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1. Introduction

In this paper we discuss a kind of Lefschetz number defined fora generalized
multiplicative -equivariant cohomology theory∗ = { } where is a compact
Lie group, and ∈ I runs along some at most countable set of indicesI (cf. [22, 3]).

For every pair ⊂ of finite -CW-complexes the cohomology alge-
bra ∗ ( ) has the structure of an∗ (pt)-module and, consequently, also of an

0 (pt)-module, given by the multiplicative structure. Assume that ∗ ( ) is either
(a) a finitely generated projective∗ (pt)-module, or
(b) a finitely generated projective0 (pt)-module respectively.

Let : ( ) −→ ( ) be a -equivariant map. Under assumption (a) a gen-
eralized trace, tr ∗, of the induced map ∗ : ∗ ( ) −→ ∗ ( ) is well defined
(cf. [23, 4]) and will be called thefull generalized Lefschetz numberand denoted by

∗ ( ) ∈ ∗ (pt)

(in fact, one may prove that ∗ ( ) ∈ 0 (pt)). TakingI = N∪{0} and using the same
argument ([23, 4]), assumption (b) guarantees the existence of each trace tr0 ( ) of

the induced homomorphisms : ( )−→ ( ) and consequently allows us
to take their alternate sum to define another generalized Lefschetz number

0 ( ) =
∞∑

=0

(−1) tr 0 ( ) ∈ 0 (pt)

called thecut generalized Lefschetz number. Note that, since 0 (pt)⊂ ∗ (pt) is a sub-
ring, assumption (b) is much more restrictive. On the other hand, since the ring 0 (pt)
is smaller and simpler than∗ (pt), the Lefschetz number is easier to handle with in it.
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An illustrative example of this is the stable (equivariant)cohomotopy theory, which we
shall discuss later in more detail.

In this paper we study general properties of the two notions mentioned above,
pointing out their differences and giving applications to the problem of the existence
of fixed orbits of a -equivariant map, in the case that is finite. To that end we
make use of the equivariant stable cohomotopy theory tensored with the rational num-
bers. More precisely, in Section 3 we discuss the nonequivariant case ( =e). A direct
use of the Lefschetz-Hopf-Dold formula shows in this case that the full generalized
Lefschetz number is given by

∗ ( ) = ε( ( ))

where ( ) is theclassical Lefschetz number, derived in the singular cohomology with
rational coefficients, andε : Z −→ 0(pt) is the homomorphism given by the natural
transformation from stable cohomotopy to the given generalized cohomology theory ∗

(Theorem 3.1), or, equivalently, given by just mapping 1∈ Z to 1 ∈ 0(pt). Next we
prove Theorem 3.3 which asserts that in the nonequivariant case the cut generalized
Lefschetz number is given by

0( ) = ε( ( )) 0(idpt)

where ( ) is the classical Lefschetz number, derived in singular cohomology with ra-
tional coefficients, andε : Z −→ 0(pt) is as above. Our proof of this fact is based
on the Atiyah-Hirzebruch-Whitehead spectral sequence converging to ∗( ). This
shows that in the nonequivariant case the full and the cut generalized Lefschetz num-
bers are nonzero only if the classical Lefschetz number is different from zero. This is
not the situation in the equivariant case

The generalized Lefschetz numbers are interesting in the equivariant case. First
the equivariant version of the Lefschetz-Hopf-Dold formula proved by the second au-
thor ([15, 16, 19]) allows us to show that for every equivariant cohomology the-
ory, which is stable with respect to suspensions given by representations, and for any
equivariant map : ( )−→ ( ), the full generalized Lefschetz number is equal
to

∗ ( ) = ε( ω∗ ( ))

where ε : ω∗ (pt) −→ ∗ (pt) is the natural homomorphism, now from the equivariant
stable cohomotopy theory to the given cohomology theory (Theorem 4.1). Using the
mentioned Lefschetz-Hopf-Dold theorem for the equivariant stable cohomotopy theory
and the Ulrich formula ([24]), the right hand side can be expressed by the Lefschetz
numbers of the restrictions of to the fixed point sets of subgroups of , as was
already studied by tom Dieck, Marzantowicz and Ulrich ([3, 11, 24]). In particular it
vanishes if has no fixed point.
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In an earlier paper by the first author ([12]) the generalizedLefschetz number
in the equivariant -theory tensored with the complex numbers has been studied.
The trace, and consequently the Lefschetz number, is a complex-valued class function

∗( )( ) on . The main result of [12] states that if is an equivariant selfmap of
a finite -CW-complex , satisfying ∗( )( ) 6= 0, then there exists a point∈
such that

( ) =

for some ∈ ; that is, maps the orbit of into itself.
In what follows, we use the equivariant stable cohomotopy theory ω∗ , for a finite

group , graded by the elements of the real representation ring RO( ), or by the non-
negative integers, respectively.

The geometric meaning of the cut generalized Lefschetz number can be drastically
different. To show this we study the equivariant stable cohomotopy theoryω∗ , graded
by the nonnegative integers. Tensoringω∗ with Q we get an equivariant cohomology
theory, also graded byN ∪ {0}, for which the cut generalized Lefschetz number is
well-defined. This is due to the following two facts.
(i) For finite, there is the Segal theorem which asserts thatω0 (pt) = ( ) is
the Burnside ring andω (pt) ⊗Z Q = 0 if 6= 0 ([21]). More generally, a theorem
of Kosniowski ([9]) states that for every -space we have an isomorphism

ω ( )⊗Z Q ∼=
⊕

ω
(

/ ( )
)
⊗Z Q

where the sum is taken over the conjugacy classes of subgroups of and ( )
denotes the Weyl group ( )/ of .
(ii) The Dress description of the ring ( )⊗Q as the ring of rational-valued functions
on the setS of one representative in each conjugacy class of subgroups of .

From (i) it follows thatω∗ (pt) is a finitely generated ( )⊗Q -module for every
finite CW-complex. (ii) implies that every ideal in ( )⊗ Q is projective and con-
sequently every ( )⊗ Q -module has a projective resolution of length less than or
equal to 2. Theorem 4.5 states that the cut generalized Lefschetz number ω0 ⊗Q( ) ∈

( )⊗Q is a function onS such that for every subgroup ⊂ we have

ω0 ⊗Q( )( ) = ( ( )/ )

where ( ) denotes the restriction of to ( ) = and ( )/ is the map in-
duced by ( ) on the orbit space. This shows that here the cut generalized Lefschetz
number is different from the full generalized Lefschetz number. Moreover, the cut gen-
eralized Lefschetz number is an invariant measuring the existence, and structure, of or-
bits mapped by into itself. In particular it can be nonzero for a fixed point free
equivariant map. In the proof of this theorem we use the abovementioned Segal-
Kosniowski theorem (cf. (i)).
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We would like to emphasize the following.
(1) The equalityω (pt) ⊗Z Q = 0 for > 0 is not true in general for a compact
Lie group (see [7] for a description ofω1 (pt)⊗Z Q when is an infinite abelian
compact Lie group).
(2) The equivariant cohomotopy theory

⊕∞
=0ω is only a portion of the full equivari-

ant cohomotopy theory
⊕
ωα, graded by the elementsα of the real representation ring

RO( ) (cf. [9, 15]). In particular, the former admits suspension isomorphisms only
with respect to trivial representations =R .

2. Generalized Lefschetz numbers for equivariant maps

Let be a compact Lie group and{ } be a generalized equivariant multi-
plicative cohomology theory, e.g. stable equivariant cohomotopy theory, equivariant

-theory, equivariant cohomology theory in the sense of Segal, Illman and Matumoto,
tom Dieck and others (see [3, 2, 6, 9, 13, 15, 21] for further discussion and exam-
ples). We say that ∗ =

⊕
α∈I

α is RO( )-graded if I = RO( ). If, otherwise,
I = N+ ∪ {0} then we say that ∗ is N-graded; in case thatI = Z2 then ∗ is
Z2-graded.

Given a pair of finite -CW-complexes ( ), ⊂ , since ∗ is multiplica-
tive, one has that ∗ ( ) is an ∗ (pt)-module, and thus, for everyα, α( )
is an 0 (pt)-module. Let now : ( ) −→ ( ) be an equivariant selfmap
of the pair ( ). Our aim is to define a trace of the induced homomorphism
∗ : ∗ ( ) −→ ∗ ( ) as endomorphism of an∗ (pt)-module and of the homo-

morphism : ( )−→ ( ) as endomorphism of an0 (pt)-module, thus
defining the generalized full and cut Lefschetz numbers of . In general, the ring

0 (pt), and hence also the superring∗ (pt), is not a field, but one can use a gen-
eral definition of trace introduced by Thomas ([23]) or, independently, in a different
but more general context, by Dold and Puppe ([4]). To do it we need the following
alternative finiteness assumptions on the theory∗ .

1 For every pair ( ) of finite -CW-complexes,∗ ( ) is a finitely generated
∗ (pt)-module.

1 For every pair ( ) of finite -CW-complexes, ( ) is a finitely generated
0 (pt)-module for every ∈ N.

2 Every finitely generated∗ (pt)-module has a finitely generated projective reso-
lution of finite length, which exists if in particular is a finitely generated projective
module over ∗ (pt).
2 Every finitely generated0 (pt)-module has a finitely generated projective reso-
lution of finite length, which exists if in particular is a finitely generated projective
module over 0 (pt).

Under the assumptions 1 or 2 , for every∗ (pt)-endomorphismϕ of an
∗ (pt)-module , there exists a well-defined element of∗ (pt), denoted by tr∗ (pt)(ϕ),
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or shortly trf(ϕ) if there is no danger of confusion, which we call thefull trace of ϕ
([4, 23]).

The assignmentϕ 7→ tr ∗ (pt)(ϕ) has the following properties.
(P1) Exactness. For every short exact sequence of∗ (pt)-modules and endomor-
phisms

0 //
1

//

ϕ1

��

//

ϕ

��

2
//

ϕ2

��

0

0 //
1

// //
2

// 0

we have tr(ϕ) = tr(ϕ1) + tr(ϕ2).
(P2) Commutativity . For every two ∗ (pt)-endomorphismsϕ, ψ of an ∗ (pt)-module

, we have tr(ϕ ◦ ψ) = tr(ψ ◦ ϕ).

DEFINITION 2.1. Let ( ) be a pair of finite -CW-complexes and : ( )−→
( ) be an equivariant selfmap of this pair. Let also∗ be an equivariant multi-
plicative cohomology theory satisfying 1 or 2 , and∗ : ∗ ( ) −→ ∗ ( ) be
the induced homomorphism. Under this assumption the element

∗ ( ) = tr ∗ (pt)( ∗) ∈ ∗ (pt)

is well-defined and is called thegeneralized full Lefschetz numberof in ∗ .

Since 0 (pt) is a ring with 1, there exists a natural homomorphismε : Z −→
0 (pt), defined by

ε(1) = 1

Note thatε is the restriction of the natural transformation from the stable cohomotopy
theoryω∗ to the theory ∗ evaluated at a point, sinceZ ⊂ ω0 (pt).

Analogously, under assumptions 1 or 2 , for every0 (pt)-endomorphismϕ
of an 0 (pt)-module , there exists a well-defined element of0 (pt), denoted by
tr 0 (pt)(ϕ), or shortly trc(ϕ) if there is no danger of confusion, which we call thecut
trace of ϕ ([4, 23]).

The assignmentϕ 7→ tr 0 (pt)(ϕ) also has the PropertiesP1 and P2 given above.

DEFINITION 2.2. Let ( ) be a pair of finite -CW-complexes and : ( )−→
( ) be an equivariant selfmap of this pair. Let also∗ be anN∪{0}- or Z2-graded
equivariant multiplicative cohomology theory, satisfying 1 or 2 , and for each degree
, let : ( )−→ ( ) be the induced homomorphism. Suppose also that

3 ∗ ( ) is a finitely generated 0 (pt)-module.
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Under these assumptions, the element

0 ( ) =
∑

(−1) tr 0 (pt)( ) ∈ 0 (pt)

is well-defined and will be called thecut generalized Lefschetz numberof .

3. Universal property of the classical Lefschetz number in the nonequivari-
ant case

We show now that in the nonequivariant case the given variations of the Lefschetz
number are not essential from the point of view of the fixed point theory. We assume,
therefore, that =e is the trivial group. We have the following.

Theorem 3.1. Let ( ) be a pair of finite CW-complexes and∗ = { } ∈I be
a generalized multiplicative cohomology theory satisfying assumptions1 or 2 . Then
the full generalized Lefschetz number exists and satisfies

∗ ( ) = ε∗( ( )) ,

where ( ) is the classical Lefschetz number of obtained by using singular (ordi-
nary) cohomology with rational coefficients, and ε∗ : Z −→ 0(pt) is the natural ring
homomorphism.

Proof. The statement of this theorem is part of Corollary 4.5in [4] which is ob-
tained by purely algebraic means. For convenience to the reader we include a proof
outline based on the Lefschetz-Hopf-Dold theorem (cf. [15]). Assume first that =∅.
Indeed, from this formula we get ∗ ( ) = ( ∗), where the ( ∗) ∈ 0(pt)
is the fixed point index of on . From the functoriality of the index we have
( ∗) = ε∗( ( ω∗)), where ε∗ is the natural homomorphism from the stable co-

homotopy theoryω∗ to any multiplicative cohomology theory. On the other hand,
the same argument applied to the singular cohomology theory∗( ; Q) with rational
coefficients shows that (ω∗) = ( ), sinceε0 : ω0(pt)−→ 0(pt;Q) is the inclusion
Z → Q. The relative case follows from propertyP1.

Corollary 3.2. Let ( ), and ∗ be as before. Then there exists ∈ N ∪
{0} such that ∗ ( ) is equal to the remainder of ( ) modulo . (If = 0, then
the remainder is equal to the given integer, if = 1, then it is equal to0 for every
number).

Proof. The image im(ε∗(Z)) ⊂ 0(pt) is equal toZ, Z , or zero respectively.

Now we give a formula expressing the cut generalized Lefschetz number 0( )
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in terms of the classical Lefschetz number ( ).
Let ∗ be any multiplicative cohomology theory. Since0(pt) is a ring with 1,

there exists a natural homomorphismε0 : Z −→ 0(pt), defined by

ε0(1) = 1

Note that ε0 corresponds to the zero-th level of the natural homomorphism ε from
the stable cohomotopy theoryω∗ to ∗ introduced above.

We have the following theorem.

Theorem 3.3. Let ∗ be a generalized cohomology theory satisfying assumptions
1 , 2 and 3 , and ε0 : Z −→ 0(pt) be as above; let : ( ) −→ ( ) be a self-
map of a pair of finite CW-complexes. Then the cut generalizedLefschetz number ex-
ists and we have the equality

0( ) = ε( ( )) 0(idpt)

For a proof we use the Atiyah-Hirzebruch-Whitehead spectral sequenceconverg-
ing to ∗( ) (see [14]). This and the Hopf lemma stated below (3.4) willreduce
the computation of 0( ) to deriving the Lefschetz number of the homomorphism in-
duced by on the 2-terms of the spectral sequence. Consequently, replacing by
a homotopic cellular map, we can use the1-terms of the spectral sequence to deduce

0( ), and the statement will follow by an algebraic argument.
As it is for the classical trace, we have the following fact, called the Hopf lemma

(cf. [4, 23]).

Lemma 3.4. Let ( ) be a chain complex of finitely generated0 (pt)-modules,
= { }, : −→ , be an endomorphism of this complex and

= ker /im +1

be the homology of the complex. If assumption2 is satisfied and = 0 for almost
every , then

∑
(−1) tr 0(pt)( ) =

∑
(−1) tr 0(pt) ( )

Let ∗ be a multiplicative cohomology theory and ( ) be a pair of finite
CW-complexes. Then the Atiyah-Hirzebruch-Whitehead spectral sequence{ }
converges to ∗( ), i.e.

∞ =
ker( + ( ) −→ + ( ( −1) ))
ker( + ( ) −→ + ( ( ) ))

Moreover 1 = + ( ( ) ( −1)∪ ) and the first differential 1 is equal to the con-
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necting homomorphism

1 = δ : + ( ( ) ( −1) ∪ ) −→ + +1( ( +1) ( ) ∪ )

of the exact sequence of the triple. The Atiyah-Hirzebruch-Whitehead theorem
states that every 2-term 2 is equal to the -th singular cohomology group

( ; (pt)), of ( ) with coefficients in (pt).
Furthermore, any continuous selfmap : ( )−→ ( ) induces an endomor-

phism 2 : ( ; (pt)) −→ ( ; (pt)) commuting with differentials 2,
thus providing a homomorphism of spectral sequences. If, moreover, is a cellular
map, then induces also endomorphisms of the1-terms 1 .

In case that the theory∗ is Z2-graded, the second variable in the bigrading of
the above spectral sequence runs also over the elements ofZ2. Then, the symbol + ,
if ∈ Z and ∈ Z2, means the sum of the remainder of modulo 2 and inZ2.

Since ∗ is a multiplicative theory,{ } is a multiplicative spectral se-
quence. Consequently each group is a module over0 0 ∼= 0 0

1 . But 0 0
1 =

0( (0) ) is itself a module over 0( (0)). Furthermore, the homomorphism0(pt)−→
0( (0)), induced by the map (0) −→ pt, endows 0( (0)) with the structure of

an 0(pt)-module. Therefore, finally, each has the structure of an 0(pt)-module.
The structure described above induces an0(pt)-module structure on ∞ coincid-

ing with the structure of 0(pt)-module on ∗( ). The existence and convergence of
the Atiyah-Hirzebruch-Whitehead spectral sequence allowus to verify assumption 3
using the following proposition.

Proposition 3.5. Let ∗ be a generalized cohomology theory and⊂ be
a pair of finite CW-complexes. Then∗( ) is a finitely generated 0(pt)-module if
and only if ∗(pt) is a finitely generated 0(pt)-module.

Consequently, instead of assumption 3 , we can put the following equivalent as-
sumption.

3′ ∗(pt) is a finitely generated0(pt) module.

Suppose that for a given cohomology theory∗, assumption 3′ is satisfied. For
a selfmap : ( )−→ ( ) of a pair of finite CW-complexes we define, for each
,

∗ ( ) =
∑

(−1) + tr 0(pt)( )

where : −→ is the endomorphism induced by in the -terms
of the spectral sequence. For convenience, we might denote∗ ( ) also by

({ } { }).
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−1 / 0 −1 0 / 1 −1 1 / 2 −1 · · ·
−1 +1/ 0 0 +1/ 1 1 +1/ 2 · · ·

−1 +2/ 0 +1 0 +2/ 1 +1 1 +2/ 2 +1 · · ·
...

...
...

. . .

Table 1.

Proposition 3.6. Let ∗ be a generalized cohomology theory such that∗(pt) is
a finitely generated 0(pt)-module and let : ( ) −→ ( ) be a map of a pair of
finite CW-complexes. Then for every≥ 2 (or ≥ 1 if is a cellular map) we have

∗ ( ) = 0( )

Proof. From the Hopf lemma, it follows that

∗ ( ) = ({ } { }) = ({ +1 } { +1}) = +1
∗ ( )

for ≥ 1, because +1 is the homology at of the corresponding complex of
-terms of the spectral sequence. Since{ } is strongly convergent to ∗( ),

there exists 0 such that for every ≥ 0

{
0
} = { } = { ∞ }

and consequently

∗ ( ) = ∞
∗ ( )

It is sufficient to show that

0( ) = ∞
∗ ( )

But ∞ is the associated module and∞ is equal to the homomorphism̃( −1) in-
duced by +

( −1) on

∞ =
+1 −1

where = ker( + ( ) −→ + ( ( −1) )). Consequently, it is enough to show
that

∑
(−1) + tr 0(pt)( ˜ +

( ) ) = 0( )

Indeed, writing out the ∞-terms{ ∞ } in tabular form, we obtain the Table 1.
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By the above, taking an alternate sum with appropriate signsand using the addi-
tivity of the trace we get

∑
(−1) + tr 0(pt)( ∞ ) =

∑
(−1) + tr 0(pt)(

+
( ) )

=
∑

(−1) tr 0(pt)( (−1))

= 0( )

since 0 = ( ). This proves the desired result.

We now pass to the proof of Theorem 3.3.

Proof. We may assume that our map is cellular. Otherwise, we may replace it
up to homotopy by one if necessary. The map : ( )−→ ( ) induces a endo-
morphism

{ 1 } : { 1 } −→ { 1 }

of the 1-terms of the Atiyah-Hirzebruch-Whitehead spectral sequence. By Proposi-
tion 3.6, it is sufficient to derive 1

0(pt)( ). We have

1 = + ( ( ) ( −1) ∪ )

= ( ; (pt))

= ( ; Z)⊗Z (pt)

Since ( ;Z) =
⊕

σ∈ ( )\ Zσ, Zσ = Z, where the sum is taken over all -cells
which are not in , we have

tr 0(pt)( 1 ) =
∑

σ∈ ( )\
tr( |Hom(Zσ Z)⊗ (pt))

But the map induced by on Hom(Zσ Z) ∼= Z is multiplication by the incidence
number inc(σ σ) = σ. Therefrom it follows that it is enough to compute the trace
over 0(pt) of the endomorphism of (pt) given by multiplication with σ ∈ Z.
(i) If (pt) is a free 0(pt)-module, then tr0(pt)( σ) = ε( σ) tr(id (pt)).
(ii) Suppose that (pt) is a projective 0(pt)-module. Then there exist an

0(pt)-module and an integer such that⊕ (pt)∼= ( 0(pt)) . Then the following
diagram is commutative

⊕ (pt)
∼= //

0⊕ σ

��

( 0(pt))

σα

��
⊕ (pt)

∼= // ( 0(pt))
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where α : ( 0(pt)) −→ ( 0(pt)) is the endomorphism induced by 0⊕ id (pt)

on ( 0(pt)) .
(iii) The general case, when (pt) has a finite projective resolution, follows from (ii).
We obtain tr0(pt)( σ) = ε( σ) tr(id (pt)). Adding up over the cells, we have

tr( 1 ) =
∑

σ∈ ( )\
ε( σ) tr(id (pt))

Taking the alternate sum over the index we have

∑
(−1) tr( 1 ) =

∑
(−1) ε


 ∑

σ∈ ( )\
σ


 tr(id 0(pt))

= ε


∑(−1)

∑

σ∈ ( )\
σ


 tr(id (pt))

= ε( ( )) tr(id (pt))

Taking once more the alternate sum, now with respect to the index , we get
∑

(−1)
∑

(−1) tr( 1 ) =
∑

(−1) ε( ( )) tr 0(pt)( (pt))

= ε( ( )) ∗(id )

Now the proof of Theorem 3.3 is complete.

The following is an example of a theory for which ∗ ( ) 6= 0( ).

EXAMPLE 3.7. Let us fix a pair of CW-complexes ( ), ⊂ . Then define
a generalized cohomology theory∗ by the formula

( ) = ( × × ; Q)

where ∗(−; Q) is the singular cohomology theory with rational coefficients. It is not
difficult to check that for every fixed pair ( ),∗ is a generalized cohomology the-
ory. For example, taking the pair ( ∅) we get a generalized cohomology theory such
that ∗( ) = ∗( ; Q) ⊗ ∗( ; Q). In particular, ∗(pt) = ∗( ; Q), which implies
that 0(id ) = χ( ) is the Euler characteristic of , thus one can obtain any integer
by an adequate choice of .

Applying Theorems 3.1 and 3.3 we get formulas for the full andcut generalized
Lefschetz numbers in this theory, namely

∗ ( ) = ( ) 6= 0( ) = χ( ) ( )
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if χ( ) 6= 1.

4. Generalized Lefschetz numbers for stable cohomotopy

To start, recall that for a finite group , the full generalizedLefschetz num-
ber of an equivariant map in the stable equivariant cohomotopy theory graded by
∈ I, or in the same theory tensored with the rational numbers,ω∗ ⊗ Q, is equal to

the equivariant fixed point index. This follows from the Lefschetz-Hopf-Dold theorem
(cf. [16, 19]). This means that it detects equivariantly thefixed points of . Next, we
shall prove the main result of this paper which states that for a finite group , the cut
generalized Lefschetz number of an equivariant map in the stable equivariant co-
homotopy theory tensored with the rational numbers,ω∗ ⊗ Q, is an invariant which
detects the fixed orbits of , i.e. orbits which are mapped by into itself.

Let be a finite group, be an element of

I =

{
N ∪ {0} or

RO( )

and ( ) be a pair of -spaces. Note thatN∪{0} ⊂ RO( ) corresponds to the trivial
representations of arbitrary dimension.

For α = [ ] − [ ′] ∈ RO( ), we mean byωα( ) the α-th equivariant coho-
motopy group of ( ) in the sense of [21], namely,

ωα( ) = colim
[

⊕ ∧ ( / ); ⊕ ′ ∧ ( / )
]

where means the one-point compactification of the -module , and the col-
imit is taken over a cofinite set of real representations of ordered by inclusion.
If I = N ∪ {0}, by definition, {ω } constitutes an equivariant cohomology theory
which is stable with respect to suspensions by trivial representations (i.e.ω ( ) ∼=
ω̃ + (S ∧ ( / )) for every ∈ N), or with respect to the suspension by any rep-
resentation ifI = RO( ) (see [21]). Note thatω ( ) is a module over the ring
ω0 (pt) = colim [ ; ] with a module structure induced by the equivariant map
/ −→ pt.

The fundamental property of the equivariant cohomotopy is given by Segal’s the-
orem ([21], see also [9, 20] for a proof), which states

ω0 (pt)∼= ( )

where ( ) is the Burnside ring of (cf. [3] for its definition).
Recall also that for any equivariant cohomology theory∗, there is an equivariant

fixed point index ( ∗), given by the Dold diagram, provided it is stable with re-
spect to every orthogonal representation. We have the following theorem (cf. [15, 16]).
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Theorem 4.1. Let be a finite group andω∗ be the equivariant stable coho-
motopy theory. Assume that is a finite -CW-complex, : −→ is an equivari-
ant map, and thatω∗ ( ) is a finitely generatedω∗ (pt)-module. Furthermore, assume
that ω∗ ( ) is a projective, or flat in the sense of[4], ω∗ (pt)-module. Then the full
Lefschetz number ω∗ ( ) exists, and we have the equality

ω∗ ( ) = ( ω∗ ) ∈ ω0 (pt) = ( )

In particular, if Fix( ) = ∅, then ω∗ ( ) = 0.

Define S as the the set consisting of one representative of each conjugacy class
of subgroups of . The setS is partially ordered with the order given by

≥ ⇐⇒ there exists ∈ such that ⊂ −1

> ⇐⇒ ≥ and 6=

For every subgroup ⊂ let χ : ( ) −→ Z denote the homomorphism defined
by

χ ( / ) = |( / ) |

on every elementary -set (orbit)/ . We use the standard notation( ) = ,
and ( ) =

(⋃
>

( )
)
⊂ ( ) (see [2, 3]). Using this notation, given an equivari-

ant map : −→ and a subgroup ⊂ , we define ( ) to be the selfmap of
the pair ( ( ) ( )) induced by . As a corollary of Theorem 4.1, we obtain the fol-
lowing.

Corollary 4.2. Let and : −→ be as inTheorem 4.1.Then ω∗ ( ) is
determined by the classical Lefschetz numbers of the restrictions of to all subsets

( ). Moreover, as an element of the Burnside ring( ), it is equal to

ω∗ ( ) =
∑

∈S

( ( ))
| / | ( / )

Proof. From Theorem 4.1 and [24], it follows that

χ ( ω∗( )) = χ ( ( ω∗ )) = ( ) = ( )

for every subgroup ⊂ . On the other hand, the right hand side of the formula is
an element of ( ) and

χ

(∑

∈S

( ( ))
| / | ( / )

)
=
( )
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(cf. [3, 12]); the statement is a consequence of the fact thatthe homomorphism
(χ ) ∈S : ( ) −→∏

∈S Z is a monomorphism (cf. [5, 3]).

Now we turn to study the cut generalized Lefschetz number in the rationalized
equivariant stable cohomotopy theory. This will let us get rid of the algebraic assump-
tion in the hypothesis of Theorem 4.1.

In order to reduce the algebraic considerations in our problem, we have to take
the torsion-free part ofω∗ by tensoring it with the rational numbers. Note that for
every ∈ I and any pair ( ) of -spaces, the groupω ( ), being abelian, can
be seen as aZ-module.

DEFINITION 4.3. Let ( ) be a pair of -spaces. Byω∗ ( ) we denote
the equivariant cohomology theory, graded byN ∪ {0}, defined by

ω ( ) = ω ( )⊗Z Q

Let us recall that in the nonequivariant case, the nontorsion part of the stable co-
homotopy theory after tensoring it withQ is isomorphic to the singular (cellular) co-
homology with rational coefficients. In the equivariant case the situation is more com-
plicated and, as we already said, an answer is given in the Segal and Kosniowski the-
orems ([21, Proposition 5], [9, 4.10]).

To state it, we recall that for a given subgroup ⊂ and ( ) = { ∈ |
−1 ⊂ } its normalizer, the group ( ) = ( )/ might be called, by exten-

sion, theWeyl groupof in .
Also, as we already said, a result of Dress states that the ring ( )⊗Q is equal to

the function ring{ϕ : S −→ Q}, and for every subgroup ∈ S the homomorphism
χ ⊗Z idQ has the formϕ 7→ ϕ( ) (cf. [5]). Denote it by ( ).

Theorem 4.4 (Segal, Kosniowski). Let be a finite group. For every ∈
RO( ), dim( ) 6= 0, the groupω (pt) is finite and, if dim( ) < 0, it is equal to 0.
In particular, if ∈ Z then

ω (pt) =

{
0 if 6= 0

( ) if = 0

Moreover, for any compact -space and every∈ Z, we have

ω ( ) =
⊕

∈S
ω
(

/ ( )
)
⊗Q

where the term on the right hand side is the classical nonequivariant stable cohomo-
topy theory.
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We would like to describe the module structure of every( )-module ω ( ),
∈ Z. First we recall that for every -space and every subgroup⊂ , the in-

clusion → ( ) induces a homeomorphism ( / ( )) ≈ ( )/ .
Obviously, the isomorphism of 4.4 is induced by the inclusions ι : −→

; more precisely, for every ∈ Z, ⊂ , and for any equivariant map
: + ∧ −→ ∧ representing an element inω ( ), its restriction

: + ∧ −→ ∧ defines a ( )-equivariant map. If has one
orbit type ( / ) or, equivalently, if is a free ( )-complex, then defines
a map / ( ) : ( + ∧ )/ ( ) −→ ( ∧ )/ ( ). Anyway, it de-
fines an element ofω ( )( ) or, in the case of a free ( )-action, an element
of ω ( / ( )). One can show that for a givenα ∈ ( ) and = { } ∈S ∈⊕

∈S ω ( / ( ))⊗Q, we have that

α · =
∑

∈S
χ (α)

We are now in position to state the main theorem.

Theorem 4.5. Let be a finite group, a finite -CW-complex, : −→
an equivariant selfmap, and ω∗ the rationalized equivariant stable cohomotopy theory
graded byN ∪ {0}. Then the generalized cut Lefschetz numberω0 ( ) ∈ ( ) exists
and is given by the formula

ω0 ( )( ) = ( / ( )) = ( ( )/ )

where ( ( )/ ) is the classical Lefschetz number of the map( )/ induced by
on the orbit space ( )/ = / ( ). In particular, if ω0 ( )( ) 6= 0 then there

exist ∈ and ∈ ( ) such that ( ) = or, respectively, such that there
exists an orbit ≈ / of the action of with ≤ , satisfying ( ) ⊂ .

Before proving Theorem 4.5, we give a geometric explanationof the formula for
the generalized cut Lefschetz numberω0 ( ).

Corollary 4.6. Let and : −→ be as inTheorem 4.5.Then ω0 ( ) is
determined by the classical Lefschetz numbers of the restrictions of the quotient map
/ to all subsets ( )/ . Moreover, as an element of the rational Burnside ring
( ), it is equal to

ω0 ( ) =
∑

∈S
( / ( ))χ =

∑

∈S
( ( )/ )χ

whereχ : S −→ Q is a function equal to1 at and 0 otherwise.
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We can now pass to the proof of Theorem 4.5.

Proof. First we show the existence of the generalized Lefschetz number ω0 ( )
in the sense of [23, 4]. To do this, let us first remark that

(4.7) ( ) =
⊕

∈S
Q

where the decomposition is as a direct sum of ideals, i.e. thesummand corresponding
to ∈ S is equal to the ideal ={ϕ : S −→ Q | ϕ( ) = 0}. Moreover, every
ideal ⊂ ( ) is given by

= = {ϕ : S −→ Q | ϕ| = 0}

for some subset ⊂ S . Consequently, for every ideal = there exists an ideal
′, namely S \ , such that ( ) = ⊕ ′. This shows that every submodule of a free
( ) module is projective, because every ideal of( ) is a direct summand in ( ).

To see this it is enough to take the resolution 0−→ kerα −→ −→ −→ 0 of
the module . Note that if is finitely generated then so is also .By the above,
kerα is projective and finitely generated if is finitely generated, since ( ) is
a noetherian ring. It is enough to show that for a finite -CW-complex , ω∗ ( ) is
a finitely generated (ω0 (pt) = ( ))-module. The latter follows from the fact that
has a finite cover consisting of -sets, -homotopy equivalentto orbits, and that for
every subgroup ⊂ , ω∗ ( / ) = ω∗ (pt) = ω0 (pt) = ( ), as it follows from
the Segal theorem. Obviously,( ), with the ( )-module structure given by the ho-

momorphismRes = Res⊗Q : ( ) −→ ( ), is a finitely generated ( )-module.
We are still left with the task of deriving tr( )( ) for the endomorphism

: ω ( ) −→ ω ( ) induced by . This is essentially a consequence of Theo-
rem 4.4, but in its statement there is no information about the induced map. To com-
pute this trace we have to calculate tr( )( )( ) for every ∈ S and ∈ {0}∪N.
We shall do it by carefully following the argument of the proof of Theorem 2.4 of [9],
adapting and restricting it to our case. Kosniowski used thelocalization technique and
got a more general statement on the localization of equivariant stable cohomotopy the-
ory at any prime ideal of ( ); we only need the special case whenthe ideal is max-
imal, i.e. when its characteristic is equal to 0 (cf. [9]).

First note that the localization ( )( ) of ( ) at a maximal ideal is equal
to Q and we have the isomorphism

(4.8) ( )⊗Z Q ∼=
⊕

∈S
Q ∼=

⊕

∈S

′ ( )⊗Q ∼=
⊕

∈S
( )( )

This ring decomposition leads to the decomposition

(4.9) ω ( )⊗Q ∼=
⊕

∈S

′ ω ( )⊗Q ∼=
⊕

∈S
ω ( )( )
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The above isomorphisms are functorial, thus they can be usedto derive the trace
tr ( )( ). Since the isomorphism in (4.8), and consequently (4.9), comes from
the embedding ( )−→⊕

∈S Z, we have

tr ( )( ) =
∑

∈S
tr ( )/ ′ ( )

(
⊗ idQ|ω ( )/ ′ ω ( )

)
χ

=
∑

∈S
tr ( )( )

( ( ))χ(4.10)

where the summands in the first sum are the traces of linear endomorphisms of
the vector spacesω ( )/ ′ ω ( ) over Q = ( )/ ′ ( ) and, in the second, they
are the traces of linear endomorphisms of the vector spacesω ( )( ) over Q =

( )( ).
As a consequence of (4.9) and (4.10), for a -map we get

trω0 ( )( ) = tr ( )( )( ( ))

for every ∈ S . Kosniowski ([9, Section 4]) shows that for every subgroup⊂
, the natural homomorphismω ( ) −→ ω ( )( ) given by restriction becomes an

isomorphism

ω ( )( )
∼= ω ( )( e)

wheree is the trivial subgroup. This yields trω0 ( ) = trQ ( )( e).
In the next step in Kosniowski’s paper it is shown that the natural projection

: −→ / ( ) becomes an isomorphism after localization

ω ( )( )( )
∼= ω ( )

(
/ ( )

)
( )

Consequently we get trω0 ( )( ) = trω ( )( e)
( / ( ))( e)

.
Finally, in the last step of Kosniowski’s considerations, it is shown that for a triv-

ial -space the map which forgets the -structure becomes an isomorphism after
localization at the trivial subgroup. In particular we have

ω ( )

(
/ ( )

)
( )
∼= ω ( )

(
/ ( )

)
( )
∼= ω

(
/ ( )

)
⊗Q

Comparing this with the previous formula, we get

trω0 ( )( ) = trQ
(

/ ( )
)

which proves the statement.

Now we give a formula for the cut generalized Lefschetz number analogous to
that of Corollary 4.2 for the full generalized Lefschetz number.
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Let ( ) denote the selfmap of the pair (( )/ ( )/ ) induced by .
Let next µ : S × S −→ Z be the generalized Möbius function of the partially

ordered setS (see [8] for references).

Corollary 4.11. Let : −→ be a -equivariant selfmap of a finite
-CW-complex . Then

( ( )) =
∑

≤ ∈S
µ( ) ( / ( )) =

∑

≤ ∈S
µ( ) ( ( )/ )

Proof. Using the partial order ofS and the induction argument we have

( ( )/ ) =
∑

≤ ∈S
( ( ))

by the additivity of Lefschetz number. The statement follows from the generalized
Möbius formula applied to the partially ordered setS .

Theorem 4.5 leads to the following simple example for which the full and cut
equivariant generalized Lefschetz numbers are different.

EXAMPLE 4.12. Let =Z2 = {−1 1}, = {−1 1} with the obvious -structure,
and let : −→ be the -equivariant map defined by

(−1) = 1 (1) =−1

From Theorems 4.1 and 4.5 it follows that

ω∗ ( ) = ( ) = 0∈ ( )

but, as a class function,

ω0 ( )( ) =

{
1 if = e

0 if = ∈ ( )

Moreover, the same example holds forZ instead ofZ2. We have the following.

EXAMPLE 4.13. Let =Z be the cyclic group of order , = and ∈
be its generator. Then the translation :7→ is an equivariant fixed point free
selfmap of . Therefore, we have

ω∗ ( ) = ( ) = 0∈ ( )
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On the other hand, from Theorem 4.5 it follows that

ω0 ( )( ) =

{
1 if = e

0 if 6= e

This is equal to the nonzero class function| |−1( ) ∈ ( ).

EXAMPLE 4.14. Let be an orthogonal representation of a group , ( ) be
the unit sphere therein and : ( )→ ( ) be an equivariant map. We have

ω∗ ( )( ) = ( ) = 1− ν( ) deg( )

whereν( ) = (−1)dim −1.

(4.15) ω0 ( )( ) = ( ( )/ ) =
(

/ ( )
)

To compute deg(( )/ ) we use the following result of [2]. For every finite group
and a finite -CW-complex there is an isomorphism

(4.16) ∗( / ) ∼= ∗( )

where ∗ represents singular cohomology theory with rational coefficients, and
the right hand side means the fixed point (linear) subspace ofthe action of on

∗( ) induced by the action of on .
If the action in is given byρ : −→ Iso( ) and ⊂ is a subgroup, there

is a group homomorphismσ : ( ) −→ Z2 given by σ( ) = det(ρ( )), i.e. σ( ) = 1
if preserves the orientation of ( ), andσ( ) = −1 if reverses the orientation
of ( ). Note thatσ can only be nontrivial if| ( )| is even. Next defineξ( ) = 0
if σ is the trivial homomorphism, andξ( ) = −1 if σ is nontrivial. Using this nota-
tion, (4.15) and (4.16) we have

ω0 ( )( ) =
(

/ ( )
)

= 1− ξ( )ν( ) deg( )

This last is different from ω∗ ( )( ) = 1− ν( ) deg( ( )) in general.
If, in particular, we take =R2 +1 with the antipodal action of =Z2 and

an equivariant map : ( )→ ( ) of degree−1, then ω∗ ( ) = 0, but ω0 ( )(e) =
1.

Nowadays, we know more about the ( )-modules∗( ; Q) and ∗( ( )),
than about abelian groupsω ( ) or ( ), thus one can hardly expect applications
of Theorem 4.5, which give new information about the fixed points of an equivariant
map , or of the map / induced by it on the orbit space. However, in some spe-
cial cases, this theorem can be useful to study the induced maps ∗ in a given coho-
mology theory asω ( ), or ( ), and consequently to study the image of [ ]
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in [ ] for simple -spaces, such as spheres or projective spaces. An attempt in
this direction was made in [11] (Corollary. 7).

REMARK 4.17. We have restricted ourselves to the case of finite -CW-complexes,
because results follow there in a very convenient form. However, one might as well
reproduce all results, either for compact -spaces having the same -homotopy type
of -CW-complexes or, more generally, for compact -ENRs (and, with due care,
also for compact -ANRs).
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Poznań, POLAND
e-mail: marzan@main.amu.edu.pl

Carlos Prieto
Instituto de Matemáticas, UNAM
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