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Abstract

The cohomological rigidity problem for toric manifolds asks whether toric manifolds are dif-
feomorphic (or homeomorphic) if their integral cohomology rings are isomorphic. Many affir-
mative partial solutions to the problem have been obtained and no counterexample is known.
In this paper, we study the diffeomorphism classification of toric Fano d-folds with d = 3,4
or with Picard number > 2d — 2. In particular, we show that those manifolds except for two
toric Fano 4-folds are diffeomorphic if their integral cohomology rings are isomorphic. The
exceptional two toric Fano 4-folds (their ID numbers are 50 and 57 on a list of @Jbro) have
isomorphic cohomology rings and their total Pontryagin classes are preserved under an isomor-
phism between their cohomology rings, but we do not know whether they are diffeomorphic or
homeomorphic.

1. Introduction

1.1. Cohomological rigidity problem. As is well-known, integral cohomology ring (as
a graded ring) is not a complete invariant to distinguish closed smooth manifolds. However,
it becomes a complete invariant if we restrict our concern to a small family 7 of closed
smooth manifolds. For instance, this is the case if F is the family of closed surfaces. We
say that a family 7 of manifolds is cohomologically rigid if the integral cohomology rings
distinguish the manifolds in 7 up to diffeomorphism (or homeomorphism).

A toric variety is a normal complex algebraic variety with an algebraic action of a C*-
torus having an open dense orbit. It is well known that there is a one-to-one correspondence
between toric varieties and a combinatorial object called fans. Therefore, the classification
of toric varieties reduces to the classification of fans. A toric variety is not necessarily com-
pact or smooth. A compact smooth toric variety, which we call a foric manifold, is well
studied. For instance, its cohomology ring and Chern classes are explicitly described in
terms of the associated fan. As mentioned above, the classification of toric manifolds as
varieties reduces to the classification of the associated fans. However, the classification of
toric manifolds as smooth manifolds is unknown. Motivated by the diffeomorphism classi-
fication of a certain family of toric manifolds ([19]), the third author and Dong Youp Suh
posed the following naive problem in [20].

Cohomological rigidity problem for toric manifolds. Are toric manifolds diffeomor-
phic (or homeomorphic) if their integral cohomology rings are isomorphic as graded rings?
Namely, is the family of toric manifolds cohomologically rigid?
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No counterexample to the problem is known and many affirmative partial solutions have
been obtained (see [13, 6, 17, 9] and the reference therein for recent accounts of the prob-
lem). Among those affirmative solutions, Bott manifolds are well studied. A Bott manifold
is a toric manifold associated with a spanning fan of a cross-polytope. It can be obtained as
the total space of an iterated CP'-bundle starting with a point. It is not completely solved
that the family of Bott manifolds is cohomologically rigid but the known results are close
to the complete solution ([10]). Some partial affirmative solutions are also known for gen-
eralized Bott manifolds ([11, 12]) although the known results are far from the complete
solution. Here, a generalized Bott manifold is a toric manifold associated with a spanning
fan of the direct sum of simplices (see Definition 3.1 for direct sum of polytopes). Similarly
to a Bott manifold, a generalized Bott manifold can be obtained as the total space of an
iterated CP"-bundle starting with a point, where each n; can take any positive integer.

In this paper, we study the diffeomorphism classification of toric Fano d-folds with d =
3,4 or with Picard numbers > 2d —2. Our main result (Theorem 1.1) below provides another
affirmative partial solution to the cohomological rigidity problem.

1.2. Smooth Fano d-polytopes and toric Fano d-folds. A lattice polytope is a convex
polytope P c R all of whose vertices lie in the integer lattice Z¢. We say that P ¢ R is a
smooth Fano d-polytope if it is a full-dimensional lattice polytope containing the origin in
its interior such that the set of vertices of every facet forms a Z-basis of Z¢. In particular,
smooth Fano d-polytopes are simplicial. To a smooth Fano d-polytope P ¢ R¢, we can
associate a complete nonsingular fan as the spanning fan of P, where each i-dimensional
cone in the fan is spanned by the vertices of an (i — 1)-dimensional face of P.

It is known that the set of smooth Fano d-polytopes up to unimodular equivalence one-to-
one corresponds to the set of toric Fano d-folds up to isomorphism as varieties ([3]). More-
over, it is known that for a fixed d, there are only finitely many smooth Fano d-polytopes
up to unimodular equivalence (see [3]). The number of smooth Fano d-polytopes (up to
unimodular equivalence) for small values of d is given as follows:

the number of
dimension | smooth Fano d-polytopes | proved in

2 5

3 18 [2, 26]
4 124 [3, 24]
5 866 [21]

6 7622 [21]

7 72256 [21]

8 749892 [21]

Indeed, @bro ([21]) provides the algorithm (called SFP algorithm), which produces a com-
plete list of smooth Fano d-polytopes (up to unimodular equivalence) for a given positive
integer d. For d = 2,3,4,5,6, the database of all smooth Fano d-polytopes is open in the
following URL.:

http://www.grdb.co.uk/forms/toricsmooth

Each toric Fano d-fold (or smooth Fano d-polytope) has its ID. For example, the ID number
of Hirzebruch surface of degree O (resp. 1) is 4 (resp. 3). Toric Fano 3-folds have ID 6-23
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and toric Fano 4-folds have ID 24-147, and so on.

One can see that among eighteen toric Fano 3-folds, there are five Bott manifolds (nine
generalized Bott manifolds including Bott manifolds), and among one hundred twenty-four
toric Fano 4-folds, there are thirteen Bott manifolds (forty-one generalized Bott manifolds
including Bott manifolds).

1.3. Results. As explained above, there are only finitely many smooth Fano d-polytopes
for a given d and we know their explicit description. This finiteness and explicitness are a
great advantage to investigate the cohomological rigidity problem for toric Fano d-folds. In
this paper we prove the following.

Theorem 1.1. The family F of toric Fano d-folds satisfying one of the following condi-
tion:
(1) Picard number > 2d — 2,
(2)d=3
(3) d = 4 except for ID numbers 50 and 57,
is cohomologically rigid. Namely, two toric Fano d-folds in the family F are diffeomorphic
if and only if their integral cohomology rings are isomorphic as graded rings.

We actually identify which toric Fano d-folds in the family F are diffeomorphic (see
Tables 1 and 6). Those diffeomorphic toric Fano d-folds are in fact weakly equivariantly
diffeomorphic with respect to the restricted actions of the compact subtorus of the C*-torus.
They also show that the main theorem in [18] is incorrect, see Remark 2.5 (3) for details.
Toric Fano 4-folds with ID numbers 50 and 57 have isomorphic integral cohomology rings
and their Pontryagin classes are preserved under an isomorphism between their cohomology
rings. We do not know whether they are diffeomorphic or homeomorphic, but they are not
weakly equivariantly homeomorphic with respect to the restricted actions of the compact
subtorus.

The Picard number of a toric Fano d-fold is the number of the vertices of the associated
smooth Fano d-polytope minus d. It is known that smooth Fano d-polytopes have at most
3d vertices and those with at least 3d — 2 vertices are classified ([1, 7, 22]). We use this
classification result to verify case (1) in Theorem 1.1. As for cases (2) and (3), we use the
database of @bro.

Our approach to the diffeomorphism classification above consists of two directions: one
direction is to check an algebraic condition described in terms of fans for two toric mani-
folds to be homeomorphic or diffeomorphic (Lemma 2.3). The other direction is to use the
cohomology rings to distinguish the diffeomorphism classes. It is not difficult to carry out
the former direction, but it is quite a task to carry out the latter direction in general.

The cohomology ring H*(X) of a toric manifold X is the quotient of a polynomial ring
in b,(X) variables by an ideal, where b,(X) is the rank of H?*(X), i.e. the Picard number of
X. In some cases, one can check by an elementary method whether two cohomology rings
are isomorphic or not. However, in general, the elementary method requires a formidable
computation and does not work well. In order to distinguish our cohomology rings, we pay
attention to elements of H?(X; R) whose k-th power vanish, where we take R = Z, Z/2 or Z,/3
and k = 2,3 or 4. It turns out that they are useful invariants to distinguish our cohomology
rings. We often use Grobner basis to compute those invariants.
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Very recently, motivated by McDuff’s question on the uniqueness of toric actions on
a monotone symplectic manifold, Y. Cho, E. Lee, S. Park and the third author made the
following conjecture and verified it for Fano Bott manifolds ([8]).

Conjecture ([8]). If there is a cohomology ring isomorphism between toric Fano mani-
folds which preserves their first Chern classes, then they are isomorphic as varieties.

Based on the classification of cohomology rings of our toric Fano manifolds, we prove

Theorem 1.2. The conjecture above is true for toric Fano d-folds with d = 3,4 or with
Picard number > 2d — 2.

1.4. Structure of the paper. In Section 2, we briefly recall the theory of toric varieties
and the well-known presentation of the cohomology ring of a toric manifold (Proposi-
tion 2.1). We introduce the invariants of cohomology rings used to distinguish our coho-
mology rings. We also give a lemma (Lemma 2.3) mentioned above to find diffeomorphic
or homeomorphic toric manifolds. We recall the notion of Grébner basis and normal forms.
After those preparations, we prove Theorem 1.1. We will verify cases (1), (2), (3) of Theo-
rem 1.1 in Sections 3, 4, 5 respectively. Theorem 1.2 will be proved in Section 6.

2. Preliminaries

In this section, we recall the well-known presentation of the cohomology ring of a toric
manifold (i.e. a compact smooth toric variety) and give a sufficient condition (Lemma 2.3)
for two compact smooth toric varieties to be homeomorphic or diffeomorphic. We also
introduce naive invariants of cohomology rings used in this paper. We show by an example
how to compute those invariants using Grébner basis.

2.1. Toric manifolds and their cohomology rings. We briefly review the theory of toric
varieties and refer the reader to [16] or [23] for details.

A toric variety of complex dimension d is a normal algebraic variety X over the complex
numbers C with an algebraic action of (C*)? having an open dense orbit. A fan in a lattice
N := Hom(C*, (C*)¥) = Z¢ is a set of rational strongly convex polyhedral cones in N ® R
such that

(1) each face of a cone in A is also a cone in A;
(2) the intersection of two cones in A is a face of each.

The fundamental theorem in the theory of toric varieties says that there is a one-to-one
correspondence between toric varieties of complex dimension d and fans in N, and that
two toric varieties are isomorphic if and only if the corresponding fans are unimodularly
equivalent.

For a fan A, we denote the corresponding toric variety by X(A). The toric variety X(A) is
compact (or complete) if and only if A is complete, i.e. the union of cones in A covers the
entire space N®R. Moreover, X(A) is smooth (or nonsingular) if and only if A is nonsingular,
i.e. for any cone o in A, the primitive vectors lying on the 1-dimensional faces of o form a
part of a basis of N.

In the following, we assume that our fan A is complete and nonsingular. Let py,...,pop
be 1-dimensional cones in A. We denote the primitive vector lying on p; by v; and call it
a primitive ray vector. We denote the set of all primitive ray vectors by V(A). The set of
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all cones in A defines an abstract simplicial complex on [m] = {1,...,m}. It is called the
underlying simplicial complex of A and denoted by KC(A). Indeed, a subset / of [m] is a
member of KL(A) if and only if v;’s for i € I span a cone in A. Since A can be recovered from
two data XC(A) and V(A), we may think of A as the pair (C(A), V(A)).

Each 1-dimensional cone p; in the fan A corresponds to an invariant divisor X; of X(A)
and we denote the Poincaré dual to X; by x;. Since X; is of real codimension two, x; lies
in H*(X(A)). With this understanding, we have the following well-known presentation of
the cohomology ring of a toric manifold. Throughout this paper, we will use it without
mentioning it.

Proposition 2.1 ([5, Theorem 5.3.1]). The cohomology ring of a toric manifold X(A) can
be described as follows:

H*(X(A)) = Z[Xl, cee 7xm]/v]

where degx; =2 fori=1,...,mand [J is the ideal generated by all
(1) x; ---x fordin,...,i} & K(A);

(ii) Z u(v;)x; foru € Hom(N,Z).

J=1

Remark 2.2. (1) The total Chern class and the total Pontryagin class of X(A) are respec-
tively given by

cx@ay =] |a+x,  px@y = [a+x.
i=1 i=1

(2) Since the fan A is complete and nonsingular, one can eliminate d variables among
X1, ..., Xy using the linear relations (ii), so H*(X(A)) is actually the quotient of a polynomial
ring in m — d variables by an ideal, where m — d agrees with the rank of H>(X(A)) because
k>21in (i).

2.2. Diffeomorphism lemma. In this subsection, we give a sufficient condition for toric
manifolds to be homeomorphic or diffeomorphic. By definition, a toric manifold X(A) of
complex dimension d has an algebraic action of (C*)?. Let S' be the unit circle group of C.
It is known that the orbit space Q of X(A) by the restricted action of (S')? is a d-dimensional
manifold with corners such that all faces (even Q itself) are contractible. The dual face
poset of Q defines a simplicial complex which agrees with the simplicial complex K(A), to
be more precise, if Qy,..., Q,, are the facets of Q, then Q; := (;c; Qi # 0 for I C [m] if
and only if / € KC(A). The orbit space Q is often a simple polytope. In fact, this is the case
when X(A) is projective, more generally when KC(A) is the boundary complex of a simplicial
polytope.

Remember that V(A) = {vy,...,0,} is the set of primitive ray vectors in A. Since N =
Hom(C*, (C*)%) = Hom(S", (")), we may regard v; € N as a homomorphism from S’ to
(S")?. We note that Q is the disjoint union of the interior part Int Q; of Q; over I € K(A),
where we allow / = () and Qp = Q. We consider the quotient space

(2.1) X(Q,V(A)) := Q x (§")/~
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where (x, g) ~ (y, h) if and only if x = y € Int Q; and gh™' belongs to the subtorus generated
by circle subgroups v;(S") of (S)? for i € I. The space X(Q, V(A)) is homeomorphic to X(A)
([151, [5, Chapter 7]).

Lemma 2.3. Let A and N be complete nonsingular fans with the same underlying sim-
plicial complex, i.e. K(A) = K(A"). If the sets of primitive ray vectors V(A) = {v1,...,Un}
and V(A') = {v},...,v,} agree up to sign (which means v; = +v; for eachi = 1,...,m), then

X(A) and X(A") are homeomorphic. Moreover, if KK(A) = K(A’) is the boundary complex of
a simplicial polytope, then “homeomorphic” above can be improved to “diffeomorphic”.

Proof. As remarked above, X(A) is homeomorphic to X(Q, V(A)) in (2.1). We see from
the construction that X(Q, V(A)) does not depend on the signs of v;’s, so the former statement
follows. If K(A) = K(A’) is the boundary complex of a simplicial polytope, then the orbit
space Q is a simple polytope; so the latter statement follows from [14, Proposition 6.4 (iii)].

O

ExamprLE 2.4 (X)) aAND Xg). Consider the toric Fano 3-folds X;; and X3 corresponding
to ID numbers 11 and 18, respectively, which will appear in Section 4. Then the underlying
simplicial complexes of X;; and X3 are the boundary complex of a cross-polytope, and
according to the database, their primitive ray vectors (i.e. the vertices of the corresponding
smooth polytopes) are as follows:

X11:(1,0,0),(0,1,0),(0,0,1),(-1,0,1),(0,-1,1),(0,0, 1),
X5 : (1,0,0),(0,1,0),(0,0,1),(-1,0, 1),(0,0, =1), (0, =1, = 1).

Through an automorphism (xy, x5, x3) — (x1, —x3, x3) of 73, the vertices of ID number 11
are unimodularly equivalent to (1,0,0), (0,-1,0), (0,0,1), (-1,0,1), (0,1,1), (0,0,-1)
and these agree with the vertices of ID number 18 up to sign, so X, is diffeomorphic to X;g
by Lemma 2.3.

RemMaARrk 2.5. (1) The multiplication by (S 14 on the second factor of X(Q, V(A)) descends
to an action of (S")¢ on X(Q, V(A)) and Lemma 2.3 holds in this equivariant setting, see [5,
Chapter 7].

(2) If two complete nonsingular fans are unimodularly equivalent, then the associated
two toric manifolds are not only isomorphic but also weakly equivariantly isomorphic with
respect to the actions of (C*)? as is known.

(3) It is proved in the paper [18] by the third author that if the equivariant cohomology
rings of two toric manifolds X and X’ are isomorphic as algebras over H*(BT), where T is
the C*-torus acting on X and X’, then v; = +v] (i.e. the condition in Lemma 2.3 is satisfied).
After that, the author claimed that it implies that X and X’ are isomorphic as varieties but
this is incorrect. The mistake occurs at the very end of the proof of Theorem 1 in [18]
and the author thanks Hiraku Abe for pointing out the mistake. Indeed, we will see in this
paper that there are toric Fano manifolds which satisfy the condition in Lemma 2.3 but they
are not isomorphic as varieties. The author also thanks Hiroshi Sato for providing such an
example. In order to correct the theorem, we need to take equivariant first Chern class into
account. Namely, if the equivariant cohomology algebra isomorphism between X and X’
preserves their equivariant first Chern classes (those are 32| 7; and 3", 77 in [18]), then we
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can conclude v; = v; for every i so that X and X" are isomorphic as varieties.

2.3. Invariants of a cohomology ring. Let A be a complete nonsingular fan of dimension
d. It is well-known that the number of i-dimensional cones in A coincides with the 2i-th Betti
number of the toric manifold X(A) for 0 < i < d — 1. Therefore, when A is the spanning fan
of a simplicial d-polytope P, the face numbers of P are cohomology invariants. Namely, if
toric manifolds associated with simplicial polytopes P and P’ have isomorphic cohomology
rings, then the face numbers of P and P’ coincide. Especially, the number of vertices of
P and the number of facets of P are cohomology invariants. We will use this fact without
mentioning it throughout this paper.

Betti numbers are invariants of a cohomology ring but they depend only on its additive
structure. We now introduce invariants of a cohomology ring, which depend on its ring
structure.

DEeriNiTION 2.6 (k-v.€.). Let k > 2 and R = Z or Z/p where p is a prime number. We say
that a nonzero element of H*(X) ® R is k-v.e. over R if it is primitive and its k-th power
vanishes in H*(X) ® R. When R = Z, the word “over Z” will be omitted.

DEerNITION 2.7 (maximal basis number). Let V be the set of all 2-v.e. of H*(X) and we
consider

B:={S c V| Sisapart of a Z-basis of HZ(X)}.
Clearly there exists an Sp,x € B such that
IS| < |Smax]  for VS € B.

We call |Spax| the maximal basis number of H*(X).

The number of k-v.e. over R and the maximal basis number are invariants of H*(X). Note
that there may exist infinitely many 2-v.e. although the maximal basis number is finite.

ExawmpLE 2.8. We compute 2-v.e. and the maximal basis numbers of H*(F() and H*(F),
where F, is the Hirzebruch surface of degree a. As is well-known, we have

H*(Fo) = ZIx,yl/(X%,y*)  and  H'(F)) = Z[x, y]/ (% y(y — x)).

Then we easily obtain the following table.

2-v.e. (up to sign) | maximal basis number
Fo X,y 2
F X, x— 2y 1

The number of 2-v.e. are the same but the maximal basis numbers are different. Thus,
H*(Fy) and H*(F) are not isomorphic to each other.

2.4. Grobner basis and normal forms. For the computation of k-v.e. of H*(M), we
recall what Grobner basis is. We refer the reader to [25] for the introduction to Grobner
basis. The terminologies not defined in this section for Grobner basis can be found there.

Let S = k[xy,..., x,] be a polynomial ring with m variables over a field k and let M be
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the set of all monomials in S. We say that a total order < in M a monomial order on S if it
satisfies that

o | <uforanyu € M withu # 1, and

e yw < vw holds for any u,v,w € M with u < v.
Fix a monomial order < on S. Given a polynomial f € S, we call the leading monomial with
respect to < appearing in f the initial monomial, denoted by in.(f). Given an ideal I C S,
the ideal generated by the initial monomials f in / is called the initial ideal of I, denoted by
in(I). Namely,

in.(f) = (in(f) | f€D.

For a system of generator {gy, ..., g,} of an ideal /, it is not necessarily the case that in.(/) =
(in<(g1), . ..,in<(gy)) holds. We say that {g,,...,gs} is a Grobner basis for I with respect
to a monomial order < if this equality holds. Even if a system of generator G of an ideal is
not a Grobner basis for an ideal, there is an algorithm, so called Buchberger algorithm, to
compute its Grobner basis from G by appending some additional generators to G.

Let I c S be an ideal and let {g1,...,g,} C I be a system of generator of /. For f € S
which is not equal to 0, we can get an equation

f=hgi+ -+ figs+ f

satisfying the following:

e u ¢ (inc(gy),...,inc(gy)) for all monomials u appearing in f” if f* # 0, and

e inc(figi) < inc(f)if f; # 0.
We call f” a normal form of f and write NF(f). It is known that NF(f) is well-defined if
{g1,...,9,} is a Grobner basis for /.

Once we get a Grobner basis of an ideal /, we have many advantages. One of such

advantages is the following proposition:

Proposition 2.9. Let I C S be an ideal and let {g, ..., gs} be a Grobner basis for I with
respect to a monomial oder <. Given a polynomial f € S, we have the following:

fel < NF()=0.

ExawmpLE 2.10. Let X = X, be the toric Fano manifold corresponding to ID number 12,
which will appear in Section 4, and let P be the associated smooth Fano 3-polytope. Then
P has six vertices.

Let us consider the cohomology ring H*(X), and demonstrate how to compute 2-v.e. of
this ring. According to the database, the vertices of P are as follows:

vi = (1,0,0), v =(0,1,0), v3 =(0,0,1), v4 = (=1,0, 1), v5 =(0,1,-1), v6 = (0,-1,0).

1) First, we compute the defining ideal 7 of the cohomology ring. By Proposition 2.1, we
can compute 7 as follows:

H (X) = Z[xq,...,x5]/(UIx + Jx), where

Ix = (x1x4, x2x6, X3x5) and Jy = (x1 — x4, X2 + X5 — X6, X3 + X4 — X5).

Note that Iy (resp. Jx) corresponds to (i) (resp. (ii)). So, we obtain that
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H*(X) = Z[xi, ..., x6]/((X1X4, X2X6, X3X5) + (X] — X4, X2 + X5 — X¢, X3 + X4 — X5))
= Z[x,y,2)/ (2%, (2 = )z, (y — X)y).

Note that we apply the change of variables x4 = x, x5 = y, x¢ = z, and x; = x, x, = z—y and
X3 =y —X.

2) Next, we compute a Grobner basis for the ideal T = (x%,z2(z — y),y(y — x)). As a
monomial oder, let < be the graded lexicographic order induced by x < y < z. Then we can
see that {x?, 2(z — ), y(y — x)} is a Grobner basis for T with respect to <.

3) Finally, we compute 2-v.e. of H*(X). Let f; = x>, p = 2% —yzand f3 = y* — xy.

Let f = ax + by + cz. Then the normal form of f? can be computed as follows:

2 = a®x* + b’y + *2% + 2abxy + 2acxz + 2bcyz
= a*fi + fo + b fs + 2a + b)bxy + 2acxz + (2b + ¢)cyz.

Hence, NF(f?) = (2a + b)bxy + 2acxz + (2b + c)cyz. Thus, we can see that NF(f?) = 0 if
and only if

2a + b)b = 0,
2ac =0,
2b+c)c=0.

When a = 0, we have b = ¢ = 0. When a # 0, we have ¢ = 0 and (2a + b)b = 0,1.e.,b =0
or b = —2a. Hence, we conclude that NF(f?) = 0 if and only if f = ax or f = ax — 2ay.
Therefore, 2-v.e. of H*(X) are x and x — 2y, and its maximal basis number is 1 since x and
x — 2y cannot form a Z-basis.

ExampLE 2.11. Let us consider the cohomology ring H*(X»4), which will appear in Sec-
tion 5, and demonstrate how to compute 2-v.e. of this ring. Let X = X,4 and let P be the
associated smooth Fano 4-polytope. Then P has seven vertices. According to the database,
the vertices of P are as follows:

v =(1,0,0,0), v2=(0,1,0,0), v3=(0,0,1,0), va =(0,0,0,1),
U5 = (_1’ _1’ _1’ 3)’ Vg = (09 07 19 _1)7 U7 = (0, Oa 0’ _1)
1) First, we compute the defining ideal 7 of the cohomology ring. By Proposition 2.1, we
can compute 7 as follows:
H (X) = Z[xy,...,x3]/(Ix + Jx), where
Ix = (X1X2X3X5, X3X7, X4X7, X4X6, X1 X2X5X6) and
Jx = (X1 — X5, X2 — X5, X3 — X5 + Xg, X4 + 3X5 — X6 — X7),
= ZLx, 4, 2]/ (X (x = y), (x = )z, (3% + y + 2)2. (=3x + y + )y, X'y)
= Z[x,y, 21/ (0, (x = )z, (=29 + 22, (=2x + Yy, X'y).
Note that we apply the change of variables x5 = x, x¢ =y, x7 = z,and x; = x, = x, x3 = x—y

and x4 = -3x+y+2z.
2) Next, we compute a Grobner basis for the ideal
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I = (4 (x =9z, (=29 + 2)z, (=2x + Yy, Xy).

As a monomial order, let < be the graded lexicographic order induced by x < y < z. A
Grobner basis for I with respect to a monomial order < is

(2.2) (!, (x = )z, (<29 + 2z, (=2x + )y, X'y, X2},
Note that the generator itself does not become a Grébner basis since
I3~y (x=yz-z- (2x+yy =’z ¢ in(),

but it follows from Buchberger algorithm that (2.2) is a Grobner basis for 1 with respect to
<.

3) Finally, we compute 2-v.e. of H*(X). Let f = ax+by+cz. Then NF(f?) = a’x*+2b(a+
b)xy + 2c(a + b + ¢)xz. Therefore, we conclude that NF(f?) = Oif and onlyifa = b = ¢ = 0.
This means that H*(X) has no 2-v.e.

3. The case with large Picard number

This section is devoted to verifying the case (1) in Theorem 1.1. The Picard number of a
smooth Fano d-fold associated with a smooth Fano d-polytope P is the number of vertices
of P minus d. On the other hand, smooth Fano d-polytopes are known to have at most
3d vertices and those with 3d, 3d — 1 or 3d — 2 vertices are classified. We prepare some
terminology to state those results.

DerNtTION 3.1 (direct sum). Let P ¢ R? and Q c R¢ be polytopes. Then
P® Q = conv(P x {0,} U {0,} X Q) c R,

where 0, (resp. 0,) denotes the origin of RY (resp. R¢), is called the direct sum of P and
Q. The direct sum is also called the free sum of P and Q. Note that the toric manifold
associated to the direct sum of two smooth Fano polytopes P and Q is the direct product of
the associated toric manifolds.

DerINITION 3.2 (skew bipyramid). Let P ¢ R be a polytope. Then we call a polytope B C
R a skew bipyramid (or simply bipyramid) over P if P is contained in affine hyperplane
H such that there are two vertices v and w of B which lie on either side of H such that
B = conv({v, w} U P) and the line segment [v, w] meets P in its (relative) interior.

Throughout this section, ey, . .., e; will denote the standard basis of Z¢ and Pg (resp. Ps)
will denote the hexagon (resp. pentagon) with vertices

*ey, ey, +(e; —e2) (resp. e, +es, +(e] — e2)).

Note that the toric manifold associated to Pg (resp. Ps) is the del Pezzo surface of degree 6
(resp. degree 7).

For a lattice polytope P c RY, a unimodular automorphism of P means a unimodular
transformation 7" such that 7(P) = P. On Ps and Pg, we will use the following lemma:
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Lemma 3.3. (1) For any two vertices v,V of Pg, there is a unimodular automorphism of
P which sends v to v'.
(2) There is no unimodular automorphism of Ps which sends e, to +e,. Moreover, there is
no unimodular automorphism of Ps which sends e, to —e;.

Proof. By using MAGMA ([4]), we can compute the unimodular automorphism groups of
Ps and Py as follows, respectively:

O I (A R

Note that the multiplication is defined from the right-hand side and each vertex is regarded
as a row vector.

0O 1\ (1 -1\ (-1 O
(1) In particular, the unimodular matrices ( | O) , ( 0 - 1) ( 0 - 1) are unimodular au-

tomorphisms of Pg, which send e; to ey, e; — ep, —ej, respectively. Hence, the statement
follows.

. .. . . . 1 0
(2) Since the non-trivial unimodular transformation of Ps is only ( . 1), the statement

follows. O

The classification results on smooth Fano d-polytopes with 3d, 3d — 1 or 3d — 2 vertices
are as follows.

Theorem 3.4 (Casagrande [7]). A smooth Fano d-polytope P has at most 3d vertlces If

it does have exactly 3d vertices, then d is even and P is unimodularly equivalent to P 2

Theorem 3.5 (@bro [22]). Let P be a smooth Fano d polytope wzth exactly 3d — 1 ver-
tices. If d is even, then P is unimodularly equivalent to Ps ® P . Ifd is odd, then P is

d 1
unimodularly equivalent to a bipyramid over P

Theorem 3.6 (Assarf-Joswig-Paffenholz [1]). Let P be a smooth Fano d-polytope with
exactly 3d — 2 vertices. If d is even, then P is unimodularly equivalent to

=
(1) bipyramid ovelr4 bipyramid over Pf > or

(2) Ps® Ps @ P or
B)DP4) & P6
where DP(4) is the convex hull of 10 vertices +e|, te;, tes, tey, =(ej + ex +e3 +ey) in

R*. If d is odd, then P is unimodularly equivalent to a bipyramid over Ps & PfT

Remark 3.7. The polytopes in (1), (2), (3) in Theorem 3 6 have different face numbers.
d—4

Indeed, their facet numbers are respectively 24 - 67,25-67,30-67.

3.1. Cohomology of toric del Pezzo surfaces associated to Ps and Ps. Let Xp, be the
toric Fano 2-fold associated to Ps. We number the vertices of Pg

ey, ey, —e1 + ey, —e1, —€2, €] — €

from 1 to 6 and denote the corresponding elements in H*(Xp,) by pt1, . . ., 6. Then we have
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(3.1) H'(Xp,)
= Z[py, 2, 13, 4 Ms, o]/ (3, i fdas i Hs s Hoa, oS, M6, M3, 3H6 Hate)
+ (U1 — 3 = M + Mo, 2 + M3 — U5 — [e))
= ZIx, y, 2, wl/(x(x + y), y(x + y), 2(y — w), y(x — 2), 2(z + w), W(Z + W), xZ, XW, Yyw),

where x = pi3, y = pa, 7 = ps and w = pg.
Lemma 3.8. The maximal basis number of H*(Xp,) is 3.

Proof. It follows from (3.1) that any element of H?*(Xp,) is of the form ax + by + cz + dw
with integers a, b, ¢, d and an elementary computation shows that

(ax + by + cz + dw)* = (a* = 2ab + b* = 2bc + ¢* = 2¢d + dH)w’.
Therefore, the 2-v.e. of H*(Xp,) are primitive elements in the set
(3.2) {ax + by + cz+ dw | (a — b)* + (c — d)* = 2bc).

In particular, x + y, y + z and z + w are 2-v.e. and since they form a part of a Z-basis of
Hz(Xpé), the maximal basis number of H*(Xp,) is at least 3.
On the other hand, it follows from (3.2) that 2-v.e. of H*(Xp,) over Z/2 are given by

fax+by+cz+dw|la+b+c+d=0},

where a, b, ¢, d are regarded as elements of Z/2. Therefore, the dimension of H*(Xp,) ® Z/2
is 3, which implies that the maximal basis number of H*(Xp,) is at most 3, proving the
lemma. O

Lemma 3.9. For any 2-v.e. f of H'(Xp,), there exist infinitely many 2-v.e. of H*(Xp,)
such that f together with the 2-v.e. does not form a part of a Z-basis of H*(Xp,).

Proof. As observed in (3.2), any 2-v.e. ax + by + cz + dw of H*(Xp,) must satisfy the
condition

(a—b)* + (c — d)* = 2be.

Therefore, the parity of @ — b and ¢ — d must be the same. Moreover, at least one of a, b, ¢, d
must be odd because the 2-v.e. ax + by + cz + dw is primitive. In fact, one can see from the
identity above that the parity of (a, b, ¢, d) must be one of the following up to symmetry:

(i) (even, even, odd, odd); (i) (even, odd, odd, even).
Since any two elements with the same parity do not form a part of a Z-basis of H*(Xp,), it
suffices to show that there are infinitely many 2-v.e. in each of (i) and (ii) above and here
are examples of infinitely many 2-v.e. in each case:

(i) Qk(k+ 1), 2k%, 1, 1), (i) Qk+ 1)% 2k(k+1)+1, 1, 0),

where k is any integer. O

Let Xp, be the toric del Pezzo surface associated to Ps. We number the vertices of Ps

ey, e, —ep ey, —€, ey —e
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from 1 to 5 and denote the corresponding elements in H*(Xp,) by p1, ..., us. Then we have

(3.3) H*(Xpy) = Z[u1, po, 13, fas 51/ (13, (1[4 Mopda, Hops, H3H5)
+ (1 — p3 + ps, o + 3 — pa — s))
= Z[x, y, 2]/ (o, y(x = 2, %, 20y + 2), X2),
where x = u3, y = uq and z = us.

Lemma 3.10. The maximal basis number of H*(Xp,) is 2.

Proof. The proof is essentially the same as in Lemma 3.8. It follows from (3.3) that
any element of H?(Xp,) is of the form ax + by + cz with integers a, b, ¢ and an elementary
computation shows that

(ax + by + cz)* = (=2ab - 2bc + 17
Therefore, 2-v.e. of H*(Xp,) are primitive elements in the set
(3.4) {ax + by + cz | ¢ = 2b(a + ¢)).

In particular, x and y are 2-v.e. and since they form a part of Z-basis, the maximal basis
number of 2-v.e. of H*(Xp,) is at least 2.

On the other hand, (3.4) shows that ¢ must be even. This implies that the basis maximal
number must be at most 2, proving the lemma. |

Lemma 3.11. Let A = Z[xy,...,x,]/La and B = Zlyi,...,y,l/ L. If f is an 2-v.e. of
AQ® B, then f € A or f € B. In particular, the maximal basis number behaves additively
with respect to tensor products.

Proof. Let f = X aix; + X}, bjy;. Then,

(g ] (55

i=1

- [Zaxl) [Zb,y]) " z[zzab xlyj}

i=1 i=1 j=1

Thus, we have a;b; = O for any i and j, i.e. we have either ¢; = 0 for any i or b; = O for any
J- O

Under these preparations, we start to prove Theorem 1.1 for the case (1). There are
following five cases according to the number of vertices V(P) and the parity of the dimension
d for smooth Fano d-polytopes P:

(1) V(P) = 3d (in this case d must be even),
(2) V(P)=3d -1 and d is odd,

(3) V(P)=3d -1 and d is even,

(4) V(P) =3d —-2andd is odd,

(5) V(P)=3d —2 and d is even.
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In (1) and (3) above, there is only one smooth Fano d-polytope by Theorems 3.4 and 3.5, so
it suffices to treat the remaining three cases. In the following, we may assume d > 3 since it
is known (and easy to see) that smooth toric d-folds are distinguished by their cohomology
rings when d < 2.

3.2. The case where V(P) = 3d — 1 with d odd > 3. By Theorem 3.5 together with
Lemma 3.3 (1), there are two P’s up to unimodular equivalence and their vertices are as
follows:

(Y?) e, —ey, ey, *xe3, x(ex—e3),..., xeq 1, ey, £(eq 1 — ey),
(Yd) e1, —ep + e, tey, te3, (ex —e€3),..., *eq-1, ey, £(eq-1 — eq),

where the tags denote the corresponding toric Fano d-folds. In each case, the first two
vertices correspond to the apices of the bipyramid and {*ey, ter+1, t(ear —exr1)} (1 < k <
‘12;1) forms the hexagon Pg. One can see from the above that

* * el * * % d=3
H'(Y) = Z[x])/(P) @ H' (Xp,)* 7, H'(Y3) = H'(Y;) @ H'(Xp,)®"
We number the eight vertices
ey, e3, —ex +e3, —ey, —e3, ey —e3, €], —€te

in (Y23) above from 1 to 8 and denote the corresponding elements in HZ(YS) by ui,...,us.
Then we have

H'(Y))
= Zlp, oy U35 s [s, e 175 181/ (113, 11 Has M5 R, Jops s o6 s IS, 1346 Hafles HTHS)
+ (U1 = M3 = g + Mo + Hg, fo + U3 — [is = He, L7 — [18))
= Z[x, y, z,w,v]/(x(x +y —v), y(x + y — v),z2(y —w — ),
y(x = 2), 2(z + w), w(z + w), Xz, XW, yw, v°),
where x = us, y = p4, 7 = us, w = g and v = ug. One can check that
(3.5) 2-vee. of H*(Y3) = {2y + 2z — v, 2x + 2y — v, 7 + w, v} (up to sign),

and hence the maximal basis number of H*( YS) is 2. Therefore, it follows from Lemma 3.8
and Lemma 3.11 that the maximal basis numbers of H*(Y’ f )and H *(Yg) are as in the follow-
ing table, so H*(Y{) and H*(Y4) are not isomorphic to each other.

Ring | Maximal basis number
H*(v]) 1+3- 51
H*(vd) -1+3- &1

3.3. The case where V(P) = 3d — 2 with d odd > 3. We first treat the case where d = 3.
By Theorem 3.6 together with Lemma 3.3 (2), the vertices of P are one of the following:

(Z1) el, —ei, ey, *e3, t(ex —e3),
(22) e, —ep + ey, ex, xe3, (ex — e3),
(Z3) e1, —er +e3, ey, +e3, +(ey — e3),

(Z4) e, —e; —e3, e, ez, t(ex —e3).
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In each case, {e;, te3, (e —e3)} forms Ps and the first two vertices correspond to the apices
of the bipyramid over Ps.

We claim that Z; and Z, are diffeomorphic. Indeed, the vertices in Z3 are unimodularly
equivalent to

—ey, e +e3, e, te3, +(ey — e3)

through an automorphism (xy, x5, x3) — (—x1, X2, x3) of 73, and these vectors agree with the
vectors in (Z4) up to sign. Therefore, Z3 and Z, are diffeomorphic by Lemma 2.3.

We shall observe that the cohomology rings of Z;, Z,, Z3 are not isomorphic to each other.
Clearly Z; = CP! X Xp, and hence

H*(Z)) = Z[x]/(x*) ® H* (Xpy).
To describe the cohomology rings of the remaining ones, we number the seven vertices
ey, €3, —er +e3, —e3, er —e3, ey, —e| + *
from 1 to 7, where % = e; or +e3 by Lemma 3.3 (2). We denote the corresponding elements
in H*(Z;) fori =2,3 by ui, ..., u7 and set
X =H3, Y= M4, 2= M5, W= [U7.

Then we have

H'(Zy) = Z{py, po, 435 Has P55 s 7]/ (11435 1 145 Pofda, Hops, P3HS ok )
+ (W1 = M3 + fs + W7, Mo + 43 — 4 — s, e — H7))
= Z[x, y, 2, w]/(x(x = w), y(x — 2 = w), y(y — w), 2(y + 2), X2, w?);
H'(Z3) = Z{py, po, 435 Has 15, fes 7]/ (11435 1145 Pofda, Hops, P3HS ok )
+ (U1 — 3 + fds, o + M3 — 4 — Us + [T, le — 7))
= Z[x, 4,2, w)/ (X%, y(x — 2), y(y — w), 2(y + z — w), xz, w*).

By an elementary computation using these presentations together with Lemmas 3.10 and

3.11, we obtain the following table; so H*(Z;) for i = 1,...,6 are not isomorphic to each
other.
Ring 2-ve. Maximal basis number
H*(Zy) | infinitely many 3
H*(Zp) | 2x—w, 2y —w,w 1
H*(Z3) X2y —w,w 2

Now we treat the case where d > 5. By Theorem 3.6, one can see that the vertices of P
are one of the following:

(Zld) the vertices in (Z;), *ey, xes, x(e4 —e5),...,*xeq_1, xeq, £(eq_1 — eyq)
fori=1,...,40r
(Z9)  e1,—e1 + es, €2, 23, E(€3 — €3), 2y, s, H(es — €5),. .., £eq_1, ey, (eq — €q).

Note that Zg’ appears in the case d > 5 since e4 and the vertices e;, +e3, +(e; — e3) cannot be
replaced each other by unimodular transformation. In each case, {+ey, zexr+1, £(€2x—€21+1)}
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2<k< %) forms Pg and the first two vertices correspond to the apices of the bipyramid.
We also note that {e,, +e3, £(es — ¢3)} In (Zg’) forms Ps. Therefore, one can see from the
above that

(3.6)  Z!=Zx(Xp)T fori=1,2,34 and  Z¢{ =Y, x Xp, X (Xp,) 7,

where Y, denotes the Fano 3-fold Yz3 in the previous subsection. Therefore, H*(Zlf‘] ) for
i = 1,...,5 are the tensor product of the cohomology rings of the direct factors in Zl?’.
Since Z3 and Z, are diffeomorphic as observed before, so are Zg and fo . It follows from
Lemmas 3.8, 3.10 and 3.11 that we obtain the following table.

Ring | Maximal basis number
H*(Z) 3+3. 43
H'(Z9) 1+3-43
H*(Z9) 2+3. 3

*7d d-3
H*(Z9) 1+3. 53

Thus, we have to check H* (Zg) = H *(Zgl) or not. Suppose that there is an isomorphism
F:H'(Z) = H' () ® H'(Xp) @ H'(Xp)®T — H'(Z3) = H'(Z) ® H'(Xp,)*'7 .

We note that any 2-v.e. of H* (Zgi) belongs to one of the factors of the tensor products by
Lemma 3.11. Let f be an 2-v.e. of H *(Zg’) which belongs to the factor H*(Y,). We consider
the following set

S(f):={ge HZ(Zgl) | g is an 2-v.e. and {f, g} is not a part of a Z-basis of HZ(Zgl)}.

If g € S(f), then g must belong to H*(Y,) because otherwise {f, g} is a part of a Z-basis
of Hz(Zg’). Therefore S(f) is a finite set by (3.5) and hence so is S(F(f)) because F is an
isomorphism. This together with Lemma 3.9 shows that F(f) must be an 2-v.e. of H*(Z,).
This means that F' sends the set of 2-v.e. of H*(Y>) to the set of 2-v.e. of H*(Z,). However,
the cardinality of the former set up to sign is 4 by (3.5) while that of the latter set up to sign
is 3 (see the previous subsection). This contradicts the injectivity of F. Hence, H *(Z;’) and
H *(Zgj) are not isomorphic.

3.4. The case where V(P) = 3d — 2 with d even > 4. Theorem 3.6 says that there are
three types of P’s, i.e. (1), (2) and (3) in the theorem, but they have different face numbers
(Remark 3.7). Therefore, the toric Fano d-folds in these different types can be distinguished
by their cohomology rings. Since there are only one smooth Fano d-polytope in (2) and (3),
its suffices to investigate the case (1).

We first treat the case where d = 4. One can see that the vertices of P in Theorem.3.6(1)
are one of the following:

(W) el, —ei, e, —e, *e3, *ey, x(e3—ey),
(W2) e1, —e1 +ey, e, —e, *es, *es, £(ez — ey),
(W3) e1, —e1 + e, er, —ey + e3, ez, +ey, +(e3 —ey),
(Wy) e, —e1 +es, e, —ex, *es, ey, x(e3 — ey),
(W5) ey, —e| +es, er, —€r +e3, ez, ey, i(€3 — 64),

(We) e, —e| +e3, er, —ey + ey, *e3, xey, £(e3 —ey),
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(W7) e1, —e; +e3, e, —ex — €3, ez, ey, £(e3 — eq),
(Ws) e1, —ej +e3, ey, —ex — ey, xe3, ey, *(e3 —ey).
In each case, {+es3, tey4, +(e3 — e4)} forms the hexagon Pg and the first two vertices and
second two vertices correspond to the apices of the double bipyramid over P¢s. Note that
those Wi, ..., Wg can be obtained by considering the pair of the first two vertices and the
second two vertices, i.e. where each of two segments coming from apices intersect. We can
check that those are exactly the possible cases.

We claim that Ws is diffeomorphic to W;. Indeed, the vertices in W5 are unimodularly
equivalent to

e, —ep +e3, —e, er +e3, ke3, ey, +(ez —es)

through an automorphism (xi, xo, x3, x4) — (X1, —X2, X3, X4) of 7%, and these vectors agree
with the vectors in W5 up to sign. Therefore, W5 and W5 are diffeomorphic by Lemma 2.3.
The same argument shows that Wy is diffeomorphic to Wg.

We shall observe that H*(W;) for i = 1, ..., 6 are not isomorphic to each other. One can
easily see

H' (W) = Z[x, y) /(% y*) ® H'(Xp,), and H'(W2) = Z[x,yl/ (. y(y — %) ® H' (Xp,).
To describe the cohomology rings of the remaining ones, we number the ten vertices
e3, e4, —e3 + eyq, —€3, —€4, €3 — €4, €], —€] + %, €y, —€r + %
from 1 to 10, where = = e, or e3 and x = 0, +e3 or +es. We denote the corresponding
elements in H*(W,) fori = 3,4,...,8 by ui, ..., (1o and set
X =M3, Y = M4, 2= M5, W= [o, V= Mg, U= []0-

Then we have

H*(W3) = Zlp, o, 13, Has 15, Hos 175 Hs s 1495 H10]/
((R1p3, 14y 1M 5 o4, Hofs, Moo, MBS, H3M6 > Hatle, TS oM 10)
+ (U1 — p3 — pa + Mo + [0, 2 + H3 — Hs — fe, M7 — U8, Hs + Ho — [L10))
= ZIx,y,z,w,v,ul/(x(x +y —u),y(x +y — u), z(y — w — u),

y(x —2),z2(z + w), w(z + w), xz, xW, Yyw, 0%, u(u + v)).

H*(Wy) = Zpy, o, 13, fas 5, Hes 147, 485 K95 101/
(13, 1, p1fs, Pofdas Ho[AS, Hope, M3, 3He, Hates LT85 HOM10)
+ (M1 — M3 — Ha + Mo + Mg, o + U3 — Us — U6, 7 — 18, 1o — H10))
= ZIx,y,z, w, 0, ul/(x(x +y —v),y(x +y — v), z(y — w — v),

y(x = 2), 2(z + w), w(z + w), xz, XxW, yw, v, u*).

H*(Ws) = Z[uy, to, 143, Ha, [s, Lo 17, U85 M9 101/
(13, o1 fdas IS, M4, LS, OJL6 s 3LS, 3[L6 s afdes T8 HOM10)
+ (U1 — p3 — pg + e + pg + H10, M2 + U3 — M5 — M6y M7 — M85 M9 — H10))
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=Zx,y,z,w,v,ul/[(x(x +y—v—uw),yx+y—v-—u),z2(y —w—v—u),

y(x — 2), 2(z + w), w(z + w), xz, xw, yw, v, uz).

H"(We) = Zlpy, 2, 143, Has s, s 1475 H8 495 101/
(a3, 11 fhas 1 [, Hofta, Hops, Hopes M3, U3 M6, Hafle, TS, HofL10)
+ (U1 — M3 — 4 + Mo + Mg, 12 + U3 — Hs — e + 105 47 — U8, Ho — [10))
= Z[x,y, 2w, v, ul/(x(x + y = 0), y(x + y = v), 2(y —w —v),
y(x —z+u),z2(z+w—u),w(z + w — u), Xz, xw, yw, 1)2, u2).

By an elementary computation using the above presentations together with Lemma 3.8, we
obtain the following table; so H*(W;) for i = 1,2, 3 are not isomorphic to each other.

Ring 2-ve. Maximal basis number
H*(Wy) infinitely many 5
H*(W>) infinitely many 4
H*(W3) 724+ w, v+ 2u,v >
H*(Wy) | 2y +2z—-0,2x+2y —v,0,2+ w,u 3
H*(Ws) zZ+w,v,u 3
H*(Wg) 2x 42y —v,0,2z + 2w — u,u 2

Now we treat the case where d > 6. The vertices of P in Theorem 3.6 (1) are either

(W) the vertices in (W;), *es, teq, +(es — €g), ..., e 1, teq, t(es_1 — egq)
fori=1,...,8or
(W) e1, —ei +e3, €2, —ez + €5, T3, tey, £(e3 — €4), ..., keq 1, £eq, (€1 — €q).

Note that Wg appears in the case d > 6 since es and the vertices +es, +e4, =(e3 — e4) cannot
be replaced each other by unimodular transformation. The first two vertices and second
two vertices correspond to apices of the double bipyramid and {eox_1, e, £(exn-1 — exn)}
B<k< ‘—21) forms Pg. One can see from the above that

37  WI=Wix(Xp)T fori=1,....8 and W§=YyxY;x(Xp)7,

where Y, is the 3-fold Y23 in subsection 1.2. Since W5 (resp. W) is diffeomorphic to W5
(resp. Wg), W¢ (resp. W¢) is diffeomorphic to W4 (resp. W¢). The maximal basis number
of H*(Xp,) is 3 by Lemma 3.8 and that of H*(Y>) is 2 by (3.5). Therefore, it follows from
(3.7), Table 3.4, and Lemma 3.11 that we obtain the following table.

Ring Maximal basis number

H* (W) 5+3.42
H* (W) 4+3.- 432
H* (W) 2+3- 44
H' (W) 3+3. 42
H*(We) 3+3-44
H' (W) 2+3. 432

ol
|

H (W) -2+3-

]

Thus, we have to check whether H*(ng) = H*(Wg) or not and H*(Wf) = H*(ng) or not,
but the same argument as in the last part of the previous subsection shows that they are not
isomorphic. Indeed, if there is an isomorphism F : H*(Wg) - H*(Wg’), then F must send
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the set of 2-v.e. of H*(Ws) to that of H*(W3). However, the cardinality of the former set up
to sign is 4 while that of the latter set is 3 (see Table 3.4). This contradicts the injectivity of
F. Therefore, H*(W¢) is not isomorphic to H*(W¢). The same argument shows that H*(WY)
is not isomorphic to H *(ng).

4. The case of dimension 3

In the remaining sections, we use the database by @bro mentioned in Introduction. Each
smooth Fano polytope or toric Fano manifold has ID. We will denote the toric Fano manifold
with ID number g by X,,.

There are 18 variety-isomorphism classes of toric Fano 3-folds, in other words, 18 uni-
modular equivalence classes of smooth Fano 3-polytopes. In this section, we will classify
them up to diffeomorphism. It turns out that the cohomological rigidity holds for them.
More precisely, there are 16 diffeomorphism classes as is shown in Table 1 below, where ID
numbers whose toric Fano 3-folds are diffeomorphic are enclosed by curly braces, and five
ID numbers before || are Bott manifolds. In Table 1, V(P) is the number of vertices of P, P
shows the number of the unimodular equivalence classes of smooth Fano 3-polytopes, H*
shows the number of the isomorphism classes of integer cohomology rings, and Diff shows
the number of the diffeomorphism classes.

Table 1. Diffeomorphism classification of toric Fano 3-folds

[Vv(P) ] P | H" | Diff | D ]
4 T 23
5 [4]4] 4 7,19, 20,22
6 [ 7] 6] 6 [{11,18,12,17,21]6,16
7 4133 8,{10,13}, 14
8 2272 9,15
total | 18 ] 16 | 16

We shall explain how we obtain Table 1. There is only one smooth Fano 3-polytope P
with V(P) = 4, so there is nothing to prove in this case. The case where V(P) = 7 or
8 is treated in Section 3. Indeed, toric Fano 3-folds X, with ¢ = 8,10,13,14,9,15 are
respectively Z», Z3, 74,71, Y23, Y 13 in Section 3. Therefore, it suffices to investigate the case
where V(P) = 5 or 6.

Convention.

(1) The vertices of a smooth Fano 3-polytope P are shown in the database of @bro and
we number them as 1,2, ... in the order shown in the database.

(2) The first three vertices of P are the standard basis of Z>, so we omit them and write
the vertices from 4th in Tables 2 and 4 below.

(3) Minimal nonfaces of P are described using the numbering of the vertices of P.

(4) T denotes the ideal of the cohomology ring H*(X,) and its minimal generators are
described in the tables.

(5) 2-v.e. and 3-v.e. in the tables are up to sign unless the coefficient is Z/2.

4.1. The case where V(P) = 5. In this case, there are four smooth Fano 3-polytopes as
shown in Table 2. They are all combinatorially equivalent to a direct sum of a 2-simplex and
a 1-simplex, so the corresponding toric Fano 3-folds are generalized Bott manifolds.
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Table 2. Vertices and minimal nonfaces of P with V(P) =5

ID | vertices of P from 4th | minimal nonfaces
7 (-1,-1,2),(0,0,-1) 35,124
19 | (-1,0,1),(0,-1,-1) 14,235
20 | (-1,-1,1),(0,0,-1) 35,124
22 | (-1,0,0),(0,-1,-1) 14,235

We denote the degree two cohomology element corresponding to 4th and 5th vertices by
x and y, respectively. Then the cohomology ring of each toric Fano 3-fold with ID number in
Table 2 is the quotient of a polynomial ring Z[x, y] by an ideal Z. By an elementary compu-
tation, we obtain Table 3 which shows that those four cohomology rings are not isomorphic
to each other.

Table 3. Ideals and invariants when V(P) = 5

1D 1 2-

7 | X3, y(2x —y)
19 [ 2/ x-y
20 | Byx—vy)
22 X2, y3

e. | 2-ve.Z/2 | 3-ve.Z/3
()
(x) (x)
(0]
(x) (x,y)

=slx|s| 2

4.2. The case where V(P) = 6. In this case, there are seven smooth Fano 3-polytopes P
as shown in Table 4. The polytopes with ID numbers 11, 12, 18, 18, 21 are combinatorially
equivalent to a cross-polytope, so the corresponding toric Fano 3-folds are Bott manifolds.
As we have already seen in Example 2.4, X;; is diffeomorphic to Xig.

Table 4. Vertices and minimal nonfaces of P with V(P) = 6

ID vertices of P from 4th minimal nonfaces
11| (-1,0,1),(0,-1,1),(0,0,—1) 14,25,36
12 | (-1,0,1),(0,-1,0),(0,1,-1) 14,25,36
17 | (-1,0,1),(0,-1,0),(0,0,—1) 14,25,36
18 | (-1,0,1),(0,-1,-1),(0,0,—1) 14,25,36
21 (-1,0,0),(0,-1,0),(0,0,-1) 14,25,36
6 | (-1,-1,2),(0,1,-1),(0,0,—1) | 26,35,36, 124, 145
16 | (-1,0,1),(1,0,-1),(-1,-1,0) | 14,35,45,126,236

RemaArk 4.1. We interchanged Sth and 6th vertices in [21] for ID numbers 12 and 18 so
that the minimal nonfaces have the same numbering as others.

We denote the degree two cohomology element corresponding to 4th, 5th and 6th vertices
by x, y and z respectively. Then the cohomology ring of each toric Fano 3-fold with ID
number in Table 4 is the quotient of a polynomial ring Z[x,y,z] by an ideal 7. By an
elementary computation, we obtain Table 5, which shows that the cohomology rings in the
tables are not isomorphic to each other:

5. The case of dimension 4

There are 124 variety-isomorphism classes of toric Fano 4-folds, in other words, 124 uni-
modular equivalence classes of smooth Fano polytopes P of dimension 4. In this section we



ConoMoLoGICAL RiGipiTy FOR Toric FANO MANIFOLDS 197

Table 5. Ideals and invariants when V(P) = 6

D 1 2-v.e. maximal basis number
11(18) xz,yz,z(x+y—z) X,y 2

12 2 yy - 2),2(x - 2) X, x—2z7 1

17 xz,yz,z(x—z) X, Y, X — 27 2

21 xz,yz,z2 X, Y, 2 3

6 2=y, yRx—y—2).2(x — 2), X, Xy 0 0

16 x(x+z),y2,xy, z3,z2(x—y) y 1

will classify them up to diffeomorphism. It turns out that the cohomological rigidity holds
for them except for Xsp and Xs7. Xs50 and Xs57 have isomorphic cohomology rings and their
total Pontryagin classes are preserved under an isomorphism between their cohomology
rings but we do not know whether they are diffeomorphic or not.

In Table 6 below, ID numbers whose toric Fano 4-folds are diffeomorphic are enclosed
by curly braces as before. Thirteen toric Fano 4-folds with the ID numbers in the upper
two lines in the row of (V(P), F(P)) = (8, 16) are Bott manifolds and toric Fano 4-folds for
(V(P),F(P)) = (6,8),(6,9),(7,12) are generalized Bott manifolds, where V(P) denotes the
number of vertices of P as before and F(P) denotes the number of facets of P.

Table 6. Diffeomorphism classification of toric Fano 4-folds

V(P) | F(P) | P H* Diff D
5 5 1 1 1 147
6 8 5 5 5 25,138, 139, 144, 145
6 4 3 3 44, {70, 141}, 146
7 11 3 3 3 24,127, 128
7 12 19 16 16 {30,43}, 31, 35, 42, 49, 66, {68, 134}, 109
117, {129, 136}, 132, 133, 135, 140, 143, 197
7 13 6 6 6 40, 41, 60, 64, 69, 137
8 15 10 7 7 26, {28,32}, 45, 48, {67, 118}, {123, 125}, 124
8 16 28 23 23 {74,961}, 75, {83,108}, {95, 131}
105, 106, 112, 114, 130, 142
{29, 39}, 33, 34, 37, 38, 47, 59
93,94, 104, {111,116}, 115, 126
8 17 7 6 6or7 36, (50, 57), 58, 61, 65, 110
8 18 2 2 2 53,55
9 18 4 4 4 27,46, 119, 122
9 20 17 10 10 71,{73,76,92}, {77,88}, 79, {81, 103}
{82,91, 107}, 84, {90, 113}, 102, 120
9 21 4 4 4 51,52, 56, 89
9 23 1 1 1 62
9 24 1 1 1 54
10 24 8 6 6 {72,87}, {78, 86}, 80, 85, 101, 121
10 25 1 1 1 98
10 30 1 1 1 63
11 30 1 1 1 99
12 36 1 1 1 100
total 124 | 102 | 102 or 103

Our approach to obtain the table above is the same as the case of dimension 3 but the
analysis of the cohomology rings in dimension 4 becomes much more complicated and
there are many more cases to investigate.

When V(P) = 5,11,12 or (V(P), F(P)) = (9,23),(9,24),(10,25), (10, 30), there is only
one smooth Fano 4-polytope; so there is nothing to prove in these cases. Moreover, the
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case (V(P), F(P)) = (10,24) is treated in Section 3. Indeed, toric Fano 4-folds with ID
numbers 72, 78, 80, 85, 86, 87, 101, 121 are respectively W5, W, W3, Wy, Wg, W7, Wy, W) in
Subsection 3.4. Therefore, it suffices to investigate the remaining cases. We shall carry out
this task one by one in this section.

Convention.

(1) The vertices of a smooth Fano 4-polytope P are shown in the database by @bro and
we number them as 1, 2, ... in the order shown in the database.

(2) The first four vertices of P are the standard basis of Z*, so we omit them and write
the vertices from 5th in the tables below.

(3) Minimal nonfaces of P are described using the numbering of the vertices of P.

(4) T denotes the ideal of the cohomology ring H*(X,) and its minimal generators are
described in the tables.

(5) 2-v.e., 3-v.e. and 4-v.e. in the tables are up to sign unless the coeflicient is Z/2.

(6) X, =~ X, means that X, is diffeomorphic to X,,.

(7) H*(X,) # H*(X,) means that the cohomology rings are not isomorphic (as graded
rings).

(8) The degree two cohomology elements corresponding to 5th, 6th, 7th, 8th, 9th ver-
tices are respectively denoted by x, y, z, u, v.

5.1. The case where V(P) = 6. We take two cases according to the values of F(P).

5.1.1. (V(P), F(P)) = (6,8). In this case, there are five smooth Fano 4-polytopes and
they are all combinatorially equivalent to a direct sum of a 3-simplex and a 1-simplex, so the
corresponding toric Fano 4-folds are generalized Bott manifolds. Using the data in Table 7,
we obtain Table 8 which shows that the five cohomology rings are not isomorphic to each
other.

Table 7. Vertices and minimal nonfaces of P with (V(P), F(P)) = (6, 8)

ID vertices of P from 5th minimal nonfaces
25 | (-1,-1,-1,3),(0,0,0,-1)) 1235, 46
138 | (-1,0,0,1),(0,-1,-1,-1) 2346, 15
139 | (-1,-1,-1,2),(0,0,0,-1) 1235, 46
144 | (-1,0,0,0),(1,-1,-1,-1) 2346, 15
145 | (-1,0,0,0),(0,-1,-1,-1) 2346, 15

Table 8. Ideals and invariants when (V(P), F(P)) = (6, 8)

ID 1 2-ve. | 2-ve. Z/2 | 4-ve. Z/2 | 3-ve. Z/3
25 | ¥y -3x) 0 0 X y

138 [ G-y’ | v y

139 | X yy-20 | 0 y

144 | X% yly—x 0 0 x 0

145 Ly y y (x.y)

5.1.2. (V(P), F(P)) = (6,9). In this case, there are four smooth Fano 4-polytopes and they
are all combinatorially equivalent to a direct sum of two 2-simplices, so the corresponding
toric Fano 4-folds are generalized Bott manifolds.
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Table 9. Vertices and minimal nonfaces of P with (V(P), F(P)) = (6,9)

ID vertices of P from Sth minimal nonfaces
44 | (-1,-1,0,2),(0,0,—1,-1) 125, 346
70 | (=1,-1,1,1),(0,0,-1,-1) 125, 346
141 | (-1,-1,0,1),(0,0,-1,-1) 125, 346
146 | (-1,-1,0,0),(0,0,-1,-1) 125, 346
We see that
(5.1) X70 = X141

in Subsection 5.5. On the other hand, using the data in Table 9, we obtain Table 10 which
shows that the three cohomology rings are not isomorphic to each other.

Table 10. Ideals and invariants when (V(P), F(P)) = (6,9)

1D 1 3-ve. | 3-ve. Z/2
NN Xy

70(141) x3,y(x—y)2 X X
146 PSS X,y

5.2. The case where V(P) = 7.

5.2.1. (V(P), F(P)) = (7,11). In this case, there are three smooth Fano 4-polytopes and
they are all combinatorially equivalent. Using the data in Table 11, we obtain Table 12 which
shows that the three cohomology rings are not isomorphic to each other.

Table 11. Vertices and minimal nonfaces of P with (V(P), F(P)) = (7,11)

1D vertices of P from 5th minimal nonfaces

24 | (-1,-1,-1,3),(0,0,1,-1),(0,0,0,—1) | 1235, 1256, 37, 46, 47
127 | (-1,0,0,1),(1,0,0,-1),(-1,—-1,—1,0) | 1237, 2347, 15, 46, 56
128 | (-1,0,0,1),(-1,0,0,0),(2,-1,-1,—1) | 2347, 2357, 15, 16, 46

Table 12. Ideals and invariants when (V(P), F(P)) = (7,11)

1D 1 2-ve. | 3-ve. Z/3
24 | z(x =y yy +z-3x),2(z - 2x), x*, 5y 0 y+z
127 X(x +2), 42, 1y, 2, 2 (Y — ) y

128 | x(x+y-22).yly—2).y(z — x), 2%, x2° 0 0

5.2.2. (V(P), F(P)) = (7,12). In this case, there are 19 smooth Fano 4-polytopes and they
are all combinatorially equivalent to a direct sum of 2-simplex and two 1-simplices, so the
corresponding toric Fano 4-folds are generalized Bott manifolds.

We see that

(5.2) X30 = Xu3, Xes = X134, X129 =~ X136

in Subsection 5.5. Using the data in Table 13, we obtain the following table.

Table 14 shows that the cohomology rings in the table are distinguished by the invariants
in the table except for two pairs: 49 and 68(134), 97 and 133. We shall prove that their
cohomology rings are not isomorphic to each other.
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Table 13. Vertices and minimal nonfaces of P with (V(P), F(P)) = (7,12)

ID vertices of P from Sth minimal nonfaces
30 (-1,-1,0,2),(0,0,-1,1),(0,0,0,—1) 125, 36, 47
31 (-1,-1,0,2),(0,0,1,-1),(0,0,-1,0) 125,37, 46
35 (-1,-1,0,2),(0,1,-1,0),(0,0,0,-1) 125, 36, 47
42 (-1,-1,0,2),(0,0,-1,0),(0,0,0,-1) 125, 36, 47
43 | (-1,-1,0,2),(0,0,0,-1),(0,0,—1,-1) 125,37, 46
49 (-1,-1,1,1),(0,0,-1,1),(0,0,0,—1) 125, 36,47
66 (-1,-1,1,1),(0,0,-1,0),(0,0,0,—1) 125, 36, 47
68 | (-1,-1,1,1),(0,0,-1,0),(0,0,—1,-1) 125, 36, 47
97 (-1,0,0,1),(0,-1,0,1),(0,0,-1,-1) 347, 15, 26
109 | (-1,0,0,1),(0,-1,1,0),(0,0,-1,-1) 347,15, 26
117 | (-1,0,0,1),(0,0,1,-1),(0,-1,-1,0) 237,15, 46
129 | (-1,0,0,1),(0,-1,-1,1),(0,0,0,-1) 236, 15,47
132 | (-1,0,0,1),(0,-1,0,0),(0,1,-1,-1) 347, 15, 26
133 | (-1,0,0,1),(0,-1,0,0),(0,0,—-1,-1) 347, 15, 26
134 | (-1,0,0,1),(0,0,0,-1),(1,-1,-1,0) 237, 15, 46
135 | (-1,0,0,1),(0,0,0,-1),(0,-1,-1,0) 237,15, 46
136 | (-1,0,0,1),(0,0,0,-1),(0,-1,-1,-1) 237,15, 46
140 | (-1,-1,0,1),(0,0,-1,0),(0,0,0,-1) 125, 36,47
143 | (-1,0,0,0),(0,-1,0,0),(0,0,—1,-1) 347, 15, 26

Table 14. Ideals and invariants when (V(P), F(P)) = (7,12)

1D 1 2-v.e. 2-ve. Z/2 | 4-ve. Z/2 | 3-ve. Z/3 3-ve. Z/2
30 X, Y, 2,
3) By 2x+y—2) y y all (. p) yi Z
31 O, yCx—y), 2y - 2) 0 y
35 X(x—y).y?22x - 2) y (Y,2) all y
42 2, 202x - 2) y (4.2) all (x,y)
49 X, yx—y),z(x+y—-2) 0 0 (x,y) X X
66 Oy —y),ax—2) 0 0 all
68 3
a3 | ¥ wyx—y—2),2(x—2) 0 0 (x,2) x x
97 22, yz, 2(x+ y—2) X, Y (x,y) all (x,y) xxﬁ— ; :—_ Z
109 2yt 2 (x—2)(y —2) X,y (x,y) (x,y)
117 Poyx -y, 2@ -2 | x,x-2y X (x,y)
129 5 5
(136) Xy dx+y—2) x x (x,y) (x,y)
132 X2, y(y —2), 22 (x — 2) x x (x,2) x
Y, X+
133 2yt P -2) Xy CY) all xy) "’ Zfz ’
135 y(x—y), 7 X x—2y x all
140 Lyt 2x—2) y y all (x.y) x.y
143 X2, yz, 2 X, Y (x,y) all all

The 3-v.e. of H*(X49) and H*(Xeg) are both x up to sign. Therefore, if there is an isomor-
phism H*(X49) — H*(Xe3), then it induces an isomorphism H*(X49)/(x?) — H*(Xeg)/(x?).
However, Table 15 shows that this does not occur, so H*(X49) # H*(Xgg).

Table 15. Distinguishment between H*(X49) and H*(Xes)

ID T+ () 3-ve. Z/3
49 oy(x—y)z2(x+y —2) all
68(134) | P y(x—y—2).2(x—2) (x,2)

The 2-v.e. of H*(X97) and H*(X133) are both x, y up to sign and the transposition of x and
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y induces an automorphism of H*(Xg7) since the ideal 7 of H*(Xo7) is invariant under the
transposition. Therefore, if there is an isomorphism F': H*(X97) — H*(X133), then we may
assume that F(x) = +x, so that F induces an isomorphism : H*(X97)/(x) = H*(X133)/(xX).
However, Table 16 shows that this does not occur, so H*(Xg97) # H*(X;33).

Table 16. Distinguishment between H*(X49) and H*(Xs3)

1D 1+ (x) 3-ve. Z/3
97 | 2.2(y-2) y
133 .7 all

5.2.3. (V(P), F(P)) = (7,13). In this case, there are six smooth Fano 4-polytopes. We
shall prove that these six cohomology rings are not isomorphic to each other.

Table 17. Vertices and minimal nonfaces of P with (V(P), F(P)) = (7,13)

ID vertices of P from Sth minimal nonfaces

40 (-1,-1,0,2),(0,1,0,-1),(0,0,—1,-1) | 125,156, 237, 347, 46
41 (-1,-1,0,2),(1,1,-1,-1),(0,0,0,-1) | 125,127, 346, 356, 47
60 (-1,-1,1,1),(0,1,-1,0),(0,0,—1,—-1) | 125, 156,247, 347, 36
64 | (-1,-1,1,1),(1,1,-1,-1),(-1,-1,0,0) | 125, 127, 346, 347, 56
69 | (-1,-1,1,1),(0,1,-1,-1),(0,0,—1,—1) | 125, 156, 346, 347, 27
137 | (-1,0,0,1),(1,-1,0,-1),(=1,0,-1,0) | 137,246, 256, 347, 15

Using the data in Table 17, we obtain the following table.
Table 18. Ideals and invariants when (V(P), F(P)) = (7,13)

1D 1 3-ve. | 3-ve. Z/2
40 oy, 2 (x—y). 22 (x -2, yRx—y —2) X X, Yy+z
41 | x(x— ) y(x— )2y (y + 2, x> 22x — y — 2) (0]

60 [ Py sx—yx-2),2(x -2 ylx—y-2) | «x x

64 x(x+ 2%, 2(x —y + 2% 50, 2(x — y), xy y Y,z
69 X,y y(x—y—2%,2,2(x — y) X,z X,z
137 Dot P (x—y), x(x —y +2) Y.z Y,z

Table 18 shows that the six cohomology rings can be distinguished by the invariants in
the table except for two pairs: 40 and 64, 69 and 137. We shall prove that their cohomology
rings are not isomorphic to each other.

The 3-v.e. of H*(Xy) and H*(Xe4) are respectively x and y up to sign. Therefore, if there
is an isomorphism H*(Xy9) — H*(Xe4), then it induces an isomorphism H*(Xy9)/(x) —
H*(Xe4)/(y). However, this does not occur because

H*(X40)/(x) = Zly, 21/ (Y% 2, y(y + 2)),
H*(X64)/(y) = ZIx, 2]/ (x(x + 2)%, 2(x + 2)*, X72),

and the degree sequences of these ideals are different. Therefore H*(X49) & H* (X¢4)-

Similarly, the 3-v.e. of H*(Xg9) and H*(X;37) are respectively x,z and y,z up to sign.
Therefore, if there is an isomorphism H*(Xg9) — H*(X137), then it induces an isomorphism
H*(Xe9)/(x,2) = H*(X137)/(y, z). However, this does not occur because

H*(Xe0)/(x,2) = ZIyl/(y),  H'(X137)/(y,2) = Z[x]/(xD),

and these quotient rings are not isomorphic. Therefore H*(Xq9) % H*(X137)-
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5.3. The case where V(P) = 8.

5.3.1. (V(P), F(P)) = (8,15). In this case, there are ten smooth Fano 4-polytopes and
they are all combinatorially equivalent to a direct sum of a 5-gon and a 2-simplex.

Table 19. Vertices and minimal nonfaces of P with (V(P), F(P)) = (8, 15)

D vertices of P from 5th minimal nonfaces

26 (-1,-1,0,2),(0,0,-1,1),(0,0,1,-1),(0,0,-1,0) | 125, 36, 38, 47, 48, 67
28 (-1,-1,0,2),(0,0,-1,1),(0,0,1,-1),(0,0,0,—1) | 125, 36, 38, 47, 48, 67
32 (-1,-1,0,2),(0,0,1,-1),(0,0,-1,0),(0,0,0,—1) | 125,37, 38, 46, 48, 67
45 (-1,-1,1,1),(0,0,-1,1),(0,0,1,-1),(0,0,-1,0) | 125, 36, 38, 47, 48, 67
48 (-1,-1,1,1),(0,0,-1,1),(0,0,-1,0),(0,0,0,—1) | 125, 36, 37, 47, 48, 68
67 | (-1,-1,1,1),(0,0,-1,0),(0,0,0,-1),(0,0,—1,—1) | 125, 36, 38, 47, 48, 67
118 | (-1,0,0,1),(1,0,0,-1),(-1,0,0,0),(0,-1,-1,1) | 238, 15,17, 46,47, 56
123 | (-1,0,0,1),(1,0,0,-1),(-1,0,0,0),(1,-1,-1,0) | 238, 15, 17, 46, 47, 56
124 | (-1,0,0,1),(1,0,0,-1),(-1,0,0,0),(0,-1,-1,0) | 238, 15, 17, 46, 47, 56
125 | (-1,0,0,1),(1,0,0,-1),(=1,0,0,0),(1,—-1,-1,-1) | 238, 15, 17, 46, 47, 56

We see that
(5.3) Xos ~ X32, Xe7 = X118, X123 ~ X125
in Subsection 5.5. We obtain the following table from Table 19.

Table 20. Ideals and invariants when (V(P), F(P)) = (8, 15)

ID 1 2-ve. | 2-ve. Z/2 | 3-ve.
X3, Yy + u), u(y — z + u),
26 72(2x — 2), u(2x — u), yz 0 (@ u)
28 Xyt u(y - 2),
yul - 2) Yy (Y, u)
32) 72x —z—u), u(2x — u), yz

By —y - w),ux - w),

4
> x(x = 2),u(x+y—2),yz 0 "
3 - -
48 Xyx—y—2,2(x -y - 2), 0 0 N
2(x +y — ), u(x — u), yu
3 — -
67 X y(x -y —w),u(x —y —u), 0 0 N
(118) Z(x—z—u)uly —2),yz
123 w3, x(x + 7 — u), 2(z — w),
(125) Pzl —y)xy Y Y
124 w3, x(x + 2), 2, yz,z(x —Y), xy 00

Tables 20 shows that the seven cohomology rings in the table can be distinguished by the
invariants in the table except for 48 and 67(118). The 3-v.e. of H*(X4s) and H*(X¢s7) are
both x up to sign. Therefore, if there is an isomorphism H*(Xs3) — H*(Xe7), then it induces
an isomorphism H*(X43)/(x*) — H*(Xs7)/(x?). However, Table 21 shows that this does not
occur, so H*(Xyg) ¢ H*(Xe¢7).

Table 21. Distinguishment between H*(Xsg) and H*(X47)

1D 7+(D 3-ve. Z/3
48 oylx—y-2).2(x —y —2),2(x + y — 1), u(x — u), yu (X, y,2,u)
67(118) | x*,(yx—y—w),u(x—y—w),z(x —z—w),ulx—z—u),yz | (y+u,z+u)

5.3.2. (V(P), F(P)) = (8,16). In this case, there are 28 smooth Fano 4-polytopes and
there are two combinatorial types among them. Indeed, 13 polytopes among them have the
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same combinatorial type as a cross-polytope as shown in Table 22. The corresponding toric
Fano 4-folds are Bott manifolds. The cohomology rings associated to these two different
combinatorial types are not isomorphic to each other because the degree sequences of their
ideals are different, see Tables 23 and 25. More generally, it is known that a toric manifold
which has the same cohomology ring as a Bott manifold is indeed a Bott manifold ([19]).

Table 22. Vertices and minimal nonfaces of P with (V(P), F(P)) = (8, 16),
cross-polytope

ID vertices of P from 5th minimal nonfaces
74 | (=1,0,0,1),(0,—1,0,1),(0,0,—1,1),(0,0,0,-1) 15, 26, 37, 48
75 | (=1,0,0,1),(0,—1,0,1),(0,0, 1,-1),(0,0,—1,0) 15, 26, 38, 47
83 | (=1,0,0,1),(0,—1,0,1),(0,1,-1,0),(0,0,0,-1) 15, 26, 37, 48
95 | (~1,0,0,1),(0,—1,0,1),(0,0,—-1,0),(0,0,0,-1) 15,26, 37,48
9% | (-1,0,0,1),(0,—1,0,1),(0,0,0,-1),(0,0,-1,-1) 15, 26, 38, 47
105 | (=1,0,0,1),(0,=1,1,0),(0,1,0,-1),(0,0,-1,0) 15, 26, 38, 47
106 | (=1,0,0,1),(0,—=1,1,0),(0,0,-1,0),(0,0,0,—1) 15, 26, 37, 48
108 | (=1,0,0,1),(0,—1, 1,0),(0,0,—1,0), (0,0, -1, - 1) 15, 26, 37, 48
112 | (-1,0,0,1),(0,0,1,-1),(0,—1,0,0),(0,0,-1,0) 15, 27, 38, 46
114 | (=1,0,0,1),(0,0,1,-1),(0,-1,1,-1),(0,0,-1,0) 15,27, 38, 46
130 | (=1,0,0,1),(0,—-1,0,0),(0,0,-1,0),(0,0,0,—1) 15, 26, 37, 48
131 | (=1,0,0,1),(0,-1,0,0),(0,0,0, —1), (0,0, -1, - 1) 15, 26, 38, 47
142 | (=1,0,0,0),(0,—1,0,0),(0,0,-1,0),(0,0,0, 1) 15, 26, 37, 48
One can see that
(5.4) X74 = Xog, Xg3 =~ Xj0s, Xos = Xi31

in Subsection 5.5. Using the data in Table 22, we obtain the following table.

Table 23. Ideals and invariants when (V(P), F(P)) = (8, 16), cross-polytope

1D 1 2-v.e. 4-ve. Z/2
74(96) X2, yz, 2, ux+y+z—u) X, Y, 2 all

75 oyt uz—u),z2(x +y —2) X,y all
83(108) | X% yly —2), 2 u(x +y —u) X,2,2— 2y (X, 4,2)
95(131) oyt 2 u(x +y —u) X, 0,2 all

105 X2, y(y — 2), u(y — u), 2(x — 2) X, x—2z (x,4,2)

106 xz,yz,z(y—z),u(x—u) XY, X —2u,y — 2z

112 x2,72, u(y —u), y(x —y) X,2,x — 2y all

114 X2 uy+z—u),yx—y—2) X,z (x,y,2)

130 xz,yz,zz,u(x—u) X, Y, 2, X —2u

142 xz,yz,zz,u2 X, Y, 2, U

Table 23 shows that the cohomology rings in the table can be distinguished by the invari-
ants in the table except for 74(96) and 95.

Suppose that there is an isomorphism F : H*(X74) — H*(Xos). Since the 2-v.e. of H*(X74)
and H*(Xys) are x,y,z and any permutation of x,y,z is an automorphism of H*(X74), we
may assume that F(x) = +x, F(y) = +y, F(z) = +z. Therefore, F induces an isomorphism

H*(X74)/(x,y) = H*(X9s)/(x, y). However, this does not occur because
H*(X74)/(x,y) = Zlz,u) /(2 ulu = 2)),  H*(Xos) = Zlz,ul/ (2%, u°)

and these two rings are not isomorphic (e.g. their 2-v.e. are different). Therefore, H*(X74) #
H*(Xos).
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Next, we shall treat the other case where P is not combinatorially equivalent to a cross-
polytope. There are 15 smooth Fano 4-polytopes in this case as shown in Table 24.

Table 24. Vertices and minimal nonfaces of P with (V(P), F(P)) = (8, 16),
non-cross-polytope

D vertices of P from 5th minimal nonfaces

29 (-1,-1,0,2),(0,0,-1,1),(0,1,0,-1),(0,0,0,—1) | 125, 157, 28, 36, 47, 48
33 (-1,-1,0,2),(0,1,-1,0),(0,1,0,-1),(0,0,0,—1) | 125, 157, 28, 36, 47, 48
34 (-1,-1,0,2),(0,1,-1,0),(1,0,0,-1),(0,0,0,—1) | 125,257, 18, 36, 47, 48
37 (-1,-1,0,2),(0,1,0,-1),(0,0,-1,0),(0,0,0,—1) | 125, 156, 28, 37, 46, 48
38 | (-1,-1,0,2),(0,1,0,-1),(0,0,0,-1),(0,1,-1,—1) | 125,156, 27, 38, 46, 47
39 | (-1,-1,0,2),(0,1,0,-1),(0,0,0,-1),(0,0,—1,—1) | 125, 156,27, 38, 46, 47
47 (-1,-1,1,1),(0,0,-1,1),(0,1,0,-1),(0,0,0,-1) | 125,157, 28, 36, 47, 48
59 (-1,-1,1,1),(0,1,-1,0),(0,0,-1,0),(0,0,0,—1) | 125, 156, 27, 36, 37, 48
93 (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,—-1,-1,0) | 238, 348, 15, 26, 47, 67
94 (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,0,—-1,—1) | 238, 348, 15, 26, 47, 67
104 | (-1,0,0,1),(0,-1,1,0),(0,1,-1,0),(0,—1,0,—1) | 248,348, 15, 26, 37, 67
111 | (-1,0,0,1),(0,0,1,-1),(0,-1,-1,1),(0,0,0,-1) | 237,267, 15, 38, 46, 48
115 | (-1,0,0,1),(0,0,1,-1),(0,0,0,-1),(1,-1,-1,0) | 238, 268, 15, 37, 46, 47
116 | (-1,0,0,1),(0,0,1,-1),(0,0,0,-1),(0,—1,—1,0) | 238,268, 15, 37, 46, 47
126 | (-1,0,0,1),(1,0,0,-1),(0,-1,0,0),(-1,0,—1,0) | 138,348, 15, 27, 46, 56

We see that

(5.5) X29 ~ X39, X1 ~ Xuie
in Subsection 5.5. Using the data in Table 24, we obtain the following table.

Table 25. Ideals and invariants when (V(P), F(P)) = (8, 16), non-cross-polytope

1D — 1 , 2-v.e. 2-ve. Z/2 | 4-ve.Z/2 | 3-ve.Z/3
9 | s sy | G Rt Wi
s | ety Jesw [ w ]
34 xzy(f’ ;(g))c fzz(x__u)y )u? )Ex__uf) y W,z+u) | (xy,z+u)
v | s : Joewo | @ | wwo
_ 2 . 2
38 XZE/EZx':—)’;—y;Z—(Xu), Zy(x il)z’)u ’ u u (X, y + z,u) u
i v S I B S
o %y, A=y yx -y =2, . . Al
77, u(x — u)
I v v R B R
94 - o ;’i(f ;ff)y’zxz’ xy | @y all )
104 uz(xx;y I;)(;/Miyu; ?z(xyz_ w, X, 2 (x,2) (x,z,u)
KR —) —
(} }é) y§;:2ZZ+;_’ Z;,yu(xZ)—’ W X, x—2u x (x,z,u) (x,z,u)
115 L; ) xyf yx_(z ;Z‘&’ i(z - ”Z‘; 0 0 (x.y. 1) u
126 w, ”2(;‘{;),’;‘;" ). v,z .2) all > 2,1)

Table 25 shows that the cohomology rings in the table are distinguished by the invariants
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in the table except for 47 and 115. The 3-v.e. of H*(Xy47) and H*(X;5) are respectively x
and u up to sign. Therefore, if there is an isomorphism H*(X47) — H*(X15), then it induces
an isomorphism H*(X47)/(x*) = H*(X115)/(u*). However, Table 26 shows that this does not
occur, so H*(Xy7) # H* (X115).

Table 26. Distinguishment between H*(X47) and H*(X|5)

D T+ ((3-v.e)?) 3-ve. Z/3
47 | Zoux -2 yx—yz(x+y —z—w)uly —u) | (x,y.z+u)
115 | u?, x(x —u), 2y —u), y(x —y —2), 2(x —y — 2) (x, u)

5.3.3. (V(P), F(P)) = (8,17). There are seven smooth Fano 4-polytopes in this case and
there are two combinatorial types among them: one is ID numbers 36, 65 and the other one
is ID numbers 50, 57,58, 61, 110, see Table 27. One can distinguish the cohomology rings
of the former class between those of the latter class by the degree sequences of the ideals.
Therefore, Table 28 shows that the seven cohomology rings can be distinguished by the
degree sequences of the ideals and 3-v.e. over Z/2 except for 50 and 57.

Table 27. (V(P), F(P)) = (8,17)

ID vertices of P from 5th minimal nonfaces

36 (-1,-1,0,2),(0,1,0,-1),(0,-1,-1,1),(0,0,0,-1) 28, 46, 48, 125, 156, 158, 237, 347, 367
50 (-1,-1,1,1),(0,1,-1,0),(0,1,0,-1),(0,-1,0,0) 28, 36,47, 125, 156, 157, 348

57 (-1,-1,1,1),(0,1,-1,0),(0,-1,0,0),(0,0,0,-1) 27, 36, 48, 125, 156, 158, 347

58 (-1,-1,1,1),(0,1,-1,0),(0,-1,0,0),(0,1,-1,—1) 27, 36, 48, 125, 156, 158, 347

61 (-1,-1,1,1D,(1,1,-1,-1),(-1,0,0,0), (0, -1,0,0) 17, 28, 56, 125, 346, 347, 348

65 | (-1,-1,1,1),(1,1,-1,-1),(-1,-1,0,0),(0,0,-1,-1) | 56,58, 67, 125, 127, 128, 346, 347, 348
110 (-1,0,0,1),(0,0,1,-1),(1,0,-1,0),(-1,-1,0,0) 15, 37, 46, 128, 238, 248, 567

Table 28. Ideals and invariants when (V(P), F'(P)) = (8, 17)

D A 3-ve. Z/2
36 (x—y+z)u,(2x—y+z—u)y,(x—u)u,x2(x+z), x+2z,(y+2zu)
X2y, Xu, (x + )72, 22 (x — u), 22y
65 XYy, X, Yz, (x + z)zx, (x+ z)zz, Z+uy+u,x+2z
(y — 2%u, (x — y — )2y, (x — u)?z, (y + u)’u

50 (x—y—z+wu,(x—yy,(x—2)z, Y, 2),x+u
X2(x +u), xzy, Xz, (x— y(x—2)u

57 (x—y+2z (x—yy, (x—uwu, (Y,u),x+z
2x+ 2), xzy, xu, (x—y)(x—u)z

58 Zx—y+z—uw,yx—y—u),ulx—u), LUy +u
X2 (x + 2), X2y, X2u, 72(x — y)(x — u)

61 2(x—y+2),u(x—y+u),xy, (Y, z,u)

xX(x + 2)(x +u), 2, 2, 0
110 (x=z+ux, (y — 2z, (x — Yy, zu
Wy — 2w (x — y), xyz

The fans of Xso and Xs57 do not satisfy the condition in Lemma 2.3 up to unimodular
equivalence, so they are not weakly equivariantly diffeomorphic with respect to the restricted
(S")*-actions. However, their cohomology rings are isomorphic to each other. Indeed, the
map
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(5.6) x5y, z,u) = (—x +2u, —y +u, u, —z)

gives an isomorphism H*(Xs59) — H*(Xs7). It does not preserve their total Chern classes
(even their first Chern classes) but it does preserve their total Pontryagin classes (in fact, the
first and second Pontryagin classes because of dimensional reason) which are given by

P(Xs0) = (1 + X (1 + (x—y —z+ w1+ (x = (1 + (x = )1 + y>)(1 + )1 +ud),
p(Xs7) = (1 + (1 + (x —y + )L+ (x — )L + (x — DD +y*)(A + 21 + ),
see Remark 2.2.

5.3.4. (V(P), F(P)) = (8,18). In this case, there are two smooth Fano polytopes as shown
in Table 29. Their cohomology rings can be distinguished by 3-v.e. over Z/3 as shown in
the following table.

Table 29. (V(P), F(P)) = (8,18)

ID vertices of P from 5th minimal nonfaces
53 | (-1,-1,1,1),(0,1,-1,0),(1,0,0,-1),(-1,-1,0,0) | 36,47, 125, 128, 138, 156, 248, 257, 348, 567
55 | (-1,-1,1,1),(0,1,-1,0),(1,0,0,-1),(0,0,-1,—1) | 36,47, 125, 128, 138, 156, 248, 257, 348, 567

Table 30. Ideals and invariants when (V(P), F'(P)) = (8, 18)

D 1 3-ve. Z/3
53 x-yy,(x—2)z,(x + u)x, i, (x — y)uz, u
(x + w)xy, (x — 2)u?, (x + u)xz, (x — y)(x — 2u, xyz
55 (x—y—uwy,(x—z—-uz, X, (x— Y)(x — 2)u, w, (x, u)
X2y, u*(x - 2), Xz, P (x — 1), xyz

5.4. The case where V(P) = 9.

5.4.1. (V(P), F(P)) = (9,18). In this case, there are four smooth Fano 4-polytopes as
shown in Table 31 and they are all combinatorially equivalent to a direct sum of a 2-simplex
and a 6-gon. Using the data in Table 31, we obtain Table 32 which shows that the four
cohomology rings are not isomorphic to each other.

Table 31. (V(P), F(P)) = (9, 18)

ID vertices of P from 5th minimal nonfaces

27 | (-1,-1,0,2),(0,0,-1,1),(0,0,1,-1),(0,0,—1,0),(0,0,0,-1) | 36, 38, 39, 47, 48, 49, 67, 69, 78, 125
46 | (-1,-1,1,1),(0,0,-1,1),(0,0,1,-1),(0,0,-1,0),(0,0,0,—1) | 36,38, 39,47, 48,49, 67, 69, 78, 125
119 | (-1,0,0,1),(1,0,0,-1),(-1,0,0,0),(0,-1,-1,1),(0,0,0,-1) | 15,17, 19, 46, 47, 49, 56, 59, 67, 238
122 | (-1,0,0,1),(1,0,0,-1),(-1,0,0,0),(0,0,0,-1),(0,-1,-1,0) | 15,17, 18, 46,47, 48, 56, 58, 67, 239

Table 32. Ideals and invariants when (V(P), F(P)) = (9, 18)

D A 2-v.e. Z/2 3-ve. Z/3
27 Yy +uw), uy + u),v(z — u),z2x —z —v), (yY+uz+ov,u+v) | (y+u,x)
u(2x +y —v),v(2x — z — v), yz, yo, zu, X3
46 | y(x—y—w,u(x—y—u),v(x+z—u),z(x —z-v), u+v X
u(x +y —v),0(x — 2 — v), yz, yo, 2, x°
119 x(x+2),z2(x +2),0(y — 2), y(y — u +v), X+2z (x+z,u)
2(x + u = v), 0(y — u + v), Xy, X0, yz, U
122 x(x +2),2(x + 2), uly — 2), y(y + u), (x+z,y+uz+u) all
z(x — w), u(y + u), xy, xu, yz, v
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5.4.2. (V(P), F(P)) = (9,20). In this case, there are 17 smooth Fano 4-polytopes as
shown in Table 33 and they are all combinatorially equivalent to a direct sum of two 1-
simplices and a 5-gon.

Table 33. (V(P), F(P)) = (9,20)

ID vertices of P from 5th minimal nonfaces
71 (-1,0,0,1),(0,-1,0,1),(0,0,-1,1),(0,0,1,-1),(0,0,-1,0) 15, 26, 37, 39, 48, 49, 78
73 (-1,0,0,1),(0,-1,0,1),(0,0,-1,1),(0,0,1,-1),(0,0,0,-1) 15, 26, 37, 39, 48, 49, 78
76 (-1,0,0,1),(0,-1,0,1),(0,0,1,-1),(0,0,-1,0),(0,0,0,-1) 15, 26, 38, 39, 47, 49, 78
77 (-1,0,0,1),(0,-1,0,1),(0,1,-1,0),(0,1,0,-1),(0,-1,0,0) 15, 26, 29, 37, 48, 49, 68
79 (-1,0,0,1),(0,-1,0,1),(0,1,-1,0),(1,0,0,-1),(-1,0,0,0) 15,19, 26, 37, 48, 49, 58
81 (-1,0,0,1),(0,-1,0,1),(0,1,-1,0),(1,0,0,-1),(0,0,0,-1) 15,19, 26, 37, 48, 49, 58
82 (-1,0,0,1),(0,-1,0,1),(0,1,-1,0),(0,-1,0,0),(0,0,0,-1) 15, 26, 28, 37, 48, 49, 69
84 (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,-1,0,0),(0,0,-1,0) 15, 26, 28, 39, 47, 48, 67
88 | (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,-1,0,0),(0,1,-1,-1) | 15,26, 28, 39, 47, 48, 67
90 (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,0,-1,0),(0,0,0,-1) 15, 26, 29, 38, 47, 49, 67
91 (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,0,0,-1),(0,1,—-1,—1) | 15,26, 28, 39,47, 48, 67
92 | (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,0,0,-1),(0,0,—-1,—-1) | 15,26, 28, 39, 47, 48, 67
102 | (-1,0,0,1),(0,-1,1,0),(0,1,-1,0),(0,-1,0,0),(0,0,0,-1) 15, 26, 28, 37, 38, 49, 67
103 | (-1,0,0,1),(0,-1,1,0),(0,1,-1,0),(0,-1,0,0),(0,1,-1,-1) | 15,26, 28, 37, 38, 49, 67
107 | (-1,0,0,1),(0,-1,1,0),(0,0,-1,0),(0,0,0,-1),(0,0,-1,-1) | 15,26, 37, 39, 48,49, 78
113 (-1,0,0,1),(0,0,1,-1),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1) 15, 27, 38, 39, 46, 49, 68
120 | (-1,0,0,1),(1,0,0,-1),(-1,0,0,0),(0,-1,0,0),(0,0,—1,0) 15, 17, 28, 39, 46, 47, 56
We see that
5.7) X533~ Xz~ Xop, X77~ Xgs, Xg1 ~Xjo3, Xso~Xor = Xjo7, Xoo=Xin3
in Subsection 5.5. Using the data in Table 33, we obtain the following table.
Table 34. Ideals and invariants when (V(P), F(P)) = (9, 20)
ID 1 2-v.e. 2-ve. Z/2 4-ve. Z/2
) =
7 X7, y”,z2(z 4+ v),0(z — u + ), vy
u(x+y—u)v(x+y—uv),zu
73 xz,yz,zz,v(z—u),
(76, 92) ux+y—u—v),o(x+y—v),zu HYz
77 xz,y(y—z+v),v(x+z—u),
(88) 22, u(x — u), v(x + y — u), yu %23,x=2u x2) (%, 2,1,0)
x(x +v),0(v = y), yly - 2), _
” 2, u(y — u),v(x +y — u), xu »2-2
81 X o(x —u), y(y - 2), 2%,
(103) w(y —u—v),v(y — ), xu %52-2 *2) (x:4,2,0)
82 xz,y(y—z+u),u(y—z+u), X,2, X — 20,
91, 107) 2 u(x +y — v), v(x — ), yo -2y~ 2u ®2 | ®y+uz)
X y(y + u), u(x — u) 02 X, 0,x —2u
24 , , AN , U, , : 1
u(x +y—2),2(x —2),yz x-2z x0) a
90 7oy — 2,007, X,y u,
(113) v(x —v),z(x —z—-0),yz x=2v
oyl + ), 22
102 ’ oy
0 uy — 2), v(x =), yz “ (zu)
x(x +2), 22, u%, 0%,
120 ©0 , 2, Uy
vz —y),ay @ )

Table 34 shows that the ten cohomology rings in the table are distinguished by the in-
variants in the table except for 77 and 81. The 2-v.e. over Z/2 of H*(X77) and H*(Xg;)
are both (x,z). Therefore, if there is an isomorphism H*(X77) — H*(Xg;), then it in-
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duces an isomorphism (H*(X77) ® Z/2)/(x,z) — (H*(Xg1) ® Z/2)/(x, z). However, Table 35
shows that this does not occur because the degree sequences of the ideals are different, so
H*(X77) # H™(Xs1).

Table 35. Distinguishment between H*(X77) and H*(Xs;)

1D I1R®Z/2+(x,2)
7788) | yly +v). 0%, i v(y + u), yu
81(103) uv, yz, u(y + u),v(y +v)

5.4.3. (V(P), F(P)) = (9,21). In this case, there are four smooth Fano 4-polytopes and
there are two combinatorial types among them. Indeed, the combinatorial type of ID 52 is
different from the others as is seen from Table 36.

Table 36. (V(P), F(P)) = (9,21)

D vertices of P from 5th minimal nonfaces

51 | (-1,-1,1,1),(0,1,-1,0),(0,1,0,-1),(0,-1,0,0),(0,0,-1,0) | 28,29, 36, 39, 47, 68, 125, 156, 157, 159, 348
52 | (-1,-1,1,1),(0,1,-1,0),(1,0,0,-1),(0,0,-1,0),(0,0,0,—1) 19, 28, 36, 38, 47, 49, 125, 156, 257, 567
56 | (-1,-1,1,1),(0,1,-1,0),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1) | 27,28, 36, 38, 49, 67, 125, 156, 158, 159, 347
89 | (-1,0,0,1),(0,-1,0,1),(0,1,0,-1),(0,—1,0,0),(1,0,—-1,—1) | 15,26, 28,47, 48, 67, 178, 239, 349, 359, 369

Using the data in Table 36, we obtain Table 37. It shows that H*(Xs;) can be distinguished
from the other three cohomology rings by the degree sequences of the ideals. On the other
hand, Table 38 shows that the three cohomology rings are not isomorphic to each other.

Table 37. Ideals when (V(P), F(P)) = (9,21)

1D 1

51 | u(x—z+u)v(x—y—z+u),y(x—y—uv),0(x—y—uv),
2(x — 2), yu, X2(x + u), xzy, X2z, x20, u(x — v)(x - 2)
52 v(x — 2), u(x — ), y(x —y — u), u%, z2(x — z — v),
02, X3, X2y, X27, xyz

56 Zx+2),u(m+2),y(x —y —w),u(x —y —u),v(x —v),
yz, X2(x+2), xzy, X2u, x%0, z2(x — u)(x — v)

89 | x(x—v),y(y + u),u(y —z+ u), z(x —z —v), u(x — u — v),
yz, zu(x — v), v*(z — u), V(2 + v), v*x, 1’y

Table 38. (V(P), F(P)) = (9,21)

ID | 2-ve.Z/2Z 3-ve. Z/3Z 3-ve. Z/2Z

51 [} (z,y +0) X+u,x+u+0v,2,y+z,y+o,y+z+0v
52 (u,v)

56 0 (x+2z,y+u,v)

89 0 (x,y +u) X, X+Z+ Uy +u,z+0,u+v

5.5. Diffeomorphism. In the previous subsections, we claimed some diffeomorphisms
among toric Fano 4-folds, i.e. (5.1), (5.2), (5.3), (5.4), (5.5), (5.7). In this subsection, we
establish them by showing that the condition in Lemma 2.3 is satisfied in each case.

In the following, we express the vertices of a smooth Fano polytope P, with ID number
g in terms of a matrix where each row shows a vertex of P, and the numbers written on the
left side of a matrix are the numbers of the vertices. For instance, the vertices of Py, are
arranged as (1,2, 3,4, 5, 6) while the vertices of P4, are arranged as (1,2,3,6,5,4) in their
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matrices. The correspondence (1,2,3,4,5,6) — (1,2,3,6,5,4) gives a bijection between
the vertices of P7y and P41, which preserves the combinatorial structures of P7y and Py4;.
The multiplication by a 4 X 4 unimodular matrix from the right shows a unimodular trans-
formation. In each case, we will see that the resulting vectors of the corresponding vertices
agree up to sign, so the condition in Lemma 2.3 is satisfied.

e 70 and 141
70 141
1 1 0 0 0 1 1 0 0 0 1 0 0 0
2 o 1 0 o 2 o 1 0o oft1t o o o0 |0 1 o0 0
3 o o 1 o0 3 o o 1 offo 1 0o of o o -1 o
4 o o o0 1 6 o o -1 -tffo o -1 ofT|o o o -l
5 -1 -1 1 1 5 -1 -1 0 1{\0 0 1 1 -1 -1 1 1
6 Lo 0o -1 -1 4 Lo o o 1 0 0 1 1
e 30 and 43
30 43
1 1 0 0 o0 1 1 0 0 o0 1 0 0 0
2 o 1 0o o 2 o 1 0o o 0 -1 0 0
3 o o 1 0 3 o o 1 0 ‘01 _01 8 g 0 0 1 0
4 o o 0o 1 4 jo o o tffg S0 ol=lo 0 0 -
5 |-1 -1 0 2 so-t -1 0 20{g o o o) |1 0 2
6 o o -1 1 7 lo o -1 -1 0 0 -1 1
7 Lo 0o o -1 6 Lo o o -1 0 0 0 1
e 68 and 134
68 134
1 10 0 0 2 /0 1 0 0 10 0 0
2 o 1 0 o0 300 0 1 0lg o ;o |0 1 0 0
3 o o 1 o0 6 o o o —fff o o oo o -1 o
4 o o o0 1 I T | O O S KR
5 -1 -1 1 1 7 1 -1 -1 0 0 0 1 0 -1 -1 1 1
6 o 0o -1 o0 4 o o o0 1 0 0 1 0
7 Lo 0o -1 -1 1 1 0 0 0 0o 0 1 1
e 129 and 136
129 136
1 1 0 0 0 | 1 0 0 0 -1 0 0 0
2 o 1 0o o 2 o 1 0 o 0 1 0 0
3 o o 1 0 3 o o 1 o0 ’01 ? 8 8 0 0 1 0
4 o o o0 1 4 fo 0o 0 t|lg o 7 olzlo 0o 0 4
5 -1 0o o0 1 s -t 0 0 1flg o o0 o) |t o0 0 -1
6 0 -1 -1 1 7 0 -1 -1 -1 0 -1 -1 1
7 o 0o o -1 6 Lo 0o 0 -1 0 0 0 1
e 28 and 32
28 32
1 (1 0 0 0 1 1 0 0 0 1 0 0 0
2 o 1 0 o 2 o 1 0 o 0 1 0 0
3 o o 1 o0 6 |lo o 1 -1fgt 0o o o0 |0 0 -1 0
4 o o o 1 8 o o o -1flo 1 0o of o o o -1
5 -1 -1 0 2 5 -1 -1 0 240 0 -1 1| |-1 -1 0 2
6 [0 0o -1 1 7 1o o -1 ollo o o ) |o o 1 -1
7 o o 1 -1 3 o o 1 o0 0 0 -1 1
s o 0o o -1 4 Lo 0o o 1 0 0 0
e67and 118
67 118
1 10 0 0 2 /0 1 0 0 10 0 0
2 o 1 0 o0 3 10 0 1 0 0 1 0 o
3 o o 1 o0 7 |-t 0o 0o ofo o 1 0o JO 0 -1 o0
4 o o o0 1 6 |1 o o -1t o o ol Jo o o -1
5 -1 -1 1 1 8 0 -1 -1 1110 1 0 0| |-1 -1 1 1
6 o 0o -1 o0 1 it 0o o oflo o1 1J]o o 1 o0
7 1o o o -1 5 -1 0 0 1 0 0 0 1
s Lo o -1 -1 4 Lo o o 1 0o 0 1 1



A. HigasHrtani, K. KuriMmoTo AND M. MASuDA

210

e 123 and 125

[}
[
-

naoan <t =~ O

—

SCoo—~— | ©O

co—ocococoT

—

SRaNSESE

IOOO.I,..I.I_A.I.
_—

— NN <O~

e 74 and 96

o
=

=
o~

co—ococoTo
S Toocoo—~oco

Toocoo—~ooo
—
[}

——
cocoT

SO~

S oo

Tooco
[
e

0001111_4

co—~ococoTo

=R N eNeNe) _00

—ococoTooo

—

— <t N O o~

S —
—_

SO0 == ——=T
co—~ococo o
oc—ococoToo

—ococoTooo
—_—

— A<t N O~ 0

e 83 and 108

108

83

e
coco T o~

co—~ococo o
—

S —ooo | —Oo

Tooco—ocoo

co—~ococo o
—

AN <t — N O 0w~

e,
coo—~—=—=0OT

co—~ococo o
oc—~ococo T —o

—ococojJooo
—

— AN <t O~ 0

e 95 and 131

131

95

—
——
| — o —

coco
co—~ococo o
o—cocoToo

Tooco—~ocoo
—_
I

e
cocoT

oS — oo
S o —=O

Tooo
N
e

coco—~—=ToT
oc—~ococo oo

co—ococo 7o

—ococoJooo
N

— Al 0O~

e,
coo—~—=—=0OT

co—~ococo 7o
oc—~ococo oo

—ococo Jooo
—

— NN <t \O >0

e 29 and 39

=)
o\l

oc—~ocoJo—o

—cocojJooo
—_—

— N A< w0 \O >~

—
coco—~a—T7T7

co—ocoToo
oc—ocoTo—o

—ococoTooo
—_—

— e <t O~

ellland 116

111

ocToocoo—~o

—oocoTooo
I

o—ocococo 7o

—oocoTooo
—_—

— N \O [~ wvyen oo <t

oc—ocococo o

—oocoTooo
—_—

— NN <t VO~ 0



211

ConoMoLoGICAL RiGipiTy FOR Toric FANO MANIFOLDS

e 73 and 76 and 92

R
~

o
~

—

coTooco—~To
©S—ococoTooo

—ococoToooco
N
Il

—
SO — —

coTo
c—oco

—_ O O O
—_ =

—
coT T —~——0co~—

co—~ococo T —o
o—ocoocooTooo

—oocoToooo
—_—

— AN~ O 0

————————
coco——=——=77

co—~ococo T —o
o—ocoooTooo

—oocoToooo
—_—

— AN <O 0

a
=)

Toco—~ococoo
—
Il
—_—
coco T

Tooo
N
—_——
coco—~—=T7—=T7T7
o—cooTooco

co—ococo T —o0

—ococoToooo
—_—

— AN OO0

e 77 and 88

o
o

~
o~

e
coco T T 7o—o0o

co—~ococo oo

—

cTooco ===

Toocoo—ococoo
—_—
I
P
°TeT

oo —O
S — 0O

Tooo

co—~ococo oo

—ocoocoToooo
—_—

— o <Al Yo~

e
coco~—~—o T o

co—~ocoo oo

—

oc—ocoo | ——

—ocoocoToooo
—_—

— NNt VO~

e 81 and 103

103

81

—
coco T T —~o——~

co—~ococo oo
o—cocoT—oo0

Tooco—~ocoT o
.
I

T
S = OO

—oco—~oJooT

——
|

S oo

—_O — —

co—~ococo oo
—_

— o <A~

e
coo—~——=o T

co—~ococo oo
o—ococo T T—oo0o

—ococoJoo—o
N

— ANt N O

e 82 and 91 and 107

—
=

N
<)

e
coco T T oo~

co—~ococo oo
cTococo—~——0o

Tooco—~ocooo
—

Il
e
°oTeT

oo = O
(=R e}

Tooco
-
———

o—o=—=o T
co—~ococo oo
ocTococo—=——o0

—ococoToocoo
N

— o N T VAT

P —

0001]100_

co—~ococoJoo

—

oc—ococoT—To

—ocoocoToocoo
@

Al e BSa T Vo R=l liic clio))

o~
=
—

—
—

cocoT—~Too~

coToocoo—~oo0

Tooo
N
—

cocoT—~Too—
010001,11_0

co—~ococoToo

—ococoToocoo
N

— N AoV ON\O I~ <t



212 A. Hicasartant, K. KuriMoto AND M. MASuDA

e90and 113
90 113
1 1 0 0 0 1 1 0 0 0 1 0 0 0
2 0 1 0 0 6 0 0 1 -1 0 -1 0 0
3 0 0 1 0 2 0 1 0 0 0 0 1 0
4 0 0 0 1 9 0 0 0 -1 (l) 8 ? 8 0 0 0 -1
5 -1 0 0 1 5 -1 0 0 1 0o -1 o 1l -1 0 0 1
6 0 -1 0 1 8 0 0 -1 0 0 0 0 1 0 1 0 -1
7 0 1 0 -1 3 0 0 1 0 0 -1 0 1
8 0 0 -1 0 7 0 -1 0 0 0 0 -1 0
9 0 0 0 -1 4 0 0 0 1 0 0 0 1

In the end, the cohomological rigidity holds for the family of toric Fano 4-folds except
for X590 and X57. As observed in Subsection 5.3.3, the cohomology rings of X5y and Xs; are
isomorphic and their Pontryagin classes are preserved under an isomorphism of the coho-
mology rings. We ask the following:

Question 5.1. Are X5 and Xs;7 diffeomorphic?

Note that in terms of the Batyrev’s notation used in [3], X5 corresponds to M, and Xs;
corresponds to My.

6. cq-preserving cohomology ring isomorphism

As we observed, cohomology rings do not distinguish toric Fano manifolds as varieties.
Very recently, motivated by McDuff’s question on the uniqueness of toric actions on a mono-
tone symplectic manifold, Y. Cho, E. Lee, S. Park and the third author made the following
conjecture and verified it for Fano Bott manifolds ([8]).

Conjecture ([8]). If there is a cohomology ring isomorphism between toric Fano mani-
folds which preserves their first Chern classes, then they are isomorphic as varieties.

In this section, we prove the following theorem mentioned in Introduction, which gives
further supporting evidence to the conjecture.

Theorem 6.1. The conjecture above is true for toric Fano d-folds with d = 3,4 or with
Picard number > 2d — 2.

In order to prove the theorem above, it suffices to check that there is no c;-preserving
cohomology ring isomorphism between toric Fano d-folds which have isomorphic coho-
mology rings. If there is a ¢;-preserving cohomology ring isomorphism between toric Fano
d-folds X and Y, then c;(X)? evaluated on the fundamental class of X, in other words the
degree (—Kx)? of X, agrees with that of Y. We obtain the following tables from the database
of @bro. They together with Tables 1 and 6 show that the degrees are different for toric Fano
3- or 4-folds which have isomorphic cohomology rings except one pair ID 70 and 141.

Table 39. Degrees of toric Fano 3-folds with isomorphic cohomology rings

D 11,18 | 10,13
degree | 52,44 | 44,40
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Table 40. Degrees of toric Fano 4-folds with isomorphic cohomology rings

ID 70, 141 30, 43 68,134 | 129,136 | 28,32 67,118 | 123,125
degree | 513,513 | 592,400 | 432,480 | 496,400 | 478,382 | 351,447 | 415, 367

1D 74,96 83,108 | 95,131 29, 39 111,116 | 50,57 73,76, 92
degree | 480,352 | 448,352 | 416,352 | 463,337 | 389,347 | 417,369 | 394, 330, 310

1D 717,88 81,103 82,91, 107 90, 113 72,87 78, 86
degree | 405,331 | 373,325 | 341,363,229 | 352,320 | 308, 268 | 298,278

As for ID 70 and 141, more detailed observation is necessary. It follows from Table 9 and
Remark 2.2 that

H*(X70) = ZIx yl/ (L y(x =)D, c1(Xq0) = x + 3y
H (X141 = Z[xyl/ (0, (x —y),  ai(Xia1) = 2x + 3y.

An elementary computation shows that an isomorphism H*(X79) — H*(X141) is given by
either (x, y) — (x, x—y) or (x,y) — (—x, —x+y) but both isomorphisms are not c¢;-preserving.
This completes the proof of the theorem when d = 3, 4.
As investigated in Section 3, toric Fano d-folds with Picard number > 2d — 2 which have

isomorphic cohomology rings are the following three pairs:

(1) 28 = Z3 X (Xp,)'T and Z¢ = Zs x (Xp,)T, where d is 0dd > 3,

(2) W = Ws x (Xp,)T and W¢ = Wy x (Xp,)T, where d is even > 4,

(3) W = W x (Xp,)T and W¢ = Wy x (Xp,)T, where d is even > 4,
see (3.6) and (3.7). Here

6.1

(Z3,24) = (X10,X13), (W5, W7) = (X72, X37),  (We, Wg) = (X738, Xg6)

as mentioned above Convention in Sections 4 and 5. The degree of a product of projective
varieties X and Y of dimension p and ¢ is (”;q) times the product of degrees of X and Y, so it
follows from Tables 39 and 40 that the three pairs above have different degrees respectively.
This completes the proof of the theorem.
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