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Abstract

Let (X", X") be a mirror pair of an n-dimensional complex torus X" and its mirror partner
X". Then, a simple projectively flat bundle E(L, L) — X" is constructed from each affine
Lagrangian submanifold L in X" with a unitary local system £ — L. In this paper, we first in-
terpret these simple projectively flat bundles E(L, £) in the language of factors of automorphy.
Furthermore, we give a geometric interpretation for exact triangles consisting of three simple
projectively flat bundles E(L, £) and their shifts by focusing on the dimension of intersections
of the corresponding affine Lagrangian submanifolds L. Finally, as an application of this geo-
metric interpretation, we discuss whether such an exact triangle on X" (n > 2) is obtained as
the pullback of an exact triangle on X' by a suitable holomorphic projection X" — X'.
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1. Introduction

In this paper, we construct a mirror pair of tori as an analogue of the SYZ construction
[20], and study exact triangles which appear in the discussions in the homological mirror
symmetry [12] for tori. The SYZ construction is conjectured by Strominger, Yau, and Za-
slow in 1996, and it proposes a way of constructing mirror pairs geometrically. Roughly
speaking, this construction is the following. A mirror pair of Calabi-Yau manifolds (M, M)
is realized as the special Lagrangian torus fibrations 7 : M — Band i : M — B on the same
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76 K. KoBAYASHI

base space B. In particular, for each point b € B, the special Lagrangian torus fibers 7~!(b)
and 7~ !(b) are related by the T-duality. On the other hand, the homological mirror symme-
try is conjectured by Kontsevich in 1994, and it states the following. For each Calabi-Yau
manifold M, there exists a Calabi-Yau manifold M such that there exists an equivalence

DP(Coh(M)) = Tr(Fuk(M))

as triangulated categories. Here, D”(Coh(M)) is the bounded derived category of coherent
sheaves on M, and Tr(Fuk(M)) is the derived category of the Fukaya category F uk(M)
on M [4] obtained by the Bondal-Kapranov-Kontsevich construction [3], [12]. One of the
most fundamental examples of mirror pairs is a pair (X", X") of tori, where X" is an n-
dimensional complex torus and X" is a mirror partner of X", so there are many studies of
the homological mirror symmetry for tori. For example, Polishchuk and Zaslow discuss the
homological mirror symmetry in the case of elliptic curves, i.e., (X', X") in [19] (the details
of higher A -product structures are studied in [18]), and Fukaya studied the homological
mirror symmetry for abelian varieties via the SYZ construction in [5]. In particular, in [5],
he discussed the homological mirror symmetry by focusing on the cases that objects of the
Fukaya category are restricted to affine Lagrangian submanifolds with unitary local systems
in the symplectic geometry side, and then, the corresponding holomorphic vector bundles
are projectively flat. On the other hand, projectively flat bundles are examples of Einstein-
Hermitian vector bundles, and Einstein-Hermitian vector bundles relate closely to stable
vector bundles via the Kobayashi-Hitchin correspondence [11], [14]. Hence, projectively
flat bundles are also stable. Thus, projectively flat bundles play a fundamental role in the
complex or algebraic geometry, including the homological mirror symmetry for tori. Let
(L, £) be an object of the Fukaya category Fuk(X"), where L = T" is an affine Lagrangian
(multi) section of the trivial special Lagrangian torus fibration # : X* — T" and £ — L
is a unitary local system along L. Each object (L, L) corresponds to a simple projectively
flat bundle E(L, £) — X" via the homological mirror symmetry. Here, special Lagrangian
torus fibers of 7 : X" — T" with unitary local systems along them correspond to skyscraper
sheaves on X”. We can also regard this correspondence as an analogue of the Fourier-Mukai
transform [13], [2]. Hereafter, we call an affine Lagrangian (multi) section simply an affine
Lagrangian submanifold. By the definition of projectively flat bundles, a holomorphic vector
bundle E is projectively flat if and only if the curvature form of E is expressed locally as
a - Iy, where a is a complex 2-form and I is the identity endomorphism of E. Furthermore,
the classification result of factors of automorphy of projectively flat bundles on complex tori
is given in [6], [15], [11], [21]. The purposes of this paper are to characterize holomorphic
vector bundles E(L, L) by using factors of automorphy of projectively flat bundles on X",
and to study exact triangles consisting of three simple projectively flat bundles E(L, £) and
their shifts on a given higher dimensional complex torus X".

We explain the body of this paper briefly. Roughly speaking, the body of this paper
consists of the two parts which are described below.

The first part is devoted to the study of the projective flatness of E(L, £). For each holo-
morphic vector bundle E(L, L), we can check easily that the curvature form of E(L, L) is
expressed locally as @ - I ¢y, where a is a complex 2-form and Ig(. ¢ is the identity en-
domorphism of E(L, L), so E(L,L) is projectively flat. However, the expression of the
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transition functions of E(L, L) differs from the expression of the factor of automorphy of
the projectively flat bundle £(L, £) which should be isomorphic to E(L, L), so interpreting
holomorphic vector bundles E(L, £) in the language of factors of automorphy is a non-trivial
problem. Thus, we interpret E(L, £) in the language of factors of automorphy by construct-
ing an isomorphism E(L, L) SE (L, L) explicitly (Theorem 3.8).

In the second part, we mainly focus on a higher dimensional complex torus X", and study
exact triangles consisting of simple projectively flat bundles E(L, £) and their shifts on X".
In general, holomorphic vector bundles E(L, £) forms a DG-category DGx-. We expect that
this DGy~ generates the bounded derived category of coherent sheaves D?(Coh(X™)) in the
sense of the Bondal-Kapranov-Kontsevich construction,

Tr(DGx:) = D’ (Coh(X™)).

At least, it is known that it split generates D”(Coh(X")) when X" is an abelian variety (cf.
[17], [1]). Concerning these facts, in this paper, we focus on the triangulated category
Tr(DGx») instead of D’(Coh(X™)), and consider an exact triangle

(1) Y0

— E(Ls, L[] ——

in Tr(DGx»). Here, C(y) denotes the mapping cone of a non-trivial morphism ¢ : E(Ly, L)
— E(L,, L,)[1]. By the definition of the DG-category DGx«, the degrees of morphisms
between holomorphic vector bundles E(L, £) are equal to or larger than 0 in DGy,. This
fact implies that each exact triangle consisting of projectively flat bundles and their shifts
is always expressed as the exact triangle of the form (1). In order to explain the statement
of the main result in this paper, we now recall the previous work [8] briefly. In [8], we
studied the exact triangle of the form (1) under the assumptions rank E(L,, £L,) = 1 and
the existence of a holomorphic vector bundle E(L.,L.) € Ob(DGx») such that C(yy) =
E(L., L.). Then, [8, Theorem 5.6] states that the exact triangle (1) essentially comes from
a one-dimensional complex torus, i.e., it is obtained as the pullback of an exact triangle
consisting of three projectively flat bundles and their shifts on a one-dimensional complex
torus X' by a suitable holomorphic projection 7 : X" — X! (Definition 5.5). In this paper, we
discuss a generalization of [8, Theorem 5.6] to the case that rank E(L,, L,) is not necessarily
1 (Problem 5.6). More precisely, we show that the exact triangle (1) essentially comes from
a one-dimensional complex torus if rank E(L,, £,) and rank E(L;, L;,) are relatively prime,
i.e., ged(rank E(L,, L,),rank E(Ly, L;)) = 1 (Theorem 5.7). Furthermore, we also give an
example of an exact triangle (1) that essentially does not come from a one-dimensional
complex torus in the case gcd(rank E(L,, L), rank E(Ly, L)) # 1 under the assumption that
the homological mirror symmetry conjecture for (X", X") holds true.

This paper is organized as follows. In section 2, we explain relations between objects
(L, L) of the Fukaya category F uk(X™) and holomorphic vector bundles E(L, £). Further-
more, we construct the DG-category DGy« consisting of those holomorphic vector bun-
dles E(L, L£). In section 3, we investigate some properties of holomorphic vector bundles
E(L, L). More precisely, for each holomorphic vector bundle E(L, L), we find the projec-
tively flat bundle £(L, £) which should be isomorphic to E(L, £), and construct an isomor-
phism E(L, £) — &(L, £) explicitly. This result is given in Theorem 3.8. In sections 4, 5,
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we focus on the exact triangle of the form (1) under the assumption C(y) = E(L., L.) for
a suitable holomorphic vector bundle E(L., L.) € Ob(DGx»). In section 4, as a geometric
interpretation for the exact triangle (1) from the viewpoint of the homological mirror sym-
metry for (X", XM, we prove codim(L, N L) = 1. This result is given in Theorem 4.1, and it
plays a key role in section 5. The purpose of section 5 is to extend [8, Theorem 5.6] to gen-
eral settings. In subsection 5.1, we recall the previous result [8, Theorem 5.6]. In subsection
5.2, in order to generalize [8, Theorem 5.6] to the case that rank E(L,, L,) is not necessarily
1, we reformulate the problem by focusing on a class of autoequivalences on Tr(DGxn).
This is presented in Problem 5.6. In subsection 5.3, we give an answer for Problem 5.6.
In particular, in Theorem 5.7, we prove that Problem 5.6 can be solved affirmatively for a
certain class of exact triangles in Tr(DGy»). This is the main theorem in this paper.

2. Holomorphic vector bundles and affine Lagrangian submanifolds with unitary

local systems

In this section, we consider a mirror pair (T}ZT, TfZT) of an n-dimensional complex torus
T}ZT and its mirror partner T;ZT, and discuss relations between affine Lagrangian submani-
folds in T;ﬁ r With unitary local systems and the corresponding holomorphic vector bundles
on T}ZT. This is based on the SYZ construction (SYZ transform) [20] (see also [13], [2]).
Furthermore, we define a DG-category consisting of such holomorphic vector bundles.

First, we explain the complex geometry side. We define a complex torus TfZT as follows.
Let T be a complex matrix of order n such that ImT is positive definite. We denote by ¢;; the
(i, j) component of 7. Let us consider the lattice L in C" generated by

y1 = Q2m,0,---,0), -, ¥, :=(0,--+,0,2n),
71 = (277'[11, T, 271'trll)t’ e ’7;1 = (Zﬂtl”’ o 27Ttnn)t,

and define
T2, :=C"/L=C"/2n(Z" & TZ").

Sometimes we regard the n-dimensional complex torus T;ZT as a 2n-dimensional real torus
R?"/27Z>". In this paper, we further assume that T is a non-singular matrix. Actually, in
our setting described below, the mirror partner of TJZZ r does not exist if detT” = 0. However,
we can avoid this problem and discuss the homological mirror symmetry even if det7” = 0
by modifying the definition of the mirror partner of TfﬁT and a class of holomorphic vector
bundles which we treat. This fact is discussed in [9]. We fix an & > 0 small enough and let

mp-m, *

2 2
Ol = {( ; )e T, | =1 —e<x; <3l +e,

2 2
gﬂ(mk—l)—8<yk<§ﬂ'mk+g, j,kzl,...’n}

be subsets of 72", where Li,my =1,2,3,

J=T>
xi= (s, 0), Y= Yy
and we identify x; ~ x; + 27, y; ~ y; + 2n for eachi = 1,--- ,n. Sometimes we denote

I(Li=0)1, . . .
o= instead of Of,;l..l.”mn in order to specify the values [; = [, my = m. Then,

(=),
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{Of;;'f.l?m,,}lj,mﬁl,z,g is an open cover of TfZT. We define the local coordinates of Oi;'l'f.l.';nn by

2
()Cl,"‘ s Xns Y1t ’yn)IERn-

Furthermore, we locally express the complex coordinates z := (z1,- - ,z,)" of T}ZT by z =
x+Ty.
Now, we define a class of holomorphic vector bundles

2n
Egauvy = Tizr.

We first construct it as a complex vector bundle, and then discuss when it becomes a holo-
morphic vector bundle in Proposition 2.1. However, since the notations of transition func-
tions of E.4 1) are complicated, before giving the strict definition of E(, 4 ,,1-), we explain
the idea of the construction of E(.4,.1,). We assume r € N, A = (a;)) € M(n;Z), and
p = ,.p)sq=1(q1 - ,q) € R" By using these p, g € R", we further define
= (Ui, ) by u := p+T'q e R"®T'R". In general, the affine Lagrangian sub-
manifold corresponding to a holomorphic vector bundle E(, 4,1 is the following (we will
explain the details of the symplectic geometry side again later) :

X won . 11
{(g)eTJ=T|y=;Ax+;p}.

Here, ¥ := (x!,--- , x"), g = (yl, --+,y")" are the coordinates of the mirror partner TfZT of
the complex torus T}ZT. In this situation, if x/ > x/ + 27 ( j=1,---,n), then

. . 2

yy+ T(alj,'“ NN
We decide the transition functions of E. 4,1 by using this %(al jooor s ap)’ € Q" This

construction is a generalization of the case of elliptic curves (T2_,,72_,) to the higher di-
mensional case in the paper [7] (see section 2). Now, we give the strict definition of E.4 ,.17)-
We define ' € N by using a given pair (r,A) € N X M(n;Z) as follows. By the theory of
elementary divisors, there exist two matrices A, 3 € GL(n;Z) such that

ap

2) AAB =

whered; e N(i=1,---,s,1 < s <n)anddja;,; i=1,---,5—1). Then, we define r, € N
anda; € Z(i=1,---,s5) by

~ ’

a; i rr

— = - ged(r;,a;) =1,
i

where gcd(m,n) > 0 denotes the greatest common divisor of m, n € Z. By using these, we
set

3) ri=r)-r, €N
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This " € N is uniquely defined by a given pair (r,A) € N X M(n;Z), and it is actually the
rank of E(.4 1) (in this sense, although we should also emphasize € N when we denote
E A1), for simplicity, we use the notation E(, 4,7 in this paper). Let

O Ol ) T Lme=1,2,3

my--mpy 1My m

be a smooth section of E.4 .1l ol - The transition functions of E(, 4 1) are non-trivial

my--mp
on
=3l A OU=Dl Ol b=3)1L ~ A=D1, L(b=3) ~ oh-L=D)
0ml~~~m,1 N Oml---mn s Omlmmn N Om]mmn 5T Omlmmn N Om]mmn s
lyly by ly-ly [yl -
Om=3y-m, " Om=0)-my> Omyns=3-m, O Omima=1yom,> ™"
[yl [1+ly
Oml---(m,,:3) N Oml"'(mnzl)’
. - - . Lo i=3) -ty Al =1,
and otherwise are trivial. We define the transition function on 0,,',1..(.,';1'1 ey O,,Ll__(_,';n : by
L(1=3)1, L (l=1)+1y

i
— L4y
J .
o=l =ty — €7 Vi Wmym,
Oml ~mp Oml semp

my -y, R R R IR (] =S

Oml ip Oml iy

wherei = V-1, a;:=(ayj, -+ ,a,j) € Z", and V; € U(r’). Similarly, we define the transition

. L, Il
functionon O, " 3 N0, ., by
lyly — U Ly
Yony - m=3)-my | i1 el = Uk Yo lomemtyem, | g f1-ln :
1 k 0’”] (g =3)-mp ﬁoml w(mp=)mp ! k Om] w(my=3)-mp my-(my=1)-mp

where Uy € U(r"). In the definition of these transition functions, actually, we only treat V;,
Uy € U(r") which satisfy the cocycle condition, so we explain the cocycle condition below.
When we define

I8 ...(]j=3)m[n
(//ml e (mg=3)-+my, 1] +(1j=3)In 1+l j=1)-In
my - (my=3)mp my (my=1)mp
L-(1=3)-1,
= Uk lﬁml w(my=1)--m, 011~~-(1j=3)--~ln [ +(j=1)~In
my - (my=3)mn my(my=1)mp

i L(li=1)1
— '_Lljy . 1 j n
= (U (e V) 9”m1---(mk=1)~~m,l|0’1---<ff=3>---ln ORI

my -(my=3)-mp my-(mg=1)mp

the cocycle condition is expressed as
ViVie = ViV, UjUp = U U;, UV = VU,
where  := eé, and j k=1, ---,n. We define a set U" of unitary matrices by
4) U= {VJ-, Uce UW) | ViVie = ViV, UUr = UU;j, UV = VU,
jok=1,--.n}.
Of course, how to define the set U” relates closely to (in)decomposability of E.4 1) Here,
we only treat the set U" such that E(. 4,1 is simple. Actually, we can take such a set

U +# 0 for any (r,A,r") € N X M(n;Z) X N, and this fact is proved in [10, Proposition 3.2].
Furthermore, we define a connection V(.4 1) on E(.4 1) locally as

Voaur) =d+ weapv)
i1

1
md- (—x’A’ . _,f) dy -1,
2 \r r
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i 1 1 1
—d-— ((—x’A’ + —p) + —th)dy A,
2\ r r r

where dy := (dy,--- ,dy,)" and d denotes the exterior derivative. In fact, V. 4,1~ is com-
patible with the transition functions and so defines a global connection. Then, its curvature
form Q, 4,17 is expressed locally as

i
Q(V’A#’y') = —Z—detAtdy . Ir/,

where dx := (dx;,--- ,dx,)". Here, we consider the condition such that E. 4, is holo-
morphic. We see that the following proposition holds.

Proposition 2.1. For a given quadruple (r, A, p,q) € NX M(n;Z) X R" X R", the complex
vector bundle Eq. 4 1) — T;ZT is holomorphic if and only if AT = (AT)" holds.

Proof. A complex vector bundle is holomorphic if and only if the (0,2)-part of its curva-
ture form vanishes, so we calculate the (0,2)-part of €4 ,,1). It turns out to be

i - -1
Q00 = 3 d(TT = T VAT = Ty 'dz - 1y,
where dz := (dZ, - ,dz,)". Thus, QES’Z)# vy = 0is equivalent to that (T(T=T) ™)' A'(T-T)!
is a symmetric matrix, i.e., AT = (AT)". O

Next, we explain the symplectic geometry side. Let us consider the 2n-dimensional stan-
dard real torus 72" = R*"/2xZ*". For each point (xh, o, X, y], ey € T, we identify
X~ x'+2m, yi ~ yi+27r, wherei = 1,--- ,n. We also denote by (x,--- ,x”,yl,--- ,y")' the
local coordinates in the neighborhood of an arbitrary point (x!,--- ,x", y',--- ,y") € T?".
Furthermore, we use the same notation (x',--- ,x",y',--- ,y") when we denote the coordi-
nates of the covering space R?* of T2". For simplicity, we set

Fr= el D p= ey
We define a complexified symplectic form & on T?" by
@ = dX(-T~ Y dy,
where dX := (dx',--- ,dx") and dij := (dy", - - - ,dy")". We decompose @ into
& = dX¥Re(=T~ Y dij + idXTm(-T~1)'dy,
and define
w:=Im(-T7"Y, B:=Re(-T"".

Sometimes we identify the matrices w and B with the 2-forms dX¥ wdiy and d¥' Bdyj, respec-
tively. Then, w gives a symplectic form on 72", The closed 2-form B is often called the

B-field. This complexified symplectic torus (T?", & = dx¥'(-T~")'dy) is a mirror partner of
the complex torus T}:T. Hereafter, we denote

17 = (T, @ = dX'(-T~")'dy)

for simplicity. We define the objects of the Fukaya category on T}ZT corresponding to
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holomorphic vector bundles E.4 1) — TfZT, namely, the pairs of affine Lagrangian sub-
manifolds in T%ZT and unitary local systems along them. First, we recall the definition of
objects of the Fukaya categories following [5, Definition 1.1]. Let (M, Q) be a symplectic
manifold (M, w) together with a closed 2-form B on M. Here, we put Q = w + V—1B (note
—B + V—=1lw is used in many of the literatures). Then, we consider pairs (L, £) with the

following properties :

&) L is a Lagrangian submanifold of (M, w).
(6) £ — Lis a line bundle together with a connection V* such that
Fye =2nV—-1B|,.

In this context, Fy: denotes the curvature form of the connection VX. We define objects of
the Fukaya category on (M, Q) by pairs (L, L) which satisfy the properties (5), (6). Let us
consider the following n-dimensional submanifold Z, 4 ) in R*" :

~ X PR S |
Loap = {( j )e R |y = ;AX‘F ;P}-

We see that this n-dimensional submanifold L 4 ) satisfies the property (5), namely, L, 4 p)
becomes a Lagrangian submanifold in R?" if and only if wA = (wA)' holds. Then, for the

. . P21 2n
covering map r : R™ — 177",

Loap) := 1(Liap)

defines a Lagrangian submanifold in T;:T. On the other hand, we can also regard the com-
plexified symplectic torus T}ZT as the trivial special Lagrangian torus fibration 7 : T}ﬁT -
R"/27Z", where X is the local coordinates of the base space R"/27Z" and i is the local coor-
dinates of the fiber of 7 : TfQT — R"/2xa7Z". Then, we can interpret each affine Lagrangian
submanifold L, 4 ) in TJQZT as the affine Lagrangian multi section

1 1
s(X) = -AX+-p
r r

x . 72n n n
of 7: 177", — R"/2nZ".

RemARK 2.2. As explained above, while 7’ := r] - - - r; € Nis the rank of E, 4,1 — TJZZT
(see the relations (2) and (3)), in the symplectic geometry side, this # € N is interpreted
as follows. For the affine Lagrangian submanifold L., ;) in T}ZT which is defined by a
given data (r, A, p) € N X M(n;Z) x R", we regard it as the affine Lagrangian multi section
s(X) = %AJZ + % pofr: TfZT — R"/2xZ". Then, for each point X € R" /217", we see

1 1 2

S(¥) = {(—Am So+ —ﬂABMS) e ¥ 1(0) ~ R"/277" |
r r r

My=(my, - oms, 0,0 €2, 0<m<r—1,i=1,- ,s},

and this indicates that s(X) consists of ’ points. Thus, we can regard " € N as the multiplic-
ity of s(¥) = 1Ax+ 1p.

We then consider the trivial complex line bundle
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Lrapg = Loap

with the flat connection

where ¢ € R" is the unitary holonomy of L4, along Lg4, ~ T". We discuss the
property (6) for this pair (L(.,p), L(ra,p.q)

Qcspy = dX'Bdiy

Loap

Here, Q. is the curvature form of the flat connection Vg, . i.e., Q¢ . = 0. Hence,
we see

1
d¥'Bdy|, = -d¥'BAdx =0,
(rA.p) r

so one has BA = (BA)'. Note that wA = (wA)" and BA = (BA)' hold if and only if AT =
(AT)" holds. By summarizing the above discussions, we obtain the following proposition.
In particular, the condition AT = (AT)" in the following proposition is also the condition
such that a complex vector bundle E(. 4 ,17) — TfZT becomes a holomorphic vector bundle
(see Proposition 2.1).

Proposition 2.3. For a given quadruple (r,A,p,q) € N X M(n;Z) X R" X R", (L¢-4,p)»
Lrap.q) gives an object of the Fukaya category on TJZZT if and only if AT = (AT)' holds.

DermviTion 2.4. We denote the full subcategory of the Fukaya category on TZ"T consisting
of objects (L(.4,p), L(r4,p.9)) Which satisfy the condition AT = (AT)" by F Mkaﬂ“(T‘%:T).

We define a DG-category
DGz,

consisting of holomorphic vector bundles (E¢.4,,17), V(rauv)- This definition is an exten-
sion of the case of elliptic curves (Tf:T, T}:T) to the higher dimensional case in the paper
[7] (see section 3). The objects of DGT}gT are holomorphic vector bundles E .4 .1 with
U(r')-connections V,.4,17). Of course, we assume AT = (AT)". Sometimes we simply
denote (Ea 1), Virauwr)) bY E¢a 1. For any two objects

Eqaur) = Evaprys Voaur))s Esyy) = (EiByy)s VisByy))s

the space of morphisms is defined by

HOIIlDGTz” (Eauvy EsByy)) = T(Egauvy, EisByy)) ® Q" (T7,),
Cco(Tln )

where Q% *(Tz”T) is the space of anti-holomorphic differential forms, and

L(E¢au1v) Es,Byv))

is the space of homomorphisms from E;. 4,1 to Eip,y). The space of morphisms
Hompg ,, (E(auv)s Es,Byy)) 18 a Z-graded vector space, where the grading is defined

T2n

as the degree of the anti-holomorphic differential forms. The degree r part is denoted
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Homj,, L (Ecapv), E s y,v)). We decompose V(4,1 into its holomorphic part and anti-
Tiir

- 1.0 0.1 -
holomorphic part V(. 4,17 = Vgr’ A’)M’U) + VEr’ A?H’U), and define a linear map

HOInZ)GTZn (E(V,A,/I,U)’ E(S,B,V,v)) - Homg—éTZn (E(r,A,,u,U)? E(S’B’V’V))
o J=T
by
©,1) (0,1)
b QYR )W)~ CIUCTD, ).

We can check that this linear map is a differential. Furthermore, the product structure is
defined by the composition of homomorphisms of vector bundles together with the wedge
product for the anti-holomorphic differential forms. Then, these differential and product
structure satisfy the Leibniz rule. Thus, DGT?:, forms a DG-category.

REmARK 2.5. In general, for any A.-category %, we can construct a triangulated cate-
gory Tr(%€) by using the Bondal-Kapranov-Kontsevich construction [3], [12]. We expect
that the DG-category DGT%T generates the bounded derived category of coherent sheaves
Di(C oh(TfnT)) on T%ZT in the sense of the Bondal-Kapranov-Kontsevich construction, i.e.,

Tr(DGy ) = D"(Coh(T72p)).

At least, it is known that it split generates D”(Coh(T3",)) when T#" . is an abelian variety
(cf. [17], [1D).

On the correspondence between two A (DG)-categories DGTﬁT and F ukaﬁ(szT), it is
known that the following theorem holds ([10, Theorem 5.1]). Note that two parameters
0, ¢ € R" in the following theorem are defined as follows. For elements V;, Uy € U
(jk=1,---,n),letus define &;, 6; € R by

i = detV, % = detlU,.
Then, we set

é‘: = (-fl, e ’fn)t, 0:= (01’ e ’en)t'
Theorem 2.6. A map Ob(DGTﬁT) — Ob(F I/lkaff(T%nT)) is defined by

E(r,A,u,U') = (L(r,A,p—rL,G)’ £(r,A,p—f,0,q+rL,f))’

and it induces a bijection between Obisom(DGTﬁT) and Obis"m(Fukaﬂr(Tv"%"T)), where

Ob"‘”’m(DGTﬁT) and Ob™*™(F ukaff(Tf"T)) denote the set of the isomorphism classes of ob-

jects of DGT%T and the set of the isomorphism classes of objects of F I/lkaﬂf(T;:T), respec-
tively™.
3. The construction of an isomorphism E. 4 ,,.17) = a1

In this section, we first recall the definition of projectively flat bundles and some proper-
ties of them. Next, we construct a one-to-one correspondence between holomorphic vector

“We consider affine Lagrangian submanifolds only in this paper, so two objects (Lap). Lirapg)s
(Lis.uy> Lispuyy) € F ukaﬁ(TffT) are isomorphic to each other if and only if L4, = Lipw and Loapg =

E(A’,B,u,v) .
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bundles E.4,.1) and a certain kind of projectively flat bundles. In general, factors of auto-
morphy of projectively flat bundles on complex tori are classified concretely, so we interpret
holomorphic vector bundles E(. 4,1 in the language of those factors of automorphy. This
result is given in Theorem 3.8.

We recall the definition of factors of automorphy for holomorphic vector bundles fol-
lowing [11]. Let M be a complex manifold such that its universal covering space M is a
topologically trivial (contractible) Stein manifold (C" is an example of a Stein manifold).
Let p : M — M be the covering projection and I the covering transformation group acting
on M so that M = M/T. Let E be a holomorphic vector bundle of rank r over M. Then its
pull-back £ = p*E is a holomorphic vector bundle of the same rank over M. Since M is
topologically trivial, E is topologically a product bundle. Since M is Stein, by Oka’s princi-
ple, E is holomorphically a product bundle, i.e., E = M xC’. Having fixed this isomorphism,
we define a holomorphic map j : I’ x M — GL(r; C) by the commutative diagram

= J(>x) ~
Eyy=C E, =C

~

Epx )

where x € M, y € I'. Then, for x € M, v,y" €T, the relation

Jy+v.,x)=j, x+vy)o jly,x)

holds. The map j : T'xM — GL(r; C) is called the factor of automorphy for the holomorphic
vector bundle E.
Now, we recall the definition and some properties of projectively flat bundles.

DeriNiTION 3.1 (PROJECTIVELY FLAT BUNDLES, [6], [15], [11], [21]). Let E be a holomorphic
vector bundle of rank r over a compact Kédhler manifold M and P(FE) its associated principal
GL(r;C)-bundle. Then P(E) = P(E)/C*I, is a principal PGL(r; C)-bundle. We say that E
is projectively flat when P(E) is provided with a flat structure.

For a complex vector bundle E of rank r with a connection D over a compact Kihler
manifold M, it is known that the following proposition holds.

Proposition 3.2 ([15], [11], [21]). Let R be a curvature of (E, D). Then, E is projectively
flat if and only if R takes values in scalar multiples of the identity endomorphism Ig of E,
i.e., if and only if there exists a complex 2-form a on M such that R = « - Ig.

There are many studies of projectively flat bundles on complex tori, i.e., the cases M =
C"/T’, where I is a nondegenerate lattice of rank 2n in C" ([6], [15], [11], [21] etc.). Let us
denote the coordinates of C" by z = (z1,- - ,z,)". Hereafter, we focus on projectively flat
bundles which admit Hermitian structures” over a complex torus C"/I". On the detail of the
results which are described below, for example, see [6], [15], [11], [21]. Now, we recall the
following theorem (see [11, Theorem 4.7.54]) which plays an important role in our main
discussions in this section.

“In fact, since we do not mention Hermitian structures explicitly in our main discussions, readers do not have
to consider them so much in section 3.
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Theorem 3.3. Let E be a holomorphic vector bundle of rank r over a complex torus C"/T.
If E admits a projectively flat Hermitian structure h, then its factor of automorphy j can be
written as follows :

1 1
jm©=UWWW&R@w+Zme}Oumrx@,

where

(1) R is a Hermitian form on C" and its imaginary part satisfies
ImR(y,y") € nZ for v,y €T,
(1) U : ' = U(r) is a semi-representation in the sense that it satisfies
Uy +7) = UUG ™7 for v,y €.

Conversely, given a Hermitian form R on C" with property (i) and a semi-representation
U : T — U(r), we can define a factor of automorphy j : I' x C" — CU(r) as above, where

CU®r):={cU|ceC*and U € U(r)}.
The corresponding vector bundle E over C" [T admits a projectively flat Hermitian structure.
In Theorem 3.3, of course, by using a Hermitian matrix R, we can denote
R(z,w) = 7'Rw,

where z = (z1,-++ ,z,)  and w = (wy, - - - , w,,)". Then, under the situation of Theorem 3.3, the
connection 1-form w of the Hermitian connection of (E, h) is expressed locally as

1
w=-—-R(dz,z)- I, +d7b-1I,,
r

where dz := (dz;, -+ ,dz,) and b := (by,--- ,b,)" € C" is a constant vector. Furthermore,
the curvature form Q of the Hermitian connection of (E, k) is expressed locally as

1
Q= —dRdz - I..
r

We consider the case T}ZT =C"2r(Z"®TZ") = C"/L, and discuss the relations between
holomorphic vector bundles E(. 4,17 and projectively flat bundles. Note that the curvature
form Q.4 4,1y of a holomorphic vector bundle E(, 4,17 is expressed locally as

r _ ~
Quauan) = g AT =TV Adz L.
Now, we define
R:= ~Lyr-7)'ya,
2n r

namely,
1
Quapv) = ;dz’RdZ .

Then, the following lemma holds.
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Lemma 3.4. The matrix R is a real symmetric matrix of order n.

Proof. By a direct calculation,

R= 24T~ Y 'YAT - TYT - T)

2 r
= Ly -y yara - - 2L - D yata -1,
21 r 2n r

and since AT = (AT)" holds, it is clear that the two matrices
ir 71y NI F 11 4 7 -1
——AT-T)"YAT(T -T)", =T -T) YAT(T -T)
2 r 2 r
are symmetric. Hence, R is a symmetric matrix. Furthermore, when we decompose T =
X +1iY with X := ReT, Y := ImT, one has
1 /
R=—_(rya.
4 r

This relation indicates R € M(n; R). m]

Remark 3.5. Although the matrix R is defined by using the matrix ’T'A, each component
of the matrix %A is an integer. Actually, this matrix ’T/A € M(n;Z) corresponds to the 1-st
Chern class of E(.44,1)-

By using this real symmetric matrix R = (R;;) of order n, we define a Hermitian bilinear
form R : C" x C" —- C by

R(z,w) := Z R;jziwj,

ij=1
where z = (z1,+ -+ ,z0)', w = (wy, - - ,w,)". Then, the following propositions hold.

Proposition 3.6. Foryi,--- ,y,andy},--- v, ImR(y;,yx) =0, ImR(y;.,’y,’{) =0, where
Lk=1,---,n

Proof. By the definition of y; (j = 1,--+,n), R(y;,¥x) = 4n°Rj, where Ry € R, so
ImR(y;,yx) = 0. On the other hand, we see R(y;, Y = 47r2(T’RT)jk, sofor T = X +1iY, it
turns out to be

_ 1 7
APT'RT = 42 (X' +iY") - — (V" 'YA - (X = iY)
A r
= 2 (X'(YIYAX + AY +i(AX — X'(Y"IYAY)).
r
Thus,

ImR(Y}, ) = ﬂr—(AX - X’(Y‘l)’AY)) = (ﬂr_(AX —AX)) = 0;.
r r

Jk Jk

Here, the second equality follows from AT = (AT)'. O

,Proposition 3.7. For yy, -+ ,y, and y’l, <y IMR(yj, y,’c) = —n’—rlakj, ImR()/]’(,yj) =
n’;akj, where jk=1,--- ,n.
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Proof. First, we prove InRT = —.LZA". For T = X +iY,

_ 1 ir
RT = L v tyax — L2 (y1yay,
dr r dr r
SO We see
_ 17 iy 17,
ImRT = ———(Y ' )AY = ———A".
4 r 4 r

Here, we used AT = (AT)'. Similarly, we can also prove

_ 17,
ImRT = ——A".
A r

On the other hand, the relations
R(y;.v) = Gr°RTD) e, R}, y)) = An°RT)
hold. Thus, by using ImRT = —ﬁ éA’ and ImRT = ﬁr—;A’, we obtain

/ /

/ r ’ r
ImR(y;,y,) = Ty, ImR(y,,vj) = ;- |

Now, we consider a projectively flat bundle £;.4,,1) — T%ZT of rank »* whose factor of
automorphy j : L X C" — GL(r’; C) and connection V(.4 , 1) = d + &4 1) are expressed
locally as follows :

1 1
J,2) = U(v)eXP{ R(z,y) + —R(% 7)}

O Apv) = ——dsz +2—,u(T ) 'dz - I,/—Z—M(T ) 'dz I,

Here, U(y;), U(y;) € U(r') (j,k = 1,-- -, n) satisfy the relations

(N UypUy) = Uy U(y)),
®) U)U(y) = Uy UG,
©) CYUIUy)) = UlypUyy).

Note that these relations are equivalent to the cocycle condition of E;.4 1. Therefore, we
can denote

U ={U(). UGY € UG (D), 8). ). jik =1, ,n).

The purpose of this section is to interpret holomorphic vector bundles E(. 4,1 in the lan-
guage of factors of automorphy, namely, to prove E4 1) = Erauvy (Theorem 3.8). It is
clear that the curvature form Q4,1 of 4,17 is expressed locally as

~ 1
Q(r,A,y,'U') = ;dZthZ . I,«f

Hence, we fix r, A, u (note that r” is uniquely defined by using r and A), and by comparing
the definition of E(, 4 ;1) With the definition of &4 ,,1-), we see that the cardinality of the set
{E(.au10)} 18 equal to the cardinality of the set {&.4,,1}. Thus, we expect that there exists
an isomorphism ¥ : Eq.4 1) N Ea vy Which gives a correspondence between {E(. 4 4,17)}
and {&.4 1)} Actually, the following theorem holds, and this is the main theorem in this
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section.

1

Theorem 3.8. One has Ega,1r) = Egapvy where an isomorphism Y : Eq.a,.17)
Erau) is expressed locally as

Anr 47r 2 Az_z_Z{(T Iy ya

T =T } I,

A= S{(T - T)y"WT'A(T - T)"".

Y(z,2) exp{

Proof. Note that .4 is a symmetric matrix because AT = (AT)'. We construct an isomor-
phism ¥ : E.4 1) — Eraur explicitly such that its local expression is

lP(Z9 Z) = w(zv Z) : Ii’”
where /(z, 7) is a function defined locally. By solving the differential equation

Viapn¥(@2) = V(@ DViapr)

we obtain the solution

tAz——z{(T Vi

¥z 2) =c- eXp{4 4 27r 2

;—t oAyt
£ 2T -T) }u},

where c is an arbitrary constant, so by setting ¢ = 1, we have

T -T)y"Vi

i i . i i
P(z,7) =ex { -Z S7AzZ 'AZ
@2 P 4nr 27y’ 2nr
v oy } I
2rr
By using this ¥ : Ea,0 — Erauv), We transform the transition functions of E(.4 1.
We can verify that the relation

(10) S (A-A) =
2w
holds as follows. By a direct calculation, we see
i_ ll" Il‘ 7\—1 ir, =11 N\ Al =1
—A-R=——(T-T) } AT -T)y ———{(T-T)" (T -TYA(T -T)
2 2n r 2n r
= L - Ty AT - Ty
2n r
i
= ﬂA,
so one has

L A-A=R
2r
Since we can regard

. . s -
e%a,-y — efaj(T—T) z—5a;(T-T) z,
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we calculate the formula

_ S g (T—T) Lo ig (T—T)12 1 -
(11) (W + 75,2+ 7)) (a7 2y ) (9ol ¢, 7)),

where j = 1,--- ,n. We set

(A=A = (A= Avjo - Aj— Aups Rj = Ryjo -+, Ruy).
By using the identity (10), the formula (11) turns out to be
i oA i I L
CXP{;(A — A+ A=A = AT =T) Vi + AT = 1) F ),
i SR | .
+ ;aj(T -T)y z- ;Clj(T -T) Z}Vj
L S P Y
Pyt R T i
i 1 1
=expy g Vjexp ;R(Z,Vj) + FR(”’W) -

In particular, exp {iq,} is a purely imaginary number, and this fact indicates

UGy)) = exp {%q;} Ve UG).
Similarly, we also calculate the formula
(12) (Y + vz + 7)) (¥ @ 2),
where k = 1,--- ,n. In order to calculate the formula (12), we prove the relations
(13) AT = AT,
(14) A(T —T) = -2niRT.

We can show the identity (13) as follows. For T = X +1iY,

/

AT = (T = Ty WA T = T)'T
r
1 / 1 / . J
— __r_(Y—l)txlAty—lX _ _r_A[ _ lr—((Y_l)tXtAt _AIY_IX),
4 r 4 r 4 r
and since AT = (AT)' holds,
1 J
ImAT = —Zr—((y-l)’X’Af —A'YIX) = 0.

r

This implies AT = AT. Furthermore, by a direct calculation,

/

AT -T) (T =Ty WT'A(T =T (T -T)

so we obtain the identity (14). Now, we calculate the formula (12). We set
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(AT = T)) := (AT =T+ CAT = T)i)s
(RT) := (RT)1x, -+ » (RT k).

By using the identities (13), (14), the formula (12) turns out to be
! ] L mo—— - 2ni _
exp{;(A(T =Tz + 7((AT)’T)kk I 7((AT)tT)kk B 7((AT)’T)kk
L@@ - T T - T)_IT)k}Uk
r r

= exp { AT = Tz + (T AT = T - ipk} U

2
7(RT)1<Z + —(T RT )y — —Pk} Ui

1 1
= exp Pk }Uk eXp{ R(z,7;) + R(Vk,yk)}

= exp {r_(RT)kZ + —(T'RT)kk - —Pk} Uk

In particular, exp ; pk} is a purely imaginary number, and this fact indicates

U(y}) 1= exp {—%pk} Ui € UG,

Here, we remark that the matrices U(y;), U(y,) (j, k = 1,--- ,n) satisfy the relations (7),
(8), and (9) if and only if the matrices V;, Uy (j, k = 1,--- , n) satisfy the cocycle condition

ViVi= ViV, U;Ur = U U, é«—aijij = VU

of E(;.a ). This completes the proof. O

4. Exact triangles consisting of projectively flat bundles on T;’; r

The purpose of this section is to prove Theorem 4.1 which plays an important role in
section 5. In Theorem 4.1, we focus on exact triangles consisting of three simple projectively
flat bundles E.4 u.1), Es,Byv)s Ec.cpw) — T}ZT and their shifts. We also give a geometric
interpretation for such exact triangles by focusing on the dimension of intersections of the
corresponding affine Lagrangian submanifolds in the last of this section.

Let us consider an exact triangle

o Egap C) E.Byvy)
(15) v

_— E(r,A,y,U)[l] E—
in Tr(DGr2 ), where y € Ext'(E(s.5yv)» E(.A41)) 18 a non-trivial morphism. We set

1 1
a:=-A--B.
r s
Since the non-triviality of ¢ € Ext'(E(S, Bv.v)> E(rauvy) implies the existence of an isomor-

phism E.4 0 = E(sp,y,v), 1.6., C() = 0 in the case @ = O, we consider the case a # O
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only throughout this paper. Here, we give the following theorem.

Theorem 4.1. In the exact triangle (15), we assume that there exists a holomorphic vector
bundle E c,w) such that C() = Eq.cyw). Then, we have

ranka = 1.

QES,B,V,V)’
(0) =L dx'A'd
rAuV) T ooy Y

Ql

Proof. We define the 2-forms Q/ .Cn)

(rAuU)? by

’

1 ! pt
sy 1= g5 A0 Bdy,
’ . 1 IYall
Q) 1= 754X C'dy,

respectively, namely,

1

— —Q = QI ° I 7y
i (r,Au,U") (rAuUr) =1

1

- —Q0 =Q Ay,
i (s,B,v,V) (s,Bv,V) =S

1

_ _Q = Q, . I/.
i (t,C.n, W) @,Cp,w)

Since we assume C(¥) = Eq c,w), one has chi(C(y))) = chi(Eqcy,w)), wherei = 1,---,n
and ch;(E) denotes the i-th Chern character of a vector bundle E. In particular,

chi(C(Y)) = chi(Egauy) + chi(E,yv))s

so chi(C(¥)) = chi(Eqcnw)) 1s equivalent to

(16) chi(Eau)) + chi(Esyvy) = chi(Eqcpw))-

Now we calculate ch;(C(¥)), chi(E(.c,,w)) and consider the equality (16). It is clear that the
equality (16) in the cases i = 0, 1 are equivalent to

17 r+s =t,
18 Q) + 5 =1rQ)
(18) Faloapry TS 3%6Byy) = t.C W)’

respectively. We consider the equality (16) in the case i = 2. By a direct calculation, the
equality (16) turns out to be

/

r ’ 2 S, ’ 2 t, ’ 2
(19) E(Q(r,A,y,l/')) + E(Q(S,B,V,V)) = E(Q(I,C,U,W)) )

and we obtain the relation
2 2 2 2
(20) 't -r )(er,A,y,U)) + (st — )(QES,B,V,V)) = 2r's’QEr’A’#,U) A QES’B’V’V)

by substituting the equality (18) into the equality (19). Furthermore, by substituting the
equality (17) into the equality (20), the equality (20) turns out to be

’

’ ’ 2 ’ ’ 2 _ r 10y
1S (Qa 1) + 1S (Qpy0)" =205 Q0 400 N By

and this relation is equivalent to
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(21) (Q(rA M, U) ngS,B,v,V))2 =0

In general, for i > 3, we obtain the equality

i—1 i -2 4.
1 — ri— 7 ’ 1= 1 ’i—
(22) [r Z( ) - k (Q(rAul/)) +(s ( k ) - k
k=0

1

z]_ i ik k
-2l esu) (#enn] 0
k=1

(QES B VV))

by expanding the equality (16). Note that the left hand side of the equality (22) can be
factored as

’ 2
(Q(rA AU Q(S,B,V,v))

Sl o S

k=I+1
-2
X ()™ Q) }

Hence, when the equality (21) holds, the equality (22) holds automatically. Moreover, by

’ ’
the definition of Q( Apl) and Q( ByV)

/ / 1 (L Lo 1 )
Qinpr) =~ Loy = 4ﬂ2dx (;A —;B)dyzﬁdxa/dy,

so by a direct calculation, one has

1

2
@ an = Uenor) = 53 DL (e — ana)dx Ady; Adxi A dy.
1<i<j<n,1<k<I<n

Thus, the equality (21) is equivalent to

ik Qi
(23) det( Cll'k al'z ) = apaj — aaj =0,

J J
wherel <i< j<n 1 <k<l[<n
Now, in order to prove the statement of this theorem, we apply elementary row operations

to the matrix a. Since we assume « # O, there exists an «;; # 0. First, we multiply the first
row of a by «a;; :

a/11a/,~j alja/ij alnaij
’
a— a = (053] a;j Qi
a1 cen Ay j cee [0

Next, we add the i-th row of o’ multiplied by —a; to the first row of @’ :
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a’lla’,’j—(k,’]a/]j 0 al,,a,-j—a,-,,alj
’ ’”
a —a = ai el oo Ay
nl anj nn

Then, by using the equality (23), we see that all components of the first row of o’ are zero,
namely,

0 0 0
"o_
a =\ a; CY,'j N ¢
Ayl .. Ay ... Qpp

By applying elementary row operations to ¢’ similarly as above, o’ is transformed as fol-
lows finally :

0 0 0
@] @i Uip
0 0 0

Thus, we can conclude that the relation
ranka = 1

holds. O
We give a geometric interpretation for Theorem 4.1 from the viewpoint of the homolog-
ical mirror symmetry for (Tf’:’T, TJZZT). By using suitable parameters p, &z € R”, we can
express the affine Lagrangian submanifolds which correspond to holomorphic vector bun-
dles Eqa .17 Es,y,v) @S Lia ), Lis,,i)» respectively (cf. [10, Theorem 5.1], Theorem 2.6).
Note that the non-triviality of
Eth (E(S,B,V,V)s E(r,A,y,U’))
implies
Liyap N Lispay # 0

in the description of the homological mirror symmetry (see also the relations (40), (41), and
p.32, p.33 in [8]). Then, the relation rank @ = 1 in Theorem 4.1 indicates

codim(L 4,5 N Ls, i) = 1.

For example, let us consider the case n = 1, i.e., the case of elliptic curves (T}:T, T}zr). We
focus on the exact triangle
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- —— Euour CWy) Eq.1,v)
¥
— Eqoull] ——

in Tr(DGr2_ ), where
Uv=v={V,=U =1eU1)}
Then, by [7, Theorem 4.10], C(¥) = E,1 5 w) if and only if n = yu +v + 7+ 7T (mod 27(Z &

T7Z)), where
0 1 1 0
W:{Vlz(l O)’Ulz(o _I)EU(z)}’

and we can actually check that codim(L 05 N L1,1,%) = 1 holds in this case.

5. An application

In [8], as an application of Theorem 4.1, we studied exact triangles consisting of three
simple projectively flat bundles E. 4,17y, E(s,8y,v)» E¢.cnw) — TfﬁT (n > 2) and their shifts
with the assumption rank E,.4 .1y = 1. In particular, the main result is given in [8, Theorem
5.6]. The purpose of this section is to extend [8, Theorem 5.6] to general settings (Theorem
5.7).

Also, in this section, we sometimes consider the holomorphic vector bundle of the form
E(rag,yvy) — T3 of rank 7/, where r € N, a € Z, and 4 € R" & T'R". When we consider
such a holomorphic vector bundle, we can take the set

v, = {Vj:V, Vi=l, U=U" U=, cUF) | Lk=1, ,n, 1%} kii}

as an example of U, where

01 1
T . T . g/ ’ / 2
V.= , U= ) ceU[), '=er.
1 0 (é«/)r’—l
Throughout this section, we use the notation U}~ in this sense. Note that
Vi={Vi=-=V,=U=U,=1€U0)}

5.1. Previous work. In this subsection, we recall the discussions in subsection 5.2 in [8].
Roughly speaking, in subsection 5.2 in [8], we proved that an exact triangle consisting of
three simple projectively flat bundles Eq 4 ,,17), E¢s,8y,v)» E¢.cnw) = T}ZT (n > 2) and their
shifts is obtained as the pullback of an exact triangle defined on a suitable one-dimensional
complex torus ([8, Theorem 5.6]).

Let us consider an exact triangle

= Egaupv) CWy) EsByv)
(24)

v
—_— E(r,A,y,U')[l] E—

in Tr(DGTJzQT). In the definition of the holomorphic vector bundle of the form E¢. 4, 1,
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r" € N is the rank of E¢ 4,1, and ’T'A € M(n;Z) corresponds to the 1-st Chern class of
E(.au1)- In particular, when we set
rl rl rl /
A= —A phi=—p g = g = g
r r r r

we can regard

Egauvy = Eva ).

Hereafter, we use the notation E - 4- v 1) instead of E(,.4 .1 in order to specify the rank and
the 1-st Chern class of E,. 4,1 (we will also use the notations Ey p v vy and E ¢ v ) in
this sense). As a result, we can rewrite the exact triangle (24) to the exact triangle

— Epapu Cy) E B vy
(25)

v
_— E(r’,A’,y',l/')[l] —_—

We assume that r = 1,1i.e., 7 = 1, and C(¥) € DGT}ZT’ namely, assume that E( 4 v 1) is a
holomorphic line bundle, and there exists a holomorphic vector bundle E( ¢,y ) such that
C() = Ew ¢ y,w). Therefore, the exact triangle (25) is equivalent to the following :

26) — Eqapwvy — Epcyw —— Eypyy

— Eqapnll] —
Then, by Theorem 4.1,
ranka = 1

holds, and under the assumption ranka = 1, we obtain the following two propositions (see
[8, Proposition 5.1] and [8, Proposition 5.2]%).

Proposition 5.1. Assume ranka = 1. Then, there exist two matrices A, D € SL(n;Z)
such that

DZ(S’CZ)A = —NE,']',
where N € N and E;; denotes the matrix unit.

Proposition 5.2. We assume ranka = 1, and take a pair (A, D) of two matrices A,
D € SL(n;Z) which satisfy the statement of Proposition 5.1. Then,

(A'TD);y =0(1 <i' #i<n)
and
Im(A™'TD);; #0
hold.

“Although we consider the transformation of the matrix s’a by two matrices .A, D € SL(n;Z) in Proposition
5.1 in this paper, the matrix sa is transformed by using two matrices A, D € SL(n;Z) in [8, Proposition 5.1].
However, we can prove Proposition 5.1 in this paper in a similar way as described in the proof of [8, Proposition
5.1].
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For simplicity, we set 7’ := A~'TD. We can consider the n-dimensional complex torus
T}”T, by using this matrix 7’. Let us denote the local complex coordinates of Tf”T, by
Z=X+T'Y =X+ A'TDY, where

= (Zl7"' 7Zn)17 X = (le"' ’Xn)ta Y = (er"' ,Yn)t'

Then, two n-dimensional complex tori T%"T, Tf”T,

T2 is actually given by

are biholomorphic to each other, and the

biholomorphic map ¢ : 72", —

27) w(Z) =

The biholomorphicity of the map ¢ implies the holomorphicity of the pullback bundle

2 —
¢ Eqawr) — T72;, and we can regard " Eq a0 1) = E(1 i v 1) Where

A =(@,)=DAA, I =D,
and U" is defined by using the data (U, .A, D). We will also use the notations Ey p 5 1)

and E, & 7 yry In this sense. Hence, by the biholomorphic map ¢, the exact triangle (26) is
transformed to the exact triangle

28) - — Egqpvy — Epcoywy — Evpyv
E— E(I,A/,ﬁ/,l/‘/)[l] —_—

in Tr(DGTZn ). Here, we apply the triangulated functor Tr(DGTZn ) > Tr(DGTzn ') which
is induced by the operator ®E(; _i o1/, to the exact triangle (28) so it is mapped to the
following :
29) - — Euopvy — Ewne;gw) —— Ewne; vy

— Eqopunll] —
Note that gcd(s’, N) = gcd(t’, N) = 1 holds in the exact triangle (29), and this fact closely
related to the simplicity of the holomorphic vector bundles Ey NE;.7.V) and E NE .7 W) (cf.
[8, Proposition 5.5]). Furthermore, for two arbitrary holomorphic vector bundles E- 4/ v 17),
Eowa vy — TfﬁT,, it is known that there exist 7’ € R” @ T""R" and the set W such that

Eway vy = Egawr) ®Eqoryw

holds (see [15], [16]). In particular, we determine these data (", W) explicitly in [10, Theo-
rem 3.4]. Hence, there exist

[, ¥, i, € R @ TR
such that
Eqopv = Eqomuys EwNew vy = EwNe, v, EeNegywy = Ee N
hold. As a result, we may consider the exact triangle
- — Ewomgvy — Ewwnegmuvy — EwnNEgmun
(30)
— Eqopupll] —

in Tr(DGTﬁT,) instead of the exact triangle (29). Below, we explain the statement of [8,
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Theorem 5.6]. Let us define a holomorphic projection r : T}ZT, - szt,_ =C/2n(Zz ® t;.iZ)
Ji
by
n(Z) = Z] = X] + t;‘iYi-
Moreover, we decompose fi; = p;, + T"'qy, and define
()i := (Py)i + 13:(Gg); € R® IR,
Similarly as in the case of (f);, for two parameters v, fj;,, we can associate the notations
o). ()i € ROL,R,
respectively. Now, on the one-dimensional complex torus szzt, , we consider the exact tri-
Ji
angle
— Eaogpvp — Evwnapvy —— Ewnepr)
— Eqo@)vplll —

Here, for the holomorphic vector bundle of the form E o v 1) — T3
aeZ,gdr,a)=1,u eR& t}iR), we took

‘, of rank 7' (' € N,
(1) L= {Vi=V U= U e U
as U'. In particular,
Ul ={V;=Ui=1€U)}
Then, [8, Theorem 5.6] states that the exact triangle (30) is equivalent to the exact triangle
— T Eqo@p.v) ® Eqopvy —— T Eenag.v) ® Eqopv

—— T EyNepv) ® Eqopvy — T Eqo@.unlll® Eqopry —— -+

in T”(DGTng,) with a suitable holomorphic line bundle E( o ;1) € Pic (T}” )

5.2. Preparations. This subsection is devoted to the preparations of subsection 5.3. In
particular, in subsection 5.3, we consider several autoequivalences on Tr(DGTfQT,) in order
to transform a given exact triangle to an exact triangle which is easy to treat, so we also
explain such autoequivalences on Tr(DGTZn ) in this subsection.

Let us consider the exact triangle (25) in TV(DGTZM ) with the assumption C(y) € DGTzn ,
namely, we assume that there exists a holomorphic Vector bundle E ¢,y w) such that C(w)
Ew.crpw):

— Epapvry — Evcoyw — Ewpyy

(32)

—_— E(r’,A’,ﬂ’,U)[l] —_—
Here, we do not assume rank E(,- 4+ v 1y = 1. Then, we have
ranka =1

by Theorem 4.1. Furthermore, Proposition 5.1 and Proposition 5.2 are generalized as follows
(since we can prove the following two propositions similarly as in the cases of Proposition
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5.1 and Proposition 5.2, we omit the proofs of them).

Proposition 5.3. Assume ranka = 1. Then, there exist two matrices A, D € SL(n;Z)
such that

D'(r's'a)A = —-NE;;,
where N € N.

Proposition 5.4. We assume ranka = 1, and take a pair (A, D) of two matrices A,
D € SL(n; Z) which satisfy the statement of Proposition 5.3. Then,

A'TD);y =0 (1<i#i<n)
and
Im(A™'TD);; #0
hold.
We take the n-dimensional complex torus Tz"T which is b1h010morphlc to T}ZT, where

T’ := A~'TD. Also in this case, the biholomorphic map ¢ : T%ZT, T%ZT is given by the
relation (27). By using the biholomorphic map ¢, we obtain the pullback
. E(r’,fi’,ﬁ’,U/) e E(t’,é’,f]',w/) 4 E(S',B/,V’,v/)

(33)

_— E(VI’A/’/]/,U/)[I] E—
of the exact triangle (32), where the notations
"'/ ~/ U-/ B/ f/ v/ Cr ~/ W/

are as in subsection 5.1. Thus, we may consider the exact triangle (33) in Tr(DGTzn ,)
instead of the exact triangle (32) in Tr(DGTZn ). We will focus on the exact triangle (33) in
subsection 5.3.

Now, we explain several autoequivalences on Tr(DGTﬁT/) which will be used in subsec-

tion 5.3. Let L — T;"T, be a flat holomorphic line bundle, i.e., L € PicO(TfiT,). For each

fixed L € PICO(TZ”T ), we can associate the autoequivalence
L Tr(DGyan ) > Tr(DGr )

which is induced by the operator ® L. We denote the group of such autoequivalences @ :
Tr(DGy ) = Tr(DGp ) by

Pic’(T3".).

On the other hand, for a given autoequivalence ¥ : Tr(F ukaff(TﬁT,)) -
Tr(F Mkaff(T;ZT,)), if we assume that the homological mirror symmetry conjecture for
(T?,,,T2".,) holds true, namely, assume that there exists an equivalence

F @ Tr(Fuk,s(T#,,)) — Tr(DGr )

as triangulated categories, there exists an autoequivalence W : Tr(DGT%T,) > Tr(DGT%T,)
uniquely such that the following diagram commutes : ' '
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Tr(Fuky(T};)) —— Tr(DGya )
‘Pl l\y
Tr(Fukya(T?,,)) —— Tr(DGy, ).

In particular, sometimes we can give a complex or algebraic geometric interpretation for
such an autoequivalence YV : Tr(DGTfZT/) > Tr(DGTfZT/) (in general, to give a complex or
algebraic interpretation in this context is a difficult problem). Here, as an example of an
autoequivalence on T'r(F Mkaﬂ‘(T.%ZT,)), we explain the autoequivalence on 7r(F ukaff(TfﬁT,))
which is induced by the symplectic group action on TZT,. We denote the local coordinates
of T2, by (X',--- ,X",Y',--- ,Y")', and set

Xo=X' o X", V=l Y.

Let us consider the symplectic group

SpCT Y 2n;2) ;={( g g ) € SL(2n;Z) | 911,912, 921, 922 € M(n; Z),
921 922

g (T g = (@ (TN g2), gy (T ga2 = (g, (T g,
g5 T g1 — g1, (T"" g = (—T'_l)t}
associated to (—=7’~")". For an element

::( gi1 912 )e Sp(_T/_l)l(Zn;Z),
g1 922

we define the Sp~"""'(2n; Z) action on 77", by

X y2n

This Sp7"" (2n; Z) action defines a symplectic automorphism ¢ : 72"

J=T'
is given by
RANE:
v )9 v )
Then, for an arbitrary object (L-.a,p), Lira.pq) € F l/lkaff(T%ZT,), we can consider the object

(@) Lrap)s ) Lirapay) € Fuukasr(T77).

Therefore, the symplectic automorphism /¢ induces the autoequivalence on F Mkaﬁ‘(T‘%:T,),
and it leads the autoequivalence

i e

72n
)e T52..

=, 2n ;
— T3, which

Y9 : Tr(Fukyg(T?})) — Tr(Fukyg(T2";.)).

r—1

Now, we define a subgroup S;(_T : (2n;Z) of Sp(‘T/_')r(Zn; Z) as follows. Let us consider
a pair (r, ) € Z X M(n;Z) with the following conditions :

(34) gcd(r,detl) = 1, i.e., there exist k, [ € Z such that kv + /det2 = 1.
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(35) two matrices U, T satisfy the relation AT = (AT)'.

Then, we define

~( -1y kI, 1N
n:7) - {( . )eM(Zn;Z)l

v € Z and A € M(n;Z) satisfy the conditions (34), (35).},

where 2 denotes the cofactor matrix of A, namely, AA = AA = detAJ, holds. We can easily

—11

check that this .§1;( " (2n Z) is a subgroup of Sp=" 2 (2n; Z) by using the conditions (34),
(35). Hence, for each matrix

kI, 1

~( —])t
o )e Qn;2),

g, N := (

we can associate the autoequivalence
Yo T r(Fukog(T#1.)) — Tr(Fukyg(T2";)).

Also, under the assumption that the homological mirror symmetry conjecture for

(T2n T2n

s T7" ) holds true, we can consider the autoequivalence

\I’g(r A) - Tr(DGTQn ) —) Tr(DGTZH ‘/)

compatible with the triangulated functors F' : Tr(F I/lkaﬂ‘(TznT,)) — Tr(DGTzn s Po2) .

T r(Fukyg(T 2”T ) > Tr(F ukaﬂr(Tz”T )). In this context, we denote the group of autoequiva-
lences Wy ) : Tr(DGTfﬁr,) - Tr(DGT%T,) by

Aut?(T2,).
_7r-1 t
Here, we explaln why we focus on the subgroup Sp p ! (2n Z) instead of the symplectic
group Sp~T" Y'(2n;Z) itself. As explained in subsection 5.1, in [8], we transform the exact
triangle (28) by using the triangulated functor Tr(DGszT,) ST ”(DGszr,) which is induced
by the operator ®E; _4 1/,)- This triangulated functor is interpreted as the autoequivalence

Yoaan =Yy -a) € Aut®? (TfZT,) associated to the matrix

P In 0 ~<_ T~ 1)1 )
g(l,A)—( A, )ES (2n; Z),

and the holomorphic line bundle E(,, i v in the exact triangle (28) is mapped to the flat
holomorphic line bundle E o 1) by Yyu-ay- In this sense, AutS”(Tz"T,) is a straight-
forward extension of the group of autoequivalences on Tr(DGTi:T() which is discussed in
subsection 5.2 in [8] to general settings. In fact, under the assumption that the homological
mirror symmetry conjecture for (72",,,72".,) holds true, we can transform not only holo-
morphic line bundles but also holomorphic vector bundles of higher rank to flat holomorphic
line bundles by considering Aut®” (Tf:T,). For example, we set

, 1 0 B (11 o
T (1 2) —3,A—(O 2),p—q—0.
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It is clear that AT’ = (AT’) holds and ' = 9. We can also take a suitable set U" by
[10, Proposition 3.2]. Then, we can obtain the autoequivalence ¥ 3 4)-1 : T”(DGT‘,{T,) N
Tr(DGT}t_T,) associated to the matrix '

L A\ ¢y,
“A 3D )GSP (4:2)

9(3,A) = (

via the homological mirror symmetry. By using this ¥, 4)-1, we can check that the holo-
morphic vector bundle E3 40,1 of rank 9 is mapped to the flat holomorphic line bundle.
Now, in order to state our problem, we give the following definition.

DermiTion 5.5. Let us consider an exact triangle

(36) E, E, E; Efl] — ---

consisting of Ey, E», E3 € Ob(DGT§gT, ). Then, we say that the exact triangle (36) essentially
comes from the one-dimensional complex torus 7 3:7 if there exist a one-dimensional com-
plex torus T%zT (t € H) and a holomorphic projection 7 : TfZT, - szT such that the exact
triangle (36) has the expression

L —— O(rE) — O(T'E) —— (') —— O (rE})[1] —— -

by ® € (Autg’(Tf”T,), Pic®(T?",,)) and an exact triangle

E| E, E;

E|[1] — ---

consisting of £, EJ, E/, € Ob(DGTL ). Here, (Aut@; (T}”T,), PicO(TfﬁT,)) denotes the small-

est subgroup of the group Aut(Tr(DGTJzET/ )) of autoequivalences on Tr(DGTJzET/) containing
the subset Aut™(T21.,) U Pic®(T2",.,) C Au(Tr(DGr2 ).

Concerning Definition 5.5, we will consider the following problem in subsection 5.3 (as
mentioned in subsection 5.1, the following problem is already solved in the case
rankE(r/,A'/’ﬂ/’l/'/) = 1 in [8])

ProBLEM 5.6. When does the exact triangle (33) essentially come from a one-dimensional
complex torus ?

5.3. Main result. The purpose of this subsection is to give an answer for Problem 5.6.
Our first goal is to prove Theorem 5.7 which is a generalization of [8, Theorem 5.6] to the
case that rank E,. 4 ¢ is not necessarily 1. Before stating Theorem 5.7, we give a remark.

As explained in subsection 5.2, the definition of Aut’” (TfZT,) depends on the homological
mirror symmetry conjecture for (72",,,7%*.,). However, Theorem 5.7 itself can be proved
without the homological mirror symmetry. Let us denote the group of autoequivalences on
Tr(DGT?ZTI) which is induced by the operator ®L (L € Pic(T}ZT,)) by

Pic(T3",).

We can regard this Pic(TJZZT,) as a subgroup of (Aut@; (TJZZT,), PicO(szT,)). In the proof of

Theorem 5.7, we will actually use autoequivalences which are included in Pic(T}ZT,) only,



GEOMETRY OF ExacT TRIANGLES IN D?(Coh(C"/2n(Z" & TZ"))) 103

so the discussions in the proof of Theorem 5.7 are closed in the complex geometry side.

Theorem 5.7. The exact triangle (33) essentially comes from a one-dimensional complex
torus if r' = rank E,. i 10y and s = rank E(y g 5 1 are relatively prime, i.e., gcd(r',s") =
1.

Proof. By Proposition 5.3, we have

1 < 1
—B = —A’ —FEjj,
s’/ r rs’
and this fact leads the relation
Bl ~/
37 M T
(37) =

for (k,I) # (i, j). Therefore, by the assumption gcd(r’, s’) = 1, we see that there exist two
integers a,), b,’gl € Z such that

S~ /

ay = r'ay, =S bkl’

~1

and actually, each @, € Z coincides with E,’(’l € Z since the equality (37) holds. Hereafter, we
denote

. ~1/
ay =y = b

for simplicity. By using these integers @;; € Z, let us define a matrix A” by

17
ay, ... df; ... 4y,
[Za— 2 77 .
Aij =la; ... 0 ... 4a € M(n;Z).
17 144 144
aly .oy ..oay,
Then, %A’ L1 B turns out to be
1 a; 1.
l i
_A/ _ ]E +A”, - / ]E +AN’
I% 12} / S 1]

respectively, and
1. ch bl . a b’ ch F o+ s .
—C =LKz LE +| K+ M= LB+ | ——a | = 2LE;; + A”.
t t t t L t tj Y kl Y J ij

a. 7 =’
ij

In partlcular we can show that -, -, Ct— € Q are irreducible fractions as follows. We focus
on 2 e Q. The equality

"“l
1., 4
’ J 77
7A E + A
implies
Ew iy = B kppun ® Eqarov:

Now, E(,. i s 1) is simple, and rank Eqarovy = 1,80 Er gy g v) is also simple. Hence,
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by [8, Proposition 5.5], we can conclude gcd(r’, Zz;j) = 1. Similarly, we can show that %,

&

-% € Q are irreducible fractions.
Here, by applying the autoequivalence

Sp(2
\Pg(l’A;;)—l = \Pg(l,—A;;) € Aut p(TJZT')

associated to the matrix

I, O — (-1
g(LAD = 1, €Sp (2n:Z)
J —AlL I

to the exact triangle (33), the exact triangle (33) turns out to be

— E¢agErpvy — Evgegwy — Ewig.y
(33) ’

— E¢agpunll] ——
As mentioned in subsection 5.2, the above autoequivalence (1, y) is interpreted as the tri-

angulated functor Tr(DGTzn ) o Tr(DGT2n ) which is induced by the operator
®E(, ~ALOU) Furthermore, we modify the exact triangle (38) as follows. By [10, Theo-
rem 3. 4] there exist

iy, ¥, i, €R" @ T"R"
such that
E(r',&,'-_,-E,-,-,ﬁ',U n = E(r’,a,’-,-E,-_,-,ﬂ(,,Ur')’ E(s',z"a;.jEij,v',v') = E(s',E; Ey¥)Uy)
Ew e gpir v = Ew 2 By v
so we may consider the following instead of the exact triangle (38) :
9) — EegEmvny — Eegpnvn — Ewpemun

— Evarmunll] —

We prepare some notations for later convenience. We decompose fiy = py + T"q, € R" @
T'R", and define

wa)Vi :((ﬁ())l’ ) (ﬁo);_lv 07 (ﬁ(’))i+17 RS (ﬁ())n)t
+ (@)1 (@) j=1,0,(G0) ja1, -+ - (@))n) €R" @ T'R",
()i == (Py)i + 1(G); € R@ R,
Similarly, we use the notations (7)), (i7))"' € R"@T"'R", (¥));, ()i € R® ;R in the above

sense. Here, we give a remark on the exact triangle (39). In the exact triangle (39), the
non-triviality of

1 -
EXC(Ey jy £y7.0,) B0 v)
implies

1 1 N
(40) —fig" = =v¢" (mod 22(Z"" @ T4Z"")),
r s’
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1 ~ 1 ~/ NI - "l -
(41) SV = g (mod 20(Z" @ THZ™™),
where ;" vV, i € R @ T;.fR"‘] denote the constant vectors obtained by eliminating
the i-th components from f;, v, ,, respectively, and Tj’.l. denotes the matrix obtained by
eliminating the j-th row and the i-th column from 7" (see also p.32, p.33 in [8]). In particular,
without loss of generality we may assume

1 1, 1_,.
ﬁ /:1(/)\/1 — ?‘76\” — t_/ﬁg)\/t c Rn @ T’IRn.

Now, since the relations
Jl,—0(1<l #1i<n), Imt #0

hold by Proposition 5.4, we can define the holomorphic projection r : T}ZT, — C/2n(Z ®
t.7Z) by
Ji

n(2)=Z; = X; + 1Y,

Then, by the non-triviality of Ext' (Eqy by £, 5,070 Bt ., 07), We may assume Imi; > 0,

so hereafter, we denote T?Z , =C2n(Z e t}iZ). Let us con51der the exact triangle
Jt
— Evaapvy — Eegapvy — Evi e
— Eva gyl —

in Tr(DGr> ), where the notations U, U, U, are used in the sense of the set (31).
J=t

=t

By using the holomorphic projection  : T;”T, — T?

J=tp the following exact triangle in

TV(DGszT,) is induced from the above exact triangle :

@) — TEea vy — TEeg vy — T Ey g e
— T Eva gyl ——
We take the autoequivalence
- 0072
@ o) € Pic (T52)

associated to the operator ®E(1,0,1,)- The exact triangle which is obtained by applying
Qg 0, v Tr(DGTZn ) S Tr(DGTzn ) to the exact triangle (42) is indeed the exact triangle
(39) itself. This completes the proof O
Although Theorem 5.7 does not depend on the homological mirror symmetry conjecture
for (TZ"T,, Tf”T,) we can discuss Problem 5.6 also in the case gcd(r’, s’) # 1 via the ho-
mological mirror symmetry. However, unfortunately, there exists an exact triangle (33) that
essentially does not come from a one-dimensional complex torus in such cases. In order to
construct a counterexample for Problem 5.6 in the case gcd(r’, s") # 1, we first prove the

following lemma.

Lemma 5.8. For an arbitrary irreducible fraction v’ € Q and the matrix

11
[y
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there does not exist a pair (v,0) € Z x M(2;Z) which satisfies the condition (34) and the
relation

=2 + 1A = VE 1 2kL, + IUA).

Proof. First, let us consider the case v’ = 0. We assume that there exists a pair (1, ) €
Z x M(2;Z) which satisfies the condition (34) and the relation

(43) =2 +1A = O.
It is clear that the relation (43) turns out to be

v 1 1
“ 4= 5( 0 2 )

so the condition A € M(2;Z) indicates the existence of an integer t”/ € Z such that
r=2v" € 27Z.
Now, we substitute the relation r = 2v” to the equality (44). As a result, although we have
detq = 1",
it implies
ged(r,detdl) = v = 1.

This fact contradicts the condition v € 27Z.
Let us consider the case 1" # 0. We assume that there exists a pair (v, ) € Z x M(2;7Z)
which satisfies the condition (34) and the relation

(45) —2% + A = v E 1 (2kL, + [UA).
For simplicity, we set

o = (o)) = 2kl + A.

Then,
VE .o :( r’%ﬁl r’x(z)flz ), =2 +1A :( r__zggl“ ;;_2;;;222 ),
so we obtain
Wy =0, Uy, =1.
This fact indicates
(46) det = det( 9161 er” ) =1y

By using the equality (46), we can rewrite the condition (34) to
gcd(r,det) = ged(x,xAqy) =1 =1,
namely, we have

9122=r=1.
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Therefore, we see

of - 2%k 0 o 1 =Ap 11\ [ 2k+1 1(1-2%p)
Lo 2% 0 Ay 0 2/ 0 2k + 219, )’

and the equality (45) turns out to be

1- 2?[]] 1- 2%[]2 _ I’,(Zk + l) r’l(l - 29112)
N e M |

In particular, by focusing on the (1,2) component of the equality (47), we obtain
(48) 2A,(1 =) =1-7L

Suppose 1 — 1l # 0. Then, the equality (48) indicates
1
Ay = 5 ¢ Z,

and this fact contradicts the condition A € M(2;Z). Suppose 1 —1’l = 0, namely, v/ = 1. By
focusing on the (1,1) component of the equality (47) under the assumption 1’/ = 1, we see

Q[]] = —1'k.

Then, unfortunately, the left hand side of the relation kv + /det2l = 1 in the condition (34)
turns out to be

ke +1detl =k + et =k + [(—v'k) =k —k =0,

so the relation 1’/ = 1 does not compatible with the condition (34). This completes the proof.
O
We construct a counterexample for Problem 5.6 in the case gcd(r’, s") # 1. We set

, 10 . (11 . (21
T.—l(1 2),r.—2,A.—(O 2),s.—2,B.—(0 2),

3 2
ese(22)

Then, it is clear that AT’ = (AT"), BT’ = (BT’)', CT’ = (CT’)' holdand ¥ = 2, s’ = 2,

t' = 4. Moreover, we can also verify the following :

’

r s v
r+s =¢, —A+ —B=—C, ranka = 1.
r N t
Let us consider the triangle
“9) - —— Eoauvy —— Eucaw)y —— E@pyy)

— Eoapnll] — -,

where 1, v, 7 € R?® T"R? and U, V, W denote the sets in the sense of the definition (4).
We can check that there exist suitable parameters i/, v/, 1’ € R?> @ T"'R? and suitable sets
U7, V', W’ such that the triangle (49) becomes an exact triangle

- — Epapvy — Eucywy — Eesyyv)

— Eoapunll] —



108 K. KoBAYASHI

as follows. We first consider the dual complex torus
T = C*2n(Z? © T"Z%)
of the complex torus T}‘:T, and its mirror dual (T}‘:T,)V. Let us denote the local coordinates

of (T}_,)" by
X
[7)

where X := (X', X?)!, ¥ := (Y', Y?)". Then, the complexified symplectic form of (74_,,)" is
expressed locally as

dX'(-T""dY.

We set

(0 L .
g.—(_12 O)eSL(4,Z),

~ v

and define a symplectic morphism ¢? : (T}‘:T,)V - T}‘:T, by

?(5)-o05)

Similarly as in the discussions in subsection 5.2, this symplectic morphism ¢? induces the
equivalence

9 : Tr(Fuky(T7_7.)) = Tr(Fuka(T7_1)"))

as triangulated categories. This triangulated functor ®Y corresponds to the Fourier-Mukai
transform

®p : TrH(DGy:_ ) = Tr(DGys )

x T4

associated to the Poincaré line bundle P — T4 J=T"

=T via the homological mirror sym-
metry. Namely, for equivalences

F:Tr(DGys ) = Tr(Fuky(T)_p)), F : Tr(DGys ) = Tr(Fukar(T]_1)")
as triangulated categories, the following diagram commutes :

Tr(DGTj_T,) —i‘—> Tr(Fukaff(T}t:Tr))

o) Jo

TV(DG7~4 ) — Tr(Fukaff((Tf]‘:T/)v))-
J=T" F

Note that Op ¢ (Autg’ (T;‘:T,), PicO(T;':T/)), namely, the Fourier-Mukai transform ®p is not
an autoequivalence on T”(DGT;{T/)- Hence, by regarding the Fourier-Mukai transform ®p

as the triangulated functor F~! o @9 o F, we can rewrite the triangle
- — Op(Egapr) — Pp(Euchpw) —— Pp(Egsyy)

— Op(Eqau)ll] —
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in Tr(DGT;;_T,) to the triangle

(50) T E(1,A,ﬁ,f/) — E(3,C‘,ﬁ,W) ? E(Z,B,f/,f?)

— Eqipmll] —

’

where

- -2 1 ~ -2 1 ~ -4 2
A= B := = i,v,7 € R @ T'R?
( 0 —1)’ ( 0 —2)’C ( 0 —3)””"7EREB &
and U", V, W denote the sets in the sense of the definition (4). In particular, rank Eqip =
I, rank E, 35 = 2, rank E3 ¢ 7 ) = 3. Then, since

holds, we can use Proposition 5.3 and Proposition 5.4. Actually, two matrices A, D €
SL(2;Z) in Proposition 5.3 are given by

1 1
A.—(l 2)’D'_129

and the deformation of 7" in Proposition 5.4 is described as

2 0
—1 it e
A TD—l(_1 1).

Furthermore, by using these matrices A, D € SL(2;7Z), we can transform three matrices A,

B,Cto
_ -1 0 - -2 0
13 _ 3 —
),DBA—(_2 _4),DCA—(_3 _6),

-1 0

157} —
paa-(" 0

respectively. These facts imply that the triangle (50) is induced from the triangle

- —— Egipvny — Egaagv) — Eo-iya
(51) ‘

— Eqpupll]l —

on the one-dimensional complex torus T§:2i = C/2n(Z & 2iZ), where ii’, V', if € R @ 2iR
and each U} (k = 1, 2, 3) denotes the set which is given in the definition (31) withi = j = 1.
In particular, since

dimExt' (E 1.0 Eq-1py) = 1
holds by [7, Proposition 3.3], we see that there exist suitable parameters
iy, V5, 7y € R®2IiR
such that the triangle (51) becomes the exact triangle
- — Eqiguny — Egaguy —— Ee-igap
— Eqiguplll —

by [7, Theorem 4.10] (see also section 6 in [7]). Thus, we can conclude that there exist
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suitable parameters u’, v, 7’ € R?@®T"'R? and suitable sets U™, V’, W’ such that the triangle
(49) becomes the exact triangle

52) - — Eoapvy — Eucywy — Eesyy

— Eoapanll] —

under the assumption that the homological mirror symmetry conjecture for (T}‘:T,, Tj:T,)
holds true. In these discussions, indeed, we can also regard the (exact) triangle (49) as
the exact triangle which is induced from the (exact) triangle (51) on the one-dimensional
complex torus T§=2i. However, as mentioned above, we use the Fourier-Mukai transform

Op ¢ (AP (TY_), Pic(T_))

which is not included in the group of autoequivalences on Tr(DGT;:T,) when we trans-
form the triangle (49) to the triangle (50). Thus, in these discussions, we can not conclude
that the (exact) triangle (49) essentially comes from (the (exact) triangle (51) on) the one-
dimensional complex torus T7_,, in the sense of Definition 5.5.

The remaining thing to be checked is that the exact triangle (52) gives a counterexample
for Problem 5.6. We take an arbitrary autoequivalence ¥y o1 € Aut®” (T;‘:T,) associated to

kI, 1N — (=T
AN) = .
g(x,2) (_m r12)eSp (42).

Then, it is enough to check that
Yo 1(E@awvm)
does not have the expression of the form

E (naky 1" U")-

Here, n € N and a € Z are relatively prime, i.e., gcd(n,a) = 1, i’ € R? & T"'R?, and U’
is a set which is defined by using the data (n,aE;;) € N x M(2;Z). Now, note that the
autoequivalence

Yo - T r(Fukyg(T_,.)) = Tr(Fukya(T_;))
compatible with the triangulated functors
F:Tr(DGps_) — Tr(Fukaa(T]_1)), ¥yt Tr(DGy: ) > Tr(DGy: ),

ie, F oW1 = Yo o F holds. We can express the object F(Eqpaui) €
Ob(Fukye(T4_;.)) as

(Laap Loapa)
by using the suitable parameters ', §’ € R%. Suppose that
v -1
PN F(E@awu)
has the expression of the form

(Lnaknpys Lok p.am)s
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v

where the notations n € N, a € Z are as in the above, and p”, §” € R%. Let us consider the
transformation

X kb, 1 X _( (k2 a4) ¥+
g(x, A) LA 1y, | = Lav , 1w .
E +§p —A rIZ EAX'F 2p (—QI-I—% )X+

of the Lagrangian submanifold L 4 s, by /0%, We set

. l - l.., 1 - -
X = (klz + E%IA)X + 50 = Skl + A + S

( ‘ZI+2A)x+; :—( 2 + rA)X + 12p .

Since Yo (L2,4,5y) has the expression of the form L, 4g,, 5 by the assumption, we may
assume that the matrix 2kl + I9A has the inverse (2kI, + I9IA)~', and the relation

. ~ . ~ ~
(53) Y = (2% + tA) 2kl + INA) ' X — 5(—291 + 1A)(2kI + MA) AP )7

l\)l’*

need to coincide with the relation

v

.1
(54) ¥=2EX+-p.
n n
In particular, by comparing the slope of (53) with the slope of (54), although we obtain
(=29 + tA)2kL + A = LB,
n

this contradicts the statement of Lemma 5.8. Thus, indeed, the exact triangle (52) gives a
counterexample for Problem 5.6 under the assumption that the homological mirror symme-

try conjecture for (T}‘:T,, J_r) holds true.
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