jy € {l,...,d} and some ¢ > 0 with (£,x’) > ¢ for all

x' €{x €S :[x,e;)| > cos(n/4)}. Next, we take into account that o-(x) > 61 for all x € RY.
Fory € 2nm,&7') we get
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Fig.2. (A) The Markovian semigroups P;¢(xp), f)fg{)](xo) and the abso-
lute error of the approximations f)f¢1(x0) for xp = 0.45 and ¢ varying; (B)
the Markovian semigroups P,¢;(xo), 73f¢ 1(x0) and the absolute error of the
approximations P?¢;(x) for xo = 0.45 and & varying; (C) the Markovian
semigroups P,¢»(xp) and 73f¢2(x0) and the absolute error of the approxima-
tions 73,8¢2(x0) for xo = 0.45 and ¢ varying; (D) the Markovian semigroups
P2(x0) and Pf¢,(xp) and the absolute error of approximations P¢¢(xo)
for xop = 0.45 and & varying.
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Fig.3. The Markovian semigroups P,;¢(xo), fJfgb(xo), and 7_3f¢(x0) and the
absolute error of the approximations f)fcf)(xo) and ﬁf(l)(xo) fore = 0.1, xo =
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Fig.5. The logarithm of the absolute error of the approximations 7315¢(x0)
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Yy dr
> cor [iwor [ a-cosn L aw)
S Kyl r
27 .
. dr 0 o 2m—1+sin(l)
> CCO&CQ’)/Q 1 (1 - COS(?’))E > CCO(SCQ’)/QW

Fory > &' we have

s
52 >c |§|2 27—

Hence, there exists a constant C > 0 such that we have for all ¢ = y£ and ¢ € U]
(6.13) |ae(x, €] = Cly)™.
Now we will show that
62]a.(x,0)]| < cqay¥

with 1 < |8] < 2d +4 and &€ € RU where R > &~'. Now, let us consider |3| = 1. We have for
1<j<d

[ (x, f)]’ ’ [;.//g(o(x) &) - —22(8)<U(X) & 0(x) f)”

ag, d¢;
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d o E
jl;d\B df,[ 1 - iy, o(x) g)] V(dy)‘

f dg,[ (o WE D ENy, y>] v(dy)‘

[ S i[9 — 1] )|
R

\Bkl

o[ 3 s [Z mk(xm} v
B: k=1 =1
1 d & d
f Iyl v(dy) + 18 f i v(dy)]SC[ f LA f P lfa]
RA\B, B, e T 0 r

C[a —el) 4 |§|ez-“} < C|(1+ 1D + |§|“‘2}

+

IA

C

IA

A

< Cent

We now investigate for |8| = 2 and then for 2 < || < 2d + 4. Here, we get the following
sequence of calculations for 1 </, j <d

(6.14)
9uD
65,3& . f)]‘
_ (D) [ (o )T )_122( X T( ) T( ) >]
19,0, Vel x) &) = 32eNa (1), o (e -
_ 9 Ky o (7€) . T
- fwg 5 100 1= o) v(dy>|
§UD
53 [ () . EX. y>] v
&j fl
) ‘fw (Z(ykmkm)( Z(Mjk(x>))e"<”’“<*’Tf>v<dy) +1C(o, %) f (. ) V(dy)
<

CfRd\B lyl* v(dy) +IC (o, x)lf |y, y)|v(dy)<C[f e +|§|f P 1;}

< C[(l —e N 1 2 < |1+ EDT + |g|“-2]

< CUEn*.
Now, let 8 = (81,52, - - ., Bm) withm = |B| € (3,2d + 4). Then we get

¥
agﬂl 85132 e 65

> ﬁln
Y

3e, Oe,, - - - Oy,

[&a(x’ f)]’

1
[%(a(x)%) - 522<s)<aT(x>§, ang)” :

Continuing, we get
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o K. E) ‘
— (" v(dy)
jl;d\BE Bfﬂ] agﬁz ce 65‘% [ ]
f o dr
. r1+a

(1+ 52)"2'”]

(6.15)

IA

Cc f ly|"v(dy) < C
RA\B,

A

< C[(l - s’"‘”)] <C

IA

Cqen™™.

Observe, due to o € CZ+3 (RY) we can write
(6.16) 06t ax(x, || < cgn*
with 1 < |8 <2d +4 and 1 < |o| < d + 3. Now we will show that

’aﬁ[ 1 ]’scng—a—w

as(x, &)
with 1 < |B] < 2d + 4. Let us consider || = 1, i.e. 8 = jfor some 1 < j < d. We obtain
1 N — a A —2a a— —a—
'i[&a(x, 5)]’ < Cla(n )7 |7 [ )] < 74D ™ < (™4,

Next, let |B] = 2,1.e. B = (&, &) fork,l € {1,...,d}. Then,
| | 20;,0:(x, €)Bg (X, &) 0% (X, €)
§[ ] = 0¢0¢ = -

a:(x, €) as(x, &) as(x, €)} a:(x, )
Hence, we have
1 ~ - a— ~ - a—
aﬁ[&g(x, g)]l < C{lasx O D™ + las(x, )72

IA

C QN (=2 + e} < Ciie ™2,
Again, let 8 = (&, &, &) for j,k,l € {1,...,d}. Then,
1 605,86, )05 00 (x, E)Ig,8e(%, &) Tyge,86(X,6)
¢ [agoc, -f)] - G BEXERE
235,.&8()6, f)aﬁ,_fk a:(x, &) + Ogae(x, f)aé,‘fj&g(x, &) + 0ga.(x, f)ﬁékgifle(x, &)
ag(x, &) '

+

Thus we obtain

1
aﬁ[A ] < C{1ae(e O DY + las(x, O + las(x, )X
ag(x, &)

A

< C{UENT* U™ + (€™ + (g1
CQen .

Now, let us consider 8 = (81,52, .. .,8,) where 8 1s a multi-index with m = |8] € (4,2d +
4). By observing the pattern of the above derivative we can identify the general derivative
6[; [a()%é,)] and get the following estimate

IA
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Ia‘?[A 1 ” S Jas(r O NN + fa(x, Oy D
as(x,€)
o las(x, SN
S aad

Observe, due to o € C{H3(RY) we can write

(6.17) o] —— || < caen-e-v

1
ag(x,&)
with 1 < |5 <2d +4 and 1 < |g| < d + 3. Therefore we can conclude that a.(x, ¢) belongs
to Hyp)y,4.4.3: l’O(Rd x RY). Hence, for all 1 < p,q < oo, the Markovian semigroup (7518),20
is an analytic semigroup in B)) q(Rd ) for all m € R.

Now, we will prove (6.6). Let f = ¥(D)u. We will use the representation of the semigroup
(73,8),20 in terms of the contour integrals which is already successfully applied in [11], [19],
or [13]. Let 8 € (0,6), p € (0, ), and

1 2 3
Futp. ) =, + 12, T2,

where F(H}L and Fé%)p are the rays re'G*%) and re”G*%) p < r < M < o, and Fg)p = Me™,
nel-5-6¢,7+80) It follows from [35, Theorem 1.7.7] and Fubini’s Theorem that for
t>0andve Bl’g”q(Rd) we have

Pev = lim Lf eYR(A : a.(x, D))vdA,
M—e0 27 Jr,, (o.m)

where R(A : a,(x, D)) be the resolvent [A + a,(x, D)]~! of an operator &,(x, D). From the

previous result, we know that (73;9),20 is an analytic semigroup in B} q(Rd). Therefore, for

any element v € By q(Rd), the limit exists and is well defined. Let {v, : n € N} be a sequence

such that v, € BZ’ q(Rd )Yand v, — fin BZ”;" (RY). By a change of variables, we obtain

lim

M—o0

1
— f e R(A : a.(x, D))v,dA
27 Jry (o) Br,

< lim

M-

2n

mn
B[’vl]

1 Y re 3 5 U244 i(5+6)
it e R(;e 277 ag(x, D)) v,e” 27 dr
P
M

1 (Z4) T x I
+ lim —f e’ R(;e‘(fw),&g(x,D))v,,e_’(5+e)dr

1
M—o0

2mit P By,
1 EALAN . .
e f " R(?e’ﬁ, a.(x, D)) v,p~ " e¥dp
_T_g
2

7
BP-’]

The Minkowski inequality gives

1 0 o r i(Z+@
(6.18) Y TSOR(=e G G (x, D))v,|  dr
i J, f P
00 . vV on.
2_ —rsin@ R(_el(i"'g),&a(X,D))Un dr
- b, t ng
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-1 5+ )
P <P R e# a.(x, D)o, dB.
2t _ g —g t

us
Bpg

We analyse the right-hand side of the estimate above by analysing the operator R(?eiﬁ,
ag(x, D)) by applying Theorem 7.1. Using (6.13) we have

|1+ as(x, O] > C(ED°, & € RUA.

In this way we obtain

1 —a
‘m] < C(0,0) (.
Letk e {l,...,d}. From (6.16), we obtain
1 | 058e(x, ) (€n°! a1
’af" A+ ag(x, f)“ QA+ ag(x, g))z’ = ’(/l +(lEN")? = Gl

Next, let k,l € {1,...,d}. Then,

8{1 a‘fk

1 0008 20,0,(x,6)050,(x,€)
A+ ag(x, f)] T (A Au(x, )2 " (A + ag(x,6))°
Hence, using (6.15) we have

1 (5 (JEpe? a2
1+, 5)]' = “){u (R <|§|>“>2} = Cl e

Let = (B1,- - ,Bn) be a multi-index with m = |8| € (3,d + 1). By observing the pattern of
the above derivative we can identify the general derivative 6?[%] and get the following
estimate. There exist Cy, Cy, - - - Cg > 0 depending on o and « such that

’3& g

; < Cila+a,| P

1
A+ ag(x, §)]
+ Gl + | PlE DBl 314 + a [T gy BB 4y Cpgld + a | 2E) P

Therefore, we get

1
A+ ag(x, &)
+ Cald + ag|1NEYPIY 1+ Gl + a | TP IE IS ot Cpld + a7,

%

” @& < Cla+ a P e

with 1 < |B] £ d + 1. From the last line we obtain that A + a.(x, &) € HYPZ+1,0;1,0(Rd x RY).

It remains to estimate the norm of the symbol A + &,(x, &) in ./Ié’di warz 0B X RY). Due to

the fact that one has to take at least once the derivative with respect to &, the constant A has

no influence on the norm in A. From (6.16) we have 4, € .A;f] ki1 O(Rd x R?) and

14 + Gel| fou = sup sup
Kkl <igi<ky Jol<ks (x,&)eRIXRI

oA+ a(x, )| (D™ < oo,

where k; = 2d + 4 and k; = d + 3. Therefore we can conclude that A + a.(x,&) €

A s gisr R x RY). Finally from Theorem 7.1 and (6.18) we can conclude that
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C(o,a)
2t

lim

M—oo

0l

1
— f e"R(A : 4 (x, D))v,dAd <
27t Jry (.00 By,

Taking the limit n — oo and using Theorem A.1 and the fact J € $¥ O(Rd x R?), we get

C(o- ) C(o,a)

|Pro D], < e <

21»71- |I,{ | B;")Iq(y+/(

which is the assertion. m]

Proof of Theorem 6.1. Firstly, we have to show that

(6.19) ja(x, &) = ag(x, &) < &7 7.

In particular, we have to show for any multi-index y with |y] < d + 1, we have

g—: [a(x, &) — a.(x, f)]| < C g9, By this we can then conclude that a(x, &) — a.(x,&) €

87 (R x R?). Throughout this proof we denote by C a varying constant. Let us start with
v = 0. Straightforward calculations give

la(x, &) — as(x,6)| =

1
W(o(x)"E) — Yo' E) + 522<s><cr<x>T§, cr(x)%]

f [0 1~ ity, o) )] idly) - f [ — 1 — iy, o) &)| (dy)
R\(0)

R4 \ B,

1
+3 fB AR EIF I y>v(dy>‘

. r 1
fB [e“%"(” 91— iy, () + 3o E T BN, y>] v(dy)‘.

The triangle inequality gives

< fB Jets -1~ g vdy) + 3 (07,078 fB P i)
< | o oto"ef vy + o | oo | vty

< et oo + i o] f P v(dy)

<

CleP f P v(dy) < CléP f i A f o <clere,

where |y| = / y% + oo+ yi. The second inequality from the top of the above estimate is due
to the first estimate in the proof of the Lemma 15.1.7 in [27]. Since v is a J-stable Lévy
measure, we can apply result 14.7 in p.79 [39] to get the last estimate.

Now, let us consider y = 1. We have for 1 < j <d

d 1
[a(x, &) — a(x, f)]‘ ‘ [lﬁ((f(X) & - w8<a(x)T§)+—22(8)<cr<x)rf,cr(xf§>”

i i

d
[ o' _ | ity ()T E) + = (o-T(x)f a(x)" EXy, y)] V(dy)‘

dfj
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d
k=

fB Z[zym () |07 1]+ () {Zazkm&}w y)

1

v(dy)]

IA

d
fB 2 [Imm(x)l [0 — 1 — ity ()" )|
k=

1

+yko k| Ky, o)) + o (%)

J.

d
+0ji(x) [Z O'Zk(x)&l(y, y}]v(dy)

=1

d
f Z|yk0'jk(x)'
CZ , terr v(dy><CZ|§| [ aan [ _CZI§I" &,

To get the last estimate we applied the similar steps as in previous estimate. Now we estimate
&
0ME)...0%E,

first for |y| = 2 and then for 2 < |y| < d + 1. Here, we get the following sequence of
calculations for 1 </, j <d

](y, y>}V(dy)

M=

IA

[ e 10| [, OO + o 50| [y, 707 8)|

>~
Il

1

IA

[0 06 + [t " &) ey + ko f P v(dy)

IA

[a(x, ‘f) - &S(x’ ‘f)]

9D
0,0

[a(x’ ‘f) - &s(x’ f)]‘

(D

1
= 133 [w(o-(x>T§>—wg<a(x>T§)+zzz(ex«#(x)é, aT(x)§>”
&Yé

Quh T , 1
= f af—ag[ewm ~f>—1—i<y,cr<x)T«f>+—<<r<x)T§,cr(x)T§><y,y>] v(dy)‘

IA

K Z (orn(o) Z (e (NP ()

f WP v(dy) + 1C(, 0] f P v(dy) < C f inl> A(dn) f <

Now, let y = (@, a, . .., a,) withm = |y| € (3,d). Then we get

oY
¢, O¢,, - -0,

o4
O¢, 0%, ---O¢,,

+1C(o 0 f (s )| V(dy)

IA

[a(x’ g) - fla(x, f)]'

1
[w«r(x)%) —Ye(c()'E) + zzz(axch(x)f, cr%x)@”

[l v(dy)‘
B, la&yz et agam
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< dr _
< C f lyl"v(dy) < C f lyl" v(dy) < C f ™ A(dn) f M= < Ce" °,
B, B, S 0 r

Observe, due to [35, Proposition 3.1.2, in p.77 ] we can write
!
[73, - 73,‘9] U= f 75;3_Y [a(x, D) — ag(x, D)] Psuds.
0

Now let r{, 5 € (0, 1) such that r; + r, > 1 and 2r; > r;. Then we get for u € B, (r] 7 )(Rd)
ory

721l

f Pz [a(x, D) — a,(x, D)] Py u| ds

Since P? _ is bounded from B, ,,(RY) into itself we can write

[EEAT

< fll Pl i) 10 D) = B8 DI o

x Pl oD% '”'B;:;f;r% ds

G R P Tt f (t— 970757 d.

Integrating gives
-

< P ia(x, D) - a(x, D)|| (B _5(,]_7)f (1 — 5)™25797 g
< 2" la(x, D) - . (x, D)| 62 %)|u|3_&,1_,2> B(1 = 6r1,1 = 6r)
< - 1|u| o 5.

ocoo

For the last inequality we used the fact that we have already proven (6.19). Therefore, it
follows from Theorem 6.19 in [1] that for any m € R

(a(x, D) - &,(x, D)) : Bu™(RY) — B2 (RY)

is a bounded operator. Therefore we have

oooo 00,00

lla(x, D) — a.(x, D) 62 5) < Cs® 9

Letd;, = and 02 = 0(r) — ). Rewriting above gives

|[P, P] | <|[P=Prlu, <Py < Ay,
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7. Invertibility of pseudo—differential operators

In this section, we study under which conditions the pseudo-differential operator is in-
vertible. To investigate the inverse of a pseudo-differential operator one has to introduce the
set of elliptic and hypoelliptic symbols. For the reader’s convenience, we define the elliptic
and hypoelliptic symbols in this section.

We are now interested, under which condition an operator a(x, D) is invertible. To be
more precise, we aim to answer the following questions. Given f € B;;’,(Rd), does there
exists an element u € S’(RY) such that

(7.1) a(x, Dyu(x) = f(x), xeRY,

and to which Besov space belongs u?

The invertibility is used for giving bounds of the resolvent of an operator a(x, D). Here,
one is interested not only in the invertibility of a(x, D) but also in the invertibility of A +
a(x, D), A € p(a(x,D)). In particular, we are interested in the norm of the operator [4 +
a(x, D)]~" uniformly for all A belonging to the set of resolvents. However, executing a care-
ful analysis, we can see that certain constants depend only on the first or second derivative
on the symbol of A + a(x, D), which has the effect that this norm is independent of A. Hence,

it is necessary to introduce the additional class Az’iz'p 6(Rd x RY).

Dermnition 7.1. Let p, d be two real numbers such that 0 < p < 1and 0 < ¢ < 1. Let

m € R and k € Ny. Let Ak’"l’,’jcz . SR % R?) be the set of all functions a : RY x RY — C, where

o a(x, &) is k;—times differentiable in & and k, times differentiable in x;
o for any two multi-indices @ and g, with |a| > «, there exists C, s such that

O ha(x.&)| | < Copllye)" P x¥, xeRLE€ Uiy 2 1.

&'=y¢

For k, k> € Ny, we also introduce the following semi—norm for a € ./{’,Z’,’;Q o s®R4RY) by

lallggs, = sup sup|ondfac€)

Kikapd clal<ky JBl<ky (x€.y)ERIXVIXI1,00)

| ey,
Now we are ready to state the main result of this section.

Remark 7.1. The outline of the proof of following theorem, i.e. Theorem (7.1) is quite
similar to the proof of Theorem 5.4 in [30], however there is an important difference. We
have to introduced a symbol class AZ”’;QW’&(R" x R%), since we needed to construct the
parametrix of the resolvent of [A + a(x, D)] of an operator a(x, D), where A belongs to
p(a(x, D)) and can be quite large.

Theorem 7.1. Let k > 0, m € R, 1 < p,r < co. Let a(x,&) be a symbol such that
a€ Ayl s o®RIXRY N Hyp | (R X RY) for k = [K]. Let R € N such that
(7.2) R > 10xdX|lall z.

2d+1,d+1:1,0 ”a”Hyp

K
2d+1,0:1,0

and
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la(x, v

|a| AG,O; 1,0

(7.3) (yéhy* < forall xeRY and &€y with y>R.

Then, there exists a bounded pseudo—differential operator B : Bg’r(Rd) - Bﬁr(Rd) with
symbol b(x, D), such that

o {(&,x) € RYXR? : sup pa b(x, &) > 0} C {|€] < 2R},
o B has norm R* on Bg’ ,(Rd) into itself,
oa(x,D)=A+B,

and, for any given f € Bl’ﬁ,(Rd), the problem

(7.4) Au(x) = f(x), xeR?

has a unique solution u belonging to BI’:”J;’((Rd). In addition, there exists a constant C; > 0
such that for all f € BZ‘J(R”I) and u solving (7.4) we have

d
lulgyee < Cyllallays,, o, 1Bz, f € By (RY).

Remark 7.2. Since a(x, &) is elliptic, we can find a number R > 0 satisfying (7.2) and
(7.3).

ReMARK 7.3. In fact, analysing the resolvent [A + a(x, D)]~! of an operator a(x, D), it will

be important that in the estimate for R > 0 the norm of ./f’k':’i{z o 6(Rd x R?) and not the norm
of A} ko 5(Rd x R?) appears. As mentioned in Remark 7.1, the reason is that calculating
the norm in AZ’?{ZP s(R? x RY) the first derivative has to be taken. Therefore, the norm in

‘/’{'Z‘jizp ;R x RY) is independent of A.

Proof. Note, that, for convenience for the reader, we summarized several definition and
results necessary for the proof in the appendix A. For simplicity, let £ = BZ’J(Rd). Let
x € C(R) such that

0 if €] <1,
@ =11 if gl > 2,
€(0,1) if|£e,2).

Let us put yz(é) := x(&/R), & € R?. In addition, let us set

Pr(x, &) = a(x, Exr(€),  b(x,€) = a(x,&)(1 = xr(&)), and  gr(x,§) := XR(E).

1
a(x, &)
Due to the condition on R, the function gg(x, £) is bounded and as a symbol, it is well defined.

Let us consider the following problem: Given f € BK,(R”’), find an element u € S’(RY)

such that we have

(7.5) pr(x, Dyu(x) = f(x), xeR%

Observe, that on one hand for a solution u of (7.5) we have
[q(x, D)pr(x, D) u = q(x, D).

and, on the other hand, by Remark A.2, the symbol for g(x, D) pr(x, D) is given by
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(q o pr)(x, &) = q(x,&)pr(x, &)
+CrO+ D Os f f M ry(x. €,y 1) dy dy,

ly|l=max(d—k+2,k)

where
(7.6) Cud)= D, HaxOHFpr(x.E)
1<|pl<max(d—k+1,k-1)
and
1
(77) r)’(xv é:’ Y, 77) = f [ag'Q(x/’ f/) f’:,f—enaz’pR(x/’f/) &=¢ ] do.
0 ’ X =x X =x-y
Observe, firstly, for & € rU7, r > 1, we have
Ia’;q(x, E)Fpr(x, &)
(7.8) < Dlalayg,,, €D plgsr | €D < Dalur, 1PLasr | (D

Observe, secondly, that by integration by part we have

Os-[[ e 0mprx v dyan =~ 0s-[[ 090 x6.c,, dyan.
Putting
mp(x,€) = ) Os— f f ey ry(x, & y, 1) dy dn,
lyl=1

. 11 . 7K.l
one can verify that mg(x, &) € Ad+1,0;1,0(Rd x R?). In fact, since a € A§d+4’d+3;1’0(Rd xRN

HypY, | 0.1 oR? X RY), we know by Theorem A.2 that
Iy % 6) € AL guzg o B X RO N AG g o(RY X R,

This can be seen by straightforward calculations. First, by the definition of the hypoelliptic
norm we have for any multi-index @ and € € 0U7, 6 > 1

(7.@)

¢ |:pR(x7 f)

Next, by the definition of the norm in “‘Iﬂq O(Rd x R?) we have for any multi-index a

—«=lal-ly]
} < llallypr,.. 0.0 <€D :

OV pr(x, &) < llall g1 (EDS, €U, 6> 1.

lal+lyl,1:1,0

Going back to the operator mgz(x, D). By Theorem 3.13 in [1, p. 50], we can interchange the
derivatives with the oscillatory integral. That is

1
Ogmp(x,€) = f f ey f ¢ [ag,q(x',g')p:fw,, 0L pr(x',€) | o= | ddydn.
0 - x'=x

X =x+y

Secondly, by the Young inequality for a product, we know for s > 0

(E+ 07> <&~

and by the Peetre inequality (see [1, Lemma 3.7, p. 44]), we know for s > 0
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(E+0m)* < (&) om)’.

Next, straightforward calculations gives for s > d

(m~*dn <C.

R4

Using &e™ " = (—yy’e " where p is a multi-index, and integration by parts, gives

ang(xyé‘:)
1

> f SR f 50, [8Z,q<x',f’>|a:;+g,, VPR ED | ¢ f]dedydn
0 - x'=x

1
= Z ff(_y)—pe—z<y,n>f0 6?0‘“1 [égqu(x’,ff) |g/;_5;gq az,pR(x &) lfix y] dfdy dn.
Here the sum runs over all multi-index of the form (d + 1,0,...,0), (0,d +1,...,0), ---,

(0,...,d + 1). Analysing the proof of Theorem 3.9 [1] we see that we have to estimate

1
([ [ et st e - amy oo gyei] do yay
0

0z mp(x, &) <
<[ 141 (g K g gy gy
0
< (g Rk f fl 9d+1<9n>_%(|7|+,<+(d+1)) do.dn
0
< <§>—2|w|—(d+1)ff1 Oy D) g g
0

The calculation above gives that for |y| > d — k + 1, the integration with respect to n7 and 6 is
finite. Taking into account Theorem A.2, we can verify for £ € U7, § > 1 that

sup |02mp(x, £)] (€D

lo|<d+1

< sup
1<lol<d+1
1<|Bl<2d+1

2 [qr(x.&)] | sup 0% pr(x, ©)|.

Hence, by the generalized Leibniz rule (see [1, p. 200, (A.1)]) we have

llmgll -1

d+1,0:1.0 ”qR||Hyp§d+L0;|0 1Pl !

2d+1,2d+1:1 0

from what it follows that mg(x, D) is a bounded operator with from By (R9) to Byt!(R?). In
addition, by the same analysis, we get

el < Nl o PR

2d+1,2d+1;1 ()

Observe, that

1
||PR||A§}4‘d 30 = R ”pRH‘A;d]HZdHlO

Therefore, analysing the symbols, mg(x, D) is a bounded operator from Bgﬁ r(Rd ) to BZﬂ ,(Rd)
having norm



THE ANALYTICITY OF MARKOVIAN SEMIGROUP 57

1
< g lmellag;

||mR||A0 d+1.0:10°

d+1,0;1,0

Now, let us go back to a slightly modified problem to verify for a given f € B} J(RY), the
regularity of u, where u solves

(7.9) pr(x, D)u(x) = f(x), xeR%
From before, we know that

(qopr)(x,8) = q(x,&)pr(x,&) + C(x,&) + mp(x, &) = I + C(x,&) + mg(x, £).

A careful analysis (see (7.8)) shows that C € A;h-o-l o> and
C < ! C
I ”Acl/+1;0,1,0 - kl |A:111;0;1,0'

Due to the assumption on R we know that R is such large that

1
< —
(||C||A¢li+l:0,l,0 + ”mR”ASH-O;l-O) a 6.

First, we will show that if f € B (R?), then it follows that u € B (R?). This we will
proof by contradiction. Suppose u is unbounded in B’;,fr(Rd), in particular, suppose for any
M € N we have |u|gy, > M. Since, from before we know that

(I + C(x, D) + mg(x, D))u = g(x, D)f,

we get

|(I + C(x, D) + mg(x, D))ulgn >

p.r

lulgy, — E|M|Bg{,. 2 g|u|B;1,-

On the other side,

I( + C(x, D) + mp(x, D))ulgn = lq(x, D)f|3;¢_, < llgll 4o |f1By, < oo,

d+1,0;1,0

which leads to a contradiction, since we assumed that for any M € N we have |u| B, = M.
Hence, we know that u € BZ’J(R[’). In the next step, we will show that we have even

u e BI’Q’J;K(]R”I) and calculate its norm in this space. Using similar arguments as above, we

know by Theorem A.1 and Remark A.1 that

lg(x, D) flgue < llgllag:, ,,, o182,

Similar as in the proof of Theorem 3.24 in [1, p. 59] we define

k
4(x, D) := ) (=1Y/(C(x, D) + mp(x, D) q(x, D),
=0

where
(C(x, D) + mg(x, D)) = (C(x, D) + mg(x, D))...(C(x, D) + mg(x, D)).

j times

Since the right-hand side is an alternating sum, it follows by the identity

q(x, D)pr(x, D) = I + C(x, D) + mg(x, D)u(x)
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that
(7.10) G(x, D)pr(x, D) = I + (=1)*"'(C(x, D) + mg(x, D))**".
On the other side, since
u(x) = q(x, D)f(x) = (C(x, D) + mg(x, D))u(x),
we have
q(x,D)f(x) = q(x, D)pr(x, D)u(x) = (I + C(x, D) + mg(x, D)) u(x).

Since [mg(x, &)| 40 < %, the sequence {uy : n € N} defined by

d+1,0:1,0

N
un(x) = (1 + D (=DHCCx, D)+ mg(x, D))k) q(x, D)f (x),
k=1

is bounded and a Cauchy sequence. Therefore, there exists a u with uy — u strongly and
we can write

[0
k
|M|B”,’_‘;K < llgllaygps |1+ IC(x, D) + mgll"._,, |f|B”,{V
1 d+1,0;1,0 A L
e =1 d+1,0;1,0
00 1 k
S gl [1 > (8) ]Iflg;;,

k=1

< 3 llglleyps, o, o182, -

This gives the assertion. O

Appendix A Some important facts about pseudo—differential operators

In this section, we introduce the definitions and theorems which are necessary for our
purpose. However, we suppose that the reader is familiar with the definitions already

introduced in section 3.
To start, let a(x, &) be a symbol. Clearly, a(x, D) is bounded from S(R¢) into S’(R%). In
the following Corollary we will investigate its boundedness in Sobolev spaces.

Corollary A.1. Let u € HY(R?) for all m € R. Then

atx. Dyux) = [ a6 de
R4
is well defined with a(x, D) being a pseudo-differential operator.

Proof. Let v, ¢ € S(R?). Then consider,
(a(x, D, P)rzes = fR ) fR € 0alx, ©)0(&) dég(x) dx

_ f f ¢ a(x, £)p(x) dx D(€) dE.
Rd JRd

f &) f e alx, P(x) dx dé,
R R
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where we use the Fubini theorem and the fact that ¢,5 € S(RY). In Lemma 3.31 in [1]
showed that

w@) = [ TaEFo dr e SE,
R
where a(x, &) € Sﬁ’fo(Rd x R?) with m € R. Therefore we have,

(a(x, D)v, §)r2way = (v, @ (x, D)P)2may,

such that a*(x, D)¢ € S(RY). Now let u € HF(R?). There exist {u},anr C S(RY) such that
(see Corollary 3.42 in [1]),

lim (u, — u, ¢) = 0,
for any ¢ € S(R?). Therefore due to the above facts we have
lim<{a(x, D)u,, ¢) = lim{u,, a*(x, D)¢) = {u,a*(x, D)¢) = {a(x, D)u, ) < .

Hence we conclude that the Fourier integral representation of a(x, D)u is well defined in
H’Z"(Rd) with m € R. See Theorem 3.41 in [1] as well. m]

One can easily see under which conditions a(x, D) is also bounded from LP(RY) into
LP(R%), 1 < p < oo. To see it, first, observe that the operator can also be represented by a
kernel of the form

ax D) = [ Kxx-pfwdy, xer,
where the kernel is given by the inverse Fourier transform
k(x,2) = Feoz [alx 9] (@)
Differentiation gives the following estimate
Ik(x,2)| < C |02 p(x, )| 1217

By this estimate and the Young inequality for convolutions, one can calculate bounds of the
operator between Lebesgue spaces, like

laCx, D) fles < llall a0 1flas

for y > d+ 1. In case, we have additional regularity of the functions, or the function is
a distribution, it is not that obvious. The next Theorem gives characterize the action of a
pseudo—differential operator on Besov spaces.

Theorem A.1 (compare [1, Theorem 6.19, p. 164]). Letk,m € R, a(x,§) € SY O(Rd x RY)

and 1 < p,r < oo. Then, a(x,D) : BZ;’"(R") - BZIJ(R‘I) is a linear and bounded operator.

ReMARK A.1. Tracing step by step of the proof of Theorem 6.19 in [1, p. 164], one can
see that for all k,m € R, a(x,&) € S’f’O(Rd xR% and 1 < p,r < coand any k > d + 1 the
following inequality holds

Yeoela(r, 6)12) = [, e a(x, &) dE.
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Flasen

To analyse the composition of two operators of given symbols, one has to evaluate a
so-called oscillatory integral. In particular, for any y € S(RY x RY) with y(0,0) = 1 and
a € S(RY x RY), we define the oscillatory integral by

Os- f f e Ma(y, ) dy dn = lim f f ey, em) e P aty, ) dy dn.
&0 ) Jrdxprd

To calculate the oscillatory integral, the following Theorem is essential.

la(x, D) flgn < llall 4

k.0:6,0

Theorem A.2 (compare [1, Theorem 3.9, p. 46]). Letm € R, a € Azrcli+]+m)/\0,d+l;],0(Rd X

RY), and let y € S(R? x RY) with x(0,0) = 1. Then the oscillatory integral

Os— f f e"a(y,m) dy dn
Os- [ e aty.payan

Corollary A.2 (compare [1, Corollary 3.10, p. 48]). Let a; € S7'\(R? x R?) be a bounded

: m d d . m d d
sequence in Ad+1+m’d+1;p’5(R X RY) such that there exists some a € Ad+1+m,d+l;p,6(R X R%)

exists and

< G llall 4

(d+1+m)A0.d+1:10

lim 7,a;(y.1) = 9} 0jay, m),

foranylal <d+m+ 1,8/ <d+1,yeR?andn € R Then

lim Os- f f e ¥Pa(y,n)dydn = Os— f f e Pa(y, n) dy dn.

With the help of the oscillatory integral, one can show that the composition of two pseudo-
differential operators is again a pseudo-differential operator. Using formal calculations, an
application of the Taylor formula leads to the following characterization.

Theorem A.3 (compare [1, Theorem 3.16, p. 55]). Ler ai(x,€) € S{{(R? x RY) and
a)(x, &) € S’fff)(Rd x RY). Then the composition a\(x,D)a(x,D) is again a pseudo—

differential operator, whose symbol we denote by [ay o a](x, &), and we have
a1 © ax](x.£) € ST R! X R).

Moreover, it can be expanded asymptotically as follows

1
(A1) [ar 0 alx.6) ~ ) — (Fa(x.) (@ax(x.9).
To be more precise, equation (A.1) means that
1
(A2) [ar 0 arl(x.8) = ) — (0ai(x.9) (Plax(x.6)
lal<N T

belongs to S'1"6+m2_N(Rd x RY) for every positive integer N.
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Remark A.2. Following the proof of Theorem 3.16 [1, p. 53], one observes that

(A3) [y 0 al(68) - le (P (,0) (@t )

(A4) = N+ 1)| I—ZN_I %Os— f f ey (x, €, y,m) dy dny
= (N+ 1)| l_ZN:léoS- f f e D, (x, &, y, 1) dy dny

with -

1
a6 y.m) = fo (029178 Lo a8 | e (1= 0)" .
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