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Abstract
In this article we prove the following boundedness result: Fix a DCC set I ⊆ [0, 1]. Let D be

the set of all log pairs (X,Δ) satisfying the following properties: (i) X is a projective surface
defined over an algebraically closed field, (ii) (X,Δ) is log canonical and the coefficients of Δ
are in I, and (iii) KX + Δ is big. Then there is a positive integer N = N(I) depending only on
the set I such that the linear system |�m(KX +Δ)�| defines a birational map onto its image for all
m ≥ N and (X,Δ) ∈ D.

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3. Lemmas and Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4. Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1. Introduction

1. Introduction
Pluricanonical system (which determines the Kodaira dimension) of a variety is one of

the fundamental birational invariants used in the classification theory of algebraic varieties.
So understanding pluricanonical maps is of great importance. If X is a variety of general
type, then by definition the pluricanonical map φrKX � P(H

0(X,X(rKX))) is birational
(onto its image) for all sufficiently large r. It is a natural question to then ask if there
is an integer rn such that φrKX is birational for all r ≥ rn, uniformly for all varieties of
general type of dimension n. When X is a smooth curve of genus g ≥ 2, it is easy to see
that φrKX is birational for all r ≥ 3. When X is a smooth surface of general type and the
characteristic of the ground field is 0, Bombieri showed in [4] that φrKX is birational for all
r ≥ 5. The same result was later proved in characteristic p > 0 by Ekedahl in [7]. Starting
with dimension ≥ 3 this becomes a very hard problem to study, and several partial cases were
known in characteristic 0 due to [11, 3, 17, 5, 12, 15, 16]. In 2006, Hacon and McKernan
[9], and independently Takayama [19] using ideas of Tsuji [22] made a breakthrough on this
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problem in all dimensions ≥ 3. They proved that for any fixed positive integer n, there is
another positive integer rn depending only on n such that φrKX is birational for all r ≥ rn

and for all smooth projective varieties X of general type of dimension n. A similar result in
positive characteristic is unknown even in dimension 3.

On the other hand there is an analogous problem for log pairs with wider range of appli-
cations, it says the following:

Conjecture 1.1. Fix a positive integer n, a DCC set I ⊆ [0, 1] ∩Q. Let D be a collection
of log pairs satisfying the following properties:

(1) X is a projective variety of dimension n defined over an algebraically closed field,
(2) (X,Δ) is log canonical and the coefficients of Δ are contained in the set I, and
(3) KX + Δ is big.

Then there is a positive integer N = N(n, I) depending only on n and the set I such that
the linear system |�m(KX + Δ)�| defines a birational map onto its image for all m ≥ N and
(X,Δ) ∈ D.

In dimension 2 and characteristic 0 this is proved by Todorov in [21, Corollary 6.1]. In
general in all higher dimensions and in characteristic 0 this is proved by Hacon, McKernan
and Xu in their paper [10, Theorem C] as a part of their inductive arguments in the proof
of the ACC property for log canonical thresholds. In this article we prove this conjecture
for surfaces in positive characteristic. We note that our proof is characteristic free. More
specifically we prove the following:

Theorem 1.2. Fix a DCC set I ⊆ [0, 1]∩Q. Let D be the set of all pairs (X,Δ) satisfying
the following properties:

(1) X is a projective surface defined over an algebraically closed field,
(2) (X,Δ) is log canonical and the coefficients of Δ are contained in I, and
(3) KX + Δ is big.

Then there exists a positive integer N = N(I) depending only on the set I such that the linear
system |�m(KX + Δ)�| defines a birational map onto its image for all m ≥ N and (X,Δ) ∈ D.

Conjecture 1.1 is closely related to the boundedness problem of stable pairs, which in
positive characteristic is known in dimension 2 due to [1, 2] and [8]. We note that our
Theorem 1.2 is not a corollary of the main results of these three papers. However, we do use
some of the tools and techniques developed in those papers.

In characteristic 0, one of the main tools used to prove Theorem 1.2 in dimension 2 and
higher is the McKernana’s ‘Covering family of tigers’ [18], for example, it is used in the
proofs of [21, Theorem 6.1] and [10, Theorem C]. However, McKernan’s technique makes
use of Nadel vanishing theorem and generic smoothness theorem, both of which are known
to fail in positive characteristic. Our method avoid use of both of these two theorems.

Idea of the proof: First passing to an appropriate log resolution we reduce the problem
to a log smooth klt pair (X,Δ). Next using a theorem from [1] we reduce the problem to
the case where the set I is a finite set given by I =

{
i
k : i = 1, 2, . . . , k − 1

}
, where k is a

fixed constant independent of the boundary divisors Δ. At this stage using an argument of



PluricanonicalMaps of Surfaces of Log-General Type 67

Alexeev [1] we also prove that the number of components of Δ is uniformly bounded by
some positive integer M = M(I) which depends only on the set I. Then we run a (KX + Δ)-
MMP and obtain a minimal model (X′,Δ′). Next we show that the number of exceptional
divisors E over X′ with discrepancy a(E, X′,Δ′) < 0 is bounded above by the same constant
M. Then by a result from [8] and [1] there exists a positive integer N = N(I) depending only
on the set I such that N(KX′ + Δ

′) is Carier for all pairs (X′,Δ′). Then by another lemma
from [8] (which is an application of the effective Matsusaka theorem) it follows that there
is a positive integer m0 = m0(I) depending only on the set I such that the linear system
|�m(KX′ + Δ

′)�| gives a birational map onto its image for all pairs (X′,Δ′). Pulling back this
linear system onto X gives our result.

2. Preliminaries

2. Preliminaries
Throughout the paper we work over algebraically closed fields of arbitrary characteristic,

i.e. char p ≥ 0.

Definition 2.1. Let X be a normal variety and Δ a Q-divisor on X. If the coefficients of Δ
are contained in the interval [0, 1], then Δ is called a boundary divisor. By log pair (X,Δ) we
mean that Δ is a boundary divisor and KX + Δ is Q-Cartier. For a log pair (X,Δ) we define
terminal, canonical, klt, plt, dlt and log canonical or lc singularities as in [13, Definition
2.8]. Fix a real number ε > 0. For the defintion of ε-klt and ε-lc see [1, Definition 1.5]. By a
log smooth pair (X,Δ) we mean that X is smooth and Δ has simple normal crossing support.

Definition 2.2. Let x be a real number. We define �x� as the largest integer ≤ x and 
x�
as the smallest integer ≥ x. Note that every real number x satisfies 0 ≤ x − �x� < 1. For an
R-divisor D =

∑n
i=1 aiDi, we define �D� :=

∑�ai�Di and 
D� :=
∑
ai�Di. For D =

∑n
i=1 aiDi,

we also define I = {1, 2, . . . , n}, I=1 = {i ∈ I : ai = 1} and I<1 = {i ∈ I : ai < 1}. Then
we define the divisors D=1 (resp. D<1) as D=1 :=

∑
i∈I=1 Di (resp. D<1 :=

∑
i∈I<1 aiDi). If the

coefficients of D are contained in the interval [0, 1], then D has a unique decomposition as
D = D<1 + D=1.

Remark 2.3. Note that if x ∈ R and n ∈ Z, then from the definition of �x� it follows that
x + n ≥ 0 if and only if �x� + n ≥ 0.

3. Lemmas and Propositions

3. Lemmas and Propositions
In this section we will collect some important and useful results which will be needed in

the next section for proving the main theorem.

The following lemma and its corollary will be used in the poof of various results through-
out the paper without reference.

Lemma 3.1. Let f : X → Y be a proper birational morphism between two normal
varieties. Let D be a Q-Cartier Q-divisor on Y. Then f∗X(�m f ∗D� + E) � Y(�mD�) for
all integer m ≥ 1 and effective exceptional divisor E ≥ 0.
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Proof. Since the question is local one the base, we may assume that Y is an affine variety.
Therefore it is enough to prove that H0(X,X(�m f ∗D� + E)) � H0(Y,Y(�mD�)) via f ∗. To
that end choose f ∗ϕ ∈ H0(X,X(�m f ∗D� + E)). Then �m f ∗D� + E + div( f ∗ϕ) ≥ 0. This
implies that m f ∗D + E + div( f ∗ϕ) ≥ 0; pushing this forward by f we get mD + div(ϕ) ≥ 0,
hence �mD�+div(ϕ) ≥ 0 (see Remark 2.3), i.e. ϕ ∈ H0(Y,Y(�mD�)). For the other inclusion
choose ψ ∈ H0(Y,Y(�mD�)). Then �mD� + div(ψ) ≥ 0, and thus mD + div(ψ) ≥ 0. Pulling
it back by f we get m f ∗D + div( f ∗ψ) ≥ 0, and hence �m f ∗D� + E + div( f ∗ψ) ≥ 0, since E
is effective. Therefore f ∗ψ ∈ H0(X,X(�m f ∗D� + E)) and we are done. �

Corollary 3.2. Let (X,Δ) be a log canonical pair of dimension 2 and KX + Δ is a Q-
Cartier big divisor. We run a (KX + Δ)-MMP and end with a minimal model (X′,Δ′). If the
linear system |�m(KX′ + Δ

′)�| gives a birational map onto its image for some m ≥ 1, then
|�m(KX + Δ)�| also gives a birational map.

Proof. Let f : X → X′ be the birational morphism induced by the MMP. Then applying
the negativity lemma at each step of this minimal model program it is easy to see that we
have

KX + Δ = f ∗(KX′ + Δ
′) +
∑

aiEi,

where ai ≥ 0 for all i.
Therefore H0(X,X(�m(KX+Δ)�)) = H0(X′,X′(�m(KX′ +Δ

′)�)) for all m ≥ 1 by Lemma
3.1, and the result follows. �

In the following we will recall an important result of Alexeev from [1]. To make the
statement of his theorem more precise we define some notation and terminologies first.

Definition 3.3. Let (X, B ≥ 0) be a log canonical pair and KX + B a Q-Cartier big divisor.
We call a divisor φ(B) a redundant part of B if it satisfies the following properties:

(i) 0 ≤ φ(B) ≤ B and for any prime Weil divisor E contained in Supp(φ(B)), coeffφ(B)(E)
= coeffB(E),

(ii) KX + (B − φ(B)) is big, and
(iii) φ(B) is a maximal divisor satisfying these conditions.

The components of B − φ(B) are called the non-redundant components of B.

Remark 3.4. Note that φ(B) not unique in general, as there could be a different set of
components φ′(B) of B removing which could give KX + B − φ′(B) big as well.

The following important result due to Alexeev shows that under certain conditions the
number of non-redundant components of the boundary divisor B is bounded from above.

Theorem 3.5 ([1, Theorem 7.3, Corollary 7.4]). Fix a positive real number ε > 0 and
a DCC set I ⊆ [0, 1] ∩ Q. Let C be a collection of pairs (X,Δ) satisfying the following
properties:

(1) X is a projective surface,
(2) (X,Δ) is ε-log canonical and the coefficients of Δ are contained in I, and
(3) KX + Δ is big.
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Furthermore, for a Q-divisor D on X let nt(D) denote the number of irreducible components
of D. Then there exists a positive integer A = A(I, ε) > 0 depending only on the set I and ε
such that

nt(Δ − φ(Δ)) ≤ A for all (X,Δ) ∈ C and for all choices of φ(Δ).

Proof. It follows from Theorem 7.3 and Corollary 7.4 of [1] and noting the fact that the
DCC set I \ {0} has a minimum. �

The next result from a recent paper of Hacon and Kovács [8] will play a crucial role in
our proof of the main theorem. We note that the proof of this lemma follows as an easy
consequence of effective Matsusaka theorem due to [20] and [6] as explained in [8].

Lemma 3.6 ([8, Corollary 1.14]). Let X be a normal surface and D a nef and big Cartier
divisor. If D2 ≥ vol(KX), then the linear system |KX + qD| defines a birational morphism
onto its image for all q ≥ 18.

In the next two results we will bound the number of exceptional divisors of negative dis-
crepancies over a (log) minimal model (X,Δ) by the number of components of the boundary
divisor Δ and also the Cartier index of (KX + Δ), when (X,Δ) has ε-klt singularities.

Proposition 3.7. Fix a positive integer N > 0. Let C be the collection of pairs (X,Δ)
satisfying the following properties:

(1) X is a projective surface,
(2) (X,Δ) has terminal singularities, and
(3) nt(Δ) ≤ N, i.e., the number of components of Δ is bounded by N.

We run a (KX + Δ)-MMP and assume that (X′,Δ′) is the corresponding minimal model. Let
C′ be the collection of all such minimal models (X′,Δ′) for all (X,Δ) ∈ C. Then

#
{
E : E is exceptional over X′ with a(E, X′,Δ′) < 0

} ≤ N

for all (X′,Δ′) ∈ C′.
Proof. Let f : X → X′ be the birational morphism induced by the MMP. Then we have

(3.1) KX + Δ = f ∗(KX′ + Δ
′) +
∑

aiEi,

where ai ≥ 0 for all i.

Let F be an exceptional divisor over X′ with discrepancy a(F, X′,Δ′) = b < 0. Set
E :=

∑
aiEi, then (X,Δ− E) is terminal, since (X,Δ) is terminal. Therefore from a(F, X,Δ−

E) = a(F, X′,Δ′) = b < 0 it follows that centerX(F) must be a component of Δ − E. Now
since the components of E have non-negative discrepancies with respect to the pair (X′,Δ′)
and a(F, X′,Δ′) < 0, it follows that centerX(F) must be a component of Δ. Finally, since the
number of components of Δ is bounded above by N for all (X,Δ) ∈ C, the required bound
holds. �

Theorem 3.8 ([8, Lemma 2.6]). Fix a positive integer k > 0 and a positive real number
ε > 0. Let D be the set of all of pair (X,Δ) satisfying the following properties:
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(1) X is a projective surface,
(2) (X,Δ ≥ 0) has ε-klt singularities, and
(3) the number of exceptional divisor E over X with a(E, X,Δ) < 0 is at most k.

Then there exists a positive integer N = N(k, ε) depending only on k and ε such that NKX is
Cartier and ND is also Cartier for any integral Weil divisor D contained in the support of
Δ.

The following two technical results will be useful in the proof of the main theorem.

Lemma 3.9. Let I ⊆ [0, 1] be a DCC set and δ is a real number satisfying 0 < δ < 1. Let
a > 0 be the minimum of the set I \ {0}. Set k = 
 1

aδ� and define a′i := �kai�
k for ai ∈ I \ {0}.

Then

(1 − δ)ai < a′i ≤ ai.

Proof. It is clear from the defintion of a′i that a′i ≤ ai, so we only need to prove the other
inequality. For that it is enough to show that (kai − �kai�) < kaiδ. To that end observe that
k = 
 1

aδ� ≥ 1
aiδ

, since ai ≥ a. Thus kaiδ ≥ 1 > (kai − �kai�). �

Lemma 3.10. Fix a positive integer k. Let (X,Δ) be a log smooth klt pair of dimension 2
with coefficients of Δ in the finite set J =

{
�
k : � = 1, 2, . . . , k − 1

}
. Then there exists a crepant

log resolution f : X′ → X of the pair (X,Δ) such that KX′ + Δ
′ = f ∗(KX + Δ), (X′,Δ′) has

terminal singularities and the coefficients of Δ′ are contained in the set J.

Proof. Since (X,Δ) is a klt pair, by [14, Proposition 2.36(2)] there are finitely many
exceptional divisors over X with non-positive discrepancies. We will extract these divisors.
Note that since (X,Δ) is a log smooth klt pair of dimension 2, if E is an exceptional divisor
over X with a(E, X,Δ) ≤ 0, then the centerX(E) is a point on X contained in the intersection
of precisely two components of Δ.

Now write Δ =
∑N

i=1 aiDi. We claim that if F is an exceptional divisor over X such that
a(F, X,Δ) ≤ 0 and centerX(F) ∈ Di ∩ Dj, then ai + a j − 1 ≥ 0. To the contrary assume that
ai + a j − 1 < 0. Let f1 : X1 → X be the blow up at centerX(F), F1 is the exceptional divisor
and KX1 + Δ1 = f ∗1 (KX + Δ). Then a(F1, X,Δ) = (1 − ai − a j) > 0. If centerX1 (F) = F1,
then a(F, X,Δ) = a(F1, X1,Δ1) > 0 and we have a contradiction. If not, then centerX1 (F)
is a point contained in the support of F1. Let f2 : X2 → X1 be the blow up at centerX1 (F),
F2 is the exceptional divisor and KX2 + Δ2 = f ∗2 (KX1 + Δ1). Then by Lemma 3.11 we have
a(F2, X,Δ) = a(F2, X2,Δ2) > 0. Thus if centerX2 (F) = F2, then a(F, X,Δ) = a(F2, X,Δ) > 0
and we again have a contradiction, otherwise centerX2 (F) is a point and we blow up X2

at this point. Continuing this process, by [14, Lemma 2.45] after finitely many steps we
arrive at a morphism fn : Xn → Xn−1 for n ≥ 1, such that centerXn(F) = Fn = Ex( fn) and
a(F, X,Δ) = a(Fn, X,Δ) > 0. This is a contradiction.

Thus in order to extract the exceptional divisors over X with non-positive discrepancies
we only need to blow up the points in Di∩Dj � ∅whenever ai+a j−1 ≥ 0. Let g1 : Y1 → X be
the blow up of all the points of Di∩Dj for all i, j ∈ {1, . . . ,N}, i � j, whenever ai+a j−1 ≥ 0.
Write KY1 + Δ1 = g

∗
1(KX + Δ) and let E1 be a g1-exceptional divisor whose coefficient in Δ1

is not zero. Then the coefficient of E1 in Δ1 is of the form ai − a j − 1 > 0, and it is easy
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to see that ai − a j − 1 ∈ J, since ai, a j ∈ J. Now observe that (Y1,Δ1) is a log smooth pair
with coefficients of Δ1 contained in J. Suppose Δ1 =

∑N1
i=1 ai1Di1, where ai1 ∈ J for all

i ∈ {1, . . . ,N1}. Now let g2 : Y2 → Y1 be the blow up of all the points in Di1 ∩ Dj1 for all
i, j ∈ {1, . . . ,N1}, i � j, whenever ai1 + a j1 − 1 ≥ 0. Write KY2 + Δ2 = g

∗
2(KX1 + Δ1). Then

again as before we see that (Y2,Δ2) is a log smooth pair with coefficients of Δ2 contained
in J. Observe that if we continue blowing up this way, then this process will stop after
a finitely many steps, since each step extracts an exceptional divisor Ei over X such that
a(Ei, X,Δ) = a(Ei, Xi,Δi) ≤ 0 and there are only finite many exceptional divisors over X with
this property. Assume that this process stabilizes at gn : Xn → Xn−1 for some n ≥ 1. Rename
Xn by X′ and let g : X′ → X be the composite of the all the morphisms gi, i = 1, . . . , n. Write
KX′ +Δ

′ = g∗(KX +Δ) and Δ′ =
∑N′

i=1 diD′i . Then by our construction (X′,Δ′) is a log smooth
pair such that di ∈ J for all i ∈ {1, . . . ,N′} and if D′i∩D′j � ∅ for some i, j ∈ {1, . . . ,N′}, i � j,
then di + d j − 1 < 0. Then from our claim in the second paragraph it follows that (X′,Δ′)
has terminal singularity. This completes the proof. �

Lemma 3.11. Let (X,Δ) be a log smooth pair of dimension 2. Suppose that Δ = a1D1 +

a2D2 + bD, where D1,D2 and D are prime Weil divisors, and a1, a2, b are rational numbers
such that a1, a2 < 1 and b < 0. Assume that D ∩ D1 and D ∩ D2 are both non-empty. Let
p ∈ D be a closed point and f : Y → X is the blow up of X at p. If E is the exceptional
divisor of f , then a(E, X,Δ) > 0.

Proof. A simple computation shows that

a(E, X,Δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 − a1 − b) > 0 if p ∈ D ∩ D1,

(1 − a2 − b) > 0 if p ∈ D ∩ D2,

(1 − b) > 0 if p ∈ D \ (D1 ∪ D2).

�

4. Main Theorem

4. Main Theorem
In this section we prove our main theorem.

Proof of Theorem 1.2. First of all replacing I by I ∪ {1− 1
n : n ∈ N} ∪ {1} we may assume

that I contains the standard set {1 − 1
n : n ∈ N} ∪ {1}. Then replacing (X,Δ) by a dlt model,

we may assume that (X,Δ) is dlt for all (X,Δ) ∈ D. Let f : Y → X be a log resolution such
that all the exceptional divisors have discrepancies > −1. Write KY + ΔY = f ∗(KX + Δ) and
decompose ΔY = Δ

=1
Y + Δ

<1
Y . Since KY + ΔY is big and being big an open property, there is

an integer n � 0 such that KY + Δ
′
Y is still big, where Δ′Y := (1 − 1

n )Δ=1
Y + Δ

<1
Y . Moreover,

note that H0(Y,Y(�m(KY + Δ
′
Y)�)) ⊆ H0(Y,Y(�m(KY + ΔY)�)) = H0(X,X(�m(KX + Δ)�))

for all m ≥ 1. Therefore replacing (Y,Δ′Y) by (X,Δ) we may assume that (X,Δ) is klt for all
(X,Δ) ∈ D. Let g : X′ → X be a log resolution of (X,Δ) and

KX′ + g
−1
∗ Δ +

∑
eiEi = g

∗(KX + Δ).

Since (X,Δ) is klt, ei < 1 for all i. So there is a postive integer n > 0 such that ei <

(1 − 1
n ) for all i. Now define Δ′ := g−1∗ Δ +

∑
(1 − 1

n )Ei. Then H0(X′,X′(�m(KX′ + Δ
′)�)) =
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H0(X,X(�m(KX+Δ)�)) for all m ≥ 1. Therefore replacing (X,Δ) by (X′,Δ′) we may assume
that (X,Δ) is a log smooth pair. Now by [8, Lemma 2.4] (also see [2, Theorem 4.6] and [1,
Theorem 7.5]) there is a 0 < δ < 1 depending only on the set I such that KX + (1− δ)Δ is big
for all (X,Δ) ∈ D. Let a > 0 be the minimum of the set I\{0} and k := 
 1

aδ�. Write Δ =
∑

aiDi

and define a′i := �kai�
k and Δ′ :=

∑
a′i Di. Then from Lemma 3.9 it follows that (1 − δ)Δ ≤

Δ′ ≤ Δ. Therefore KX + Δ
′ is big and the coefficients of Δ′ are contained in the finite set

J :=
{
�
k : � = 1, 2, . . . , k − 1

}
. Note that H0(X,X(�m(KX +Δ

′)�)) ⊆ H0(X,X(�m(KX +Δ)�))
for all m ≥ 1. Thus it is enough to prove the theorem for the pairs (X,Δ′). Let D′ be the
collection of all such pairs (X,Δ′). Now replacing (X,Δ′) by its terminalization as in the
Lemma 3.10 we may assume that (X,Δ′) is a log smooth terminal pair for all (X,Δ′) ∈ D′.
Note that since coefficients of Δ′ are contained in a fixed finite set J for all (X,Δ′) ∈ D′,
from [14, Corollary 2.31(3)] it follows that there is an ε > 0 depending only on the set J (in
particular on the set I) such that (X,Δ′) is ε-klt for all (X,Δ′) ∈ D′. Then by Theorem 3.5
there is a positive integer A(J, ε) depending only on the set J and ε (in particular on the set I)
such that nt(Δ′−φ(Δ′)) ≤ A(J, ε) for all pairs (X,Δ) ∈ D′. Therefore replacing (X,Δ′−φ(Δ′))
by (X,Δ′) we may assume that the number of components of Δ′ is bounded from above for
all (X,Δ′) ∈ D′.

Now we run a (KX+Δ
′)-MMP and end with a minimal model (X′′,Δ′′), i.e. KX′′+Δ

′′ is nef
and big. Let D′′ be the collection of all such minimal models (X′′,Δ′′) for all (X,Δ′) ∈ D′.
We will show that the number of exceptional divisors over X′′ with negative discrepancy
is bounded above. To that end recall that (X,Δ′) is terminal, so by Proposition 3.7 the
number of exceptional divisors over X′′ with negative discrepancies with respect to (X′′,Δ′′)
is bounded above by the number A(J, ε) defined above.
Now by Theorem 3.8 there is a natural number N depending only on the set J and ε > 0
such that N(KX′′ +Δ

′′) is Cartier for all (X′′,Δ′′) ∈ D′′. Since vol(N(KX′′ +Δ
′′)) ≥ vol(KX′′),

by Lemma 3.6 the linear system |KX′′ + q(N(K′′X +Δ
′′))| gives a birational map for all q ≥ 18

and for all (X′′,Δ′′) ∈ D′′. Replacing N by 18N we may assume that |KX′′ + qN(KX′′ + Δ
′′)|

is biratinal for all q ≥ 1. Thus |�(qN + 1)(KX′′ + Δ
′′)�| gives a birational map for all q ≥ 1.

Then by Lemma 4.1 |�m(KX′′ +Δ
′′)�| is birational for all m ≥ (N2 + 1) and for all (X′′,Δ′′) ∈

D′′. This shows that |�m(KX + Δ
′)�| gives a birational map for all m ≥ m0. Consequently,

|�m(KX + Δ)�| gives a birational map for all m ≥ (N2 + 1) and for all (X,Δ) ∈ D, where N
depends only on the set I. �

Lemma 4.1. Let (X,Δ ≥ 0) be log pair and N > 0 is a positive integer such that N(KX+Δ)
is Cartier. Assume that the linear system |�(qN + 1)(KX + Δ)�| gives a birational map onto
its image for all q ≥ 1. Then |�m(KX + Δ)�| gives a birational map for all m ≥ (N2 + 1).

Proof. Set q = N and choose a positive integer k ≥ 1. Then by the division algorithm we
have k = (N+1)a+b, where 0 ≤ b ≤ N. Therefore N2+k = (N2+b)+a(N+1). Now if b = 0,
then a ≥ 1 since k > 0 and we can rewrite N2+ k as N2+ k = [(N +1)N +1]+ (a−1)(N +1).
Otherwise b ≥ 1 and N2 + b can be written as N2 + b = (b − 1)(N + 1) + [(N − b + 1)N + 1].
These calculations clearly show that |�m(KX+Δ)�| gives a birational map for all m ≥ (N2+1).

�
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