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Abstract
In this article we prove the following boundedness result: Fix a DCC set I C [0, 1]. Let D be
the set of all log pairs (X, A) satisfying the following properties: (i) X is a projective surface
defined over an algebraically closed field, (ii) (X, A) is log canonical and the coefficients of A
are in /, and (iii) Ky + A is big. Then there is a positive integer N = N(/) depending only on
the set / such that the linear system |[m(Kx + A) || defines a birational map onto its image for all
m > N and (X,A) € D.

Contents
I, INtrodUCHON . . .. v ettt ettt e 65
2. Preliminaries . . ... ...ttt 67
3. Lemmas and Propositions . ...........c.ooiiiii i 67
4., Main Theorem .. ...... ...t e e 71
ReferenCes . ..o 73

1. Introduction

Pluricanonical system (which determines the Kodaira dimension) of a variety is one of
the fundamental birational invariants used in the classification theory of algebraic varieties.
So understanding pluricanonical maps is of great importance. If X is a variety of general
type, then by definition the pluricanonical map ¢,x, --» P(H(X, Ox(rKx))) is birational
(onto its image) for all sufficiently large r. It is a natural question to then ask if there
is an integer r, such that ¢,k, is birational for all r > r,, uniformly for all varieties of
general type of dimension n. When X is a smooth curve of genus g > 2, it is easy to see
that ¢,k, is birational for all » > 3. When X is a smooth surface of general type and the
characteristic of the ground field is 0, Bombieri showed in [4] that ¢,x, is birational for all
r > 5. The same result was later proved in characteristic p > 0 by Ekedahl in [7]. Starting
with dimension > 3 this becomes a very hard problem to study, and several partial cases were
known in characteristic O due to [11, 3, 17, 5, 12, 15, 16]. In 2006, Hacon and McKernan
[9], and independently Takayama [19] using ideas of Tsuji [22] made a breakthrough on this

2020 Mathematics Subject Classification. 14J29, 14E05, 14E30.



66 O. Das

problem in all dimensions > 3. They proved that for any fixed positive integer n, there is
another positive integer r, depending only on n such that ¢,x, is birational for all r > r,
and for all smooth projective varieties X of general type of dimension n. A similar result in
positive characteristic is unknown even in dimension 3.

On the other hand there is an analogous problem for log pairs with wider range of appli-
cations, it says the following:

Conjecture 1.1. Fix a positive integer n, a DCC set I C [0,1] N Q. Let D be a collection
of log pairs satisfying the following properties:
(1) X is a projective variety of dimension n defined over an algebraically closed field,
(2) (X, A) is log canonical and the coefficients of A are contained in the set I, and
3) Kx + Ais big.
Then there is a positive integer N = N(n,I) depending only on n and the set I such that

the linear system |lm(Kx + A)]| defines a birational map onto its image for all m > N and
(X,A) € D.

In dimension 2 and characteristic O this is proved by Todorov in [21, Corollary 6.1]. In
general in all higher dimensions and in characteristic O this is proved by Hacon, McKernan
and Xu in their paper [10, Theorem C] as a part of their inductive arguments in the proof
of the ACC property for log canonical thresholds. In this article we prove this conjecture
for surfaces in positive characteristic. We note that our proof is characteristic free. More
specifically we prove the following:

Theorem 1.2. Fixa DCC set I C [0,1] N Q. Let D be the set of all pairs (X, A) satisfying
the following properties:

(1) X is a projective surface defined over an algebraically closed field,

2) (X, A) is log canonical and the coefficients of A are contained in I, and

(3) Kx + Ais big.
Then there exists a positive integer N = N(I) depending only on the set I such that the linear
system ||[m(Kx + A)]| defines a birational map onto its image for allm > N and (X, A) € D.

Conjecture 1.1 is closely related to the boundedness problem of stable pairs, which in
positive characteristic is known in dimension 2 due to [1, 2] and [8]. We note that our
Theorem 1.2 is not a corollary of the main results of these three papers. However, we do use
some of the tools and techniques developed in those papers.

In characteristic 0, one of the main tools used to prove Theorem 1.2 in dimension 2 and
higher is the McKernana’s ‘Covering family of tigers’ [18], for example, it is used in the
proofs of [21, Theorem 6.1] and [10, Theorem C]. However, McKernan’s technique makes
use of Nadel vanishing theorem and generic smoothness theorem, both of which are known
to fail in positive characteristic. Our method avoid use of both of these two theorems.

Idea of the proof: First passing to an appropriate log resolution we reduce the problem
to a log smooth kit pair (X, A). Next using a theorem from [1] we reduce the problem to

the case where the set [ is a finite set given by [ = {i i=1,2,...,k— 1}, where k is a
fixed constant independent of the boundary divisors A. At this stage using an argument of
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Alexeev [1] we also prove that the number of components of A is uniformly bounded by
some positive integer M = M(I) which depends only on the set /. Then we run a (Ky + A)-
MMP and obtain a minimal model (X', A”). Next we show that the number of exceptional
divisors E over X’ with discrepancy a(E, X’, A’) < 0 is bounded above by the same constant
M. Then by a result from [8] and [1] there exists a positive integer N = N(/) depending only
on the set / such that N(Kx- + A’) is Carier for all pairs (X', A”). Then by another lemma
from [8] (which is an application of the effective Matsusaka theorem) it follows that there
is a positive integer my = mgy(/) depending only on the set / such that the linear system
[Lm(Kx + A")]| gives a birational map onto its image for all pairs (X', A”). Pulling back this
linear system onto X gives our result.

2. Preliminaries

Throughout the paper we work over algebraically closed fields of arbitrary characteristic,
i.e. charp > 0.

Definition 2.1. Let X be a normal variety and A a Q-divisor on X. If the coefficients of A
are contained in the interval [0, 1], then A is called a boundary divisor. By log pair (X, A) we
mean that A is a boundary divisor and Ky + A is Q-Cartier. For a log pair (X, A) we define
terminal, canonical, kit, plt, dlt and log canonical or lc singularities as in [13, Definition
2.8]. Fix a real number & > 0. For the defintion of &-klt and &-Ic see [1, Definition 1.5]. By a
log smooth pair (X, A) we mean that X is smooth and A has simple normal crossing support.

Definition 2.2. Let x be a real number. We define | x| as the largest integer < x and [x]
as the smallest integer > x. Note that every real number x satisfies 0 < x — [x] < 1. For an
R-divisor D = )} | a;D;, we define | D] := }|a;]D; and [D] := }[a;1D;. For D = }\"_, a;D;,
we also define I = {1,2,....,n}, 7' ={iel:a =1}and I ={i € I: aq; < 1}. Then
we define the divisors D=! (resp. D<') as D= := Y. .;-1 D; (resp. D<! := Y.« a;D;). If the
coeflicients of D are contained in the interval [0, 1], then D has a unique decomposition as
D = D<' + D71,

Remark 2.3. Note that if x € R and n € Z, then from the definition of | x] it follows that
x+n>0ifand only if | x| +n > 0.

3. Lemmas and Propositions

In this section we will collect some important and useful results which will be needed in
the next section for proving the main theorem.

The following lemma and its corollary will be used in the poof of various results through-
out the paper without reference.

Lemma 3.1. Let f : X — Y be a proper birational morphism between two normal
varieties. Let D be a Q-Cartier Q-divisor on Y. Then f.Ox(Imf*D] + E) = Oy(lmD)) for
all integer m > 1 and effective exceptional divisor E > 0.
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Proof. Since the question is local one the base, we may assume that Y is an affine variety.
Therefore it is enough to prove that H(X, Ox(lmf*D] + E)) = H°(Y, Oy(LmD))) via f*. To
that end choose f*¢ € HY(X, Ox(mf*D] + E)). Then |mf*D] + E + div(f*¢) > 0. This
implies that mf*D + E + div(f*¢) > 0; pushing this forward by f we get mD + div(p) > 0,
hence [mD]+div(p) > 0 (see Remark 2.3), i.e. ¢ € H(Y, Oy(lmD))). For the other inclusion
choose ¢ € H'(Y, Oy(LmD))). Then |mD] + div(y) > 0, and thus mD + div(y) > 0. Pulling
it back by f we get mf*D + div(f*¢¥) > 0, and hence |mf*D] + E + div(f*y) > 0, since E
is effective. Therefore f*y € H(X, Ox(lmf*D] + E)) and we are done. O

Corollary 3.2. Let (X,A) be a log canonical pair of dimension 2 and Kx + A is a Q-
Cartier big divisor. We run a (Ky + A)-MMP and end with a minimal model (X', \"). If the
linear system ||[m(Kx + N')]| gives a birational map onto its image for some m > 1, then
|Lm(Kx + A)]| also gives a birational map.

Proof. Let f : X — X’ be the birational morphism induced by the MMP. Then applying
the negativity lemma at each step of this minimal model program it is easy to see that we
have

Kx+A=f(Ky +A)+ ) aik;,

where a; > 0 for all i.
Therefore H'(X, Ox(lm(Kx +A)])) = H'(X’, Ox (Im(Kx +A")])) for all m > 1 by Lemma
3.1, and the result follows. O

In the following we will recall an important result of Alexeev from [1]. To make the
statement of his theorem more precise we define some notation and terminologies first.

Definition 3.3. Let (X, B > 0) be a log canonical pair and Kx + B a Q-Cartier big divisor.
We call a divisor ¢(B) a redundant part of B if it satisfies the following properties:
(1) 0 < ¢(B) < Band for any prime Weil divisor E contained in Supp(¢(B)), coeff sz (E)
= coeffp(E),
(i) Kx + (B — ¢(B)) is big, and
(iii) ¢(B) is a maximal divisor satisfying these conditions.

The components of B — ¢(B) are called the non-redundant components of B.

Remark 3.4. Note that ¢(B) not unique in general, as there could be a different set of
components ¢’(B) of B removing which could give Kx + B — ¢’(B) big as well.

The following important result due to Alexeev shows that under certain conditions the
number of non-redundant components of the boundary divisor B is bounded from above.

Theorem 3.5 ([1, Theorem 7.3, Corollary 7.4]). Fix a positive real number € > 0 and
a DCC set I C [0,1] N Q. Let € be a collection of pairs (X, A) satisfying the following
properties:
(1) X is a projective surface,
(2) (X, A) is e-log canonical and the coefficients of A are contained in I, and
(3) Kx + Ais big.
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Furthermore, for a Q-divisor D on X let nt(D) denote the number of irreducible components
of D. Then there exists a positive integer A = A(l, &) > 0 depending only on the set I and &
such that

nt(A — ¢(A)) <A forall (X,A) € € and for all choices of p(A).

Proof. It follows from Theorem 7.3 and Corollary 7.4 of [1] and noting the fact that the
DCC set I \ {0} has a minimum. m|

The next result from a recent paper of Hacon and Kovics [8] will play a crucial role in
our proof of the main theorem. We note that the proof of this lemma follows as an easy
consequence of effective Matsusaka theorem due to [20] and [6] as explained in [8].

Lemma 3.6 ([8, Corollary 1.14]). Let X be a normal surface and D a nef and big Cartier
divisor. If D> > vol(Ky), then the linear system |Kx + qD| defines a birational morphism
onto its image for all g > 18.

In the next two results we will bound the number of exceptional divisors of negative dis-
crepancies over a (log) minimal model (X, A) by the number of components of the boundary
divisor A and also the Cartier index of (Kx + A), when (X, A) has e-klt singularities.

Proposition 3.7. Fix a positive integer N > 0. Let € be the collection of pairs (X, A)
satisfying the following properties:
(1) X is a projective surface,
(2) (X, A) has terminal singularities, and
(3) nt(A) < N, i.e., the number of components of A is bounded by N.
We run a (Kx + A)-MMP and assume that (X', A’) is the corresponding minimal model. Let
¢’ be the collection of all such minimal models (X', A") for all (X, A) € €. Then

#{E : E is exceptional over X" with a(E,X',A") < 0} < N

forall (X',A") e €.

Proof. Let f : X — X’ be the birational morphism induced by the MMP. Then we have
3.1) Kx+A=f'(Ky +A)+ ) aiE,
where a; > 0 for all i.

Let F be an exceptional divisor over X’ with discrepancy a(F,X’,A") = b < 0. Set
E := Y a;E;, then (X, A — E) is terminal, since (X, A) is terminal. Therefore from a(F, X, A —
E) =a(F,X',A") = b < 0 it follows that centery(F) must be a component of A — E. Now
since the components of E have non-negative discrepancies with respect to the pair (X', A”)
and a(F, X', A") < 0, it follows that centery(F) must be a component of A. Finally, since the

number of components of A is bounded above by N for all (X, A) € €, the required bound
holds. O

Theorem 3.8 ([8, Lemma 2.6]). Fix a positive integer k > 0 and a positive real number
e > 0. Let D be the set of all of pair (X, A) satisfying the following properties:
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(1) X is a projective surface,

(2) (X, A = 0) has e-klt singularities, and

(3) the number of exceptional divisor E over X with a(E, X, A) < 0 is at most k.
Then there exists a positive integer N = N(k, €) depending only on k and & such that NKx is
Cartier and ND is also Cartier for any integral Weil divisor D contained in the support of
A.

The following two technical results will be useful in the proof of the main theorem.

Lemma 3.9. Let I C [0, 1] be a DCC set and ¢ is a real number satisfying 0 < 6 < 1. Let
a > 0 be the minimum of the set I \ {0}. Set k = [%'I and define a; .= %for a; € 1\ {0}.
Then

(1 -90)a; <a; <a.

Proof. It is clear from the defintion of a; that a; < g;, so we only need to prove the other
inequality. For that it is enough to show that (ka; — | ka;]) < ka;0. To that end observe that
k=T11> L since @; > a. Thus ka;6 > 1 > (ka; — L ka;)). O

Lemma 3.10. Fix a positive integer k. Let (X, A) be a log smooth kit pair of dimension 2
with coefficients of A in the finite set J = {% =1,2,... k- 1}. Then there exists a crepant
log resolution f : X’ — X of the pair (X, A) such that Kx» + A" = f*(Kx + A), (X', ") has
terminal singularities and the coefficients of A’ are contained in the set J.

Proof. Since (X, A) is a klt pair, by [14, Proposition 2.36(2)] there are finitely many
exceptional divisors over X with non-positive discrepancies. We will extract these divisors.
Note that since (X, A) is a log smooth klt pair of dimension 2, if E is an exceptional divisor
over X with a(E, X, A) < 0, then the centeryx(E) is a point on X contained in the intersection
of precisely two components of A.

Now write A = Z?i  aiD;. We claim that if F' is an exceptional divisor over X such that
a(F,X,A) <0 and centery(F) € D; N Dj, then a; + a; — 1 > 0. To the contrary assume that
ai+aj—1<0.Let fi : X; — X be the blow up at centerx(F), F; is the exceptional divisor
and Kx, + Ay = f{(Kx + A). Then a(Fi,X,A) = (1 —a; —a;) > 0. If centery,(F) = Fy,
then a(F, X,A) = a(F1,X;,A;) > 0 and we have a contradiction. If not, then centery, (£)
is a point contained in the support of F;. Let f, : X, — X; be the blow up at centery, (F),
F» is the exceptional divisor and Ky, + Ay = f5(Kx, + Ay). Then by Lemma 3.11 we have
a(Fy, X, A) = a(F, X2, Ay) > 0. Thus if centery, (F) = F,, then a(F, X,A) = a(F2,X,A) > 0
and we again have a contradiction, otherwise centery,(F) is a point and we blow up X
at this point. Continuing this process, by [14, Lemma 2.45] after finitely many steps we
arrive at a morphism f, : X, — X, for n > 1, such that centery (F) = F, = Ex(f,) and
a(F,X,A) = a(F,,X,A) > 0. This is a contradiction.

Thus in order to extract the exceptional divisors over X with non-positive discrepancies
we only need to blow up the points in D;N\D; # ) whenever a;+a;j—1 > 0. Letg; : Y| — X be
the blow up of all the points of D;ND; forall i, j € {1,...,N},i # j, whenevera;+a;—1 > 0.
Write Ky, + A; = g7(Kx + A) and let E be a g;-exceptional divisor whose coefficient in A,
is not zero. Then the coeflicient of Ey in A; is of the form a; —a; — 1 > 0, and it is easy
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to see that a; —a; — 1 € J, since a;,a; € J. Now observe that (Y1, A;) is a log smooth pair
with coefficients of A; contained in J. Suppose A; = 2?21 a;1D;;, where a;; € J for all
i€{l,...,Ni}. Now let g, : Y, — Y; be the blow up of all the points in D;; N D;; for all
i,j€{l,...,Ni},i # j, whenever a;; + a; — 1 > 0. Write Ky, + Ay = g5(Kx, + Ay). Then
again as before we see that (Y3, Ay) is a log smooth pair with coefficients of A, contained
in J. Observe that if we continue blowing up this way, then this process will stop after
a finitely many steps, since each step extracts an exceptional divisor E; over X such that
a(E;, X, A) = a(E;, X;, A;) < 0 and there are only finite many exceptional divisors over X with
this property. Assume that this process stabilizes at g, : X,, — X, for some n > 1. Rename
X, by X" and let g : X’ — X be the composite of the all the morphisms g;,i = 1,...,n. Write
Ky +N =g (Kx+A)and A’ = f\; ,1 d;D'. Then by our construction (X", A’) is a log smooth
pair such thatd; € Jforalli e {1,...,N’} andifD;ﬂD;. # (Qforsomei,je{l,...,N'},i # J,
then d; + d; — 1 < 0. Then from our claim in the second paragraph it follows that (X', A")
has terminal singularity. This completes the proof. O

Lemma 3.11. Let (X, A) be a log smooth pair of dimension 2. Suppose that A = a;D; +
ay Dy + bD, where Dy, D, and D are prime Weil divisors, and ay, a,, b are rational numbers
such that ay,a, < 1 and b < 0. Assume that D N Dy and D N D, are both non-empty. Let
p € D be a closed point and f : Y — X is the blow up of X at p. If E is the exceptional
divisor of f, then a(E, X, A) > 0.

Proof. A simple computation shows that

(1-a;-b)>0 ifpeDnNDy,
a(E, X,N)=q(1-ay-b)>0 if pe DN D,,
(1-b)>0 it pe D\ (DU D»).

4. Main Theorem

In this section we prove our main theorem.

Proof of Theorem 1.2. First of all replacing / by /U {1 — % :n € NJU({1} we may assume
that / contains the standard set {1 — % : n € N} U {1}. Then replacing (X, A) by a dIt model,
we may assume that (X, A) is dlt for all (X,A) € D. Let f : ¥ — X be a log resolution such
that all the exceptional divisors have discrepancies > —1. Write Ky + Ay = f*(Kx + A) and
decompose Ay = A,:,' + A;l. Since Ky + Ay is big and being big an open property, there is
an integer n > 0 such that Ky + A}, is still big, where A, := (1 - %)A;l + A;l. Moreover,
note that H(Y, Oy(Lm(Ky + A})])) € H(Y, Oy(Lm(Ky + Ay)])) = H'(X, Ox(Lm(Kx + A))))
for all m > 1. Therefore replacing (¥, A}) by (X, A) we may assume that (X, A) is kIt for all
(X,A) € D. Letg : X’ — X be a log resolution of (X, A) and

KX/ + g*_lA + Z e,-Ei = g*(KX + A)

Since (X, A) is klt, ¢; < 1 for all i. So there is a postive integer n > 0 such that ¢; <
1- %) for all i. Now define A" := g7'A + (1 — %)E,-. Then H*(X’, Ox.(Im(Kx + A")])) =
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H(X, Ox(Lm(Kx+A)])) for all m > 1. Therefore replacing (X, A) by (X', A’) we may assume
that (X, A) is a log smooth pair. Now by [8, Lemma 2.4] (also see [2, Theorem 4.6] and [1,
Theorem 7.5]) there is a0 < § < 1 depending only on the set / such that Ky + (1 — d)A is big
for all (X, A) € D. Leta > 0 be the minimum of the set /\{0} and k := [;—61. Write A = ) a;D;
and define a; := % and A’ := } a'D;. Then from Lemma 3.9 it follows that (1 — 6)A <
A’ < A. Therefore Kx + A’ is big and the coeflicients of A" are contained in the finite set
Ji={t:0=1,2,... k- 1}. Note that H'(X, Ox(Lm(Kx + A")])) € H(X, Ox(lm(Kx +A)]))
for all m > 1. Thus it is enough to prove the theorem for the pairs (X, A’). Let D be the
collection of all such pairs (X,A”). Now replacing (X, A’) by its terminalization as in the
Lemma 3.10 we may assume that (X, A”) is a log smooth terminal pair for all (X,A") € D’.
Note that since coefficients of A" are contained in a fixed finite set J for all (X,A”) € D/,
from [14, Corollary 2.31(3)] it follows that there is an £ > 0 depending only on the set J (in
particular on the set /) such that (X, A") is e-klt for all (X, A’) € ©’. Then by Theorem 3.5
there is a positive integer A(J, €) depending only on the set J and € (in particular on the set /)
such that nt(A” —@¢(A”)) < A(J, &) for all pairs (X, A) € D’. Therefore replacing (X, A’ —¢(A"))
by (X, A”) we may assume that the number of components of A’ is bounded from above for
all (X,A") e .

Now we run a (Kx+A’)-MMP and end with a minimal model (X”’, A”), i.e. Kx»+A" is nef
and big. Let ©” be the collection of all such minimal models (X", A”") for all (X,A’) € D’".
We will show that the number of exceptional divisors over X"’ with negative discrepancy
is bounded above. To that end recall that (X,A’) is terminal, so by Proposition 3.7 the
number of exceptional divisors over X" with negative discrepancies with respect to (X", A”)
is bounded above by the number A(J, €) defined above.

Now by Theorem 3.8 there is a natural number N depending only on the set J and & > 0
such that N(Ky~ + A”) is Cartier for all (X", A”") € D”. Since vol(N(Kx~» + A”")) > vol(Kx~),
by Lemma 3.6 the linear system |Kx~ + g(N(Ky + A”))| gives a birational map for all ¢ > 18
and for all (X", A”) € D”. Replacing N by 18N we may assume that |Kx~» + gN(Kx» + A”)|
is biratinal for all ¢ > 1. Thus |[(gN + 1)(Kx~» + A”)]| gives a birational map for all g > 1.
Then by Lemma 4.1 |[m(Kx» + A”)]| is birational for all m > (N2 + 1) and for all (X", A”) €
D”. This shows that |[m(Kx + A’)]| gives a birational map for all m > my. Consequently,
[Lm(Kx + A)]| gives a birational map for all m > (N? + 1) and for all (X, A) € D, where N
depends only on the set /. |

Lemmad.1. Let (X, A > 0) be log pair and N > 0 is a positive integer such that N(Kx+A)
is Cartier. Assume that the linear system |[(gN + 1)(Kx + A)]| gives a birational map onto
its image for all ¢ > 1. Then |lm(Kx + A)|| gives a birational map for all m > (N* + 1).

Proof. Set ¢ = N and choose a positive integer kK > 1. Then by the division algorithm we
have k = (N+1)a+b, where 0 < b < N. Therefore N>+k = (N*>+b)+a(N+1). Now if b = 0,
then a > 1 since k > 0 and we can rewrite N>+ kas N> +k = [(N+ DN+ 1]+ (a—- DN + 1).
Otherwise b > 1 and N? + b can be written as N> +b = (b— 1)(N + 1) + [(N = b+ 1)N + 1].
These calculations clearly show that || m(Kx +A)]| gives a birational map for all m > (N?+1).

[}
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