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1. Introduction

Prime ideals in nonassociative rings have been defined by a number of
authors in different terms (for example, [1], [4], and [5]). In [5], the Brown-
McCoy type prime ideals and radical have been defined for Jordan rings by
using the quadratic operation. In [4], using %-operation defined on the family
of ideals and a function defined on the ring, the results in [5] have been extended
to weakly W-admissible rings which generalize many of the well known
nonassociative rings, in particular, alternative and Jordan rings.

For the associative case, the concept of prime ideals in the sense of McCoy
[2] was generalized in [3] by defining f-systems which generalize the m-systems
of McCoy. Also, f-primary ideals are defined in [3] and an analogue of the
uniqueness theorem of the Lasker-Noether decomposition in the commutative
case is proved for arbitrary associative rings in terms of f-primary ideals.

The essential purpose of this paper is to extend some of the results in [3]
for associative rings to arbitrary nonassociative rings. Using the same
function f as in [3] and the %-operation, we give a definition of f-prime ideals
for arbitrary nonassociative rings. Under certain choices of the x-operation
and the function f, our present f-prime ideals coincide with the prime ideals in
[5] for Jordan rings and those in [3] for associative rings. We also obtain
analogous results of f-primary decomposition in [3] for nonassociative rings.

2. f-prime ideals

Let R be an arbitrary nonassociative ring and let (J(R) denote the family of
(two-sided) ideals in R.

DrrFiNiTION 2.1. We define a x-operation as a mapping of J(R)X J(R)
into the family of additive subgroups of R such that
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(i) for 4, B, C, and D in J(R), if ACC and BC D, then A+*BZ C+D,
(ii) AxBcZ AN B for all 4, B in J(R),
(iit) (A4 C)x(B+C)cA*B+C for 4, B, C in J(R).

A similar operation to this defined in [4] and is a special case of the present
definition. Let R be a Jordan ring and let yU,=2(yx)x—yx’ for x, y in R. Let
BU, denote the additive subgroup (in fact, an ideal) of R generated by yU,, x
€A, yeB, for A, Bin J(R). Then the U-operation satisfies the conditions
above. More generally, for any positive integers m, n, let p(x;, **, X, V1,°**Vn)
be an element in the free nonassociative ring generated by the set {x,,**, %, V1,
<, ¥a}. Let p(x,,+,%,, ¥1,°**, V) be one such that each monomial in p(x,,---,
Xows V1r***» ¥u) 1s Of degree >1 in at least one of x;’s and of y,’s. For A4, B in
JI(R), if we define A+B as the additive subgroup p(4,-:-, 4, B, -+, B) generated
by the elements p(a,, -+, a,,, b,, +++, by), @, 4, b,EB, then AxB satisfies the
conditions in Definition 2.1.

As in [4] or [5] (or as one can easily verify), we have the following lemma:

Lemma 2.2. Let R be an arbitrary nonassociative ring where the x-operation
is defined. For an ideal P of R, the following are equivalent:

(1) If AxBCP for A, B in J(R), then either ACP or BCP.

(ii) If ANe(P)=%=0 and BN c(P)=0, then AxB N c¢(P)=*0 for A, B in Y(R),
where c¢(P) is the complement of P in R.

(iii) If a and b are in c(P), then (a)x(b) N c¢(P)=+0, where (a) is the principal
ideal generated by a in R.

DEeFINITION 2.3. An ideal P of R is called a *-prime (or simply prime)
ideal if it satisfies any one of Lemma 2.2. A nonempty subset M of R is called
a x-system if, for 4, B in J(R), ANM =0 and BN M =0 imply AxBNM=+0.

Hence an ideal P in R is prime if and only if ¢(P) is a *-system. The
prime ideals in this definition coincide with the f*-prime ideals in [4] in case
f(a)=(a) for all a in R. Let R be a Jordan ring. If we define A*B as AU, the
x-prime ideals and x-systems coincide with the prime ideals and Q-systems in
[5], respectively. In particular, if p(x,, y,)=x,y, and AxB=p(4, B)=AB, the
*-prime ideals are the prime ideals of McCoy in the associative case and the u-
prime ideals in [1] with u=x,x,.

DEerFINITION 2.4. Let R be any nonassociative ring. Following [3], we
define f as a function of R into J(R) such that, for every element a in R,

(i) aef(a), and
(i) xef(a)4A implies f(x) < f(a)+ A for any ideal 4 in R.
A similar function to f has been defined in [4]. The principal ideal (a)

generated by @ in R is an example of f(a). More generally, for a subset S of R, if
we let f(a)=(a, S), the ideal generated by a and S in R, then f satisfies the
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conditions. We note that f(a)=(a) for all a in R if and only if f(0)=(0).

DEFINITION 2.5. A nonempty subset M of R is called an f-system if M
contains a *-system M’ such that f(a) N\ M’=0 for every element a in M, where
M is called a kernel of M.

For the associative case, the f-systems are defined in [3] by using the m-systems.
Any #-system is clearly an f-system. If f(a)=(a) for all @ in R, the f-systems
coincide with the #-systems. In fact, let 4 and B be ideals in R with ANM=+0
and BAM=+0. ForacsANM and be BN M, we have (a) N M’+0 and (b) N M’
+0, and so AxBN M2 (a)x(b) N M’=+0 since M’ is a *-system. Hence M is a
*-system.

DEeFINITION 2.6. Anideal Pis said to be f-prime if either ¢(P)is an f-
system in R, or P=R.

As before, if f(a)=(a) for all a in R, the f-prime ideals coincide with the
x-prime ideals. But in general, f~prime ideals may not be x-prime for certain
choices of the *-operation and the function f. In the associative case, an example
for this may be found in [3]. We now give an example in nonassociative case.

ExampLE 2.7. Let R be the free Jordan ring with an identity on free
generators x and y. If we take A%*B=AU g for the U-operation in R, it is shown
that AU ,=AA* and AU 4 is an ideal of R for every ideal 4 in R (see [5]). Let
P=(x)U,,=(x)(x)?, then P is not O-prime since (x) is not contained in the ideal
P. Tor a fixed positive integer k, we define f(a)=(a, y*) for all ain R. Let M’
={y,5% 3%}, then M’ is a Q-system and M’N P=0 since R is free. Hence
¢(P) is an f-system with kernel M’ and P is f-prime. This example shows that
an f-system may have different kernels.

Lemma 2.8. For any f-prime ideal P, f(a)xf(b)C P implies that acP or
beP.

Proof. If a and b are in ¢(P), f(a) N ¢(PY =0 and f(b) N ¢(P) + 0 for a kernel
c(PY of ¢(P). Since ¢(P) is a x-system, f(a)*f(b) N c(P)Y ¢ and f(a)*f(b) is not
contained in P.

DerFINITION 2.9. Let A be an ideal in R and let r(4)={rR| any f-
system containing 7 meets A}. Following [3], we call 7(4) the f-radical of 4.

We now prove the usual characterization of f-radicals.

Theorem 2.10. For an ideal A in R, the f-radical of A is the intersection
of all f-prime ideals in R containing A.

Proof. Let N P; be the intersection of all the f~prime ideals containing 4.
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If b €¢(P;) for some 7, be=r(A4) since AN ¢(P)=@. Hencer(d)c N P,.

‘Conversely, if b&7(A4), there exists an f-system M such that b M but M
NA=@. By Zorn’s lemma, we find a maximal ideal P in R such that P24
but PN M=0. We show that ¢(P) is an f-system; that is, P is f-prime. Let M’
be a kernel of the f-system M. Since PN\ M’'=+0, M'+PCc(P). First, to show
M’4-P is a %-system, let 4, B be ideals in R such that AN (M’'+P)+0 and BN
(M’4+P)=+0. Then (A+P)NM’'+0 and (B+P)NM’+0. Since M’ is a *-
system, @ (A+P)x(B+P)NM’'c(A+*B+P)NM’. This implies that AxBN
(M’+P)=0, and hence M’+P is a *-system. To see that M’+P is a kernel
of ¢(P), let acc(P). By the maximality of P, f(a)+ P contains an element % in
M. Then flu)N M’=%0 and let W' =f(u)N M’. Since uef(a)+ P, f(u) =f(a)+P
and so #'=c-+d for cef(a) and d P, thus c=u'—d is in M’+P and f(a)N (M’
+P)=%0. Hence ¢(P) is an f-system. Recalling that b=c(P) and P2 A, this
proves r(A)=NP;.

3. f-primary decompositions

In this section, we consider an analogue for nonassociative rings of primary
ideals and the uniqueness theorem of Lasker-Noether decomposition of ideals
in commutative, associative rings.

DEerFINITION 3.1. A x-operation is said to be left (or right) additive if (44
B)«C c A%C+BxC (or Ax(B+C)< A*B+ AxC) for all ideals 4, B, C, in R.

The U-operation in a Jordan ring is left-additive. More generally, let p(x,
Y1 ***» ¥») be an element in the free nonassociative ring on free generators x, y,,
+++y¥n. 1f each monomial in p(x, y,,::-,¥,) is of degree >1 in at least one of y,’s
and is of degree 1 in x, then AxB=p(A4, B, ---, B) defines a left additive -
operation. Examples for right additive ones are similarly obtained. In fact, if
we define A+" B=BxA for ideals 4, B, then #’ is a right additive operation.

Henceforth we assume that all x-operations are left-additive. By the
remark above, results for a right additive operation are entirely similar.

DerFINITION 3.2. For an ideal 4 in R and an element b in R, the (left)
f-quotient A:b of A by b is defined as the subset of all elements ¥ in R such that
f(x)xf(b) is contained in A. If B is an ideal of R, we let A:B= N (A4:b).

bEB

A:b may be empty. For instance, let AxB=AB and f(a)=R for all ain R.
If R is a ring with R*=R, then, for any proper ideal 4 in R, we have 4:56=0.
However, if A:b=+0, A:b is an ideal containing 4. In fact, let x&4:b and ac
A4, then x+-a< f(x)+A4 and so f(x+a) < f(x)+A. Recalling that * is left-additive
and Definition 2.1, we have f(x-+a) * f(b) S (f(x)+A4) * f(b) S1(x) * f(b)+ A * f(b)
cA. Hence (A:b)+AcA:b. If x and y are in A:b, then f(x+y) * f(b) =(f(x)
+f(y)) * f(b)<A. This proves that A:b is an ideal of R containing 4. We note
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that if f(a)=(a) for all a in R, A:5=+0 for every ideal 4 and b since (0)* f(b)=

(0).
DrriniTION 3.3. Let M be an f-system of R. Then a kernel M’ of M is
said to be densed in M if, for any ideal 4 in R, M N A=+0 implies M’ N A=%0.

If f(a)=(a) for all a in R and M is an f-system, every kernel of M is clearly
densed in M. But, in general, this is not the case. Let R be the Jordan ring in
Example 2.7. For the ideal P= (x)(x)?, ¢(P) is an f-system and M’'={y, 37,
3% -} is a kernel of ¢(P), but we note that ¢(P)N (x)=0 since (x)<P, while
(x)N M'=0.

Lemma 3.4. Let A and B be ideals in R. Then we have

(i) ¢ AcCB, r(4)cr(B),

(ii) r((A)=r(4),

(1i1)  if every f-system M in R has a kernel densed in M, r(A N B)=r(4) N r(B).

Proof. (i) and (ii) are immediate from the definition of the radical. For
the proof of (iii), we note that we always have (AN B)Cr(A)Nr(B). Let x now
be in 7(4A)Nr(B) and M be any f-system containing x. If M’ is a kernel of M
densed in it, M'N A=+0 and M’N B=+(. Since M’ is a *-system, A*BNM’'+0
and AxBNM'cANBNM'+0. Hence ANBNM=+0and xsr(ANB). This
proves (iii). ‘

DEFINITION 3.5. An ideal Q in R is called (left) f-primary if f(a)xf(b) SO
and e Q imply ber(Q).

By Lemma 2.8 we see that every f-prime ideal in R is f-primary.

Lemma 3.6. Suppose that every f-system in R has a kernel densed in it.
If Q and Q' are f-primary ideals in R such that r(Q)=r(Q’), then QN Q' is also

f-primary and r(Q  0)=r(Q)=r(Q).
Proof. By definition, QN Q’ is clearly f-primary. By Lemma 3.4 (iii),
QN Q)=r(Q)Nr(Q")=r(Q)=r(Q").

Theorem 3.7. Suppose that the function f satisfies the condition:

(1) For any ideals A and B in R, Br(A) implies A:B=0.
Then an ideal Q is f-primary if and only if Q:B=Q for all ideals B not contained
in r(Q).

Proof. Let O be f-primary and B be an ideal not contained in 7(Q). Let
ac< B but a€:r(Q), then by (I) Q:5+0. For any element a in Q:b, f(a)xf(b)<= O,
and since b&7(Q), ac Q. Thus Q:b is contained in Q and this implies that Q
=Q:B since Q:B is an ideal containing Q and Q:B< Q:b.

Conversely, suppose that f(a) * f(b)) SO and be&er(Q). Then f(b) E7(Q) and



46 H. C. MyuNG

O:f(b)=0. Hence, for any element ¢ in f(b), f(a) * f(c)=f(a) * f(b))CQ and so
ac Q:f(b)=0. Therefore, Q is f-primary.

Let A be an ideal of R. Suppose that A is represented as a finite
intersection A=0Q,NQ,N---NQ, of f-primary ideals Q, (called an f-primary
decomposition of 4). As in the associative case, an f-primary decomposition of
A is said to be irredundant if it satisfies the conditions:

(a) No O; contains the intersection of the other ones.

(b) The Q; have distinct f-prime radicals 7(Q;).

If every f-system has a kernel densed in it, then, in view of Lemma 3.6,
each f-primary decomposition can be refined to irredundant one.

For the main theorem, we need the conditions (I) and
(IT) for any f-primary ideal Q in R, Q: O=R.

Conditions (I) and (II) hold in case f(a)=(a) for all a in R. In fact, let 4
be any ideal in R, then for x in R and a in 4, (x) * (a) =(x) N (a) S 4 and so 4:4
=R, and hence (II). Condition (I) is trivial. Conditions (I) and (II) are not
true in general.

ExampLE 3.8. Let R be the free Jordan ring in Example 2.7. Let f(a)=
(a, y) for all ain R. 'Then P=(x)(x)’ is f~prime and so f-primary. To see P:0
=0, suppose that P:0==0, then P:0 is an ideal and so A0)U,»=(y)(yy <P, a
contradiction. Hence P:P=(. Also P:(y)=0 and (y)<Er(P)=P.

We now state an analogue of the uniqueness theorem of Lasker-Noether
decomposition in commutative, associative rings.

Theorem 3.9. Let R be a nonassociative ring where a left additive -
operation and the function f are defined and (I) and (II) hold. Suppose that every
f-systemin R has a kernel densed in it. If an ideal A admits an f-primary
decomposition and

A4=0,n0,n---NQ,=0iN0sN--NO;

are two trredundant f-primary decompositions for A, then m=n and for a suitable

ordering of the Q,; and Q) we have r(Q,;)=r(Q}) for all i.

The proof depends on Lemma 3.6, Theorem 3.7, (II), and on the
following easy properties:

(1) ifAc<B, A:C<B:C,

(2) ifBcC, A:B2A4:C,

(3) (ANB):C=(4:C)N(B:C)
for ideals 4, B, C in R. Hence the proof is essentially the same as in [3] and
we shall omit it.
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