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Abstract
Let (Xn, X̌n) be a mirror pair of an n-dimensional complex torus Xn and its mirror partner

X̌n. Then, a simple projectively flat bundle E(L,) → Xn is constructed from each affine
Lagrangian submanifold L in X̌n with a unitary local system  → L. In this paper, we first in-
terpret these simple projectively flat bundles E(L,) in the language of factors of automorphy.
Furthermore, we give a geometric interpretation for exact triangles consisting of three simple
projectively flat bundles E(L,) and their shifts by focusing on the dimension of intersections
of the corresponding affine Lagrangian submanifolds L. Finally, as an application of this geo-
metric interpretation, we discuss whether such an exact triangle on Xn (n ≥ 2) is obtained as
the pullback of an exact triangle on X1 by a suitable holomorphic projection Xn → X1.
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1. Introduction

1. Introduction
In this paper, we construct a mirror pair of tori as an analogue of the SYZ construction

[20], and study exact triangles which appear in the discussions in the homological mirror
symmetry [12] for tori. The SYZ construction is conjectured by Strominger, Yau, and Za-
slow in 1996, and it proposes a way of constructing mirror pairs geometrically. Roughly
speaking, this construction is the following. A mirror pair of Calabi-Yau manifolds (M, M̌)
is realized as the special Lagrangian torus fibrations π : M → B and π̌ : M̌ → B on the same
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base space B. In particular, for each point b ∈ B, the special Lagrangian torus fibers π−1(b)
and π̌−1(b) are related by the T-duality. On the other hand, the homological mirror symme-
try is conjectured by Kontsevich in 1994, and it states the following. For each Calabi-Yau
manifold M, there exists a Calabi-Yau manifold M̌ such that there exists an equivalence

Db(Coh(M)) � Tr(Fuk(M̌))

as triangulated categories. Here, Db(Coh(M)) is the bounded derived category of coherent
sheaves on M, and Tr(Fuk(M̌)) is the derived category of the Fukaya category Fuk(M̌)
on M̌ [4] obtained by the Bondal-Kapranov-Kontsevich construction [3], [12]. One of the
most fundamental examples of mirror pairs is a pair (Xn, X̌n) of tori, where Xn is an n-
dimensional complex torus and X̌n is a mirror partner of Xn, so there are many studies of
the homological mirror symmetry for tori. For example, Polishchuk and Zaslow discuss the
homological mirror symmetry in the case of elliptic curves, i.e., (X1, X̌1) in [19] (the details
of higher A∞-product structures are studied in [18]), and Fukaya studied the homological
mirror symmetry for abelian varieties via the SYZ construction in [5]. In particular, in [5],
he discussed the homological mirror symmetry by focusing on the cases that objects of the
Fukaya category are restricted to affine Lagrangian submanifolds with unitary local systems
in the symplectic geometry side, and then, the corresponding holomorphic vector bundles
are projectively flat. On the other hand, projectively flat bundles are examples of Einstein-
Hermitian vector bundles, and Einstein-Hermitian vector bundles relate closely to stable
vector bundles via the Kobayashi-Hitchin correspondence [11], [14]. Hence, projectively
flat bundles are also stable. Thus, projectively flat bundles play a fundamental role in the
complex or algebraic geometry, including the homological mirror symmetry for tori. Let
(L,) be an object of the Fukaya category Fuk(X̌n), where L � T n is an affine Lagrangian
(multi) section of the trivial special Lagrangian torus fibration π̌ : X̌n → T n and  → L
is a unitary local system along L. Each object (L,) corresponds to a simple projectively
flat bundle E(L,) → Xn via the homological mirror symmetry. Here, special Lagrangian
torus fibers of π̌ : X̌n → T n with unitary local systems along them correspond to skyscraper
sheaves on Xn. We can also regard this correspondence as an analogue of the Fourier-Mukai
transform [13], [2]. Hereafter, we call an affine Lagrangian (multi) section simply an affine
Lagrangian submanifold. By the definition of projectively flat bundles, a holomorphic vector
bundle E is projectively flat if and only if the curvature form of E is expressed locally as
α · IE , where α is a complex 2-form and IE is the identity endomorphism of E. Furthermore,
the classification result of factors of automorphy of projectively flat bundles on complex tori
is given in [6], [15], [11], [21]. The purposes of this paper are to characterize holomorphic
vector bundles E(L,) by using factors of automorphy of projectively flat bundles on Xn,
and to study exact triangles consisting of three simple projectively flat bundles E(L,) and
their shifts on a given higher dimensional complex torus Xn.

We explain the body of this paper briefly. Roughly speaking, the body of this paper
consists of the two parts which are described below.

The first part is devoted to the study of the projective flatness of E(L,). For each holo-
morphic vector bundle E(L,), we can check easily that the curvature form of E(L,) is
expressed locally as α · IE(L,), where α is a complex 2-form and IE(L,) is the identity en-
domorphism of E(L,), so E(L,) is projectively flat. However, the expression of the
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transition functions of E(L,) differs from the expression of the factor of automorphy of
the projectively flat bundle (L,) which should be isomorphic to E(L,), so interpreting
holomorphic vector bundles E(L,) in the language of factors of automorphy is a non-trivial
problem. Thus, we interpret E(L,) in the language of factors of automorphy by construct-
ing an isomorphism E(L,)

∼→ (L,) explicitly (Theorem 3.8).
In the second part, we mainly focus on a higher dimensional complex torus Xn, and study

exact triangles consisting of simple projectively flat bundles E(L,) and their shifts on Xn.
In general, holomorphic vector bundles E(L,) forms a DG-category DGXn . We expect that
this DGXn generates the bounded derived category of coherent sheaves Db(Coh(Xn)) in the
sense of the Bondal-Kapranov-Kontsevich construction,

Tr(DGXn) � Db(Coh(Xn)).

At least, it is known that it split generates Db(Coh(Xn)) when Xn is an abelian variety (cf.
[17], [1]). Concerning these facts, in this paper, we focus on the triangulated category
Tr(DGXn) instead of Db(Coh(Xn)), and consider an exact triangle

· · · −−−−−→ E(La,a) −−−−−→ C(ψ) −−−−−→ E(Lb,b)
ψ�0−−−−−→ E(La,a)[1] −−−−−→ · · ·

(1)

in Tr(DGXn). Here, C(ψ) denotes the mapping cone of a non-trivial morphism ψ : E(Lb,b)
→ E(La,a)[1]. By the definition of the DG-category DGXn , the degrees of morphisms
between holomorphic vector bundles E(L,) are equal to or larger than 0 in DGXn . This
fact implies that each exact triangle consisting of projectively flat bundles and their shifts
is always expressed as the exact triangle of the form (1). In order to explain the statement
of the main result in this paper, we now recall the previous work [8] briefly. In [8], we
studied the exact triangle of the form (1) under the assumptions rank E(La,a) = 1 and
the existence of a holomorphic vector bundle E(Lc,c) ∈ Ob(DGXn) such that C(ψ) �
E(Lc,c). Then, [8, Theorem 5.6] states that the exact triangle (1) essentially comes from
a one-dimensional complex torus, i.e., it is obtained as the pullback of an exact triangle
consisting of three projectively flat bundles and their shifts on a one-dimensional complex
torus X1 by a suitable holomorphic projection π : Xn → X1 (Definition 5.5). In this paper, we
discuss a generalization of [8, Theorem 5.6] to the case that rank E(La,a) is not necessarily
1 (Problem 5.6). More precisely, we show that the exact triangle (1) essentially comes from
a one-dimensional complex torus if rank E(La,a) and rank E(Lb,b) are relatively prime,
i.e., gcd(rank E(La,a), rank E(Lb,b)) = 1 (Theorem 5.7). Furthermore, we also give an
example of an exact triangle (1) that essentially does not come from a one-dimensional
complex torus in the case gcd(rank E(La,a), rank E(Lb,b)) � 1 under the assumption that
the homological mirror symmetry conjecture for (Xn, X̌n) holds true.

This paper is organized as follows. In section 2, we explain relations between objects
(L,) of the Fukaya category Fuk(X̌n) and holomorphic vector bundles E(L,). Further-
more, we construct the DG-category DGXn consisting of those holomorphic vector bun-
dles E(L,). In section 3, we investigate some properties of holomorphic vector bundles
E(L,). More precisely, for each holomorphic vector bundle E(L,), we find the projec-
tively flat bundle (L,) which should be isomorphic to E(L,), and construct an isomor-
phism E(L,)

∼→ (L,) explicitly. This result is given in Theorem 3.8. In sections 4, 5,
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we focus on the exact triangle of the form (1) under the assumption C(ψ) � E(Lc,c) for
a suitable holomorphic vector bundle E(Lc,c) ∈ Ob(DGXn). In section 4, as a geometric
interpretation for the exact triangle (1) from the viewpoint of the homological mirror sym-
metry for (Xn, X̌n), we prove codim(La ∩ Lb) = 1. This result is given in Theorem 4.1, and it
plays a key role in section 5. The purpose of section 5 is to extend [8, Theorem 5.6] to gen-
eral settings. In subsection 5.1, we recall the previous result [8, Theorem 5.6]. In subsection
5.2, in order to generalize [8, Theorem 5.6] to the case that rank E(La,a) is not necessarily
1, we reformulate the problem by focusing on a class of autoequivalences on Tr(DGXn).
This is presented in Problem 5.6. In subsection 5.3, we give an answer for Problem 5.6.
In particular, in Theorem 5.7, we prove that Problem 5.6 can be solved affirmatively for a
certain class of exact triangles in Tr(DGXn). This is the main theorem in this paper.

2. Holomorphic vector bundles and affine Lagrangian submanifolds with unitary
local systems

2. Holomorphic vector bundles and affine Lagrangian submanifolds with unitary
local systems

In this section, we consider a mirror pair (T 2n
J=T , Ť

2n
J=T ) of an n-dimensional complex torus

T 2n
J=T and its mirror partner Ť 2n

J=T , and discuss relations between affine Lagrangian submani-
folds in Ť 2n

J=T with unitary local systems and the corresponding holomorphic vector bundles
on T 2n

J=T . This is based on the SYZ construction (SYZ transform) [20] (see also [13], [2]).
Furthermore, we define a DG-category consisting of such holomorphic vector bundles.

First, we explain the complex geometry side. We define a complex torus T 2n
J=T as follows.

Let T be a complex matrix of order n such that ImT is positive definite. We denote by ti j the
(i, j) component of T . Let us consider the lattice L in Cn generated by

γ1 := (2π, 0, · · · , 0)t, · · · , γn := (0, · · · , 0, 2π)t,

γ′1 := (2πt11, · · · , 2πtn1)t, · · · , γ′n := (2πt1n, · · · , 2πtnn)t,

and define

T 2n
J=T := Cn/L = Cn/2π(Zn ⊕ TZn).

Sometimes we regard the n-dimensional complex torus T 2n
J=T as a 2n-dimensional real torus

R2n/2πZ2n. In this paper, we further assume that T is a non-singular matrix. Actually, in
our setting described below, the mirror partner of T 2n

J=T does not exist if detT = 0. However,
we can avoid this problem and discuss the homological mirror symmetry even if detT = 0
by modifying the definition of the mirror partner of T 2n

J=T and a class of holomorphic vector
bundles which we treat. This fact is discussed in [9]. We fix an ε > 0 small enough and let

Ol1···ln
m1···mn

:=
{( x

y

)
∈ T 2n

J=T |
2
3
π(l j − 1) − ε < x j <

2
3
πl j + ε,

2
3
π(mk − 1) − ε < yk <

2
3
πmk + ε, j, k = 1, · · · , n

}
be subsets of T 2n

J=T , where l j,mk = 1, 2, 3,

x := (x1, · · · , xn)t, y := (y1, · · · , yn)t,

and we identify xi ∼ xi + 2π, yi ∼ yi + 2π for each i = 1, · · · , n. Sometimes we denote
Ol1···(l j=l)···ln

m1···(mk=m)···mn
instead of Ol1···ln

m1···mn in order to specify the values l j = l, mk = m. Then,
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{Ol1···ln
m1···mn}l j,mk=1,2,3 is an open cover of T 2n

J=T . We define the local coordinates of Ol1···ln
m1···mn by

(x1, · · · , xn, y1, · · · , yn)t ∈ R2n.

Furthermore, we locally express the complex coordinates z := (z1, · · · , zn)t of T 2n
J=T by z =

x + Ty.
Now, we define a class of holomorphic vector bundles

E(r,A,μ, ) → T 2n
J=T .

We first construct it as a complex vector bundle, and then discuss when it becomes a holo-
morphic vector bundle in Proposition 2.1. However, since the notations of transition func-
tions of E(r,A,μ, ) are complicated, before giving the strict definition of E(r,A,μ, ), we explain
the idea of the construction of E(r,A,μ, ). We assume r ∈ N, A = (ai j) ∈ M(n;Z), and
p = (p1, · · · , pn)t, q = (q1, · · · , qn)t ∈ Rn. By using these p, q ∈ Rn, we further define
μ = (μ1, · · · , μn)t by μ := p + T tq ∈ Rn ⊕ T tRn. In general, the affine Lagrangian sub-
manifold corresponding to a holomorphic vector bundle E(r,A,μ, ) is the following (we will
explain the details of the symplectic geometry side again later) :{(

x̌
y̌

)
∈ Ť 2n

J=T | y̌ =
1
r

Ax̌ +
1
r

p
}
.

Here, x̌ := (x1, · · · , xn)t, y̌ := (y1, · · · , yn)t are the coordinates of the mirror partner Ť 2n
J=T of

the complex torus T 2n
J=T . In this situation, if x j 
→ x j + 2π ( j = 1, · · · , n), then

y̌ 
→ y̌ +
2π
r

(a1 j, · · · , an j)t.

We decide the transition functions of E(r,A,μ, ) by using this 1
r (a1 j, · · · , an j)t ∈ Qn. This

construction is a generalization of the case of elliptic curves (T 2
J=T , Ť

2
J=T ) to the higher di-

mensional case in the paper [7] (see section 2). Now, we give the strict definition of E(r,A,μ, ).
We define r′ ∈ N by using a given pair (r, A) ∈ N × M(n;Z) as follows. By the theory of
elementary divisors, there exist two matrices ,  ∈ GL(n;Z) such that

(2) A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã1
. . .

ãs

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ãi ∈ N (i = 1, · · · , s, 1 ≤ s ≤ n) and ãi| ˜ai+1 (i = 1, · · · , s − 1). Then, we define r′i ∈ N
and a′i ∈ Z (i = 1, · · · , s) by

ãi

r
=

a′i
r′i
, gcd(r′i , a

′
i) = 1,

where gcd(m, n) > 0 denotes the greatest common divisor of m, n ∈ Z. By using these, we
set

(3) r′ := r′1 · · · r′s ∈ N.



80 K. Kobayashi

This r′ ∈ N is uniquely defined by a given pair (r, A) ∈ N × M(n;Z), and it is actually the
rank of E(r,A,μ, ) (in this sense, although we should also emphasize r′ ∈ N when we denote
E(r,A,μ, ), for simplicity, we use the notation E(r,A,μ, ) in this paper). Let

ψl1···ln
m1···mn

: Ol1···ln
m1···mn

→ Ol1···ln
m1···mn

× Cr′ , l j,mk = 1, 2, 3

be a smooth section of E(r,A,μ, )|Ol1 ···ln
m1 ···mn

. The transition functions of E(r,A,μ, ) are non-trivial
on

O(l1=3)···ln
m1···mn

∩ O(l1=1)···ln
m1···mn

, Ol1(l2=3)···ln
m1···mn

∩ Ol1(l2=1)···ln
m1···mn

, · · · ,Ol1···(ln=3)
m1···mn

∩ Ol1···(ln=1)
m1···mn

,

Ol1···ln
(m1=3)···mn

∩ Ol1···ln
(m1=1)···mn

, Ol1···ln
m1(m2=3)···mn

∩ Ol1···ln
m1(m2=1)···mn

, · · · ,
Ol1···ln

m1···(mn=3) ∩ Ol1···ln
m1···(mn=1),

and otherwise are trivial. We define the transition function on Ol1···(l j=3)···ln
m1···mn ∩ Ol1···(l j=1)···ln

m1···mn by

ψ
l1···(l j=3)···ln
m1···mn

∣∣∣∣
O

l1 ···(l j=3)···ln
m1 ···mn ∩O

l1 ···(l j=1)···ln
m1 ···mn

= e
i
r a jyVj ψ

l1···(l j=1)···ln
m1···mn

∣∣∣∣
O

l1 ···(l j=3)···ln
m1 ···mn ∩O

l1 ···(l j=1)···ln
m1 ···mn

,

where i =
√−1, a j := (a1 j, · · · , an j) ∈ Zn, and Vj ∈ U(r′). Similarly, we define the transition

function on Ol1···ln
m1···(mk=3)···mn

∩ Ol1···ln
m1···(mk=1)···mn

by

ψl1···ln
m1···(mk=3)···mn

∣∣∣∣
Ol1 ···ln

m1 ···(mk=3)···mn
∩Ol1 ···ln

m1 ···(mk=1)···mn

= Uk ψ
l1···ln
m1···(mk=1)···mn

∣∣∣∣
Ol1 ···ln

m1 ···(mk=3)···mn
∩Ol1 ···ln

m1 ···(mk=1)···mn

,

where Uk ∈ U(r′). In the definition of these transition functions, actually, we only treat Vj,
Uk ∈ U(r′) which satisfy the cocycle condition, so we explain the cocycle condition below.
When we define

ψ
l1···(l j=3)···ln
m1···(mk=3)···mn

∣∣∣∣
O

l1 ···(l j=3)···ln
m1 ···(mk=3)···mn

∩O
l1 ···(l j=1)···ln
m1 ···(mk=1)···mn

= Uk ψ
l1···(l j=3)···ln
m1···(mk=1)···mn

∣∣∣∣
O

l1 ···(l j=3)···ln
m1 ···(mk=3)···mn

∩O
l1 ···(l j=1)···ln
m1 ···(mk=1)···mn

=
(
Uk

) (
e

i
r a jyVj

)
ψ

l1···(l j=1)···ln
m1···(mk=1)···mn

∣∣∣∣
O

l1 ···(l j=3)···ln
m1 ···(mk=3)···mn

∩O
l1 ···(l j=1)···ln
m1 ···(mk=1)···mn

,

the cocycle condition is expressed as

VjVk = VkVj, U jUk = UkU j, ζ
−ak jUkV j = VjUk,

where ζ := e
2πi
r , and j, k = 1, · · · , n. We define a set  of unitary matrices by

 :=
{
Vj,Uk ∈ U(r′) | VjVk = VkVj, U jUk = UkU j, ζ

−ak jUkV j = VjUk,(4)

j, k = 1, · · · , n
}
.

Of course, how to define the set  relates closely to (in)decomposability of E(r,A,μ, ). Here,
we only treat the set  such that E(r,A,μ, ) is simple. Actually, we can take such a set
 � ∅ for any (r, A, r′) ∈ N × M(n;Z) × N, and this fact is proved in [10, Proposition 3.2].
Furthermore, we define a connection ∇(r,A,μ, ) on E(r,A,μ, ) locally as

∇(r,A,μ, ) = d + ω(r,A,μ, )

:= d − i
2π

(
1
r

xtAt +
1
r
μt

)
dy · Ir′
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= d − i
2π

((
1
r

xtAt +
1
r

p
)
+

1
r

qtT
)

dy · Ir′ ,

where dy := (dy1, · · · , dyn)t and d denotes the exterior derivative. In fact, ∇(r,A,μ, ) is com-
patible with the transition functions and so defines a global connection. Then, its curvature
form Ω(r,A,μ, ) is expressed locally as

Ω(r,A,μ, ) = − i
2πr

dxtAtdy · Ir′ ,

where dx := (dx1, · · · , dxn)t. Here, we consider the condition such that E(r,A,μ, ) is holo-
morphic. We see that the following proposition holds.

Proposition 2.1. For a given quadruple (r, A, p, q) ∈ N×M(n;Z)×Rn ×Rn, the complex
vector bundle E(r,A,μ, ) → T 2n

J=T is holomorphic if and only if AT = (AT )t holds.

Proof. A complex vector bundle is holomorphic if and only if the (0,2)-part of its curva-
ture form vanishes, so we calculate the (0,2)-part of Ω(r,A,μ, ). It turns out to be

Ω
(0,2)
(r,A,μ, ) =

i
2πr

dz̄t{T (T − T̄ )−1}tAt(T − T̄ )−1dz̄ · Ir′ ,

where dz̄ := (dz̄1, · · · , dz̄n)t. Thus,Ω(0,2)
(r,A,μ, ) = 0 is equivalent to that {T (T−T̄ )−1}tAt(T−T̄ )−1

is a symmetric matrix, i.e., AT = (AT )t. �

Next, we explain the symplectic geometry side. Let us consider the 2n-dimensional stan-
dard real torus T 2n = R2n/2πZ2n. For each point (x1, · · · , xn, y1, · · · , yn)t ∈ T 2n, we identify
xi ∼ xi + 2π, yi ∼ yi + 2π, where i = 1, · · · , n. We also denote by (x1, · · · , xn, y1, · · · , yn)t the
local coordinates in the neighborhood of an arbitrary point (x1, · · · , xn, y1, · · · , yn)t ∈ T 2n.
Furthermore, we use the same notation (x1, · · · , xn, y1, · · · , yn)t when we denote the coordi-
nates of the covering space R2n of T 2n. For simplicity, we set

x̌ := (x1, · · · , xn)t, y̌ := (y1, · · · , yn)t.

We define a complexified symplectic form ω̃ on T 2n by

ω̃ := dx̌t(−T−1)tdy̌,

where dx̌ := (dx1, · · · , dxn)t and dy̌ := (dy1, · · · , dyn)t. We decompose ω̃ into

ω̃ = dx̌tRe(−T−1)tdy̌ + idx̌tIm(−T−1)tdy̌,

and define

ω := Im(−T−1)t, B := Re(−T−1)t.

Sometimes we identify the matrices ω and B with the 2-forms dx̌tωdy̌ and dx̌tBdy̌, respec-
tively. Then, ω gives a symplectic form on T 2n. The closed 2-form B is often called the
B-field. This complexified symplectic torus (T 2n, ω̃ = dx̌t(−T−1)tdy̌) is a mirror partner of
the complex torus T 2n

J=T . Hereafter, we denote

Ť 2n
J=T := (T 2n, ω̃ = dx̌t(−T−1)tdy̌)

for simplicity. We define the objects of the Fukaya category on Ť 2n
J=T corresponding to
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holomorphic vector bundles E(r,A,μ, ) → T 2n
J=T , namely, the pairs of affine Lagrangian sub-

manifolds in Ť 2n
J=T and unitary local systems along them. First, we recall the definition of

objects of the Fukaya categories following [5, Definition 1.1]. Let (M,Ω) be a symplectic
manifold (M, ω) together with a closed 2-form B on M. Here, we put Ω = ω +

√−1B (note
−B +

√−1ω is used in many of the literatures). Then, we consider pairs (L,) with the
following properties :

L is a Lagrangian submanifold of (M, ω).(5)

→ L is a line bundle together with a connection ∇ such that(6)

F∇ = 2π
√−1B|L.

In this context, F∇ denotes the curvature form of the connection ∇. We define objects of
the Fukaya category on (M,Ω) by pairs (L,) which satisfy the properties (5), (6). Let us
consider the following n-dimensional submanifold L̃(r,A,p) in R2n :

L̃(r,A,p) :=
{(

x̌
y̌

)
∈ R2n | y̌ = 1

r
Ax̌ +

1
r

p
}
.

We see that this n-dimensional submanifold L̃(r,A,p) satisfies the property (5), namely, L̃(r,A,p)

becomes a Lagrangian submanifold in R2n if and only if ωA = (ωA)t holds. Then, for the
covering map π : R2n → Ť 2n

J=T ,

L(r,A,p) := π(L̃(r,A,p))

defines a Lagrangian submanifold in Ť 2n
J=T . On the other hand, we can also regard the com-

plexified symplectic torus Ť 2n
J=T as the trivial special Lagrangian torus fibration π̌ : Ť 2n

J=T →
Rn/2πZn, where x̌ is the local coordinates of the base space Rn/2πZn and y̌ is the local coor-
dinates of the fiber of π̌ : Ť 2n

J=T → Rn/2πZn. Then, we can interpret each affine Lagrangian
submanifold L(r,A,p) in Ť 2n

J=T as the affine Lagrangian multi section

s(x̌) =
1
r

Ax̌ +
1
r

p

of π̌ : Ť 2n
J=T → Rn/2πZn.

Remark 2.2. As explained above, while r′ := r′1 · · · r′s ∈ N is the rank of E(r,A,μ, ) → T 2n
J=T

(see the relations (2) and (3)), in the symplectic geometry side, this r′ ∈ N is interpreted
as follows. For the affine Lagrangian submanifold L(r,A,p) in Ť 2n

J=T which is defined by a
given data (r, A, p) ∈ N × M(n;Z) × Rn, we regard it as the affine Lagrangian multi section
s(x̌) = 1

r Ax̌ + 1
r p of π̌ : Ť 2n

J=T → Rn/2πZn. Then, for each point x̌ ∈ Rn/2πZn, we see

s(x̌) =
{ (

1
r

Ax̌ +
1
r

p +
2π
r

AMs

)
∈ π̌−1(x̌) ≈ Rn/2πZn |

Ms = (m1, · · · ,ms, 0, · · · , 0)t ∈ Zn, 0 ≤ mi ≤ r′i − 1, i = 1, · · · , s
}
,

and this indicates that s(x̌) consists of r′ points. Thus, we can regard r′ ∈ N as the multiplic-
ity of s(x̌) = 1

r Ax̌ + 1
r p.

We then consider the trivial complex line bundle
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(r,A,p,q) → L(r,A,p)

with the flat connection

∇(r,A,p,q) := d − i
2π

1
r

qtdx̌,

where q ∈ Rn is the unitary holonomy of (r,A,p,q) along L(r,A,p) ≈ T n. We discuss the
property (6) for this pair (L(r,A,p),(r,A,p,q)) :

Ω(r,A,p,q) = dx̌tBdy̌
∣∣∣
L(r,A,p)

.

Here, Ω(r,A,p,q) is the curvature form of the flat connection ∇(r,A,p,q) , i.e., Ω(r,A,p,q) = 0. Hence,
we see

dx̌tBdy̌
∣∣∣
L(r,A,p)

=
1
r

dx̌tBAdx̌ = 0,

so one has BA = (BA)t. Note that ωA = (ωA)t and BA = (BA)t hold if and only if AT =
(AT )t holds. By summarizing the above discussions, we obtain the following proposition.
In particular, the condition AT = (AT )t in the following proposition is also the condition
such that a complex vector bundle E(r,A,μ, ) → T 2n

J=T becomes a holomorphic vector bundle
(see Proposition 2.1).

Proposition 2.3. For a given quadruple (r, A, p, q) ∈ N × M(n;Z) × Rn × Rn, (L(r,A,p),

(r,A,p,q)) gives an object of the Fukaya category on Ť 2n
J=T if and only if AT = (AT )t holds.

Definition 2.4. We denote the full subcategory of the Fukaya category on Ť 2n
J=T consisting

of objects (L(r,A,p),(r,A,p,q)) which satisfy the condition AT = (AT )t by Fukaff(Ť 2n
J=T ).

We define a DG-category

DGT 2n
J=T

consisting of holomorphic vector bundles (E(r,A,μ, ),∇(r,A,μ, )). This definition is an exten-
sion of the case of elliptic curves (T 2

J=T , Ť
2
J=T ) to the higher dimensional case in the paper

[7] (see section 3). The objects of DGT 2n
J=T

are holomorphic vector bundles E(r,A,μ, ) with
U(r′)-connections ∇(r,A,μ, ). Of course, we assume AT = (AT )t. Sometimes we simply
denote (E(r,A,μ, ),∇(r,A,μ, )) by E(r,A,μ, ). For any two objects

E(r,A,μ, ) = (E(r,A,μ, ),∇(r,A,μ, )), E(s,B,ν,) = (E(s,B,ν,),∇(s,B,ν,)),

the space of morphisms is defined by

HomDGT2n
J=T

(E(r,A,μ, ), E(s,B,ν,)) := Γ(E(r,A,μ, ), E(s,B,ν,))
⊗

C∞(T 2n
J=T )

Ω0,∗(T 2n
J=T ),

where Ω0,∗(T 2n
J=T ) is the space of anti-holomorphic differential forms, and

Γ(E(r,A,μ, ), E(s,B,ν,))

is the space of homomorphisms from E(r,A,μ, ) to E(s,B,ν,). The space of morphisms
HomDGT2n

J=T
(E(r,A,μ, ), E(s,B,ν,)) is a Z-graded vector space, where the grading is defined

as the degree of the anti-holomorphic differential forms. The degree r part is denoted
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Homr
DGT2n

J=T

(E(r,A,μ, ), E(s,B,ν,)). We decompose ∇(r,A,μ, ) into its holomorphic part and anti-

holomorphic part ∇(r,A,μ, ) = ∇(1,0)
(r,A,μ, ) + ∇(0,1)

(r,A,μ, ), and define a linear map

Homr
DGT2n

J=T

(E(r,A,μ, ), E(s,B,ν,))→ Homr+1
DGT2n

J=T

(E(r,A,μ, ), E(s,B,ν,))

by

ψ 
→ (2∇(0,1)
(s,B,ν,))(ψ) − (−1)rψ(2∇(0,1)

(r,A,μ, )).

We can check that this linear map is a differential. Furthermore, the product structure is
defined by the composition of homomorphisms of vector bundles together with the wedge
product for the anti-holomorphic differential forms. Then, these differential and product
structure satisfy the Leibniz rule. Thus, DGT 2n

J=T
forms a DG-category.

Remark 2.5. In general, for any A∞-category C , we can construct a triangulated cate-
gory Tr(C ) by using the Bondal-Kapranov-Kontsevich construction [3], [12]. We expect
that the DG-category DGT 2n

J=T
generates the bounded derived category of coherent sheaves

Db(Coh(T 2n
J=T )) on T 2n

J=T in the sense of the Bondal-Kapranov-Kontsevich construction, i.e.,

Tr(DGT 2n
J=T

) � Db(Coh(T 2n
J=T )).

At least, it is known that it split generates Db(Coh(T 2n
J=T )) when T 2n

J=T is an abelian variety
(cf. [17], [1]).

On the correspondence between two A∞(DG)-categories DGT 2n
J=T

and Fukaff(Ť 2n
J=T ), it is

known that the following theorem holds ([10, Theorem 5.1]). Note that two parameters
θ, ξ ∈ Rn in the following theorem are defined as follows. For elements Vj, Uk ∈ 

( j, k = 1, · · · , n), let us define ξ j, θk ∈ R by

eiξ j = detVj, eiθk = detUk.

Then, we set

ξ := (ξ1, · · · , ξn)t, θ := (θ1, · · · , θn)t.

Theorem 2.6. A map Ob(DGT 2n
J=T

)→ Ob(Fukaff(Ť 2n
J=T )) is defined by

E(r,A,μ, ) 
→ (L(r,A,p− r
r′ θ),(r,A,p− r

r′ θ,q+
r
r′ ξ)),

and it induces a bijection between Obisom(DGT 2n
J=T

) and Obisom(Fukaff(Ť 2n
J=T )), where

Obisom(DGT 2n
J=T

) and Obisom(Fukaff(Ť 2n
J=T )) denote the set of the isomorphism classes of ob-

jects of DGT 2n
J=T

and the set of the isomorphism classes of objects of Fukaff(Ť 2n
J=T ), respec-

tively∗.

3. The construction of an isomorphism E(r,A,µ, ) � (r,A,µ, )

3. The construction of an isomorphism E(r,A,µ, ) � (r,A,µ, )
In this section, we first recall the definition of projectively flat bundles and some proper-

ties of them. Next, we construct a one-to-one correspondence between holomorphic vector
∗We consider affine Lagrangian submanifolds only in this paper, so two objects (L(r,A,p),(r,A,p,q)),

(L(s,B,u),(s,B,u,v)) ∈ Fukaff(Ť 2n
J=T ) are isomorphic to each other if and only if L(r,A,p) = L(s,B,u) and (r,A,p,q) �

(s,B,u,v).
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bundles E(r,A,μ, ) and a certain kind of projectively flat bundles. In general, factors of auto-
morphy of projectively flat bundles on complex tori are classified concretely, so we interpret
holomorphic vector bundles E(r,A,μ, ) in the language of those factors of automorphy. This
result is given in Theorem 3.8.

We recall the definition of factors of automorphy for holomorphic vector bundles fol-
lowing [11]. Let M be a complex manifold such that its universal covering space M̃ is a
topologically trivial (contractible) Stein manifold (Cn is an example of a Stein manifold).
Let p : M̃ → M be the covering projection and Γ the covering transformation group acting
on M̃ so that M = M̃/Γ. Let E be a holomorphic vector bundle of rank r over M. Then its
pull-back Ẽ = p∗E is a holomorphic vector bundle of the same rank over M̃. Since M̃ is
topologically trivial, Ẽ is topologically a product bundle. Since M̃ is Stein, by Oka’s princi-
ple, Ẽ is holomorphically a product bundle, i.e., Ẽ = M̃×Cr. Having fixed this isomorphism,
we define a holomorphic map j : Γ × M̃ → GL(r;C) by the commutative diagram

Ẽγ(x) � Cr

�����������
Ẽx � Cr

�����������

j(γ,x)��

Ep(x) ,

where x ∈ M̃, γ ∈ Γ. Then, for x ∈ M̃, γ, γ′ ∈ Γ, the relation

j(γ + γ′, x) = j(γ′, x + γ) ◦ j(γ, x)

holds. The map j : Γ×M̃ → GL(r;C) is called the factor of automorphy for the holomorphic
vector bundle E.

Now, we recall the definition and some properties of projectively flat bundles.

Definition 3.1 (Projectively flat bundles, [6], [15], [11], [21]). Let E be a holomorphic
vector bundle of rank r over a compact Kähler manifold M and P(E) its associated principal
GL(r;C)-bundle. Then P̂(E) = P(E)/C×Ir is a principal PGL(r;C)-bundle. We say that E
is projectively flat when P̂(E) is provided with a flat structure.

For a complex vector bundle E of rank r with a connection D over a compact Kähler
manifold M, it is known that the following proposition holds.

Proposition 3.2 ([15], [11], [21]). Let R be a curvature of (E,D). Then, E is projectively
flat if and only if R takes values in scalar multiples of the identity endomorphism IE of E,
i.e., if and only if there exists a complex 2-form α on M such that R = α · IE.

There are many studies of projectively flat bundles on complex tori, i.e., the cases M =
Cn/Γ, where Γ is a nondegenerate lattice of rank 2n in Cn ([6], [15], [11], [21] etc.). Let us
denote the coordinates of Cn by z = (z1, · · · , zn)t. Hereafter, we focus on projectively flat
bundles which admit Hermitian structures∗ over a complex torus Cn/Γ. On the detail of the
results which are described below, for example, see [6], [15], [11], [21]. Now, we recall the
following theorem (see [11, Theorem 4.7.54]) which plays an important role in our main
discussions in this section.

∗In fact, since we do not mention Hermitian structures explicitly in our main discussions, readers do not have
to consider them so much in section 3.
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Theorem 3.3. Let E be a holomorphic vector bundle of rank r over a complex torus Cn/Γ.
If E admits a projectively flat Hermitian structure h, then its factor of automorphy j can be
written as follows :

j(γ, z) = U(γ)exp
{

1
r
(z, γ) +

1
2r

(γ, γ)
}

(γ, z) ∈ Γ × Cn,

where

(i)  is a Hermitian form on Cn and its imaginary part satisfies

Im(γ, γ′) ∈ πZ f or γ, γ′ ∈ Γ,
(ii) U : Γ→ U(r) is a semi-representation in the sense that it satisfies

U(γ + γ′) = U(γ)U(γ′)e
i
r Im(γ′,γ) f or γ, γ′ ∈ Γ.

Conversely, given a Hermitian form  on Cn with property (i) and a semi-representation
U : Γ→ U(r), we can define a factor of automorphy j : Γ × Cn → CU(r) as above, where

CU(r) :=
{
cU | c ∈ C× and U ∈ U(r)

}
.

The corresponding vector bundle E over Cn/Γ admits a projectively flat Hermitian structure.

In Theorem 3.3, of course, by using a Hermitian matrix R, we can denote

(z, w) = ztRw̄,

where z = (z1, · · · , zn)t and w = (w1, · · · , wn)t. Then, under the situation of Theorem 3.3, the
connection 1-form ω of the Hermitian connection of (E, h) is expressed locally as

ω = −1
r
(dz, z) · Ir + dztb · Ir,

where dz := (dz1, · · · , dzn)t and b := (b1, · · · , bn)t ∈ Cn is a constant vector. Furthermore,
the curvature form Ω of the Hermitian connection of (E, h) is expressed locally as

Ω =
1
r

dztRdz̄ · Ir.

We consider the case T 2n
J=T = C

n/2π(Zn⊕TZn) = Cn/L, and discuss the relations between
holomorphic vector bundles E(r,A,μ, ) and projectively flat bundles. Note that the curvature
form Ω(r,A,μ, ) of a holomorphic vector bundle E(r,A,μ, ) is expressed locally as

Ω(r,A,μ, ) =
i

2πr′
r′

r
dzt{(T − T̄ )−1}tAdz̄ · Ir′ .

Now, we define

R :=
i

2π
r′

r
{(T − T̄ )−1}tA,

namely,

Ω(r,A,μ, ) =
1
r′

dztRdz̄ · Ir′ .

Then, the following lemma holds.
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Lemma 3.4. The matrix R is a real symmetric matrix of order n.

Proof. By a direct calculation,

R =
i

2π
r′

r
{(T − T̄ )−1}tA(T − T̄ )(T − T̄ )−1

=
i

2π
r′

r
{(T − T̄ )−1}tAT (T − T̄ )−1 − i

2π
r′

r
{(T − T̄ )−1}tAT̄ (T − T̄ )−1,

and since AT = (AT )t holds, it is clear that the two matrices

i
2π

r′

r
{(T − T̄ )−1}tAT (T − T̄ )−1,

i
2π

r′

r
{(T − T̄ )−1}tAT̄ (T − T̄ )−1

are symmetric. Hence, R is a symmetric matrix. Furthermore, when we decompose T =
X + iY with X := ReT , Y := ImT , one has

R =
1

4π
r′

r
(Y−1)tA.

This relation indicates R ∈ M(n;R). �

Remark 3.5. Although the matrix R is defined by using the matrix r′
r A, each component

of the matrix r′
r A is an integer. Actually, this matrix r′

r A ∈ M(n;Z) corresponds to the 1-st
Chern class of E(r,A,μ, ).

By using this real symmetric matrix R = (Ri j) of order n, we define a Hermitian bilinear
form  : Cn × Cn → C by

(z, w) :=
n∑

i, j=1

Ri jziw̄ j,

where z = (z1, · · · , zn)t, w = (w1, · · · , wn)t. Then, the following propositions hold.

Proposition 3.6. For γ1, · · · , γn and γ′1, · · · , γ′n, Im(γ j, γk) = 0, Im(γ′j, γ
′
k) = 0, where

j, k = 1, · · · , n.

Proof. By the definition of γ j ( j = 1, · · · , n), (γ j, γk) = 4π2Rjk, where Rjk ∈ R, so
Im(γ j, γk) = 0. On the other hand, we see (γ′j, γ

′
k) = 4π2(T tRT̄ ) jk, so for T = X + iY , it

turns out to be

4π2T tRT̄ = 4π2(Xt + iYt) · 1
4π

r′

r
(Y−1)tA · (X − iY)

= π
r′

r
{Xt(Y−1)tAX + AY + i(AX − Xt(Y−1)tAY)}.

Thus,

Im(γ′j, γ
′
k) =

(
π

r′

r
(AX − Xt(Y−1)tAY)

)
jk
=

(
π

r′

r
(AX − AX)

)
jk
= Ojk.

Here, the second equality follows from AT = (AT )t. �

Proposition 3.7. For γ1, · · · , γn and γ′1, · · · , γ′n, Im(γ j, γ
′
k) = −π r′

r ak j, Im(γ′k, γ j) =
π r′

r ak j, where j, k = 1, · · · , n.



88 K. Kobayashi

Proof. First, we prove ImRT̄ = − 1
4π

r′
r At. For T = X + iY ,

RT̄ =
1

4π
r′

r
(Y−1)tAX − i

4π
r′

r
(Y−1)tAY,

so we see

ImRT̄ = − 1
4π

r′

r
(Y−1)tAY = − 1

4π
r′

r
At.

Here, we used AT = (AT )t. Similarly, we can also prove

ImR̄T =
1

4π
r′

r
At.

On the other hand, the relations

(γ j, γ
′
k) = (4π2RT̄ ) jk, (γ′k, γ j) = (4π2R̄T ) jk

hold. Thus, by using ImRT̄ = − 1
4π

r′
r At and ImR̄T = 1

4π
r′
r At, we obtain

Im(γ j, γ
′
k) = −πr′

r
ak j, Im(γ′k, γ j) = π

r′

r
ak j. �

Now, we consider a projectively flat bundle (r,A,μ, ) → T 2n
J=T of rank r′ whose factor of

automorphy j : L × Cn → GL(r′;C) and connection ∇̃(r,A,μ, ) = d + ω̃(r,A,μ, ) are expressed
locally as follows :

j(γ, z) = U(γ)exp
{

1
r′
(z, γ) +

1
2r′

(γ, γ)
}
,

ω̃(r,A,μ, ) = − 1
r′

dztRz̄ · Ir′ +
i

2πr
μ̄t(T − T̄ )−1dz · Ir′ − i

2πr
μt(T − T̄ )−1dz · Ir′ .

Here, U(γ j),U(γ′k) ∈ U(r′) ( j, k = 1, · · · , n) satisfy the relations

U(γ j)U(γk) = U(γk)U(γ j),(7)

U(γ′j)U(γ′k) = U(γ′k)U(γ′j),(8)

ζ−ak jU(γ′k)U(γ j) = U(γ j)U(γ′k).(9)

Note that these relations are equivalent to the cocycle condition of E(r,A,μ, ). Therefore, we
can denote

 =
{
U(γ j),U(γ′k) ∈ U(r′) | (7), (8), (9), j, k = 1, · · · , n

}
.

The purpose of this section is to interpret holomorphic vector bundles E(r,A,μ, ) in the lan-
guage of factors of automorphy, namely, to prove E(r,A,μ, ) � (r,A,μ, ) (Theorem 3.8). It is
clear that the curvature form Ω̃(r,A,μ, ) of (r,A,μ, ) is expressed locally as

Ω̃(r,A,μ, ) =
1
r′

dztRdz̄ · Ir′ .

Hence, we fix r, A, μ (note that r′ is uniquely defined by using r and A), and by comparing
the definition of E(r,A,μ, ) with the definition of (r,A,μ, ), we see that the cardinality of the set
{E(r,A,μ, )} is equal to the cardinality of the set {(r,A,μ, )}. Thus, we expect that there exists
an isomorphism Ψ : E(r,A,μ, )

∼→ (r,A,μ, ) which gives a correspondence between {E(r,A,μ, )}
and {(r,A,μ, )}. Actually, the following theorem holds, and this is the main theorem in this
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section.

Theorem 3.8. One has E(r,A,μ, ) � (r,A,μ, ), where an isomorphism Ψ : E(r,A,μ, )
∼→

(r,A,μ, ) is expressed locally as

Ψ(z, z̄) =exp
{ i

4πr′
zt
z +

i
4πr′

z̄t
̄z̄ − i

2πr′
zt
z̄ − i

2πr
zt{(T − T̄ )−1}tμ̄

+
i

2πr
z̄t{(T − T̄ )−1}tμ

}
· Ir′ ,

 := r′
r {(T − T̄ )−1}tT̄ tAt(T − T̄ )−1.

Proof. Note that  is a symmetric matrix because AT = (AT )t. We construct an isomor-
phism Ψ : E(r,A,μ, ) → (r,A,μ, ) explicitly such that its local expression is

Ψ(z, z̄) = ψ(z, z̄) · Ir′ ,

where ψ(z, z̄) is a function defined locally. By solving the differential equation

∇̃(r,A,μ, )Ψ(z, z̄) = Ψ(z, z̄)∇(r,A,μ, ),

we obtain the solution

ψ(z, z̄) =c · exp
{ i

4πr′
zt
z +

i
4πr′

z̄t
̄z̄ − i

2πr′
zt
z̄ − i

2πr
zt{(T − T̄ )−1}tμ̄

+
i

2πr
z̄t{(T − T̄ )−1}tμ

}
,

where c is an arbitrary constant, so by setting c = 1, we have

Ψ(z, z̄) =exp
{ i

4πr′
zt
z +

i
4πr′

z̄t
̄z̄ − i

2πr′
zt
z̄ − i

2πr
zt{(T − T̄ )−1}tμ̄

+
i

2πr
z̄t{(T − T̄ )−1}tμ

}
· Ir′ .

By using this Ψ : E(r,A,μ, ) → (r,A,μ, ), we transform the transition functions of E(r,A,μ, ).
We can verify that the relation

(10)
i

2π
(̄ −) = R

holds as follows. By a direct calculation, we see

i
2π

̄ − R =
i

2π
r′

r
{(T − T̄ )−1}tT tAt(T − T̄ )−1 − i

2π
r′

r
{(T − T̄ )−1}t(T − T̄ )tAt(T − T̄ )−1

=
i

2π
r′

r
{(T − T̄ )−1}tT̄ tAt(T − T̄ )−1

=
i

2π
,

so one has
i

2π
(̄ −) = R.

Since we can regard

e
i
r a jy = e

i
r a j(T−T̄ )−1z− i

r a j(T−T̄ )−1 z̄,
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we calculate the formula

(11)
(
Ψ(z + γ j, z̄ + γ j)

) (
e

i
r a j(T−T̄ )−1z− i

r a j(T−T̄ )−1 z̄V j

) (
Ψ−1(z, z̄)

)
,

where j = 1, · · · , n. We set

(̄ −) j := (̄1 j −1 j, · · · , ̄n j −n j), Rj := (R1 j, · · · ,Rn j).

By using the identity (10), the formula (11) turns out to be

exp
{ i

r′
(̄ −) jz̄ +

πi
r′

(̄ −) j j − i
r

({(T − T̄ )−1}tμ̄) j +
i
r

({(T − T̄ )−1}tμ) j

+
i
r

a j(T − T̄ )−1z − i
r

a j(T − T̄ )−1z̄
}
Vj

= exp
{

2π
r′

Rjz +
2π2

r′
Rj j +

i
r

q j

}
Vj

= exp
{

i
r

q j

}
Vj exp

{
1
r′
(z, γ j) +

1
2r′

(γ j, γ j)
}
.

In particular, exp
{

i
r q j

}
is a purely imaginary number, and this fact indicates

U(γ j) := exp
{

i
r

q j

}
Vj ∈ U(r′).

Similarly, we also calculate the formula

(12)
(
Ψ(z + γ′k, z̄ + γ̄

′
k)
)(

Uk

)(
Ψ−1(z, z̄)

)
,

where k = 1, · · · , n. In order to calculate the formula (12), we prove the relations

T = T ,(13)

(T − T̄ ) = −2πiRT̄ .(14)

We can show the identity (13) as follows. For T = X + iY ,

T =
r′

r
{(T − T̄ )−1}tT̄ tAt(T − T̄ )−1T

= −1
4

r′

r
(Y−1)tXtAtY−1X − 1

4
r′

r
At − i

4
r′

r
((Y−1)tXtAt − AtY−1X),

and since AT = (AT )t holds,

ImT = −1
4

r′

r
((Y−1)tXtAt − AtY−1X) = O.

This implies T = T . Furthermore, by a direct calculation,

(T − T̄ ) =
r′

r
{(T − T̄ )−1}tT̄ tAt(T − T̄ )−1(T − T̄ )

=
r′

r
{(T − T̄ )−1}tAT̄

= −2πiRT̄ ,

so we obtain the identity (14). Now, we calculate the formula (12). We set
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((T − T̄ ))k := (((T − T̄ ))1k, · · · , ((T − T̄ ))nk),

(RT̄ )k := ((RT̄ )1k, · · · , (RT̄ )nk).

By using the identities (13), (14), the formula (12) turns out to be

exp
{ i

r′
((T − T̄ ))kz +

πi
r′

((T )tT )kk +
πi
r′

((T )tT̄ )kk − 2πi
r′

((T )tT̄ )kk

− i
r

(μ̄t(T − T̄ )−1T )k +
i
r

(μt(T − T̄ )−1T̄ )k

}
Uk

= exp
{

i
r′

((T − T̄ ))kz +
πi
r′

(T t
(T − T̄ ))kk − i

r
pk

}
Uk

= exp
{

2π
r′

(RT̄ )kz +
2π2

r′
(T tRT̄ )kk − i

r
pk

}
Uk

= exp
{

2π
r′

(RT̄ )kz +
2π2

r′
(T̄ tRT )kk − i

r
pk

}
Uk

= exp
{
− i

r
pk

}
Uk exp

{
1
r′
(z, γ′k) +

1
2r′

(γ′k, γ
′
k)
}
.

In particular, exp
{
− i

r pk

}
is a purely imaginary number, and this fact indicates

U(γ′k) := exp
{
− i

r
pk

}
Uk ∈ U(r′).

Here, we remark that the matrices U(γ j), U(γ′k) ( j, k = 1, · · · , n) satisfy the relations (7),
(8), and (9) if and only if the matrices Vj, Uk ( j, k = 1, · · · , n) satisfy the cocycle condition

VjVk = VkVj, U jUk = UkU j, ζ
−ak jUkV j = VjUk

of E(r,A,μ, ). This completes the proof. �

4. Exact triangles consisting of projectively flat bundles on T2n
J=T

4. Exact triangles consisting of projectively flat bundles on T2n
J=T

The purpose of this section is to prove Theorem 4.1 which plays an important role in
section 5. In Theorem 4.1, we focus on exact triangles consisting of three simple projectively
flat bundles E(r,A,μ, ), E(s,B,ν,), E(t,C,η,) → T 2n

J=T and their shifts. We also give a geometric
interpretation for such exact triangles by focusing on the dimension of intersections of the
corresponding affine Lagrangian submanifolds in the last of this section.

Let us consider an exact triangle

· · · −−−−−→ E(r,A,μ, ) −−−−−→ C(ψ) −−−−−→ E(s,B,ν,)
ψ−−−−−→ E(r,A,μ, )[1] −−−−−→ · · ·

(15)

in Tr(DGT 2n
J=T

), where ψ ∈ Ext1(E(s,B,ν,), E(r,A,μ, )) is a non-trivial morphism. We set

α :=
1
r

A − 1
s

B.

Since the non-triviality of ψ ∈ Ext1(E(s,B,ν,), E(r,A,μ, )) implies the existence of an isomor-
phism E(r,A,μ, ) � E(s,B,ν,), i.e., C(ψ) � 0 in the case α = O, we consider the case α � O
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only throughout this paper. Here, we give the following theorem.

Theorem 4.1. In the exact triangle (15), we assume that there exists a holomorphic vector
bundle E(t,C,η,) such that C(ψ) � E(t,C,η,). Then, we have

rankα = 1.

Proof. We define the 2-forms Ω′(r,A,μ, ), Ω
′
(s,B,ν,), Ω

′
(t,C,η,) by

Ω′(r,A,μ, ) :=
1

4π2r
dxtAtdy,

Ω′(s,B,ν,) :=
1

4π2s
dxtBtdy,

Ω′(t,C,η,) :=
1

4π2t
dxtCtdy,

respectively, namely,

− 1
2πi
Ω(r,A,μ, ) = Ω

′
(r,A,μ, ) · Ir′ ,

− 1
2πi
Ω(s,B,ν,) = Ω

′
(s,B,ν,) · Is′ ,

− 1
2πi
Ω(t,C,η,) = Ω

′
(t,C,η,) · It′ .

Since we assume C(ψ) � E(t,C,η,), one has chi(C(ψ)) = chi(E(t,C,η,)), where i = 1, · · · , n
and chi(E) denotes the i-th Chern character of a vector bundle E. In particular,

chi(C(ψ)) = chi(E(r,A,μ, )) + chi(E(s,B,ν,)),

so chi(C(ψ)) = chi(E(t,C,η,)) is equivalent to

(16) chi(E(r,A,μ, )) + chi(E(s,B,ν,)) = chi(E(t,C,η,)).

Now we calculate chi(C(ψ)), chi(E(t,C,η,)) and consider the equality (16). It is clear that the
equality (16) in the cases i = 0, 1 are equivalent to

r′ + s′ = t′,(17)

r′Ω′(r,A,μ, ) + s′Ω′(s,B,ν,) = t′Ω′(t,C,η,),(18)

respectively. We consider the equality (16) in the case i = 2. By a direct calculation, the
equality (16) turns out to be

(19)
r′

2
(Ω′(r,A,μ, ))

2 +
s′

2
(Ω′(s,B,ν,))

2 =
t′

2
(Ω′(t,C,η,))

2,

and we obtain the relation

(20) (r′t′ − r′2)(Ω′(r,A,μ, ))
2 + (s′t′ − s′2)(Ω′(s,B,ν,))

2 = 2r′s′Ω′(r,A,μ, ) ∧Ω′(s,B,ν,)

by substituting the equality (18) into the equality (19). Furthermore, by substituting the
equality (17) into the equality (20), the equality (20) turns out to be

r′s′(Ω′(r,A,μ, ))
2 + r′s′(Ω′(s,B,ν,))

2 = 2r′s′Ω′(r,A,μ, ) ∧Ω′(s,B,ν,),

and this relation is equivalent to
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(21) (Ω′(r,A,μ, ) −Ω′(s,B,ν,))
2 = 0.

In general, for i ≥ 3, we obtain the equality⎛⎜⎜⎜⎜⎜⎜⎝r′
i−1∑
k=1

(
i − 1

k

)
r′i−1−k s′k

⎞⎟⎟⎟⎟⎟⎟⎠
(
Ω′(r,A,μ, )

)i

+

⎛⎜⎜⎜⎜⎜⎜⎝s′
i−2∑
k=0

(
i − 1

k

)
r′i−1−k s′k

⎞⎟⎟⎟⎟⎟⎟⎠
(
Ω′(s,B,ν,)

)i

(22)

−
i−1∑
k=1

(
i
k

)(
r′Ω′(r,A,μ, )

)i−k(
s′Ω′(s,B,ν,)

)k

= 0

by expanding the equality (16). Note that the left hand side of the equality (22) can be
factored as

(Ω′(r,A,μ, ) −Ω′(s,B,ν,))
2

×
i−2∑
l=0

{( l∑
k=1

(i − l − 1)
(
i − 1
k − 1

)
r′i−k s′k + (l + 1)

i−1∑
k=l+1

(
i − 1

k

)
r′i−k s′k

)

× (Ω′(r,A,μ, ))
i−l−2(Ω′(s,B,ν,))

l
}
.

Hence, when the equality (21) holds, the equality (22) holds automatically. Moreover, by
the definition of Ω′(r,A,μ, ) and Ω′(s,B,ν,),

Ω′(r,A,μ, ) −Ω′(s,B,ν,) =
1

4π2 dxt
(
1
r

At − 1
s

Bt
)

dy =
1

4π2 dxtαtdy,

so by a direct calculation, one has

(Ω′(r,A,μ, ) −Ω′(s,B,ν,))
2 =

1
8π4

∑
1≤i< j≤n,1≤k<l≤n

(αikα jl − αilα jk)dxk ∧ dyi ∧ dxl ∧ dy j.

Thus, the equality (21) is equivalent to

(23) det
(
αik αil

α jk α jl

)
= αikα jl − αilα jk = 0,

where 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.
Now, in order to prove the statement of this theorem, we apply elementary row operations

to the matrix α. Since we assume α � O, there exists an αi j � 0. First, we multiply the first
row of α by αi j :

α −→ α′ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11αi j . . . α1 jαi j . . . α1nαi j
...

. . .
...

. . .
...

αi1 . . . αi j . . . αin
...

. . .
...

. . .
...

αn1 . . . αn j . . . αnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Next, we add the i-th row of α′ multiplied by −α1 j to the first row of α′ :
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α′ −→ α′′ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11αi j − αi1α1 j . . . 0 . . . α1nαi j − αinα1 j
...

. . .
...

. . .
...

αi1 . . . αi j . . . αin
...

. . .
...

. . .
...

αn1 . . . αn j . . . αnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, by using the equality (23), we see that all components of the first row of α′′ are zero,
namely,

α′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0
...

. . .
...

. . .
...

αi1 . . . αi j . . . αin
...

. . .
...

. . .
...

αn1 . . . αn j . . . αnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By applying elementary row operations to α′′ similarly as above, α′′ is transformed as fol-
lows finally : ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0
...

. . .
...

. . .
...

αi1 . . . αi j . . . αin
...

. . .
...

. . .
...

0 . . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, we can conclude that the relation

rankα = 1

holds. �
We give a geometric interpretation for Theorem 4.1 from the viewpoint of the homolog-

ical mirror symmetry for (T 2n
J=T , Ť

2n
J=T ). By using suitable parameters p̌, ǔ ∈ Rn, we can

express the affine Lagrangian submanifolds which correspond to holomorphic vector bun-
dles E(r,A,μ, ), E(s,B,ν,) as L(r,A,p̌), L(s,B,ǔ), respectively (cf. [10, Theorem 5.1], Theorem 2.6).
Note that the non-triviality of

Ext1(E(s,B,ν,), E(r,A,μ, ))

implies

L(r,A,p̌) ∩ L(s,B,ǔ) � ∅
in the description of the homological mirror symmetry (see also the relations (40), (41), and
p.32, p.33 in [8]). Then, the relation rankα = 1 in Theorem 4.1 indicates

codim(L(r,A,p̌) ∩ L(s,B,ǔ)) = 1.

For example, let us consider the case n = 1, i.e., the case of elliptic curves (T 2
J=T , Ť

2
J=T ). We

focus on the exact triangle
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· · · −−−−−→ E(1,0,μ, ) −−−−−→ C(ψ) −−−−−→ E(1,1,ν,)
ψ−−−−−→ E(1,0,μ, )[1] −−−−−→ · · ·

in Tr(DGT 2
J=T

), where

 =  =
{
V1 = U1 = 1 ∈ U(1)

}
.

Then, by [7, Theorem 4.10], C(ψ) � E(2,1,η,) if and only if η ≡ μ+ ν+ π+ πT (mod 2π(Z⊕
TZ)), where

 =

{
V1 =

(
0 1
1 0

)
,U1 =

(
1 0
0 −1

)
∈ U(2)

}
,

and we can actually check that codim(L(1,0,p̌) ∩ L(1,1,ǔ)) = 1 holds in this case.

5. An application

5. An application
In [8], as an application of Theorem 4.1, we studied exact triangles consisting of three

simple projectively flat bundles E(r,A,μ, ), E(s,B,ν,), E(t,C,η,) → T 2n
J=T (n ≥ 2) and their shifts

with the assumption rank E(r,A,μ, ) = 1. In particular, the main result is given in [8, Theorem
5.6]. The purpose of this section is to extend [8, Theorem 5.6] to general settings (Theorem
5.7).

Also, in this section, we sometimes consider the holomorphic vector bundle of the form
E(r,aEi j,μ, ) → T 2n

J=T of rank r′, where r ∈ N, a ∈ Z, and μ ∈ Rn ⊕ T tRn. When we consider
such a holomorphic vector bundle, we can take the set

r′ :=
{
Vj = V, Vl = Ir′ , Ui = U−

r′
r a, Uk = Ir′ ∈ U(r′) | l, k = 1, · · · , n, l � j, k � i

}
as an example of  , where

V :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

. . .
. . .

1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , U :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

ζ′
. . .

(ζ′)r′−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ U(r′), ζ′ := e
2πi
r′ .

Throughout this section, we use the notation r′ in this sense. Note that

1 =
{
V1 = · · · = Vn = U1 = · · ·Un = 1 ∈ U(1)

}
.

5.1. Previous work.
5.1. Previous work. In this subsection, we recall the discussions in subsection 5.2 in [8].

Roughly speaking, in subsection 5.2 in [8], we proved that an exact triangle consisting of
three simple projectively flat bundles E(1,A,μ, ), E(s,B,ν,), E(t,C,η,) → T 2n

J=T (n ≥ 2) and their
shifts is obtained as the pullback of an exact triangle defined on a suitable one-dimensional
complex torus ([8, Theorem 5.6]).

Let us consider an exact triangle

· · · −−−−−→ E(r,A,μ, ) −−−−−→ C(ψ) −−−−−→ E(s,B,ν,)
ψ−−−−−→ E(r,A,μ, )[1] −−−−−→ · · ·

(24)

in Tr(DGT 2n
J=T

). In the definition of the holomorphic vector bundle of the form E(r,A,μ, ),
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r′ ∈ N is the rank of E(r,A,μ, ), and r′
r A ∈ M(n;Z) corresponds to the 1-st Chern class of

E(r,A,μ, ). In particular, when we set

A′ :=
r′

r
A, p′ :=

r′

r
p, q′ :=

r′

r
q, μ′ :=

r′

r
μ,

we can regard

E(r,A,μ, ) = E(r′,A′,μ′, ).

Hereafter, we use the notation E(r′,A′,μ′, ) instead of E(r,A,μ, ) in order to specify the rank and
the 1-st Chern class of E(r,A,μ, ) (we will also use the notations E(s′,B′,ν′,) and E(t′,C′,η′,) in
this sense). As a result, we can rewrite the exact triangle (24) to the exact triangle

· · · −−−−−→ E(r′,A′,μ′, ) −−−−−→ C(ψ) −−−−−→ E(s′,B′,ν′,)
ψ−−−−−→ E(r′,A′,μ′, )[1] −−−−−→ · · · .

(25)

We assume that r = 1, i.e., r′ = 1, and C(ψ) ∈ DGT 2n
J=T

, namely, assume that E(r′,A′,μ′, ′) is a
holomorphic line bundle, and there exists a holomorphic vector bundle E(t′,C′,η′,) such that
C(ψ) � E(t′,C′,η′,). Therefore, the exact triangle (25) is equivalent to the following :

· · · −−−−−→ E(1,A′,μ′, ) −−−−−→ E(t′,C′,η′,) −−−−−→ E(s′,B′,ν′,)

−−−−−→ E(1,A′,μ′, )[1] −−−−−→ · · · .
(26)

Then, by Theorem 4.1,

rankα = 1

holds, and under the assumption rankα = 1, we obtain the following two propositions (see
[8, Proposition 5.1] and [8, Proposition 5.2]∗).

Proposition 5.1. Assume rankα = 1. Then, there exist two matrices ,  ∈ SL(n;Z)
such that


t(s′α) = −NEi j,

where N ∈ N and Ei j denotes the matrix unit.

Proposition 5.2. We assume rankα = 1, and take a pair (,) of two matrices ,
 ∈ SL(n;Z) which satisfy the statement of Proposition 5.1. Then,

(−1T) ji′ = 0 (1 ≤ i′ � i ≤ n)

and

Im(−1T) ji � 0

hold.

∗Although we consider the transformation of the matrix s′α by two matrices ,  ∈ SL(n;Z) in Proposition
5.1 in this paper, the matrix sα is transformed by using two matrices ,  ∈ SL(n;Z) in [8, Proposition 5.1].
However, we can prove Proposition 5.1 in this paper in a similar way as described in the proof of [8, Proposition
5.1].
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For simplicity, we set T ′ := −1T. We can consider the n-dimensional complex torus
T 2n

J=T ′ by using this matrix T ′. Let us denote the local complex coordinates of T 2n
J=T ′ by

Z = X + T ′Y = X +−1TY , where

Z := (Z1, · · · , Zn)t, X := (X1, · · · , Xn)t, Y := (Y1, · · · , Yn)t.

Then, two n-dimensional complex tori T 2n
J=T , T 2n

J=T ′ are biholomorphic to each other, and the
biholomorphic map ϕ : T 2n

J=T ′
∼→ T 2n

J=T is actually given by

(27) ϕ(Z) = Z.

The biholomorphicity of the map ϕ implies the holomorphicity of the pullback bundle
ϕ∗E(1,A′,μ′, ) → T 2n

J=T ′ , and we can regard ϕ∗E(1,A′,μ′, ) = E(1,Ã′,μ̃′, ′), where

Ã′ = (ã′kl) := 
tA′, μ̃′ := 

tμ′,

and  ′ is defined by using the data ( ,,). We will also use the notations E(s′,B̃′,ν̃′, ′)
and E(t′,C̃′,η̃′, ′) in this sense. Hence, by the biholomorphic map ϕ, the exact triangle (26) is
transformed to the exact triangle

· · · −−−−−→ E(1,Ã′,μ̃′, ′) −−−−−→ E(t′,C̃′,η̃′, ′) −−−−−→ E(s′,B̃′,ν̃′, ′)

−−−−−→ E(1,Ã′,μ̃′, ′)[1] −−−−−→ · · ·(28)

in Tr(DGT 2n
J=T ′

). Here, we apply the triangulated functor Tr(DGT 2n
J=T ′

)
∼→ Tr(DGT 2n

J=T ′
) which

is induced by the operator ⊗E(1,−Ã′,0,1) to the exact triangle (28), so it is mapped to the
following :

· · · −−−−−→ E(1,O,μ̃′, ′) −−−−−→ E(t′,NEi j,η̃′, ′) −−−−−→ E(s′,NEi j,ν̃′, ′)

−−−−−→ E(1,O,μ̃′, ′)[1] −−−−−→ · · · .
(29)

Note that gcd(s′,N) = gcd(t′,N) = 1 holds in the exact triangle (29), and this fact closely
related to the simplicity of the holomorphic vector bundles E(s′,NEi j,ν̃′, ′) and E(t′,NEi j,η̃′, ′) (cf.
[8, Proposition 5.5]). Furthermore, for two arbitrary holomorphic vector bundles E(r′,A′,μ′, ),
E(r′,A′,ν′,) → T 2n

J=T ′ , it is known that there exist η′ ∈ Rn ⊕ T ′tRn and the set  such that

E(r′,A′,ν′,) � E(r′,A′,μ′, ) ⊗ E(1,O,η′,)

holds (see [15], [16]). In particular, we determine these data (η′,) explicitly in [10, Theo-
rem 3.4]. Hence, there exist

μ̃′0, ν̃
′
0, η̃

′
0 ∈ Rn ⊕ T ′tRn

such that

E(1,O,μ̃′, ′) � E(1,O,μ̃′0,1), E(s′,NEi j,ν̃′, ′) � E(s′,NEi j,ν̃
′
0,s′ ), E(t′,NEi j,η̃′, ′) � E(t′,NEi j,η̃

′
0,t′ )

hold. As a result, we may consider the exact triangle

· · · −−−−−→ E(1,O,μ̃′0,1) −−−−−→ E(t′,NEi j,η̃
′
0,t′ ) −−−−−→ E(s′,NEi j,ν̃

′
0,s′ )

−−−−−→ E(1,O,μ̃′0,1)[1] −−−−−→ · · ·(30)

in Tr(DGT 2n
J=T ′

) instead of the exact triangle (29). Below, we explain the statement of [8,
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Theorem 5.6]. Let us define a holomorphic projection π : T 2n
J=T ′ → T 2

J=t′ji
= C/2π(Z ⊕ t′jiZ)

by

π(Z) = Zj = Xj + t′jiYi.

Moreover, we decompose μ̃′0 = p̃′0 + T ′tq̃′0, and define

(μ̃′0)i := ( p̃′0)i + t′ji(q̃
′
0) j ∈ R ⊕ t′jiR.

Similarly as in the case of (μ̃′0)i, for two parameters ν̃′0, η̃′0, we can associate the notations

(ν̃′0)i, (η̃′0)i ∈ R ⊕ t′jiR,

respectively. Now, on the one-dimensional complex torus T 2
J=t′ji

, we consider the exact tri-
angle

· · · −−−−−→ E(1,0,(μ̃′0)i,
′

1 ) −−−−−→ E(t′,N,(η̃′0)i,
′
t′ ) −−−−−→ E(s′,N,(ν̃′0)i,

′
s′ )

−−−−−→ E(1,0,(μ̃′0)i,
′

1 )[1] −−−−−→ · · · .
Here, for the holomorphic vector bundle of the form E(r′,a′,μ′, ) → T 2

J=t′ji
of rank r′ (r′ ∈ N,

a′ ∈ Z, gcd(r′, a′) = 1, μ′ ∈ R ⊕ t′jiR), we took

(31) 
′

r′ :=
{
Vj = V, Ui = U−a′ ∈ U(r′)

}
as  . In particular,


′

1 =
{
Vj = Ui = 1 ∈ U(1)

}
.

Then, [8, Theorem 5.6] states that the exact triangle (30) is equivalent to the exact triangle

· · · −−−−−→ π∗E(1,0,(μ̃′0)i,
′

1 ) ⊗ E(1,O,μ̃,1) −−−−−→ π∗E(t′,N,(η̃′0)i,
′

t′ ) ⊗ E(1,O,μ̃,1)

−−−−−→ π∗E(s′,N,(ν̃′0)i,
′
s′ ) ⊗ E(1,O,μ̃,1) −−−−−→ π∗E(1,0,(μ̃′0)i,

′
1 )[1] ⊗ E(1,O,μ̃,1) −−−−−→ · · ·

in Tr(DGT 2n
J=T ′

) with a suitable holomorphic line bundle E(1,O,μ̃,1) ∈ Pic0(T 2n
J=T ′).

5.2. Preparations.
5.2. Preparations. This subsection is devoted to the preparations of subsection 5.3. In

particular, in subsection 5.3, we consider several autoequivalences on Tr(DGT 2n
J=T ′

) in order
to transform a given exact triangle to an exact triangle which is easy to treat, so we also
explain such autoequivalences on Tr(DGT 2n

J=T ′
) in this subsection.

Let us consider the exact triangle (25) in Tr(DGT 2n
J=T

) with the assumption C(ψ) ∈ DGT 2n
J=T

,
namely, we assume that there exists a holomorphic vector bundle E(t′,C′,η′,) such that C(ψ) �
E(t′,C′,η′,) :

· · · −−−−−→ E(r′,A′,μ′, ) −−−−−→ E(t′,C′,η′,) −−−−−→ E(s′,B′,ν′,)

−−−−−→ E(r′,A′,μ′, )[1] −−−−−→ · · · .
(32)

Here, we do not assume rank E(r′,A′,μ′, ) = 1. Then, we have

rankα = 1

by Theorem 4.1. Furthermore, Proposition 5.1 and Proposition 5.2 are generalized as follows
(since we can prove the following two propositions similarly as in the cases of Proposition
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5.1 and Proposition 5.2, we omit the proofs of them).

Proposition 5.3. Assume rankα = 1. Then, there exist two matrices ,  ∈ SL(n;Z)
such that


t(r′s′α) = −NEi j,

where N ∈ N.

Proposition 5.4. We assume rankα = 1, and take a pair (,) of two matrices ,
 ∈ SL(n;Z) which satisfy the statement of Proposition 5.3. Then,

(−1T) ji′ = 0 (1 ≤ i′ � i ≤ n)

and

Im(−1T) ji � 0

hold.

We take the n-dimensional complex torus T 2n
J=T ′ which is biholomorphic to T 2n

J=T , where
T ′ := −1T. Also in this case, the biholomorphic map ϕ : T 2n

J=T ′
∼→ T 2n

J=T is given by the
relation (27). By using the biholomorphic map ϕ, we obtain the pullback

· · · −−−−−→ E(r′,Ã′,μ̃′, ′) −−−−−→ E(t′,C̃′,η̃′, ′) −−−−−→ E(s′,B̃′,ν̃′, ′)

−−−−−→ E(r′,Ã′,μ̃′, ′)[1] −−−−−→ · · ·(33)

of the exact triangle (32), where the notations

Ã′, μ̃′,  ′, B̃′, ν̃′,  ′, C̃′, η̃′,  ′

are as in subsection 5.1. Thus, we may consider the exact triangle (33) in Tr(DGT 2n
J=T ′

)
instead of the exact triangle (32) in Tr(DGT 2n

J=T
). We will focus on the exact triangle (33) in

subsection 5.3.
Now, we explain several autoequivalences on Tr(DGT 2n

J=T ′
) which will be used in subsec-

tion 5.3. Let L → T 2n
J=T ′ be a flat holomorphic line bundle, i.e., L ∈ Pic0(T 2n

J=T ′). For each
fixed L ∈ Pic0(T 2n

J=T ′), we can associate the autoequivalence

ΦL : Tr(DGT 2n
J=T ′

)
∼→ Tr(DGT 2n

J=T ′
)

which is induced by the operator ⊗L. We denote the group of such autoequivalences ΦL :
Tr(DGT 2n

J=T ′
)
∼→ Tr(DGT 2n

J=T ′
) by

 ic0(T 2n
J=T ′).

On the other hand, for a given autoequivalence Ψ̌ : Tr(Fukaff(Ť 2n
J=T ′))

∼→
Tr(Fukaff(Ť 2n

J=T ′)), if we assume that the homological mirror symmetry conjecture for
(T 2n

J=T ′ , Ť
2n
J=T ′) holds true, namely, assume that there exists an equivalence

F : Tr(Fukaff(Ť 2n
J=T ′))

∼→ Tr(DGT 2n
J=T ′

)

as triangulated categories, there exists an autoequivalence Ψ : Tr(DGT 2n
J=T ′

)
∼→ Tr(DGT 2n

J=T ′
)

uniquely such that the following diagram commutes :
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Tr(Fukaff(Ť 2n
J=T ′))

F−−−−−→ Tr(DGT 2n
J=T ′

)

Ψ̌

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�Ψ
Tr(Fukaff(Ť 2n

J=T ′)) −−−−−→F
Tr(DGT 2n

J=T ′
).

In particular, sometimes we can give a complex or algebraic geometric interpretation for
such an autoequivalence Ψ : Tr(DGT 2n

J=T ′
)
∼→ Tr(DGT 2n

J=T ′
) (in general, to give a complex or

algebraic interpretation in this context is a difficult problem). Here, as an example of an
autoequivalence on Tr(Fukaff(Ť 2n

J=T ′)), we explain the autoequivalence on Tr(Fukaff(Ť 2n
J=T ′))

which is induced by the symplectic group action on Ť 2n
J=T ′ . We denote the local coordinates

of Ť 2n
J=T ′ by (X1, · · · , Xn, Y1, · · · , Yn)t, and set

X̌ := (X1, · · · , Xn)t, Y̌ := (Y1, · · · , Yn)t.

Let us consider the symplectic group

Sp(−T ′−1)t
(2n;Z) :=

{(
g11 g12

g21 g22

)
∈ SL(2n;Z) | g11, g12, g21, g22 ∈ M(n;Z),

gt
11(T ′−1)tg21 = (gt

11(T ′−1)tg21)t, gt
11(T ′−1)tg22 = (gt

11(T ′−1)tg22)t,

gt
21T ′−1g12 − gt

11(T ′−1)tg22 = (−T ′−1)t
}

associated to (−T ′−1)t. For an element

g :=
(
g11 g12

g21 g22

)
∈ Sp(−T ′−1)t

(2n;Z),

we define the Sp(−T ′−1)t
(2n;Z) action on Ť 2n

J=T ′ by(
X̌
Y̌

)
∈ Ť 2n

J=T ′ 
−→ g

(
X̌
Y̌

)
∈ Ť 2n

J=T ′ .

This Sp(−T ′−1)t
(2n;Z) action defines a symplectic automorphism ψ̌g : Ť 2n

J=T ′
∼→ Ť 2n

J=T ′ which
is given by

ψ̌g
(

X̌
Y̌

)
= g

(
X̌
Y̌

)
.

Then, for an arbitrary object (L(r,A,p),(r,A,p,q)) ∈ Fukaff(Ť 2n
J=T ′), we can consider the object(

(ψ̌g)−1(L(r,A,p)), (ψ̌g)∗(r,A,p,q)

)
∈ Fukaff(Ť 2n

J=T ′).

Therefore, the symplectic automorphism ψ̌g induces the autoequivalence on Fukaff(Ť 2n
J=T ′),

and it leads the autoequivalence

Ψ̌g : Tr(Fukaff(Ť 2n
J=T ′))

∼→ Tr(Fukaff(Ť 2n
J=T ′)).

Now, we define a subgroup S̃p
(−T ′−1)t

(2n;Z) of Sp(−T ′−1)t
(2n;Z) as follows. Let us consider

a pair (r,A) ∈ Z × M(n;Z) with the following conditions :

gcd(r, detA) = 1, i.e., there exist k, l ∈ Z such that kr + ldetA = 1.(34)
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two matrices A, T satisfy the relation AT = (AT )t.(35)

Then, we define

S̃p
(−T ′−1)t

(2n;Z) :=
{( kIn lÃ
−A rIn

)
∈ M(2n;Z) |

r ∈ Z and A ∈ M(n;Z) satisfy the conditions (34), (35).
}
,

where Ã denotes the cofactor matrix of A, namely, AÃ = ÃA = detAIn holds. We can easily

check that this S̃p
(−T ′−1)t

(2n;Z) is a subgroup of Sp(−T ′−1)t
(2n;Z) by using the conditions (34),

(35). Hence, for each matrix

g(r,A) :=
(

kIn lÃ
−A rIn

)
∈ S̃p

(−T ′−1)t

(2n;Z),

we can associate the autoequivalence

Ψ̌g(r,A) : Tr(Fukaff(Ť 2n
J=T ′))

∼→ Tr(Fukaff(Ť 2n
J=T ′)).

Also, under the assumption that the homological mirror symmetry conjecture for
(T 2n

J=T ′ , Ť
2n
J=T ′) holds true, we can consider the autoequivalence

Ψg(r,A) : Tr(DGT 2n
J=T ′

)
∼→ Tr(DGT 2n

J=T ′
)

compatible with the triangulated functors F : Tr(Fukaff(Ť 2n
J=T ′))

∼→ Tr(DGT 2n
J=T ′

), Ψ̌g(r,A) :

Tr(Fukaff(Ť 2n
J=T ′))

∼→ Tr(Fukaff(Ť 2n
J=T ′)). In this context, we denote the group of autoequiva-

lences Ψg(r,A) : Tr(DGT 2n
J=T ′

)
∼→ Tr(DGT 2n

J=T ′
) by

AutS̃p(T 2n
J=T ′).

Here, we explain why we focus on the subgroup S̃p
(−T ′−1)t

(2n;Z) instead of the symplectic
group Sp(−T ′−1)t

(2n;Z) itself. As explained in subsection 5.1, in [8], we transform the exact
triangle (28) by using the triangulated functor Tr(DGT 2n

J=T ′
)
∼→ Tr(DGT 2n

J=T ′
) which is induced

by the operator ⊗E(1,−Ã′,0,1). This triangulated functor is interpreted as the autoequivalence

Ψg(1,Ã′)−1 = Ψg(1,−Ã′) ∈ AutS̃p(T 2n
J=T ′) associated to the matrix

g(1, Ã′) =
(

In O
−Ã′ In

)
∈ S̃p

(−T ′−1)t

(2n;Z),

and the holomorphic line bundle E(1,Ã′,μ̃′, ′) in the exact triangle (28) is mapped to the flat

holomorphic line bundle E(1,O,μ̃′, ′) by Ψg(1,−Ã′). In this sense, AutS̃p(T 2n
J=T ′) is a straight-

forward extension of the group of autoequivalences on Tr(DGT 2n
J=T ′

) which is discussed in
subsection 5.2 in [8] to general settings. In fact, under the assumption that the homological
mirror symmetry conjecture for (T 2n

J=T ′ , Ť
2n
J=T ′) holds true, we can transform not only holo-

morphic line bundles but also holomorphic vector bundles of higher rank to flat holomorphic
line bundles by considering AutS̃p(T 2n

J=T ′). For example, we set

T ′ = i
(

1 0
1 2

)
, r = 3, A =

(
1 1
0 2

)
, p = q = 0.
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It is clear that AT ′ = (AT ′)t holds and r′ = 9. We can also take a suitable set  by
[10, Proposition 3.2]. Then, we can obtain the autoequivalence Ψg(3,A)−1 : Tr(DGT 4

J=T ′
)
∼→

Tr(DGT 4
J=T ′

) associated to the matrix

g(3, A) =
(

I2 −Ã
−A 3I2

)
∈ S̃p

(−T ′−1)t

(4;Z)

via the homological mirror symmetry. By using this Ψg(3,A)−1 , we can check that the holo-
morphic vector bundle E(3,A,0, ) of rank 9 is mapped to the flat holomorphic line bundle.

Now, in order to state our problem, we give the following definition.

Definition 5.5. Let us consider an exact triangle

(36) · · · −−−−−→ E1 −−−−−→ E2 −−−−−→ E3 −−−−−→ E1[1] −−−−−→ · · ·
consisting of E1, E2, E3 ∈ Ob(DGT 2n

J=T ′
). Then, we say that the exact triangle (36) essentially

comes from the one-dimensional complex torus T 2
J=τ if there exist a one-dimensional com-

plex torus T 2
J=τ (τ ∈ H) and a holomorphic projection π : T 2n

J=T ′ → T 2
J=τ such that the exact

triangle (36) has the expression

· · · −−−−−→ Φ
(
π∗E′1

)
−−−−−→ Φ

(
π∗E′2

)
−−−−−→ Φ

(
π∗E′3

)
−−−−−→ Φ

(
π∗E′1

)
[1] −−−−−→ · · ·

by Φ ∈ 〈AutS̃p(T 2n
J=T ′), ic0(T 2n

J=T ′)〉 and an exact triangle

· · · −−−−−→ E′1 −−−−−→ E′2 −−−−−→ E′3 −−−−−→ E′1[1] −−−−−→ · · ·
consisting of E′1, E′2, E′3 ∈ Ob(DGT 2

J=τ
). Here, 〈AutS̃p(T 2n

J=T ′), ic0(T 2n
J=T ′)〉 denotes the small-

est subgroup of the group Aut(Tr(DGT 2n
J=T ′

)) of autoequivalences on Tr(DGT 2n
J=T ′

) containing

the subset AutS̃p(T 2n
J=T ′) ∪  ic0(T 2n

J=T ′) ⊆ Aut(Tr(DGT 2n
J=T ′

)).

Concerning Definition 5.5, we will consider the following problem in subsection 5.3 (as
mentioned in subsection 5.1, the following problem is already solved in the case
rank E(r′,Ã′,μ̃′, ′) = 1 in [8]).

Problem 5.6. When does the exact triangle (33) essentially come from a one-dimensional
complex torus ?

5.3. Main result.
5.3. Main result. The purpose of this subsection is to give an answer for Problem 5.6.
Our first goal is to prove Theorem 5.7 which is a generalization of [8, Theorem 5.6] to the

case that rank E(r′,Ã′,μ̃′, ′) is not necessarily 1. Before stating Theorem 5.7, we give a remark.

As explained in subsection 5.2, the definition of AutS̃p(T 2n
J=T ′) depends on the homological

mirror symmetry conjecture for (T 2n
J=T ′ , Ť

2n
J=T ′). However, Theorem 5.7 itself can be proved

without the homological mirror symmetry. Let us denote the group of autoequivalences on
Tr(DGT 2n

J=T ′
) which is induced by the operator ⊗L (L ∈ Pic(T 2n

J=T ′)) by

 ic(T 2n
J=T ′).

We can regard this  ic(T 2n
J=T ′) as a subgroup of 〈AutS̃p(T 2n

J=T ′), ic0(T 2n
J=T ′)〉. In the proof of

Theorem 5.7, we will actually use autoequivalences which are included in  ic(T 2n
J=T ′) only,
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so the discussions in the proof of Theorem 5.7 are closed in the complex geometry side.

Theorem 5.7. The exact triangle (33) essentially comes from a one-dimensional complex
torus if r′ = rank E(r′,Ã′,μ̃′, ′) and s′ = rank E(s′,B̃′,ν̃′, ′) are relatively prime, i.e., gcd(r′, s′) =
1.

Proof. By Proposition 5.3, we have

1
s′

B̃′ =
1
r′

Ã′ +
N

r′s′
Ei j,

and this fact leads the relation

(37)
b̃′kl

s′
=

ã′kl

r′

for (k, l) � (i, j). Therefore, by the assumption gcd(r′, s′) = 1, we see that there exist two
integers ã′′kl, b̃′′kl ∈ Z such that

ã′kl = r′ã′′kl, b̃′kl = s′b̃′′kl,

and actually, each ã′′kl ∈ Z coincides with b̃′′kl ∈ Z since the equality (37) holds. Hereafter, we
denote

a′′kl := ã′′kl = b̃′′kl ∈ Z
for simplicity. By using these integers a′′kl ∈ Z, let us define a matrix A′′i j by

A′′i j :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′′11 . . . a′′1 j . . . a′′1n
...

. . .
...

. . .
...

a′′i1 . . . 0 . . . a′′in
...

. . .
...

. . .
...

a′′n1 . . . a′′n j . . . a′′nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ M(n;Z).

Then, 1
r′ Ã
′, 1

s′ B̃
′ turns out to be

1
r′

Ã′ =
ã′i j

r′
Ei j + A′′i j,

1
s′

B̃′ =
b̃′i j

s′
Ei j + A′′i j,

respectively, and

1
t′

C̃′ =
c̃′i j

t′
+

(
c̃′kl

t′

)
=

c̃′i j

t′
Ei j +

⎛⎜⎜⎜⎜⎝ ã′kl

t′
+

b̃′kl

t′

⎞⎟⎟⎟⎟⎠ = c̃′i j

t′
Ei j +

(
r′ + s′

t′
a′′kl

)
=

c̃′i j

t′
Ei j + A′′i j.

In particular, we can show that
ã′i j

r′ ,
b̃′i j

s′ ,
c̃′i j

t′ ∈ Q are irreducible fractions as follows. We focus

on
ã′i j

r′ ∈ Q. The equality

1
r′

Ã′ =
ã′i j

r′
Ei j + A′′i j

implies

E(r′,Ã′,μ̃′, ′) � E(r′,ã′i jEi j,μ̃′, ′) ⊗ E(1,A′′i j,0,1).

Now, E(r′,Ã′,μ̃′, ′) is simple, and rank E(1,A′′i j,0,1) = 1, so E(r′,ã′i jEi j,μ̃′, ′) is also simple. Hence,
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by [8, Proposition 5.5], we can conclude gcd(r′, ã′i j) = 1. Similarly, we can show that
b̃′i j

s′ ,
c̃′i j

t′ ∈ Q are irreducible fractions.
Here, by applying the autoequivalence

Ψg(1,A′′i j)
−1 = Ψg(1,−A′′i j) ∈ AutS̃p(T 2n

J=T ′)

associated to the matrix

g(1, A′′i j) =
(

In O
−A′′i j In

)
∈ S̃p

(−T ′−1)t

(2n;Z)

to the exact triangle (33), the exact triangle (33) turns out to be

· · · −−−−−→ E(r′,ã′i jEi j,μ̃′, ′) −−−−−→ E(t′,c̃′i jEi j,η̃′, ′) −−−−−→ E(s′,b̃′i jEi j,ν̃′, ′)

−−−−−→ E(r′,ã′i jEi j,μ̃′, ′)[1] −−−−−→ · · · .(38)

As mentioned in subsection 5.2, the above autoequivalence Ψg(1,−A′′i j) is interpreted as the tri-

angulated functor Tr(DGT 2n
J=T ′

)
∼→ Tr(DGT 2n

J=T ′
) which is induced by the operator

⊗E(1,−A′′i j,0,1). Furthermore, we modify the exact triangle (38) as follows. By [10, Theo-
rem 3.4], there exist

μ̃′0, ν̃
′
0, η̃

′
0 ∈ Rn ⊕ T ′tRn

such that

E(r′,ã′i jEi j,μ̃′, ′) � E(r′,ã′i jEi j,μ̃
′
0,r′ ), E(s′,b̃′i jEi j,ν̃′, ′) � E(s′,b̃′i jEi j,ν̃

′
0,s′ ),

E(t′,c̃′i jEi j,η̃′, ′) � E(t′,c̃′i jEi j,η̃
′
0,t′ ),

so we may consider the following instead of the exact triangle (38) :

· · · −−−−−→ E(r′,ã′i jEi j,μ̃
′
0,r′ ) −−−−−→ E(t′,c̃′i jEi j,η̃

′
0,t′ ) −−−−−→ E(s′,b̃′i jEi j,ν̃

′
0,s′ )

−−−−−→ E(r′,ã′i jEi j,μ̃
′
0,r′ )[1] −−−−−→ · · · .(39)

We prepare some notations for later convenience. We decompose μ̃′0 = p̃′0 + T ′tq̃′0 ∈ Rn ⊕
T ′tRn, and define

(μ̃′0)∨i :=(( p̃′0)1, · · · , ( p̃0)′i−1, 0, ( p̃′0)i+1, · · · , (p̃′0)n)t

+ T ′t((q̃′0)1, · · · , (q̃′0) j−1, 0, (q̃0) j+1, · · · , (q̃′0)n)t ∈ Rn ⊕ T ′tRn,

(μ̃′0)i := ( p̃′0)i + t′ji(q̃
′
0) j ∈ R ⊕ t′jiR.

Similarly, we use the notations (ν̃′0)∨i, (η̃′0)∨i ∈ Rn ⊕T ′tRn, (ν̃′0)i, (η̃′0)i ∈ R⊕ t′jiR in the above
sense. Here, we give a remark on the exact triangle (39). In the exact triangle (39), the
non-triviality of

Ext1(E(s′,b̃′i jEi j,ν̃
′
0,s′ ), E(r′,ã′i jEi j,μ̃

′
0,r′ ))

implies

1
r′
μ̃′∧i

0 ≡
1
s′
ν̃′∧i

0 (mod 2π(Zn−1 ⊕ T̃ ′tjiZ
n−1)),(40)
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1
s′
ν̃′∧i

0 ≡
1
t′
η̃′∧i

0 (mod 2π(Zn−1 ⊕ T̃ ′tjiZ
n−1)),(41)

where μ̃′∧i
0 , ν̃′∧i

0 , η̃′∧i
0 ∈ Rn−1 ⊕ T̃ ′tjiR

n−1 denote the constant vectors obtained by eliminating
the i-th components from μ̃′0, ν̃′0, η̃′0, respectively, and T̃ ′ji denotes the matrix obtained by
eliminating the j-th row and the i-th column from T ′ (see also p.32, p.33 in [8]). In particular,
without loss of generality we may assume

μ̃ :=
1
r′
μ̃′∨i

0 =
1
s′
ν̃′∨i

0 =
1
t′
η̃′∨i

0 ∈ Rn ⊕ T ′tRn.

Now, since the relations

t′ji′ = 0 (1 ≤ i′ � i ≤ n), Imt′ji � 0

hold by Proposition 5.4, we can define the holomorphic projection π : T 2n
J=T ′ → C/2π(Z ⊕

t′jiZ) by

π(Z) = Zj = Xj + t′jiYi.

Then, by the non-triviality of Ext1(E(s′,b̃′i jEi j,ν̃
′
0,s′ ), E(r′,ã′i jEi j,μ̃

′
0,r′ )), we may assume Imt′ji > 0,

so hereafter, we denote T 2
J=t′ji
= C/2π(Z ⊕ t′jiZ). Let us consider the exact triangle

· · · −−−−−→ E(r′,ã′i j,(μ̃
′
0)i,

′
r′ ) −−−−−→ E(t′,c̃′i j,(η̃

′
0)i,

′
t′ ) −−−−−→ E(s′,b̃′i j,(ν̃

′
0)i,

′
s′ )

−−−−−→ E(r′,ã′i j,(μ̃
′
0)i,

′
r′ )[1] −−−−−→ · · ·

in Tr(DGT 2
J=t′ji

), where the notations  ′r′ , 
′
s′ , 

′
t′ are used in the sense of the set (31).

By using the holomorphic projection π : T 2n
J=T ′ → T 2

J=t′ji
, the following exact triangle in

Tr(DGT 2n
J=T ′

) is induced from the above exact triangle :

· · · −−−−−→ π∗E(r′,ã′i j,(μ̃
′
0)i,

′
r′ ) −−−−−→ π∗E(t′,c̃′i j,(η̃

′
0)i,

′
t′ ) −−−−−→ π∗E(s′,b̃′i j,(ν̃

′
0)i,

′
s′ )

−−−−−→ π∗E(r′,ã′i j,(μ̃
′
0)i,

′
r′ )[1] −−−−−→ · · · .(42)

We take the autoequivalence

ΦE(1,O,μ̃,1) ∈  ic0(T 2n
J=T ′)

associated to the operator ⊗E(1,O,μ̃,1). The exact triangle which is obtained by applying
ΦE(1,O,μ̃,1) : Tr(DGT 2n

J=T ′
)
∼→ Tr(DGT 2n

J=T ′
) to the exact triangle (42) is indeed the exact triangle

(39) itself. This completes the proof. �
Although Theorem 5.7 does not depend on the homological mirror symmetry conjecture

for (T 2n
J=T ′ , Ť

2n
J=T ′), we can discuss Problem 5.6 also in the case gcd(r′, s′) � 1 via the ho-

mological mirror symmetry. However, unfortunately, there exists an exact triangle (33) that
essentially does not come from a one-dimensional complex torus in such cases. In order to
construct a counterexample for Problem 5.6 in the case gcd(r′, s′) � 1, we first prove the
following lemma.

Lemma 5.8. For an arbitrary irreducible fraction r′ ∈ Q and the matrix

A :=
(

1 1
0 2

)
,
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there does not exist a pair (r,A) ∈ Z × M(2;Z) which satisfies the condition (34) and the
relation

−2A + rA = r′E11(2kI2 + lÃA).

Proof. First, let us consider the case r′ = 0. We assume that there exists a pair (r,A) ∈
Z × M(2;Z) which satisfies the condition (34) and the relation

(43) −2A + rA = O.

It is clear that the relation (43) turns out to be

(44) A =
r

2

(
1 1
0 2

)
,

so the condition A ∈ M(2;Z) indicates the existence of an integer r′′ ∈ Z such that

r = 2r′′ ∈ 2Z.

Now, we substitute the relation r = 2r′′ to the equality (44). As a result, although we have

detA = rr′′,

it implies

gcd(r, detA) = r = 1.

This fact contradicts the condition r ∈ 2Z.
Let us consider the case r′ � 0. We assume that there exists a pair (r,A) ∈ Z × M(2;Z)

which satisfies the condition (34) and the relation

(45) −2A + rA = r′E11(2kI2 + lÃA).

For simplicity, we set

A = (Ai j) := 2kI2 + lÃA.

Then,

r′E11A =

(
r′A11 r′A12

0 0

)
, −2A + rA =

(
r − 2A11 r − 2A12

−2A21 2r − 2A22

)
,

so we obtain

A21 = 0, A22 = r.

This fact indicates

(46) detA = det
(
A11 A12

0 r

)
= rA11.

By using the equality (46), we can rewrite the condition (34) to

gcd(r, detA) = gcd(r, rA11) = r = 1,

namely, we have

A22 = r = 1.
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Therefore, we see

A =

(
2k 0
0 2k

)
+ l

(
1 −A12

0 A11

) (
1 1
0 2

)
=

(
2k + l l(1 − 2A12)

0 2k + 2lA11

)
,

and the equality (45) turns out to be

(47)
(

1 − 2A11 1 − 2A12

0 0

)
=

(
r′(2k + l) r′l(1 − 2A12)

0 0

)
.

In particular, by focusing on the (1,2) component of the equality (47), we obtain

(48) 2A12(1 − r′l) = 1 − r′l.
Suppose 1 − r′l � 0. Then, the equality (48) indicates

A12 =
1
2
� Z,

and this fact contradicts the condition A ∈ M(2;Z). Suppose 1− r′l = 0, namely, r′l = 1. By
focusing on the (1,1) component of the equality (47) under the assumption r′l = 1, we see

A11 = −r′k.
Then, unfortunately, the left hand side of the relation kr + ldetA = 1 in the condition (34)
turns out to be

kr + ldetA = k + ldetA = k + l(−r′k) = k − k = 0,

so the relation r′l = 1 does not compatible with the condition (34). This completes the proof.
�

We construct a counterexample for Problem 5.6 in the case gcd(r′, s′) � 1. We set

T ′ := i
(

1 0
1 2

)
, r := 2, A :=

(
1 1
0 2

)
, s := 2, B :=

(
2 1
0 2

)
,

t := 4, C :=
(

3 2
0 4

)
.

Then, it is clear that AT ′ = (AT ′)t, BT ′ = (BT ′)t, CT ′ = (CT ′)t hold and r′ = 2, s′ = 2,
t′ = 4. Moreover, we can also verify the following :

r′ + s′ = t′,
r′

r
A +

s′

s
B =

t′

t
C, rankα = 1.

Let us consider the triangle

· · · −−−−−→ E(2,A,μ, ) −−−−−→ E(4,C,η,) −−−−−→ E(2,B,ν,)

−−−−−→ E(2,A,μ, )[1] −−−−−→ · · · ,
(49)

where μ, ν, η ∈ R2 ⊕ T ′tR2 and  ,  ,  denote the sets in the sense of the definition (4).
We can check that there exist suitable parameters μ′, ν′, η′ ∈ R2 ⊕ T ′tR2 and suitable sets

 ′,  ′,  ′ such that the triangle (49) becomes an exact triangle

· · · −−−−−→ E(2,A,μ′, ′) −−−−−→ E(4,C,η′, ′) −−−−−→ E(2,B,ν′, ′)

−−−−−→ E(2,A,μ′, ′)[1] −−−−−→ · · ·
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as follows. We first consider the dual complex torus

T̂ 4
J=T ′ = C

2/2π(Z2 ⊕ T ′tZ2)

of the complex torus T 4
J=T ′ and its mirror dual (T̂ 4

J=T ′)
∨. Let us denote the local coordinates

of (T̂ 4
J=T ′)

∨ by (
X̌
Y̌

)
,

where X̌ := (X1, X2)t, Y̌ := (Y1, Y2)t. Then, the complexified symplectic form of (T̂ 4
J=T ′)

∨ is
expressed locally as

dX̌t(−T ′−1)dY̌ .

We set

g :=
(

O I2

−I2 O

)
∈ SL(4;Z),

and define a symplectic morphism ϕg : (T̂ 4
J=T ′)

∨ ∼→ Ť 4
J=T ′ by

ϕg
(

X̌
Y̌

)
= g

(
X̌
Y̌

)
.

Similarly as in the discussions in subsection 5.2, this symplectic morphism ϕg induces the
equivalence

Φg : Tr(Fukaff(Ť 4
J=T ′))

∼→ Tr(Fukaff((T̂ 4
J=T ′)

∨))

as triangulated categories. This triangulated functor Φg corresponds to the Fourier-Mukai
transform

Φ : Tr(DGT 4
J=T ′

)
∼→ Tr(DGT̂ 4

J=T ′
)

associated to the Poincaré line bundle  → T 4
J=T ′ × T̂ 4

J=T ′ via the homological mirror sym-
metry. Namely, for equivalences

F : Tr(DGT 4
J=T ′

)
∼→ Tr(Fukaff(Ť 4

J=T ′)), F̂ : Tr(DGT̂ 4
J=T ′

)
∼→ Tr(Fukaff((T̂ 4

J=T ′)
∨))

as triangulated categories, the following diagram commutes :

Tr(DGT 4
J=T ′

)
F−−−−−→ Tr(Fukaff(Ť 4

J=T ′))

Φ

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�Φg
Tr(DGT̂ 4

J=T ′
) −−−−−→

F̂
T r(Fukaff((T̂ 4

J=T ′)
∨)).

Note that Φ � 〈AutS̃p(T 4
J=T ′), ic0(T 4

J=T ′)〉, namely, the Fourier-Mukai transform Φ is not
an autoequivalence on Tr(DGT 4

J=T ′
). Hence, by regarding the Fourier-Mukai transform Φ

as the triangulated functor F̂−1 ◦ Φg ◦ F, we can rewrite the triangle

· · · −−−−−→ Φ (E(2,A,μ, )) −−−−−→ Φ (E(4,C,η,)) −−−−−→ Φ (E(2,B,ν,))

−−−−−→ Φ (E(2,A,μ, ))[1] −−−−−→ · · ·
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in Tr(DGT̂ 4
J=T ′

) to the triangle

· · · −−−−−→ E(1,Ã,μ̃,̃ ) −−−−−→ E(3,C̃,η̃,̃) −−−−−→ E(2,B̃,ν̃,̃)

−−−−−→ E(1,Ã,μ̃,̃ )[1] −−−−−→ · · · ,(50)

where

Ã :=
( −2 1

0 −1

)
, B̃ :=

( −2 1
0 −2

)
, C̃ :=

( −4 2
0 −3

)
, μ̃, ν̃, η̃ ∈ R2 ⊕ T ′R2

and ̃ , ̃ , ̃ denote the sets in the sense of the definition (4). In particular, rank E(1,Ã,μ̃,̃ ) =

1, rank E(2,B̃,ν̃,̃) = 2, rank E(3,C̃,η̃,̃) = 3. Then, since

Ã − 1
2

B̃ =
( −1 1

2
0 0

)
holds, we can use Proposition 5.3 and Proposition 5.4. Actually, two matrices ,  ∈
SL(2;Z) in Proposition 5.3 are given by

 :=
(

1 1
1 2

)
,  := I2,

and the deformation of T ′t in Proposition 5.4 is described as


−1T ′t = i

(
2 0
−1 1

)
.

Furthermore, by using these matrices ,  ∈ SL(2;Z), we can transform three matrices Ã,
B̃, C̃ to


t Ã =

( −1 0
−1 −2

)
, t B̃ =

( −1 0
−2 −4

)
, tC̃ =

( −2 0
−3 −6

)
,

respectively. These facts imply that the triangle (50) is induced from the triangle

· · · −−−−−→ E(1,−1,μ̃′, ′1 ) −−−−−→ E(3,−2,η̃′, ′3 ) −−−−−→ E(2,−1,ν̃′, ′2 )

−−−−−→ E(1,−1,μ̃′, ′1 )[1] −−−−−→ · · ·(51)

on the one-dimensional complex torus T 2
J=2i = C/2π(Z ⊕ 2iZ), where μ̃′, ν̃′, η̃′ ∈ R ⊕ 2iR

and each  ′k (k = 1, 2, 3) denotes the set which is given in the definition (31) with i = j = 1.
In particular, since

dimExt1(E(2,−1,ν̃′, ′2 ), E(1,−1,μ̃′, ′1 )) = 1

holds by [7, Proposition 3.3], we see that there exist suitable parameters

μ̃′0, ν̃
′
0, η̃

′
0 ∈ R ⊕ 2iR

such that the triangle (51) becomes the exact triangle

· · · −−−−−→ E(1,−1,μ̃′0,
′

1 ) −−−−−→ E(3,−2,η̃′0,
′

3 ) −−−−−→ E(2,−1,ν̃′0,
′

2 )

−−−−−→ E(1,−1,μ̃′0,
′
1 )[1] −−−−−→ · · ·

by [7, Theorem 4.10] (see also section 6 in [7]). Thus, we can conclude that there exist
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suitable parameters μ′, ν′, η′ ∈ R2⊕T ′tR2 and suitable sets  ′,  ′,  ′ such that the triangle
(49) becomes the exact triangle

· · · −−−−−→ E(2,A,μ′, ′) −−−−−→ E(4,C,η′, ′) −−−−−→ E(2,B,ν′, ′)

−−−−−→ E(2,A,μ′, ′)[1] −−−−−→ · · ·
(52)

under the assumption that the homological mirror symmetry conjecture for (T 4
J=T ′ , Ť

4
J=T ′)

holds true. In these discussions, indeed, we can also regard the (exact) triangle (49) as
the exact triangle which is induced from the (exact) triangle (51) on the one-dimensional
complex torus T 2

J=2i. However, as mentioned above, we use the Fourier-Mukai transform

Φ � 〈AutS̃p(T 4
J=T ′), ic0(T 4

J=T ′)〉
which is not included in the group of autoequivalences on Tr(DGT 4

J=T ′
) when we trans-

form the triangle (49) to the triangle (50). Thus, in these discussions, we can not conclude
that the (exact) triangle (49) essentially comes from (the (exact) triangle (51) on) the one-
dimensional complex torus T 2

J=2i in the sense of Definition 5.5.
The remaining thing to be checked is that the exact triangle (52) gives a counterexample

for Problem 5.6. We take an arbitrary autoequivalence Ψg(r,A)−1 ∈ AutS̃p(T 4
J=T ′) associated to

g(r,A) =
(

kI2 lÃ
−A rI2

)
∈ S̃p

(−T ′−1)t

(4;Z).

Then, it is enough to check that

Ψg(r,A)−1 (E(2,A,μ′, ′))

does not have the expression of the form

E(n,aE11,μ′′, ′′).

Here, n ∈ N and a ∈ Z are relatively prime, i.e., gcd(n, a) = 1, μ′′ ∈ R2 ⊕ T ′tR2, and  ′′

is a set which is defined by using the data (n, aE11) ∈ N × M(2;Z). Now, note that the
autoequivalence

Ψ̌g(r,A)−1
: Tr(Fukaff(Ť 4

J=T ′))
∼→ Tr(Fukaff(Ť 4

J=T ′))

compatible with the triangulated functors

F : Tr(DGT 4
J=T ′

)
∼→ Tr(Fukaff(Ť 4

J=T ′)), Ψg(r,A)−1 : Tr(DGT 4
J=T ′

)
∼→ Tr(DGT 4

J=T ′
),

i.e., F ◦ Ψg(r,A)−1 = Ψ̌g(r,A)−1 ◦ F holds. We can express the object F(E(2,A,μ′, ′)) ∈
Ob(Fukaff(Ť 4

J=T ′)) as

(L(2,A,p̌′),(2,A,p̌′,q̌′))

by using the suitable parameters p̌′, q̌′ ∈ R2. Suppose that

Ψ̌g(r,A)−1
(F(E(2,A,μ′, ′)))

has the expression of the form

(L(n,aE11,p̌′′),(n,aE11,p̌′′,q̌′′)),
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where the notations n ∈ N, a ∈ Z are as in the above, and p̌′′, q̌′′ ∈ R2. Let us consider the
transformation

g(r,A)
(

x̌
1
2 Ax̌ + 1

2 p̌′

)
=

(
kI2 lÃ
−A rI2

) (
x̌

1
2 Ax̌ + 1

2 p̌′

)
=

⎛⎜⎜⎜⎜⎜⎝
(
kI2 +

l
2 ÃA

)
x̌ + l

2 Ãp̌′(
−A + r2 A

)
x̌ + r2 p̌′

⎞⎟⎟⎟⎟⎟⎠
of the Lagrangian submanifold L(2,A,p̌′) by Ψ̌g(r,A)−1

. We set

X̌ =
(
kI2 +

l
2
ÃA

)
x̌ +

l
2
Ã p̌′ =

1
2

(2kI2 + lÃA)x̌ +
l
2
Ãp̌′,

Y̌ =
(
−A + r

2
A
)

x̌ +
r

2
p̌′ =

1
2

(−2A + rA)x̌ + r2p̌′.

Since Ψ̌g(r,A)−1
(L(2,A,p̌′)) has the expression of the form L(n,aE11,p̌′′) by the assumption, we may

assume that the matrix 2kI2 + lÃA has the inverse (2kI2 + lÃA)−1, and the relation

(53) Y̌ = (−2A + rA)(2kI2 + lÃA)−1X̌ − l
2

(−2A + rA)(2kI2 + lÃA)−1Ãp̌′ +
r

2
p̌′

need to coincide with the relation

(54) Y̌ =
a
n

E11X̌ +
1
n

p̌′′.

In particular, by comparing the slope of (53) with the slope of (54), although we obtain

(−2A + rA)(2kI2 + lÃA)−1 =
a
n

E11,

this contradicts the statement of Lemma 5.8. Thus, indeed, the exact triangle (52) gives a
counterexample for Problem 5.6 under the assumption that the homological mirror symme-
try conjecture for (T 4

J=T ′ , Ť
4
J=T ′) holds true.
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