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Abstract
We introduce a concept of connectedness of antipodal sets of compact Riemannian symmetric
spaces and construct a method to make a bigger antipodal set from a given antipodal set. More-
over, using the connectedness we give a sufficient condition that a given maximal antipodal set
is homogeneous.

1. Introduction

Let M be a compact Riemannian symmetric space and denote the geodesic symmetry at
X € M by s,. In this paper, we assume that M is connected. If s,(y) = y for two points
X,y € M, we say that x,y are antipodal. A subset S of M is an antipodal set, if any two
points of S are antipodal. The 2-number #, M of M is the maximum of the cardinalities of
antipodal sets of M. We call an antipodal set S in M great if #S = #,M. An antipodal set
S is called maximal if there are no anitipodal sets including S properly. These notions were
introduced by Chen-Nagano [1]. In general, any antipodal set of any Riemannian symmetric
space of noncompact type is a one-point set, so we consider only compact symmetric spaces
in this paper. We say that an antipodal set A € M is homogeneous if there is a subgroup of
the isometry group of M acting on A transitively.

It is known that any compact Lie group G is a Riemannian symmetric space with re-
spect to a biinvariant metric and any maximal antipodal set including the unit element of
G becomes a subgroup of G. Therefore, any maximal antipodal set of G is homogeneous.
Moreover, Tanaka and Tasaki proved that any great antipodal set of any symmetric R-space
is homogeneous [7]. Thus, we consider the following problem:

Problem 1.1. Is any maximal antipodal set of any compact Riemannian symmetric space
homogeneous ?

We consider this problem in the present paper introducing a concept of connectedness of
antipodal sets. Moreover, we construct a method to make a bigger antipodal set from a given
antipodal set using this connectedness.

The present paper is organized as follows. In Section 2, we consider shortest closed
geodesics on a compact Riemannian symmetric space and prove that any two shortest closed
geodesics through two antipodal points p, g are congruent under the action of some subgroup
of the isometry group. In Section 3, we construct a totally geodesic sphere from two antipo-
dal points through which there is a shortest closed geodesic. The Section 4 is the main
content in this paper. We introduce a concept of connectedness of antipodal sets. Using
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116 Y. SASAKI

this connectedness, we construct a subgroup Gy of the isometry group from a given antipo-
dal set A satisfying some condition and prove that Gy (A) is an antipodal set. This is the
method to make a bigger antipodal set. We study this expanded antipodal sets in this section
and we give a sufficient condition that maximal antipodal sets become homogeneous. In
Section 5, we observe an example of the above method in the oriented real Grassmannians
SO(10)/SO(5) X SO(5). In Section 6, we decide the homogeneity of maximal antipodal sets
of some compact symmetric spaces. The author would like to thank Professor H.Tasaki for
his encouragement.

2. Shortest closed geodsics and meridians

We introduce some notations used in this paper.

Nortation 2.1. Let (M, g) be a compact Riemannain symmetric space.

e s, : the geodesic symmety at x € M.
e G : the subgroup of the isometry group of M generated by all geodesic symmetries.
e K, :={h € G;h(p) = p} (p € M). Then, (G, K,) is a compact Riemannian symmet-
ric pair.
e g: the Lie algebra of G.
e o, : the involutive inner automorphism of G with respect to s, (x € M). The
involutive automorphism of g indued by o, is denoted by the same notation o,.
e Wefixoe M.
t: the Lie algebra of K.
g =1+ m : the eigenspace decomposition of g with respect to o, and , m are
eigenspaces corresponding to the eigenvalues +1, —1 respectively. Then, T,M = m.
e (X,Y) (X,Y € m): the K,-invariant inner product on m induced by g.

Let A be a maximal flat torus of M through 0 € M and a = T,A. Then, a becomes
a maximal abelian subspace of m under the identification of 7,M and m. We set the unit
lattice I' = {H € ajexpH -0 = o} = {H € a;expH € K,}. In the following, for any
geodesic y(f) in M we set y = {y(t) € M;t € R}. Moreover, for any closed geodesic
v() (0 <t < ¢,y(0) = y(c)) considered in the following, we assume that y(¢) # y(0) for any
O<t<e.

Proposition 2.2. Let A be a maximal flat torus through o € M and y(t) be a shortest
closed geodesic in A such that y(0) = y(1) = o and p = y(1/2) € A. Then there are no
shortest closed geodesics of A containing o, p except for y(t) and y(—t).

Proof. We remark that A = a/T" and for any closed geodesic §(¢) (0 < ¢ < 1) of A such that
0(0) = 0(1) = othere is H € I' such that 6(¢) = exptH -0 and the length of ¢ is ||H|| = (H, H)%.
Let ¢ = minger||H|| and T'y = {H € I'; ||H|| = c¢}. The set of all shortest closed geodesics of
A thorough 0 € M is {exptH - o(t € R); H € I'y}.

Let H, € I'y satisfy y(¢) = exptH, - 0. We see expH, - 0 = 0 and exp%Hp -0 =p. Itis
sufficient to prove exp%H c0# exp%H p-oforany H € I'y, H # +H,,. It follows that

1 1 1
expEH c0# expEHp 0 E(H +H,) ¢T.
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Hence, we show 3(H + H,) ¢ T forany H € [o, H # +H,,.
IH|| = ||H,|| = ¢ from H, H,, € Ty, s

1 1
15 (H + H)II? =z<"2 + % + 2||H||l|H,,||cosb)
1
SZ(402) = ¢?,

where 0 < 6 < is the angle made by H, H,, and the equality is valid if and only if H = H,,.
Hence, for any H € I'y, H # +H, we see ||%(H + H),)|| < c. By the definition of ¢, we obtain
J(H+H,)¢T. o

We recall fundamental results of polars and meridians introduced by Chen-Nagano[2].

DeriniTion 2.3. For an isometry i of M, we set F(h, M) := {x € M; h(x) = x}.

(1) A connected component of F(s,, M) is called a polar of 0. The polar containing
p (p € F(s,, M)) is denoted by M (p). If a polar is a one-point set, then we call this
polar a pole. We call {0} the trivial pole.

(2) Forevery p € F(s,, M) we denote the connected componet of F(s,s,, M) containing
p by M_(p). We call M (p) the meridian of o through p.

Each of a polar and a meridian is a totally geodesic submanifold of M. In T,M (p €
F(s,, M), T,M = T,M}(p) + T,M,(p) is an orthgonal direct sum decomposition with
respect to the metric g. In the following, we recall some properties of polars and meridians
from [2].

Lemma 2.4 ([2]). The following three conditions are equivalent for o, p € M.

(1) pisapole of o.
(2) K, = K.
(3) so = 5.

Lemma 2.5 ([2]). Let p be an antipodal point of o. The followings are true.

(1) If A'is a maximal flat torus containing o, p, then A C M, (p).
(2) pisapoleofoin M, (p).
(3) Any closed geodesic of M through o, p is included in M (p).

Let g = g* + g~ be the eigenspace decomposition with respect to the involutive automor-
phism o, of gand g*, g~ be the eigenspaces corresponding to the eigenvalues +1, —1 respec-
tively. Because o and p are antipodal, s, and s, are commutative. Hence, o, and o, are
commutative and o, (f) C f,07,(m) € m. We set f = " + ~ and m = m* + m~ as eigenspace
decompositions of f, m with respect to o,. We see g* =" + m*and g™ =t + m".

Lemma 2.6 ([2]). M, (p) = expm™ - 0.

Let G~ be the identity component of the fixed point set F'(c,0 ), G). The Lie algebra of
G~ is t* + m™ and the Lie algebra of G N K, is f*.

Lemma 2.7 ([2]). M (p) =G -0= G /G™ NK,.

The pair (G,G™ N K,)) becomes a compact Riemannian symmetric pair by the involutive
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automorphism o, of G™ and M, (p) = G™ -0 = G /G™ NK,. We define K(o, p) as the identity
component of G~ N K,,. The Lie algebra of K(o, p) is t*. The Lie algebra of K, is f = " + {~
and that of K, is f, = " + m™, so that of K, N K, is t". Hence, the identity component of
K, N K, is K(o, p). We remark that for any two maximal flat tori A, A, of M, (p) through o
there is k € K(o, p) such that A| = k(A»).

Proposition 2.8. Let y(t) be a shortest closed geodesic of M and y(0) = y(1) = o. Set
p =yR). If6(t) (6 # y) is a shortest closed geodesic such that 5(0) = 5(1) = 0 and 5(3) = p,
then there is k € K(o, p) such that ko = vy.

Proof. Let A and B be maximal flat tori such thaty c A and 6 € B. We see A, B € M, (p)
from Lemma 2.5. There is k € K(o, p) such that kB = A. ké(¢) is a shortest closed geodesic
on A and satisfies k6(0) = ko(1) = o and ké(%) = p since K(o,p) C K, N K,. Thus, we
obtain k¢ = vy from Proposition 2.2. |

From Propsotion 2.8, we obtain for any shortest closed geodesic y(f) such that y(0) =
y(1) = o and ¥(3) = p,

o(s) (s € R) is a shortest closed geodesic of M

such that 6(0) = (1) = o, 6(%) = p. } = K(o,p)y = (K, N K})y.

{6(t) ;tER,

In the next section, we study K(o, p)y.

3. Totally geodesic spheres and shortest closed geodsics

Firstly, we prepare the restricted root system. In the following, we denote o, by o simply.

By the definition, g is a compact Lie algebra, so it is known g = [g, g] + 3(g), where [g, g]
becomes a compact semisimple subalgebra of g and 3(g) is the center of g. We denote [g, g]
and 3(g) by g5 and g.. Since o : g — g is an involutive automorphism, it follows that
o(gs) C g5 and o(g.) C g.. We obtain eigenspace decompositions with respect to o

gy =t +mg, g =T +mg,

where i, f, are corresponding to the eigenvalue +1 and mg, m, are corresponding to the
eigenvalue —1. Moreover, it is true that ¥, m have following direct sum decompositions:

t=t+f, m=m;+m.

We denote the complexification of g by g® . Then, we obtain a direct sum decomposition

g© = g% + . Reamrk that g© is complex semisimple and g, is the compact real form of
gfj. Let n = t; + (my),, where (my),. = V—1my. Then, n is a non-compact real form of

g%, Let (ay). be a maximal abelian subspace of ()., put a; = V—1(ay). and extend a; to

a maximal abelian subalgebra t of g;. Then, t€ is a Cartan subalgebra of g?. Let A be the
corresponding root system and X be the corresponding restricted root system. We denote
the multiplicity of each restricted root 4 € X by n(4). Since it is known that each restricted
root takes real values on (qay)., we select some linear order of (ay), and denote the set of all
positive restricted roots by X*.

For each linear form A on (a,)° set
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t) = (T €t (adH)*T = A(H)*T for H € a,},
m, = {X € my; (adH)*X = A(H)*X for H € a,).

Then it is true that f; = f_; and m, = m_,. fy is the centrailzer of ay in f;. In this setting, it
is known that the following direct sum decompositions are true.

fs:f0+2f/1, mszas+2m/1.
AeX+ Aex+

We set a = ag+m,. and s = Ty + .. Then, a is a maximal abelian subspace of m. We extend
every root A € ¥ to a® to be 0 on m& and denote the extended root and the set of all extended
roots by the same symbol A and Z. In these setting, we obtain direct sum decompositions of
t and m as follows:

Let (, ) be the K-invariant inner product on m induced by the G-inavriant metric g on M.
The restriction of (, ) to my is the restriction of a negative constant multiple of the Killing
form on the semisimple algebra g,. It is known that m = m; + m, is an orthogonal direct
sum decomposition of m with respect to (, ). We see that a = a + 1, is an orthogonal direct
sum decomposition. Then we obtain the inner product on V—1a by (, ) and denote it by the
same letter, that is (\/—_lHl, \/—_IHZ) = (H,, H,) for H{, H, € a. Every restricted root takes
real values on V—1a, so there is some (A). € v=1a such that

{(A)+, HY = A(H) for H € V-1a.
Set Ay = V-1(A,).. We see A, € a, easily. Denote RA, by a,.

Lemma 3.1 ([10, Ch.VII, Lemma 11.4, Lemma 11.5]). Let A, u € " U {0} (1 # ) and
H € a. Then it follows that

[f/l, fy] c f/l+;¢ + f/l—;u [m/la m,u] - f/l+,u + f/l—/u
[E, my] S + ey, (B, ] Cmoy + ay,
ad(H)f/l cmy, ad(H)m/l C f,.

Set (A, uy = (A, Ay) for A, u € T and A, = %A/l for any A € . We recall the unit lattice
I' of a.

Lemma 3.2 ([10, Ch.VII, Proposition 11.9 Proof]). A 1€T forany A € %
Lemma 3.3 ([10, Ch.VII, Section 8]). A(H) € aN-1Z forany H€T',1 € X.

Suppose that A is the maximal flat torus corresponding to a. Let y(t) = exptH,-0 (H, € a)
be a shortest closed geodesic of A such that y(0) = y(2) = 0 and put p = y(1). In this setting
wesee 2H, € I'. LetI', = {H € a;expH -0 = p} = {H, + J ;J € I'}. We define a subset X,
of Z as follows:

X,={1eX;AX) enV-1Zforany X €'} = {1 € Z;A(H)) € nV-1Z}.

We introduce an order of X satisfying 4 € £* = A(-V-1H)) > 0. SetX; = £, N Z*". We
recall the identity component of K, N K, is K(o, p). The Lie algebra of K(o, p) is .
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Lemma 3.4. " = s+ } 5 a.

Proof. Let X € t. Then,
Xet,oexptX-p=p(IeR)
& exprAd(exp(-Hp))X -0 =0 (t € R)
& Ad(exp(-H,))X € t.

Suppose that X = Xy + D s+ X, 18 the decompostion of X corresponding to the direct
sum decomposition f = s + ) o5+ 1. Then,

MM (X + X)) = Z —ad(~H,)"(Xo + ) X))

AeX* n=0 AeXt

sin (—V-14(H,))
=X, + cos (=V=1A(H,))X, +
’ /162*%-11,);60( S \/—_1/1(Hp)

+ Z X,l.
A€S+ A(H,)=0

[H). X1])

We remark [H,, X,] € m. Hence, Ad(exp(-H,))X € t & X; = 0 for A(H,) ¢ nV-1Z.
Thus, we showed that X € " holds if and only if X € s + } aes; Ta |

Since A, € T for any A € X by Lemma 3.2, we see that exptAAﬁ co(0<r<1)isaclosed
geodesic of M. Therefore, [2H,|| < IIA || because of the minimality of the length of y(7). We
consider the following three cases (A-1),(A-2) and (B).

(A-1) |I2H,|| < |IA,]| for any A € .
(A-2) |12H)|| = lA,|| for some A € ¥ and 2H, # A# for any u € X.
(B) 2H, = A, for some A € X.

Lemma 3.5. For three cases (A-1),(A-2) and (B), followings are true:
(1) (A-1),(A-2) = u(2H,) = 0 or u(2H,) = aV-1 for any u € =*.
(2) (B) = A(2H,) = 2nV~1 and u(2H,) = 0 or w(2H,) = aN—-1 for any y € X*, 1 # A.

Proof. Let m € Z and set L,(mn) = {H € a;{H,A,) = mrn} ={H € a; u(H) = m\/—_IZ}
for any u € £ which is a hyper plane of a. The point of L,(mnr) which has the shortest
length from 0 is ﬁA#, SO II%A,,II < ||H|| for any H € L,(mm). For any u € X, it
follows that (2H,) € nV~1Z by Lemma 3.3. We see u(2H,) = 0, 7V—1,27V-1. In fact, if

u(2H)) = mﬂ\/—_l(m > 3), then

1A = |l—— Sy ul < A Al < N12H, ||
(#,M> oy "

from the above remark. However, this contradicts to the minimality of ||2H || by Lemma
3.2.
e the case (A-1),(A-2)
We assume A(2H)) = 27V—1 for some 1 € =*. Then it follows that ALl <
I2H)|| from H € L,(2x). From the minimality of ||2H ||, A, = 2H,. However this
contradicts to the assumption of (A-1),(A-2). Thus A(2H,) = 0, aV-1.
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e the case (B)

Suppose 2H, = A,. It is obvious that AQ2H,) = 27V—1. We assume u(2H,) =
27V-1 for some u € X*,u # A. Then [|[A(w)|| < [12H,|| from H € Ly(2x). More-
over, it follows that A, = 2H » from the minimality of [[2H,||. This implies 4 = u.
However, this is a contradiction. Thus u(2H,) = 0, av-1. O

We consider three subsets X*(0), Z*(5), X* () of Z*:
T70) ={1€X";A2H,) =0} = {1 € X" ; A(H,) = 0},

z+(g) = {1 €S ;AQH,) = V-1} = {1 € S ; A(H,) = gx/—_l},

() ={1 € X" ;A2H,) =2nV-1} = {1 € ¥ ; A(H,,) = nV-1}.

By the proof of Lemma 3.5, it is true that ¥* = X*(0) LU £¥(5) U X" (). Moreover, we see
X7 = X%(0) U X¥(m). The following lemma is obvious.

Lemma 3.6. (A-1),(A-2)= X" (n) = ¢, (B)= X*(r) = {A}.

Set a, = RH,,. We define a subspace m,, of m as follows:

m, =a,+ Z n,.
AEXH(m)

Proposition 3.7. m,, is a Lie triple system of m.

Proof. In (A-1),(A-2), we see Z*(n) = ¢ from Lemma 3.6, so m, = a,. Hence the
statement is obvious.

In (B), suppose 2H,, = A,. Then a, = ay and m, = ay + my. In this case, we see 21 ¢ X*.

In fact, if 24 € X%, then exptAM -o(t € R) is a closed geodesic of M and its length is 1Al
Then,

2r . 2
Al =
(24,22) (24,22)
This contradicts to the minimality of ||2H,||. Hence, 24 ¢ £*. By Lemma 3.1,

A2l = 1]

A | N ~
124401 = SllAall < N4l = [12H ]I

oy + g, [ag + My, ap + )] € [ag +my, By + 5] € ay + my.

Therefore, we showed that m,, is a Lie triple system of m. |

From Proposition 3.7, we see that expm,, - 0 is a totally geodesic submanifold of M. In the
following we denote expm,, - 0 as M,,. In particular, M), is a compact Riemannian symmetric
space of rank one since a, is a maximal abelian subspace of m, and dima, = 1.

Lemma 3.8 ([10, Ch.VII, Theorem 10.3]). Let N be a compact Riemannian symmetric
space of rank one and q € N. Let 2L denote the common length of the geodesics in N. Then
the exponential map Exp : TyN — N is a diffeomorphism of the open ball B(0,L) = {X €
T,N ;||IX|| < L} in T N onto N — F(s4, N).

Theorem 3.9. K(o, p)y = M,. Moreover, M, is a totally geodesic sphere of M. Moreover,
(A-1),(A-2)= dim M, = 1 and (B)= dim M, = dimm, = n(1) + 1.
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Proof. Since K(o, p)y(t) = exptAd(K(o, p))H,, - 0, we consider Ad(K(o, p))H,, in every
cases (A-1),(A-2),(B).
e the case (A-1),(A-2)
In this case, we see M), = expm,, - 0 = expa, - 0 = . For the Lie algebra " of
K(o, p),itfollows that t* = s+3 5+ () t1 from Lemma 3.6. Hence, Ad(K (0, p))H,, =
H), because [t*, H,] = {0}. Thus,

K(o, p)y = {exptkH, -0 ; k € Ad(K(0, p)),0 <t <2} =expa,-o0=y =M,

In paticular, K(o, p)y is a totally geodesic sphere of M since 7y is a closed geodesic.
e the case (B)
Let2H, = A,. Then, m,=q+nmand ' =s+% + 2ues+0) b from Lemma
3.6. It follows that

(£, a2] = [fr, 0] = my,

[Fr,my] =[s+ 1 + Z f,mlcomy + Z (mMH + m/l_u) +ay,
UeTH(0) Hex*(0)

from Lemma 3.1 and the proof of Proposition 3.7. We see m,s, = 0. In fact if
Axpu (e X*0),u # 0)is a root, then (1 + u)(H,) = V-1 from p € Z*(0).
This means A + u € X*(r). However, this contradicts to £*(r) = {1}. Thus, A + u
is not a root and m,,, = {0}. Therefore, we obtain [f*,m;] C a, + m,. Since it
follows that [t*,m,] c m,, we see Ad(K(o, p))H, C m,. Then, Ad(K(o, p))H,
is a compact submanifold of the round sphere S(0, ||H,||) centered at O in m, with
radius ||H,||. Moreover, the tangent space Tu,(Ad(K (0, p))H),) of Ad(K(o, p))H,
at H, is [t*,H,] = my,. Thus, we obtain Ad(K(o, p))H, = S(0,[|H,|)). We see
expm, -0 = {exptX -0 ;t € R, X € S(0, ||[H)pl))}. Therefore,

K(o, p)y = {exptAd(K(o, p))H, - 0;t € R} = {exptX -0 ;1 € R, X € S(0, ||H,l))} = M),

In this case, F(s,, M) = {p}, so the open ball B(0, ||H,|l) in m, centerd at 0 with
radius ||H,|| is diffeomorphic to M, — {p}. Hence, M, is a sphere. Thus, M, is a
totally geodesic sphere of M. O

Summarizing Section 2 and 3, we obtain the following theorem.

Theorem 3.10. Let 0,p € M be anitpodal two points. Suppose that there is a shortest
closed geodesic of M through o and p. Then, there is a totally geodesic sphere M), satisfying
the following properties:

(1) Any shortest closed geodesic of M through o and p is included in M,,.
(2) If K(o, p) is the identity component of K, N K, and 'y is a shortest closed geodesic
of M through o and p, then M, = (K, N K,,)y = K(o, p)y.

4. Expansion of antipodal sets and homogeneous antipodal sets

In this section, introducing the connectedness of antipodal sets and some subgroup Gy
of the isometry group of M we construct the method to make a bigger antipodal set from a
given antipodal set. Moreover, we consider a sufficient condition that a maximal antipodal
set is homogeneous.
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4.1. Preparations. In this subsection, we introduce the connectedness of antipodal sets
and the subgroup Gy .

DeriniTioN 4.1. Let p and g (p # q) be two antipodal points of M. If there is a shortest
closed geodesic on M through p, g, then we say that p is connected to g or p, q are connected.

Let S be an antipodal set of M and 0 € S. We set S, = {x € §; x is connected to o0.}. In the
following, we suppose S, # ¢ and denote M, by M, , for any p € S,.

Proposition 4.2. Let p € S,. Then, there is a shortest closed geodesic of M through o
and p which is invariant under every s, (q € S).

Proof. It is sufficient to show that there is a closed geodesic of M, , through o and p
which is invariant under every s, (¢ € S). In this proof, M, , is denoted by N. Since N is
invariant under the action of K, N K, by Theorem 3.10, s,(N) C N for any g € §. We can
regard every syly (¢ € S) as an isometry of N. We consider the subgroup Z of the isometry
group of N which is generated by {s,ly; g € S}.

If N is a closed geodesic, the statement follows from s,(N) C N (¢ € S). Suppose
N =851 (n>3). Let¢: S""! = N be an automorphism such that

1 -1
0 0

o| p=oo| . D=p
0 0

Let Z be the subgroup of the isometry group O(n) of $"~! corresponding to Z by ¢. Then,
Z c 1xO0(n-1). It follows that (s,)* = idy and s,s, = 5,5, for any g, r € S. Therefore, Z is
a 2-subgroup of 1 X O(n — 1). It is known that any 2-subgroup of 1 x O(n — 1) is conjugate
to a subgroup of

1
I = . ;e6=x1(1<i<n-1);.
€n-1

Hence, there is some a € 1xO(n—1) such thataZa™' c I. Wesety;(1) (0 <t < 2m,2 < t < n)
of §"! as follows:

cos(?)

0
yi(t) = (cost)e; + (sinf)e; = Sin:m (0<t<2n),
0
where {e; ; i € {1,---,n}} is the standard basis of R”. Then, y(f) is a big circle of §"~!

through the north pole and the south pole and invariant under the action of /. In pariticular,
¥(t) is invariant under the action of aZa~!. Therefore, a~'y(f) is a geodesic through the
north pole and the south pole which is invariant under the action of Z. Hence, ¢(a~'y(z)) is
a closed geodesic of N through o and p which is invariant under every s, (g € S). |
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We introduce a concept of connectedness of antipodal sets.

DerniTiON 4.3. Let S be an antipodal set.

(1) If a point series { pi}ﬁzl of S satisfies that p; is connected to p;.;, then we say this
point series is a connected point series.

(2) If S satisfies the following condition, we say that S is connected: for any p,q € S,
there is a connected point series { pi}f:l of S containing p and q.

(3) Let S be connected. If there are no connected anitpodal sets containing S properly,
then we say that S is a maximally connected antipodal set.

(4) Let S be not necessarily connected and 7 be a connectd subset of S. If there are no
connected antipodal subsets of S containing 7" properly, we say that T is a connected
component of S.

Remark 4.4. It is true that any connected maximal antipodal set is maximally connected.
However, any maximally connected antipodal set is not necessarily maximal.

We introduce some notations to use later.

Nortarion 4.5. Let S be an antipodal set and o € S.

e 5,:=5,U{o}.
e L(o,p,S) (p € S,) : the set of all shortest closed geodesics through o, p invariant
under all s, (g € 5).
e L(0,5) := Upes, L(0, p, S).
o L(S):= Up,qu,p, q are connected L(p,q,S).
e CL(0,p,S) (p €S,): all middle points between o and p on every closed geodesic in
L(o, p,S).
e CL(0,9) := Upes, CL(0, p,S).
e CL(S) := Up,qu,p, q are connected CL(p,q,9).
e G,s : the group generated by {s,; x € CL(0, S)}.
e Gy : the group generated by {s,;y € CL(S)}.
For any subset W of CL(S), let Gy be the group generated by {s,; g €W}. Each of G,
and Gy is a subgroup of Gg.

4.2. Expansions of antipodal sets. In this subsection, we construct a big antipodal set
from a given antipodal set using Gy. For any antipodal set S, remark that CL(S) # ¢ is
equivalent to that S contains connected two points by Proposition 4.2. In the following, we
often use the notation

a,
X =
b.

Lemma 4.6. Let S be an antipodal set. Suppose that S has connected two points. Then
the followings are true.

This means x = a or x = b.

(1) s4(x) = x or s¢4(x) = s,(x) for any g € S and x € CL(p, S) (p € S). Hence,
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5xSqs
SqSx = {
SpScSpSg.

(2) Let m € M be antipodal to all points of S. Then, for any x € CL(p,S) (p € S)
SpSysp(m) = sy(m).
Proof. Let x € CL(p,r,S) (r € S,) and y(¢) € L(p, r,S) such that y(0) = y(2) = p,y(1) = r
and y(%) = x. Firstly we will show (1). We see s,(y(2)) = y(?) or s,(y(1)) = y(-1) since
sq(y) C v, sé = idy and s, fixes p = ¥(0) and r = y(1). In the former case, we obtain

54(X) = 5,(¥(3)) = ¥(3) = x. In the latter case, s,(x) = 5,(y(3)) = ¥(—=3) = s5,(x). We
consider (2). We see r = s,(p) is antipodal to m by the definitions of x and m. Hence, p is
antipodal to s.(m). Therefore, 5,5.5,(m) = s,5,(m) = s.(m). |

Proposition 4.7. Let S be an antipodal set containing connected two points . Let W be
any subset of CL(S) and g € Gy. Then, S U ¢S is an antipodal set.

Proof. Since each of § and ¢S is an antipodal set, it is sufficient to show that any » € S
is antipodal to any g(gq) € ¢gS (¢ € S). From the definition of Gy, we may write g € Gy as
g = Sy SuSy (X1,x2,--+,x € W). Let x; € CL(p;,S) (pi € S,1 <i <[). We will prove
the statement by induction for /.

By Lemma 4.6, for x; € CL(p;, S)
Sx85:(q) = 55, (),
Sp1Sx; Sp SV(CI) = Sp;Sx Spy (C]) = Sx (Q)

sr(8x,(q) = {

Hence, r is antipodal to s,,(g). We assume that the statement is true until / — 1. Then, by
using Lemma 4.6 we obtain

sr(sx, Sy (61)) = (€5y€)(€-15x_ €-1) - (€155 €)s,(q)
= (EISX[E/)(lefl TSy (C]))
=SSy Sy (LI)’

where € (1 <i <[)is s, oridy. Therefore r is antipodal to sy, - - - 5y, (q). O

Theorem 4.8. Let S be an antipodal set containing connected two points. Let W be any
subset of CL(S). Then, Gw(S) = Uyeq,, 9S is an antipodal set.

Proof. It is sufficient to prove that g,(S) U g»(S) is an antipodal set for any g, 9> € Gy.
However, since we see that S U gl‘l g>(S) is an antipodal set, g;(S) U g»(S) is an antipodal set.
Thus, Gw(S) is an antipodal set. |

Dermnition 4.9. Let S be an antipodal set containing connected two points. Let W be any
subset of CL(S). Then, we call the antipodal set Gy (S) the Gy-expanded set of S. It is
obvious that S € Gy/(S).

The next proposition is obvious from the definition of maximal antipodal sets.
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Corollary 4.10. Let S be a maximal antipodal set containing connected two points. Let
W be any subset of CL(S). Then, Gy/(S) C S.

We use the following lemma later.

Lemma 4.11. Let S be an antipodal set containing connected two points. Let W be any
subset of CL(S) and set T = Gw(S). Then, it follows that L(p,q,T) = L(p,q,S) for any
connected two points p,q € T.

Proof. Since S c T, it is obvious that L(p,q,T) C L(p,q,S). We will show L(p,q,S) C
L(p,q,T) in the followings. Let y € L(p,q,S). It is sufficient to show s,)(y) C vy for
any g € Gy and r € S. By the definition of Gy, there are xi, x,,--- ,x; € W such that
g = Sy Sy, Sy . Let x; € CL(pi,qi,S) (pi.qi € S, pi, q; are connected., 1 <i < [). We prove
54»(y) C v by induction for /.

For x; € CL(p1,4q1,9),

Sx,85,5-(y) = s,(y) C,

S5, N (¥) = Sx, Sr8x, (¥) =
Sx1Sp1 S, Spy S (V) = S5 (p)SpuSr(Y) = 8q,5p, 5/ (Y) C s

by Lemma 4.6. Hence s, ((y) C y. We assume that it is true until / — 1. We see

_ Sx, SSXH SNGE
Ss,t[_l "'S.rl (}’)S)C[ -

SpiSxiSpiSsy, . (1)

for xy,---,x; € W as follows. Let 6(¢r) € L(p;, q;,5) (0 < t < 2) satisfy 6(0) = §(2)
p1,0(1) = ¢; and 6(%) = x;. By the assumption of induction, it follows that S5y s, () C 6.
We obtain that

ss*‘z—l'"sﬂ (r)((S(O)) = ssx,_l-usxl(r)(pl) =pr= 5(0)7

sSx,,l'“Sx] (r)((s(l)) = ssxl71~~~sxl(r)(ql) =q= o(1)
from Proposition 4.7. Hence it follows that s, .., (»(6(r)) = 6(r) or s, .5, (7((1))
o0(—t). In the former case, it is true that

Ssoyy s VXD = XL = Sy s ()55, w5, () = Sy,
= Sy s (0S5 = SxSsy sy, ()
In the latter case, it is true that
Ssoy 50y VXD = Sp (X)) = S5, s (0SS5, 50, () = SpSxSp
= S5y sy (051 = SpSxSpySsy, sy ()
From above arguments, we obtain
_ 3 {SXIlessx,_l---sx, »(y) Cv,
Ssx,---sxl(r)(’)/) - sxlsé'x,_l"'é'xl (r)Sx1(7) -
SxiSpiSxSpiSs_ sy (r)()’) c slilSPl(’Y) cy.

Hence, it follows that s;, .., (»(¥) C y. By induction, we proved sy, (y) C 7 thatisy €
L(p,q,T). O

From the proof of Lemma 4.11, we obtain the following lemma which will be used later.



HoMOGENEITY OF MAXIMAL ANTIPODAL SETS 127

Lemma 4.12. Let S be an antipodal set containing connected two points. Let x1,- - ,x; €
CL(S) and x; € CL(p;, q1,S) (p1,q1 € S, p1, q; are connected). Then, for any r € S

Sx; S5y sy (1)
— Sxp- N
SSX,,I"'le(r)st = {

SpiSxiSpiSsy, | se ()

Let S = S be an antipodal set containing connected two points. We consider an expanded-
series of §

SicSHc--cSi TS Ce

where Si+1 = Gw,(Si) for some subset Wy, of CL(Sy). Then we see that the following propo-
sition follows immediately from Lemma 4.11.

Proposition 4.13. Let p, g be connected points of S. Then, L(p,q,Sr) = L(p,q, Si-1) =
-+ =L(p,q,81) forany k > 1.

4.3. Orbits of Gy. Let S be an antipodal set containing connected two points. Let W be
any subset of CL(S). Then Gy /(S) is an antipodal set. We study Gy/(p) for each p € S.

Proposition 4.14. Let S be an antipodal set containing connected two points. Let x €
CL(S) and x € CL(ry,13,S) (r1,r2 € S, ry, 1y are connected). Suppose thaty € L(ry,r3,S)
satisfies y(0) = y(2) = r1,y(1) = ry and y(%) = x. Let m € M be antipodal to every point of
S and s,,(y) Cy. If m # s,(m), then m is antipodal and connected to s.(m).

Proof. Firstly we will show that m is antipodal to s,(m). We see s,,(y(0)) = s,(r1) =
ri = y(0) and s,,(y(1)) = s,,(r2) = r» = (1) since m is antipodal to every point of S. Hence
Sm(y(1)) = y(¢) or s,(y(t)) = y(—t) since s,,(y) C y. We obtain s,,(x) = x in the former case
and s,,(x) = s,,(x) in the latter case. Therefore,

{stxsm(m) =m,

Ss.om)(1M) = SxSpSx(m) =

SxSr SxSp, Sm(M) = S5 ) Sr, (M) = 8,8, (M) = m.
We showed that m is antipodal to s,(m).

Secondly we will show that m is connected to s,(m). From the homogeneity of M, we
may let o = r| and denote r, by r simply. There is some X € m such that y(¢) = exptX - o.
We consider the map ¢ : M — G; p + s,5,. Since it is known that ¢ maps geodesics of M
to geodesics of G, sy, (f € R) is a geodesic of G through unit element of G. In particular,
Sy So = exp2tX. We will show that s,s,(m) = expt2X-mis a geodesic of M. Itis sufficient
to prove X € Ad(g)m, where m = g - 0 (g € G). We obtain

Sy(nSo = €xp2tX, (A)

sm(exp2tX) sy, = SmSyt)SoSm = SmSy()SmSo = Ss,y(1)S0 =
Sy = SXp2(-DX,  (B)

from the first part of this proof. Since o, = Ad(¢g)o,Ad(g~") in g, we see (A) = X € Ad(g)t
and (B) = X € Ad(g)m.
If X € Ad(g)t, then

Sy(m) = SySo(g - 0) C (gKg " )g-0)=g-0=m.
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This contradicts to s,(m) # m. Therefore X € Ad(g)m, so we showed that s, (m) =
Sy So(m) (t € R) is a geodesic of M. In particular, s,,(m) (0 <t < 1) is a closed geodesic
since s,0)(m) = s, m = m = s,,(m) = s,1,(m). Moreover, since the length of y(7) (0 < < 2)
is [2X]| and the length of s,;(m) (0 <t < 1) is |Ad(g~")(2X)|, we see that these two closed
geodesics have the same length. In particular, s,;(m) (0 < ¢t < 1) is a shortest closed
geodesic. Hence, we showed that m and s,(m) = Sy(l ,(m) are connected. ]

By Proposition 4.14, we obtain the following theorem immediately.

Theorem 4.15. Let S be an antipodal set containing connected two points. Let W be any
subset of CL(S). Then, Gw(p) is a connected antipodal set for any p € S.

We obtain the following corollaries from the definition of connected antipodal sets and
Theorem 4.15.

Corollary 4.16. Let S be a connected antipodal set and W be any subset of CL(S). Then,
Gw(S) is a connected antipodal set.

Corollary 4.17. Let S be a maximally connected antipodal set and W be any subset of
CL(S). Then, Gy(S) C S.

44. G, s-homogeneous antipodal sets. In this section, we consider some homogeneous
antipodal sets.

DermviTion 4.18. Let S be an antipodal set and o € S. If G,5(0) = S, we say that § is
G,s-homogeneous.

We see that G, s-homogeneous antipodal set is connected from Theorem 4.15.

Theorem 4.19. Let S be a connected antipodal set, o € S and G,5(S) C S. Then, S is
G,s-homogenoeus.

Proof. G, s(0) C S is obvious, so it is sufficient to show S — G, s(0) = ¢. We see S, C
G,s(0). In fact, for any p € §, there is some x € CL(0, p,S) and p = s,(0) € G,5(0). We
assume that S — G, 5(0) # ¢. Let pg € G, 5(0) and p; € § — G, s(0). From the connectedness
of S, there is a connected point series { p,-}f:0 containing pg and p;. We see that there is some
0 <i<Il-1suchthat p; € G,5(0) and pis; € S — G, 5(0). Then there is some g € G, s such
that p; = g(0). In particular ¢ is an isometry of M, so g~'(pi;1) € S,. From the above remark
we obtain p;.; € G,s(0). However, this is a contradiction. Therefore, S — G,s5(0) # ¢ is

wrong, so S — G, s(0) = ¢. m|

From Corollary 4.10 and Theorem 4.19, we obtain the following theorem immediately.

Theorem 4.20. Let S be a maximal antipodal set and o € S. If S is connected, then § is
G, s-homogeneous.

From Corollary 4.17 and Theorem 4.19, we obtain the following theorem similarly.

Theorem 4.21. If S is a maximally connected antipodal set and o € S, then S is G, s-
homogeneous.

In the followings, we study G, s-homogeneous sets.
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Lemma 4.22. Let S be G, 5-homogeneous. Then, it follows that L(p, S) = g(L(0,S)) for
any p = g(0) € S (g € Gyy5).

Proof. We remark S, = g(S,) since g is an isometry of M. Let r € S, and y € L(o, 1, S).
Then, g(y) is a shortest closed geodesic through p = g(0) and g(r). Let g be any point of S.
Because there is u € S such that ¢ = g(u), we obtain

54(90)) = 55 9¥) = gsug” ' g(¥) = gsu(y) C g(y).

Therefore g(y) € L(p,g(r),$), so g(L(o,1,S)) < L(p,g(q),S). Thus g(L(0,S)) C L(p.S).
Repeating the above argument replacing o by p we obtain g~!(L(p, S)) C L(o,S). Hence,
L(p,S) C g(L(o,S)). Thus, we conclude L(p, S) = g(L(0,9)). |

Let S be G, s-homogeneous. For any connected points pj, p» of S and any point y €
CL(p1, p2,S), there are x € CL(0, S) and g € G, s such that y = g(x), 0 s, = Syx) = gscg L.
In particular, s, € G, 5. This argument gives the following proposition.

Proposition 4.23. If S is G, s-homogeneous, Gs = G, .
Next, we study that G, s is decided by only S, = S, U {0} C S.

Proposition 4.24. Let S be an antipodal set and o € S. Suppose that S is a G, -
homogeneous set. Then, G,s = G, . Hence S = G, (0).

Proof. It is sufficient to prove L(o,S) = L(0,S,). Since S, C S, we see L(0,S) C L(0, S,)
immediately. We show L(o, S,) C L(0,S). Because S = G,.s(0), for every p € S there are
X1+ ,x; € CL(0,S) such that sy, ---sy,(0) = p. Let x; € CL(0, p;,S) (pi € Sp,1 <@ < ).
We prove s,(y) C y by induction for /.

Inl=1, s, ((y) Cysince sy(0) C S,. We assume that it is true until /— 1. From Lemma
4.12, we see

Sx; 8% SSXH Sy, (0)(7) cv,

Ss‘.l~~~sxl(o)(7) = Sy Sy sy 0)Sxu(y) =
8x,508x,8085,,_ s, (¥) C SpSo(y) Cy.

Hence, it follows that ssw...sx](o)(y) C v, so we showed sy,)(y) C y for any g € G, by
induction. Therefore, L(o, S,) C L(o,S) and we conclude L(o, S,) = L(0, S). |

Using Proposition 4.24, we may construct a maximally connected antipodal set easily.

Proposition 4.25. Let M{, -, M, be polars of o in M of which for every point there
is a shortest closed geodesic of M through o and it. Let S, be an antipodal set of M and
So € My U---UM;. Then, G,g(0) is a connected antipodal set of M. Moreover, set
A = {S; Sisan antipiodal setand S C M{ U ---U M} and let T, € A be maximal with
respect to the inclusion relation in A. Then, G, (0) is a maximally connected antipodal
set.

Proof. It is obvious that S, is a connected antipodal set of M. Hence, G,s,(0) is a
connected antipodal set by Theorem 4.16. We prove the later half of the statement. Let
U be a maximally connected antipodal subset of M containing G, 7 (0). Then, T, C U,.
However, T, = U, by the definition of T,. Since U is a maximally conneted antipodal set,
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U is G, y-homogeneous and U = G, y(0) = G, ,(0) by Proposition 4.24. Hence, we obtain
Gor,(0)=G,y,(0)=U. o

RemMARk 4.26. In Proposition 4.25, if k = 1, then considering 7, is equivalent to consid-
ering a maximal antipodal set of M.

Next we consider a connected component of a maximal antipodal set.

Theorem 4.27. Let T be a maximal antipodal set and not connected. Let S be a connected
component of T and o € S. Then, S is G, s-homogeneous.

Proof. Firstly, we show that every point of § is antipodal to evey point of g(7") for any g €
G,s. It is sufficient to prove s,(g(r)) = g(r) for any g € S,r € T. By the definition, we may
write g = s, - - - Sy,, Where x,--- ,x; € CL(0,S). Let x; € CL(0, p,S) (px € So, 1 < k <I).
We prove it by induction for /.

In/ =1, we obtain from Lemma 4.6

Sx, sq(r) = Sy (r)a

SoSx; SUSq(I") = SoSx So(r) = Sy (I")

5q(s,(r) = {

We assume that it is true until / — 1. Then, from Proposition 4.6 again we obtain

Sq(Sx8x, - 83, (1) = (€5,€) €15y, €1-1) -+ (€15, €1)54(F)
= (elsxlfl)(sxl_l e le)(r)
= SX[sxl,l e sxl (r)’

where every € (1 < i <) is s, oridy. Therefore, we proved s,(g(r)) = g(r) by induction.
Thus, we showed that every point of S is antipodal to evey point of g(T). Then, it follows
that the every point of g(S) is antipodal to every point of 7" and g(S) C T because of the
maximality of 7. Thus, G, s(S) € T. Then G, s(S) is connected and S C G, s(S). Since S is
a connected component of 7', G, s(S) C S. Thus we conclude that S is G, s-homogeneous by
Theorem 4.19. O

4.5. Properties of Gy-expansions. In this section, let S be an antipodal set containing
connected two points and W be any subset of CL(S).
Let S; = S and we consider a series of antipodal sets

SicSHc---CcSi S Ce

where Sy = Gy, (Sk) (k € N). Then, there is a natural number m € N such that S, = S,,,41 =

- since #, M is finite. If S; = §;;; for some natural number i < m, then S; = S;;1 = Sip2 =
.-+ because S;12 = Gs,, (Si+1) = Gs,(S;) = Siy1. Hence, we can rewrite the above sequence
as follows;

S1CH G CSC Skt & C S =St =

Let X = S,,. Then G, x(X) c X. If S is connected, then every S is connected by Corollary
4.16. Hence, X = G, x(0) by Theorem 4.19.
On the other hand, let 7| = S and we consider a series of antipodal sets
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e G ST STy &0,

where i1 = Gw,(T) for some subset W of CL(T%) such that Ty ¢ T.;. By the finiteness
of #, M, there is a natural number n € N such that Gy (T,) C T, for any subset W c CL(T},).
Thus, we rewrite the sequence as follows:

nHcehc - CTi STy S-S Ty

LetY =T,. Then, G, y(Y) C Y. If S is connected, then every Ty (1 < k < n) is connected by
Corollary 4.16, so Y = G, y(0) by Theorem 4.19.

Theorem 4.28. In above setting, X =Y.

Proof. Firstly we will prove T, C Sy for any k < min(m,n). In k = 1, it is obvious by
T, =S = S;. We assume that it is true until £ — 1. We see that W;_; is a subset of CL(S;_;)
by Lemma 4.11, so Gy,_, is a subgroup of Gg,_,. Hence, Ty = Gw,_,(Tx-1) C Gs,_,(Tx-1) C
Gs, ,(Sk-1) = Sk. Therefore, it is true that Tj C Sy forany 1 <k < n.

Dividing the problem into two cases we show Y C X : (i) n < m (ii) m < n. In (1),

SICSHC  CSHCSuC CSCCSy=X,

ncnc i ST & T, =Y.
Itisobviousthat Y ¢ Xsince Y =7, C S, € S,, = X. In (i1),

SicSH eSS c-CcSy =X,

rcT,c.---clycTyyyc---cT,c---T,=Y.

We prove T, C S, for any a (0 < a < n—m) by induction for a. It is obvious that 7,, C S,
from above arguments. We assume that it is true until a. Then, Gy,,., is a subgroup of Gr, _,
since W, is a subset of CL(T},.,). By Proposition 4.13, Gr, ., is a subgroup of Gg, since

Tniq C Sw. Thus, Gy, , is a subgroup of Gg,. Hence 1,441 = Gw,,,,(Tm+a) C Gw,,,(Sm) C

Gs,(Sn) = Sp. Therefore, we proved T4, C S,, = X for any 0 < a < n — m by induction
andY=T7,cCS,, =X.

Next we will show X C Y. For the sake of this, we prove S; C Y (1 < k < m) by induction
for k. In k = 1, this is obvious. We assume that it is true until K — 1. By Proposition 4.13,
Gs, , is a subgroup of Gy since Sy—; C Y. Hence, Sy = Gg,,(Sk-1) CGy(Y) =Y, 508, C Y
for any 1 < k < m. Therefore, X = S,, C Y. Thus, we conclude X =Y. m]

Let S be a connected antipodal set and o € S, then we see that X(= Y) is obtained by G, s.
Let U; = S and consider a series of antipodal sets

UcUyc---cUyclUc---cUclUpyyC---

where Uy = G, y,(Uy). Then, there is a natural number / such that U,y = U;. If there is
some i (i < [) such that U; = U1 = Gop,,,(Uit1), then U; = Uiy = Ujyp = -+ since
Uiirs = Gop,,,(Uis1) = Gou,(U;) = Uiy Hence, we may rewrite the above sequence as
follows:

LetZ = U,.
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Corollary 4.29. In above setting Z = X.

Proof. It is sufficient to show Gz(Z) c Z. By Corollary4.16, Z is connected. Moreover,
G,z(Z) C Z by the definition of Z. Hence, Z is G, z-homogeneous. Therefore, G,z = G;
by Proposition 4.23. Thus, Gz(Z) C Z,s0 Z =Y = X. |

5. An example of Gy-expansions

In this section, we apply the Gy-expansion for an antipodal set of the oriented real Grass-
mannian Gs(R'%) = SO(10)/SO(5) x SO(5). Let vy,--- ,v; € R" be linearly independent.
We denote the subspace spanned by vy, - - - , v; with the positive orientation or the negative
orientation by

+V ==[vy Avp Ao A vl

Let us denote

Vi1
vi=|:|€ R".
Vin
Moreover, we write £V as follows:
vt = Ukn
+V ==
Uln - Ukn
Letey,--- , e, be the standard basis of R”. We recall some results of anitpodal sets of oriented

real Grassmannians G(R") from the work of Tasaki [3].

Proposition 5.1 ([3]). Let S be any antipodal set of G(R"). Then, there is an orthonormal
basis vy, - - - ,v, of R" satisfying the following condition:

S C{x[vay A+ A Vo ]s @ € Inci(n)},
where Incy(n) ={a : {1,...,k} = {1,...,n}; 1 <i< j<k= a@) < a())}.
For a, 8 € Inci(n), we denote 8 — a = {b € ImB; b ¢ Ima}.

Pl‘OpOSitiOH 5.2 ([3]). Let V, = [Ua(l) VANERIERVAN Ua(k)] and Vlg = [Uﬁ(l) A A Uﬁ(k)] €
Gi(R") (a, B8 € Incy(n)). Then, following two conditions are equivalent. Moreover, this is
true for any pair of (£V,, £Vp).

(1) V, is antipodal to V.
(2) The cardinality of B — « is even.

We consider the condition that V,, and Vj are connected.

Proposition 5.3. Let V, = [U(l(l) VARRRWA Ua(k)] and V/g = [U/g(l) VARRRWA U’g(k)] € Gk(Rn) (a,B €
Inci(n)). Suppose that V, is antipodal to V. Then, following two conditions are equivalent.
Moreover, this is true for any pair of (£V,, £Vp).
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(1) V, is connected to V.
(2) The cardinality of (B — «) is 2.

Proof. By the homogeneity of Gr(R™), we may assume V,, Vi € {£[e 1) A Negpl; 0 €
Incy(n)}and V, = 0 = +[eg A -+ A eg].

In a general compact Riemannian symmetric space M, the following two conditions are
equivalent: (i) pi, p» € M are antipodal and connected. (ii) p; is included in the polar N
of p; whose each point is contained in some shortest closed geodesic on M through p;. In
G(R™M), the such polar N of o is given as follows:

k-2 2
——

}k

k%

where the component of blank parts is 0. Denote Vg = [es1) A -+ A eqy]. Then Vp € N
holds if and only if #Im(o) N {1,--- ,k}) = k — 2. Therefore, the statement follows. O

In the following, denote +[e; A---Ae; ] (1 < iy, -+ ,ix <n)by x[ij A---Af]. Let E; ; be
the 10X 10 matrix whose (i, j)-componet is 1 and other componets are O and F; ; = E; j— E};
for any i # j. From Proposition 5.2, the following set S is an antipodal set of G5(R!°):

G {iozi[1A2A3A4/\5], +p1 = [l A2A3A6AT], £py=

+ [2A3A4AN6A8],
+p3=x[IA3ZA4AOA9], *p4 ’

+
+[SATA8A9AI10]

Denote +o by o simply. We consider G, 5(S). We see S, = {£p1, £ps, £p3} by Proposition
5.3. Firstly, we consider M, ,, for o and p;. For example, the following 6(6) is a shortest
closed geodesic on M through o and p;:

5(9) = exp 9(F4,6 + F5’7) - 0.
K, N K, is given as follows:

A A,D e 0Q3),B,C € 0(2),

B

K,NnK, ={g= € SO(10);

C (detA)(detB) = 1, (detA)(detC) = 1,[ -

D (detB)(detD) = 1, (detC)(detD) = 1
Hence, the identity component K (o, p1) of K, N K, is as follows:

A
B A.D € 5003),
c €S040 5 - e s02)

D

K(o,p1) =49 =

Set T(¢) = (cos §)(Fae + Fs7) + (sing)(Fa7 — Fse6) (¢ € R). By Theorem 3.10, we obtain
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M, p, = K(o, p)é(6)
= {expdT(¢)-0; 6,9 € R}.

Next, we consider L(o, p1,S). Then s.,, S+p,, 5+p, are as follows:

Sipy = Z Eii - Z Ejjs
i=2,3,4,6,8, j=1,5,7,9,10

Sepy = Z Ei; - Z Ejjs
i=1,3,4,6,9, j=2,5,7,8,10

SJ_rp4 = Z E,',,' - Z Ej,j~
i=5,7,8,9,10 j=1,2,3,4,6

To consider closed geodesics on M, ,, through o, p; which are invariant under every s, (i =
2,3,4) we study T'(¢) satisfying s, T(¢)s,, = £T(¢) (i = 2, 3,4). By caliculations, we obtain

L(o, p1,S) = {CXp 0T(¢)-0; ¢ =0, T modn} ,

7 3
CL(0, p1,S) = {exp 0T(#)-0: 60=17. :modn ¢ =0, g modn}.

We consider the geodesic symmetry of every point of CL(o, py,S). For t = exp(6T(¢)) - 0 €
CL(0, p1,S), since s; = exp(8T(¢))s,(exp(6T(¢)))"' and
Z Ei; - Z Ej ;.
i=1,234,5 j=6,7.89,10

we see that the geodesic symmetry of every point of CL(o, p;,S) is given by one of the
following matrices :

Z Eii + (Gss + G57) — Z Ej, Z i + (G47 — Gsg) — Z Ej;,
(12,3} i€(8,9.10) (12,3} i(8.9,10)

where G;; = E;; + Ej; (i # j). The geodesic symmetry of every point of CL(0, +p;, S) is also
given by the similar way. The geodesic symmetry of every point of CL(0, —p1,S) is given
by following matrices:

Z Ej; £ (Ga6 — Gs7) — Z Ej, Z i £ (Ga7 + Gse) — Z Ej.
i€(1,2,3) i€(8,9,10} i€(1,2,3) i€(8,9,10}
The geodesic symmetry of every point of CL(o, p,, S) is given by followings:
Z Eii £ (Gis + Gse) — Z Ej, Z i £ (Gi6 — Gsg) — Z Ej.
i€(2,3,4) i€(7,9,10} i€(2,3,4) i€(7,9,10)
The geodesic symmetry of every point of CL(0, —p», S) is given by followings:
D Ei+(Gis—Gse) - Z Eiy )| Eix(Gi+Gs)— ), Ei.
i€(2,3,4) €{7,9,10} i€(2,3,4) i€(7,9,10
The geodesic symmetry of every point of CL(o, p3,S) is given by followings:
D Eit(Gu+Gso)— > Ei Ei%(Gy—Gse)= Y. Ei.
i€{1,3,4) i€(7,8,10} ie(1,3,4) i€(7.,8,10}

The geodesic symmetry of every point of CL(0, —p3, S) is given by followings:
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Z Eii £ (Gas — Gsy) — Z Ei;, Z Eii + (Gay + Gse) — Z E;;.

i€{1,3,4} i€{7,8,10} i€{1,3,4} i€{7,8,10}

By the definition, G, s is the group generated by all above permutation matices. We obtain
T = G,5(S) as follows:

i1 € {1,8),i> € {2,9),i3 € {3,10}i4 € {4,7},is € {5,6},
T ={+[i] ANix A3 Ay As];
#i; k=1,---,5and iy > 6} =2o0r4

We see that 7" is connected easily. Moreover, we see G, (7)) € T. Hence, T is a G, 7-
homogeneous set.

Remark 5.4. It is known that 7 is a maximal antipodal set. The following E,,, is known

as a maximal antipodal set [4].

v10

J1 €1{1,2}, j» €{3,4}, j3 € {5,6}j4 € {7,8}, j5 € {9, 10},
EU]() =3x[i AR AJ3A Ja A sl

#{ji; k=1,---,5and jiiseven} = 2 or 4

Then, T is conjugate to E,

v10*

6. Decision of the homogeneity of maximal antipodal sets

In this section, we decide whether a given maximal antipodal set is homogeneous in some
compact symmetric spaces considering the connectedness of antipodal sets. From Theorem
4.20 we see that if a maximal antipodal set S is connected, then S is homogeneous. In
the case where S is not connected, we obtain the following proposition obviously since the
connectedness is invariant under isometries.

Proposition 6.1. Let S be a maximal antipodal set of M and not connected. Suppose
that S = T, U --- U Ty, is the decomposition of S by connected components. If there are no
isometries g of M such that T; = g(T ;) for some T;, T, then S is not homogeneous.

Hence, we see that a maximal antipodal set S can be homogeneous if

(1) §is connected, or
(2) S is not connected and for any two connected components T;, T; of S there is some
isometry g such that g(S) € Sand g(T;) = T).

6.1. Oriented Real Grassmannians. In oriented real Grassmannians G(R"), any maxi-
mal antipodal set is not necessarily great. Moreover, any two maximal antipodal sets are not
necessarily congruent to each other. In the following, we list out maximal antipodal sets in
each oriented real Grassmannian which are already known. When k = 3,4, maximal antipo-
dal sets are classified completely. However, when k > 5, the classification is incomplete.
These results are works of Tasaki [3], [4], [6], [5].

e G3(R")
n| 3,4 5 6 7,8 9<n
A(3,3) | AB,5) | B(3,6) | B3,7) | A3,2[*51] + 1), B(3,7)
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e G4R")
n| 4,5 6 7 8,9 10

A4, 4) | A4,6) | B(4,7) | B(4,8) | A(4,10), B(4,8)
n 11<n

A4, 2[%]), B(4,7) U {X +7; X is a maximal antipodal set of G4(R™7) in this list}
B(4,8) U{Y + 8 ; Y is a maximal antipodal set of G4(R™®) in this list }

o Go RY), Go(R¥#1) (I > 3k — 1) : A2k, 21)
o Gort R, Gt R¥ ) (k > 2) : Ak + 1,21 + 1)
o G~4m+k(Rn) (k = 0’ 1’27 37 m 2 1)

n 8m | 8m+1|8m+2|8m+3|8m+4|8n+5|8m+6|8m+7
k=0 |E,, | By, | E, | E
k=1 Evsm+2 Evsm+2 Evsm+2 El-);m+2
k=2 Evps | Evgs | Eps
k=3 Evgis | Engpie

Above symbols imply followings. We use some notations in section 5.

B3,6) ={£[1 A2A3],£[1 A4 AS],£[2A4 A6],£[3A5A6]}(= Ey),

BB, ) ={x[1A2A3],£[1A4AS5,£[2A4 A6, £[BASAGLE[IAGATL£[2A5AT]L2[3A4AT] }(:E;’G),

3(4,7):{i[4/\5/\6/\7], +[2A3A6AT], =x=[1A3ASAT]L, =«[1A2A4AT], 1[2/\3/\4/\5],}(:E+)’
+[IA3A4A6], =£=[IA2A5A6] Y6
+[AASA6AT]L, £[2A3A6AT], £[ILA3ZASAT], [1A2A4AT], =£[2A3A4A5],

B(4.8) = +[IA3A4AG6], £[IA2A5A6], (:E,,*g),

+[1A2A3AS8], £[1A4A5S5A8], £2A4A6A8], x[BA5A6A8], =x[IA6ATAS]
+[2AS5ATA8], «£[3A4ATAB]

1Sa(1)<~~~<a(k)$21—1,}

A2k, 21) = { i[(a/(l) A(a(l) + 1)) A-oe A (a(k) A (a(k) + 1))] Dt (<1 € k) is odd.

1Sa(l)<~~-<a(k)£21—l,}

AQk+ 1,21+ 1) :{i[(o/(])/\(a(l)+ 1))/\~~/\(a(k)/\(a(k)+ 1))/\(21+ 1)]; ali) (1 < i < k) is odd.

a(i)e{2i-1,2i} (1 <i< m),}

Ew, = { tlayna@ n-- nam]; #a(i) ; ali)is even. } € 27

E}, = Eu, UA(4m.8m),

Ej = Eugy U{ 2|0 A Bm+3) ABm+4) ABm+5)| ;0 Adm—2,8m +2)},

Ef o = By U{ %[0 A G +5) A Gmo+ 6)] 50 € A, 8m + 4)),

Ef o= Eogo U oA @m+7)] 10 e Alm +2,8m +6)}.

Let A be a subset of {(if,-+- i) 1 1 < ij < -+ < it < n}. For X = {£[ij A+ A
ir]; (i1, ,ix) € A} CGr(RM), set X +m = {£[({1 +m)A-- - A(ig+m)] ; £[i1 A---ANig] € X}
for m € N.

It is known that any maximal antipodal set of G3(R") and G4(R") is congruent to some
maximal antipodal set in above list [3]. In the following, we consider the connectedness and

the homogeneity of each maximal antipodal set in the above list.

Proposition 6.2. B(3,6), B(3,7), B(4,7) and B(4,8) are connected.

Proof. By the definition of the connectedness, we fix o and it is sufficient to show that for

any point p there is a connected point series { pi}fzo containing o and p.
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In B(3,6) and B(3,7), let o = [1 A 2 A 3]. Then we see that any point except for —o is
connected to 0. Let p; = [1 A4 A 5]. Then {py = o, p1, po = —o0} is a connected point series
containing o and —o. We see that B(4,7) is connected by the similar way. In B(4, 8), let
o =1[4A5A6AT]. Then we see that any point except for —o,x+p = +[1 A2 A3 A 8] is
connected too. Let p; = [2A3A6AT]and g; = [3A4 AT A8]. Then {py = 0, p1, p» = —0}
is a connected point series containing o, —o and {gy = 0, q1,g> = xp} is a connected point
series containing o, p and {ry = o,r; = q1,r, = —p} is a connected point series containing
0,—p. O

Proposition 6.3. A(2k,2]) ¢ Gy (R?), G (R?*1) is connected.

Proof. Fix o = [(1 A2) A--- A(2k — 1 A 2k)]. Tt is sufficient to show that for any point
p € A2k, 21) (p # o) there is a connected point series containing o and p. Let

p = [(a() A (D) + D)) A A (alk) A (alh) + 1)) £ —o,
where 1 < a(l) < --- < a(k) < 21 -1 and every a(i) is odd. We see a(i) > 2i — 1 for
1 <i < k obviously. Let {p;}*_; be as follows:
Po =o,
Pr=[10A2DABAL) A AQRk=3A2k=2)A(ak) A (k) + )],
P2=T1UADABAN A A(atk=1)A(atk=1)+ 1)) A(ak) A (k) + D),

Pe1 = [AA2) A (a/(2) A ((2) + 1)) Ao A (a(k D A(atk—1)+ 1)) A (a(k) A (a(k) + 1))],
Pk = D-

We can take a connected subseries of { pi}’.‘ o containing o, p because p; = pjy1 Or p; is

=

connectd to p;,1 for 1 <i < k— 1. Moreover, for —o we consider a point series {g; = 0, g, =
P1,q3 = —o}. This point series is a connected point series of A(2k, 2/) containing o and —o.
Thus, we conclude that A(2k.2]) is connected. O

We can prove the following proposition by the similar way.
Proposition 6.4. A2k + 1,2 + 1) C Gop1 (R¥*1), Gor1 (R?*?) is connected.
Summarizing above results we obtain the following theorem.

Theorem 6.5. In G3(R") (n > 6), any maximal antipodal set is homogeneous.

In G4(R") (n > 11), any maximal antipodal set is congruent to some antipodal set con-
tained in

A4,2(5]), 1(4,7)= B4, 7)U{X +7; X is a maximal antipodal set of G4(R™7) in the list.},
1(4,8) = B(4,8) U{Y + 7; Y is a maximal antipodal set of G4(R"3) in the list.} [

By Propositions 5.3 we see that any antipodal set in /(4,7) and 1(4,8) is not connected.
Moreover, we see that any connected component of any maximal antipodal set in /(4,7) and
1(4, 8) is congruent to one of B(4,7), B(4,8) and A(4,2]) (I € N).
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REeMARK 6.6. It is true that any connected maximal antipodal set is maximally connected,
but any maximally connected antipodal set is not necessarily maximal. B(4,7) and B(4, 8)
is maximally connected in G4(R") (n > 11), but they are not maximal.

Proposition 6.7. Let A be a maximal antipodal set in 1(4,7). If there is some connected
component of A which is not congrurent to B(4,7), then A is not homogeneous. Similarly,
let B be a maximal antipodal set in 1(4,8). If there is some connected component of B which
is not congrurent to B(4,8), then B is not homogeneous.

Proof. We prove the former part of the statement. The latter part is proved by the similar
way. Let Ay be a connected component of A and Ay = B(4,7). By Proposition 6.1, it is
sufficient to show that if there is a connected component A; of A which is not congruent to
B(4,7), then there are no isometries g such that g(Ag) = A;. Then, A; is congruent to B(4, 8)
or A(4,2l) (i € N). We see #B(4,7) = 14 and #B(4,8) = 28. Moreover, we see #A(4, 2])
increases as [ increases and 12 = #A(4,8) < #B(4,7) < #A(4,10) = 20 < #B(4,8) <
#A(4, 12) = 30. Therefore, we conclude that there are no isometries g such that g(Ap) = A;.

O

Proposition 6.8. Let A be a maximal antipodal set in 1(4,7). If every connected com-
ponent of A is congruent to B(4,7) that is A = B(4,7) U (B(4,7) +7) U ---, then A is
homogeneous. Similarly, let B be a maximal antipodal set in 1(4,8). If every connected
component of B is congruent to B(4,8) that is B = B(4,8) U (B(4,8) + 8)U -, then B is
homogeneous.

Proof. We consider the former part of the statement. The latter part is proved by the
similar way. Then A is the following maximal antipodal set

=~

-1
{ +[(ny +Tm) A (ny +7Tm) A (n3 +7m) A (ng + 7m)] ; £[ny Ana A nz A ngl € B4, 7)},
0

3
I

where 7k < n < 7k + 3 and every connected component of A is
B, Ty = {£[(n1 +Tm) A(ny+Tm) A(ns +Tm) A (ng + )] 3 £[my Any Ans Ang] € B@, 7)),

where 0 < m < k — 1. Then, we see that any g € Gpuy7), (0 < m < k- 1) fixes every
point of B(4,7); (I # m) by caliculations. Moreover, we consider permutation matrices
corresponding to following permutations : for 0 <m < k — 1,
a+Tm (1<a<T7),
oAl n) = {l,-- ,nlyou(@ =3a-Tm (1 +Tm<a<T7+Tm),
a (a is otherwise).
We denote the permutation matrix corresponding to o, by the same letter. Then, we obtain

Tm(B4,7)0) = B4, D, 0m(B4, 1) = B4, 1o, Tulpan, = ldlpa, (1 #0,m).

We consider the subgroup of the isometry group generated by every element of Gp4.7), and
om (0 < m < k—1). Then, we see that this group acts on A and this action is transitive.
Thus, A is homogeneous. O
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We obtain the following theorem summarizing above propositions.

Theorem 6.9. In G4(R"), the followings are true.

(i) In 4 < n < 10, any maximal antipodal set is homogeneous.
(i1) In 11 < n, a maximal antipodal set A is homogeneous if and only if A satisfies either
of the following three conditions:
(1) A=A4,2[5D.
(2) Each connected component of A is congruent to B(4,7).
(3) Each connected component of A is congruent to B(4, 8).

Next, we consider E,, -type antipodal sets.

Proposition 6.10. E,, is connected.

Uam

Proof. Leto = +[1 A3 A---A2m -3 A2m~—1] € E,, . It is sufficient to show that for
any p € E,, there is a connected point series containing o and p. Let

a(i) (1 <i<k)isevenand k is even.)

p=zxla(H)A---Aa(k)ABk+T)A---AB(m)] # —o0 ( BUj) (k+ 1 < i < m)is odd.

We define the point series { pi}io as follows:

Po =D,

pr=1(e)=1)A (@ = 1) AaB) A+ Aatk) AB+ 1) A=+ ABm)],

p2 =MD =1) A (@ = 1) A(aB®) = 1) A (@) = 1) Aatk) AB+ 1) A=+ ABm)],

piy =M= 1) A A(atk=2) = 1) Aatk = 1) Aak) ABlk+ 1) A~ ABm)],
P =o=zx[(a(D)= 1) A A(ak) = 1) ABh+ 1) A~ ABm)],

(SIS

where we add =+ to the last term so that p k becomes o. Then, we see that {p;}_ is a connected
point series containing o and p. For —o, we consider the point series {g; = 0,q> = Pi1.q3 =
—o}. This point series becomes a connecetd series containing o and —o. Hence, we conclude

that E,, is a connected antipodal set. |

U2m

We can prove the following proposition by the similar way.

Proposition 6.11. E,, , is connected in Gupyi(R¥"*2), Gipri(RY™3), Gapyi (RE),

E,, ., is connecetd in G4, 2(R¥™*), G o (R¥"3), E,  is connected in G y,,3(R¥"*©),

U8m+4

Next we consider E;, -type maximal antipodal sets.

Proposition 6.12. Let m > 2. Then E;. C Ggu(R¥), Gyp(R¥ ), Gyp(R¥™2),

Gapm(R¥3) is not homogeneous.

Proof. We recall E,; = E,,, UA(4m, 8m). Firstly, we will show that E,j; is not connected
and E,,, and A(4m,8m) are connected components of £, . We see that E,,, and A(4m, 8m)
are connected respectively from Proposition 6.3 and Proposition 6.10. Let p = [n; A --- A
n4y] € Ey, and g = [ky A -+ A kayy] € A(4m, 8m). Then, we see that the cardinality of the
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set difference {ny,- -, nam} — k1, -+ S kam} = {ni 5 n; & {ky, -+ S kam}, 1 <0 < 4m}is 2m by
definitions of E,, and A(4m,8m). Thus p is not connected to g because of m > 2. Hence,
E; is not connected and E,, and A(4m, 8m) are connected components of £, .

Secondly, we will show that there are no isomeries g such that g(E,,, ) = A(4m, 8m).
We see #(E,,,)p = %4m(4m —1) = 2m(4m - 1) for any p € E, and #A(4m,8m), = 4m?
for any g € A(4m,8m). It is true that #(E, ), # #A(4m,8m), for any m > 2. Since the
connectedness is invariant under isometries, there are no isometries g such that g(£,,,) =
A(4m, 8m). Therefore, E; is not homogeneous by Proposition 6.1. |

Remark 6.13. When m = 1, then E,j’8 = B(4,8). In paricular, E;S is connected and
homogeneous.

We obtain the following proposition by the similar way.

Proposition 6.14. E  C Gy 1R (m > 1), Ef  C Gunya(R¥®) (m > 1) and

U8m+2 U8m-+4

E;'8 e C GamszRY™*7Y (m > 1) are not homogeneous.

The following list is the summary of this subsection.

e G3(R")
n 3,4 5 6 7,8 9<n
AB3,3) | A(3,5) | B(3,6) | B(3,7) | A(3,2l+ 1) (Il = [%]) B@3,7)
great O O O O O X
connectedness O O O O O O
homogeneity O O O O O O
o G4(R")
n 4,5 6 7 8,9 10
A4, 4) | A4,6) | B4,7) | B(4,8) | A(4,10) | B4,8)
great O O O O X O
connectedness O O O O O O
homogeneity O O O O O O
n 11<n
A(4,2[2]) | BA,7)U -~ 1 B@,7) | B@8) UL B(4,8) | otherwise
great O X X X
connectedness O X X X
homogeneity O O O X

o Gy (RY), Gu(R¥*Y), Gt R¥*Y), Gt (R¥*2)

Gu(RY), Gy (R (1 2 3k — 1) | Gt R¥H), Gt R¥H?) (k > 2)
A2k, 2]) AQk+ 1,20+ 1)

connectedness O O

homogeneity O O
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o Gyn(R")
n 8m | 8m+1|8m+2 | 8m+3|8m+4|8m+5|8m+6|8m+7
+ + Et E+
U8m U8m U8m U8m
connectedness X X X X
homogeneity X X X X
o Gy (R")
n 8m | 8m+1|8m+2|8m+3|8m+4|8m+5|8m+6|8m+7
E U8m+2 E U8m+2 E U8m+2 E 1:;,,”2
connectedness O O O X
homogeneity O O O X
L4 G4m+2(Rn)
n 8m | 8m+1|8m+2|8m+3|8m+4|8m+5|8m+6|8m+7
EU8m+4 EUSm+4 El‘):gm+4
connectedness O O X
homogeneity O O X
e Gupis(R")
n 8m | 8m+1|8m+2|8m+3|8m+4 | 8m+5|8m+6|8m+7
EUSm+6 El-):ierG
connectedness O X
homogeneity O X

It is known that if K = 5 and n > 87, then A(5, ZL%J +1)cGs(R"isa great antipodal
set of G5(R") [5]. Moreover, if n is sufficiently larger than &, then A(2k, 2|_§J + 1) is a great
antipodal set in Go(R") and A(2k + 1,2[ %51 ] + 1) is a great antipodal set in G, (R") [9].
From the above list, we see that there are not-homogeneous maximal antipodal sets and not-
connected homogeneous maximal antipodal sets. However, we see that great antipodal sets
which are already known are connected and homogeneous.

6.2. Compact symmetric spaces having one polar except for the trivial pole. If a com-
pact Riemannian symmetric space M has one polar except for the trivial pole, we can decide
the homogeneity of maximal antipodal sets of M by the connectedness.

Theorem 6.15. If M has only one polar except for the trivial pole, then any antipodal set
is connected.

Proof. Let 0o € M and M be the polar of 0. Then for any point p of M there is some
shortest closed geodesic through o and p since the number of polars is one. Hence, any two
antipodal points are connected. Therefore, any antipodal set of M is connected. |

In particular, any maximal antipodal set in M is connected and homogeneous. By the
classification of polars [1][2][11], we obtain the following example.
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ExampLE 6.16. Any maximal antipodal set of E¢/F4, (E¢/F4)*, F4/Spin(9) and G,/SO(4)
is connected and homogeneous, where (Eg/F4)" is the bottom space of E¢/F}.

ReMARK 6.17. F4/Spin(9) is a symmetric R-space, so it has been known the homogeneity
of their maximal antipodal sets [7].

6.3. Symmetric R-spaces. In above two subsections we study the homogeneity and the
connectedness of maximal antipodal sets in some compact symmetric spaces. In symmetric
R-spaces it is known that all maximal antipodal sets are congruent to each other and any
maximal antipodal set is great and homogeneous [7]. We will study the connectedness of
great antipodal sets in symmetric R-spaces.

Let M be an irreducible symmetric R-space. The followings are known. Let (G, K) be
some compact simple Riemannian symmetric pair and g and f be Lie algebras of G and
K. Let g = T+ m be the standard decomposition of g with respect to (G, K). Then, there is
E € msuch that N = Ad(K)E. The metric of N is induced by the K-inavariant inner product
of m which is the restriction of a negative constant multiple of the Killing form of g. Let b
be a maximal abelian subspace of m containing £ and W be the Weyl group of §. Then, it
is known that A = W(E) is a great antipodal set of M and any great antipodal set of M is
congruent to A.

In these setting, it is known that following lemmas are true.

Lemma 6.18 ([8]). Let T be a maximal flat torus of M through E. Then T satisfies the
following two natures.

(1) Let Tg(T) be the tangent space at E of T. Then, there is a basis X, -+ ,X, (r =
rank(M)) of TgM such that |Xi| = --- = |X,|, (X;,X;) = 0(G # j) and {X €
Te(T) ; Ad(expX)E = E} = {Xy,- -+, X}z, where (,) is the inner product of Tg(T)
induced by the metric of N and | - | is the norm induced by <, ).

(2) {Ad(exptX;)E; 0 <t < 1} is a shortest closed geodesic in M.

Lemma 6.19 ([8]). For the great antipodal set A, there is a maximal flat torus T of M
through E satisfying the following conditions.

(1) There is a basis X, -+ , X, of Tg(T) satisfying properties of Lemma 6.18 and
1
ANT ={Ad(exp(eX; + -+ €X,)E; ¢ =0or 3 (1<i<r}

(2) Let Wy = {s € W; s(E) = E}. Then any point of A is congruent to some point of
ANT by the action of Wy.

We obtain the following proposition by above two lemmas.
Proposition 6.20. A is connected.

Proof. It is sufficient to prove that for any p € A there is a connected point series contain-
ing E and p. Accroding to Lemma 6.19, there is some w € W, such that

1 1
qg=w(p) = Ad(exp(zX,'1 +ee 4 EXik))E eT,

where 1 < i < ---i; < r. We define {qj}’j‘.:0 c ANT as follows:
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qo = E,

1
q1 = Ad(exp(EXil NE,

1 1
g = Ad(exp(EX,-l + EX,»QDE,

1 1 1
qi-1 = Ad(exp(EXil + — i +---+ =X ))E,

2 2k
1 1 1 1
qik-1 = 1Axd(€5Xp(§)(il + EX,'Z + -+ EXik—l + EXlk))E

Then, we see that g; is connected to ¢;;; for 0 < j < k — 1 by Lemma 6.18 and Lemma
6.19. Therefore, {g j}’;:() is a connected point series in A N T containing E and g. Let p; =
w (g ) (0 < j < k). Then, {p j}’]‘.zo is included in A and becomes a connected point series
containing £ and p. Hence, A is connected. O

Summarizing this subsection and results of Tanaka and Tasaki [7] we obtain the following
theorem.

Theorem 6.21. Let M be an irreducible symmetric R-space. Then, any great antipodal
set of M is connected and homogeneous.
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