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1. Introduction

In the previous paper [3] we have introduced the cobordism groups I(n, k),
E(n, k) and G(n, k) of immersions, embeddings and generic immersions of 7-
manifolds into (n-+k)-manifolds respectively. Mainly we have considered the
cobordism group G(n, k), and we have obtained the following exact sequence:

0 — E(n, k) = G(n, k) — B(n—Fk, k) -0

where the group B(n, k) is the cobordism group of bundles over manifolds with
involution defined in [3]

In general E(n, k) is isomorphic to the bordism group RN, (MO(k)), so
we have studied the cobordism group B(n, k) in [3], [4], in order to study the
cobordism group I(n, k), since I(n, k) is canonically isomorphic to G(z, k) in the
meta-stable range (i.e. 2k>n-+-1). Especially, as one of the consequence of the
previous paper, the forgetting homomorphism

ax : E(n, k) — I(n, k)

is injective in the meta-stable range.
One of the results of the present paper is that the homomorphism

ax : E(n, k) — I(n, k)

is injective without restriction of the meta-stable range.

First we will introduce the notion “‘completely regular (p)-immersion” and
study some properties of completely regular (p)-immersions in sections 2, 3. We
will define the cobordism group C(n, k; p) of completely regular (p)-immersions
in section 4, and we will show, in section 5, that the forgetting homomorphism

ap: C(n, k; p) — C(n, k; p+1)
is injective. 'Therefore the homomorphism

ax : E(n, k) — I(n, k)
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is injective.

Next, in section 6, we will study the oriented cobordism groups of com-
pletely regular (p)-immersions. In the final section 7, we will return to the
unoriented case and study the cokernel of the homomorphism « .

2. Definitions and notations
Let M, N be C~-differentiable manifolds.
2.1. First we will give some definitions.

DerFiNITION 2.1. A C=-differentiable mapping f: M—N is proper if
f~(0N)=0M and there are coller neighborhoods

c: 0Mx[0,1)->M
¢": ONx[0,1) - N

for which the following diagram is commutative:

M [0, 1) —> M
| groax1 | 1

’

ANX[0,1) —> N

DEFINITION 2.2. Subspaces V,, V,,--+,V , of a vector space V are in general
position if

dim (V,,N - NV, )= dim (V,,)—(k—1) dim ¥V

for 154, <i,< -+ <iy=<p.

DEerFINITION 2.3. A proper immersion f: M—N is completely regular if
the subspaces df(M,,)),--,df(M, ,) of N, are in general position for x,---,x, in
M such that y=f(x,)=---=f(x,), where M, is a tangent space of M at x, and
df: M,—N g, is a differential of f.

DErINITION 2.4. A completely regular immersion f: M—N is completely
regular (p)-immersion if f~*(f(x)) has at most p-elements for any point x in M.

Lemma2.5. LetV,,---,V, be subspaces of a vector space V, then the following
conditions are equivalent:

(a) Vi,V , are in general position,

(b) VotV NNV, )=V for mutually distinct indices iy, i,,"** iy,

(c) orthogonal complements of V,,---,V, are linearly independent for some
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inner product of V.
2.2. Next we will fix some notations.

E(M, N): the set of all proper embeddings from M to N,

I(M, N): the set of all proper immersions from M to N,

CR(M, N): the set of all proper completely regular immersions from M to

N’
CR,(M, N): the set of all proper completely regular (p)-immersions from
Mto N,

C=(M, N): the set of all proper C~-differentiable mappings from M to N.
Then

E(M, N) = CR(M, NYCCR(M, N)C - C CR M, N)
CCR. (M, N)C -,

CR(M, N) = |JCR,(M, N), CR(M, N)C KM, N)cC*(M, N),

CR.,(M, N) = CR(M, N) for p(dimN—dimM)>dimM,

CR(M, N) = I(M, N) for dim M = dimN.

3. Completely regular immersions

Let X be a set. Denote by X»> the p-fold cartesian product of X, A?X
the diagonal set of X*> and

ApX = {(xy, =+, %) EXP|x,=2x; for some 7 <j}.
Let f: X—Y be a mapping. Denote by
f . X s P

the mapping defined by f?(x,, -+, x,)=(f(x,), -**, f(®,))-
Then we have the following result from the definition of the transverse reg-

ularity condition.

Lemma 3.1. Let M,N be C=-differentiable manifolds without boundary and
f:M—N be a C=-differentiable mapping. Then the C=-differentiable mapping f*°:
MP — A pyM— NP is transverse regular over the diagonal A?N, if and only if

dfM . +(dfM,,0 - NdfM, )=N,
for (x,, -+, %) EMP— Ay M such that y=f(x,)=---=f(x).
As a corollary of this lemma we have the following result.

Theorem 3.2. Let M,N be C=-differentiable manifolds without boundary
and f:M—N be an immersion. Then
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(a) f is completely regular if and only if > : M®— A p,M—N? is transverse
regular over the diagonal APN for all p=2,

(b) f is completely regular (p)-immersion if and only if f® :M®— A4, M—N®
is transverse regular over the diagonal AN for 2<k= p and f*+>(MP+°>— A p1,M)
does not meet the diagonal A**'N.

Corollary 3.3. CR(M, N) and CR,(M, N) are open subsets of I(M, N)
with respect to the fine C'-topology.

Corollary 3.4. Let f: M—N be a completely regular (p)-immersion and
X={xeM)| f'(f(x)) has just p-elements}. Then X is a closed submanifold of M
with dimension dim N —p(dim N—dim M).

Theorem 3.5. Let M be a compact C=-differentiable manifold and N a C*-
differentiable manifold. Then

(a) the set CR(M,N) is a dense open subset of I(M, N) with respect to the fine
C*-topology,

(b) let A be a closed subset of M and f: M—N be an immersion, if the restr-
iction of f over A is completely regular and f(A) does not intersect f(M—A), then,
as an arbitrarily closed C*-approximation of f, there is a completely regular immersion
g: M—N such that g=f on A.

Proof. This is an immediate corollary of Theorem 3.2 and the generalized
transversality theorem (Theorem 1.10[1]).

Corollary 3.6. Any immersion f: M—N is differentiably homotopic to a
completely regular immersion.

Proof. This follows from Theorem 3.5 and the fact that Z(M, N) is locally
contractible with respect to the fine C*-topology (cf. [2]).

4. Cobordism of immersions

4.1. A completely regular (p)-immersion of dimension (z, k) is a triple (f,
M, N,) consisting of two closed C*=-differentiable manifolds M, N of dimensions
n, n+k respectively and a completely regular (p)-immersion f: M—N. We
identify (f, M, N) with (f’, M’, N') if and only if there are diffeomorphisms ¢ :
M—M' and ¢ : N—N’ for which ¢f=f'p.

A completely regular (p)-immersion (f, M, N) of dimension (n, k) will be
said to be cobordant to zero if there exists a triple (F, V, W) where:

(1) V and W are compact C*-differentiable manifolds of dimensions n-1,
n+k+1 respectively, and

(2) F: V—W is a proper completely regular (p)-immersion such that
(F|oV, oV, oW)=(f, M, N).
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Then we denote o(F, V, W)=(f, M, N). Two completely regular (p)-
immersions (f,, M,, N,) and (f,, M,, N,) of dimension (n, k) will be said to be
cobordant if and only if the disjoint union (f,, Ny, My)+(f,, M), N,) is cobordant
to zero.

This cobordism relation is an equivalence relation and denote by C(n, k; p)
the set of equivalence classes under this relation of completely regular (p)-im-
mersions of dimension (n, k). As usual, an abelian group structure is imposed
on C(n, k; p) by disjoint union, which is called the cobordism group of com-
pletely regular (p)-immersions of dimension (, k), and every element of C(n, k;
p) 1s its own inverse. :

4.2. In the above definition, if the term ‘“‘completely regular (p)-immer-
sion” is replaced by “embedding”, “immersion” and ‘‘completely regular
immerison”, one may define the cobordism groups of embeddings E(n, k),
immersions I(n, k) and completely regular immersions C(n, k), of dimension
(n, k) respectively.

By definition E(n, k)=C(n, k; 1) and there are natural forgetting homo-
morphisms

ay,: C(n, k; p) — C(n, k; p+-1)
&y : C(n, k; p) — I(n, k)
ax : E(n, k) — I(n, k)

such that ax=a,00,_ 10+ 0a0;.

REMARK. (a) @, is an isomorphim for kp >n-+1,
(b) «, is injective, since C(n, k; 2)=G(n, k) the cobordism group
of generic immersions defined in the previous paper ([3], Section 4).

In the next section, we will prove that the homomorphism «, is injective
for all p=1.

5. Splitting homomorphisms

5.1. Let f: M—N be a proper completely regular (p)-immersion where
M, N are compact C~-differentiable manifolds of dimensions 7, n-k respectively.
Let

X={xe M| f~'(f(x)) has just p-elements}

and Y=f(X). Then X and Y are closed submanifolds of M, N respectively,
and dim X=dim Y=n—(p—1)k. Moreover | X: X—7Y is a p-fold covering.
Then

Lemma 5.1. There are Riemannian metrics on M, N such that
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(a) the differential df : M ,—N ., is isometric for x& X,
(b) the orthogonal complements of dfM.,, ---,dfM,, in N, are mutually
orthogonal if y=f(x,)="--=f(x,).

Proof. Firstly, define a Riemannian metric satisfying (b) on a neighborhood
in N of each point of Y. Define a Riemannian metric on N satisfying the
condition (b) by making use of a C~-differentiable partition of unity on N.
Next, define a Riemannian metric on M as the induced metric by df.

5.2. Let »(X) and »(Y) be the normal bundles of the embeddings X c M,
Y C N respectively, with respect to the above Riemannian metrics. Denote by
E(v(X)), E(v(Y)) the total spaces of these normal bundles, and E,(»(X)), E(»(Y))
the set of all normal vectors with length <&.

Then the differential df maps E(v(X)) into E(v(Y)) and the following dia-
gram is commutative:

df
E((X)) > E((Y))

f1Xx

>

where the vertical mappings are bundle projections. Then we have the follow-
ing result by an elementary method.

Lemma 5.2. There is a differentiably homotopic approximation g of f such
that

(a) g=fon X,
(b) dg=df on E(v(X)),

(c) the following diagram is commutative for some €>0:

dg
E,(v(X)) —> E.(»(Y))

l exp exp
> N

4

where exp is the exponential mapping.
5.3. Under these notations, let
M, = M—exp (int E(v(X))),
N, = N—exp (int E(v(Y))),
0. M, = exp (OE,(v(X))),
0,N, = exp (OE,(»(Y))),

Then 98,M, and 9,N, have fixed point free C=-differentiable involutions a, b
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induced from the bundle involutions of E(»(X)), E(»(Y)) respectively, and the
following diagram is commutative:

8[0,M,
oM, ———— 9,N,

l“ £/o,M, lb

>

1 0 VYo

Let M, be the quotient space of M, by the relation x=a(x) for x09,M,.
Let N, be the quotient space of N, by the relation y=b(y) for ye9,N,. Then
M,, N, have naturally C~-differentiable structures and a mapping g,: M,—N, is
induced from the mapping g|M,: M,—N, which is proper completely regular
(p—1)-immersion.

Theorem 5.3. There is a homomorphism.
Vs : C(n, k; p) > C(n, k; p—1)
such that vy 5, ot y=tdentity.

Pfoof. By the above notations, the correspondence from (f, M, N) to (g,
M,, N,) is cobordism invariant, and this defines a desired homomorphism.

Corollary 5.4. The homomorphism o, : C(n, k; p)—C(n, k; p+1) is injec-
tive for all p=1 and the image of o, is a direct summand.

Corollary 5.5. The homomorphism ay: E(n, k)—I(n, k) is injective.

Proof. If k>0, then this follows from the above corollary. If k=0, then
this follows directly from the definition of E(n, k) and I(n, k).

6. Oriented cobordism of immersions

6.1. By similar argument to the unoriented case one may define the orient-
ed cobordism groups of ‘completely regular (p)-immersions C%n, k; p), embed-
dings E°(n, k), immersions I°%n, k) and completely regular immersions C°(n, k),
of dimension (n, k) respectively, where we consider orientation preserving
mappings if k=0.

By definition E°n, k)=C"(n, k; 1) and there are forgetting homomorphisms

aj: C%n, k; p) — C(n, k; p+1)
@y : Cn, k; p) — I(n, k)
ay: E(n, k) — I'(n, k)

such that ay=agpoay_10--ocajoal.
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REMARK. (a) @3 is an isomorphism for kp >n-+1,
(b) C°(n, k; 2)=G"(n, k) the oriented cobordism group of generic
immersions defined in the previous paper ([3], Section 10).
We could not find such a homomorphism as v,, so we do not know in
general whether the homomorphisms a3 and a% are injective or not. In the
following we give some partial results.

6.2. First, we consider the case of low codimensions. Let s be a point of
k-sphere S*. Let M, N be oriented closed C=-differentiable manifolds of
dimensions 7, n+k respectively, and define a mapping

f: M— N+MxS*
by f(x)=(x, s), then f is an embedding. The function
¢ QuPQyir — E°(n, k)
defined by ([M], [N])=[f, M, N+ M x S¥)] is a well-defined homomorphism.
Lemma 6.1. The homomorphism
axor: QuDQyip — I°(n, k)
is injective and the image of ¢ is a direct summand of E°(n, k).

Proof. Let =: I%(n, k)—>Q,PQ,+, be a homomorphism defined by =([f,
M, N))=([M], [N]), then woa%ot=identity. Therefore we have the desired
result.

Proposition 6.2. The homomorphism
ay: E°(n, k) — I(n, k)
1s injective for k=0 and k=1.

Proof. In general E°(n, k) is isomorphic to Q,.x(MSO(k)). If k=1, then
MSO(1) is homotopy equivalent to the circle and hence Q4(MSO(1)) is isomor-
phic to the tensor product Hy(MSO(1); Z)QQx. Therefore E°(n, 1) is isomor-
phic to Q,PQ, .+, and af is injective by Lemma 6.1. If k=0, then the results
follows directly from the definition of E°n, 0) and I°(n, 0).

6.3. If k>n-+1, then the homomorphism
a%: E'(n, k) — I(n, k)
is isomorphic by Remark in 6.1. We consider the case k=n+1 and k=n.

Proposition 6.3.
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(a) a%: E°(n, n41)—>I°(n, n+1) is an isomorphism,
(b) ay: E°(n, n)—I%n, n) is injective.
Proof. Since the homomorphism

az: C%n, k; 2) — I'(n, k)

is an isomorphism in both case except n=k=1, and E°(1, 1)=0, it is sufficient
to consider the homomorphism

al: E%n, k) — C(n, k; 2)=G"(n, k).
There are exact sequences [3]:

8 0
6251, 25— 1)L B0, 25— 1) s (25 —2, 26— 1)~ 0 G9(25—2, 25—1)—0,

6 1]
G°(2s, 2s)—ﬁ—>B+(0, 25)—>E°(2s—1, 23)2->G°(2s—1, 25)—0.
Now define a mapping
f: Si+8S3—- S"x S”

by f(x)=(x, s) for xSt and f(y)=(s, y) for y=S3, where S} is a copy of S”"
and s S” is a base point. Then f is a completely regular (2)-immersion with
unique double point and therefore the homomorphisms 3 are onto in the above
sequences. Consequently the homomorphism «f is an isomorphism.

Next, since B™(1, 2s—1)=0 in the exact sequence

a 0
B(1, 25— 1) —s E(25—1, 25— 1) -5 G3(25—1, 25—1) —o> B(0, 25—1)—0,

the homomorphism «af: E°(2s—1, 2s—1)—>G°(2s—1, 2s—1) is injective and not
onto since B~ (0, 2s—1)=7Z,.
Lastly, B+(1, 2s)=Z, in the following exact sequence

a 0
G°(2s+1, 2s) _[_3_) B+(1, 2s) — E°(2s, 2s) iR G°(2s, 2s).

We will prove that 8 is onto, and it is sufficient to show the existence of a com-
pletely regular (2)-immersion (f, M, N) of dimension (251, 2s) such that

X,= {xeM| f'(f(x)) has 2-elements}
is diffeomorphic to the circle S'. Let CP* be the complex projective space and
f: S'XCP°*— S'xXCP*”

a mapping defined by
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(€%, {2y 24, o0y 2,))
= (€"?, <{z,6%, z,co0s0, ---, z,co80, 2,sinf, ---, z;sinb))

where {2, 2;, ***, 2,> is a homogeneous coordinate of CP°. Then fis a com-
pletely regular (2)-immersion and

Xf= SIX{<17 O’ "ty O>}

RemARk. By direct calculation, if n4+k=<7 but (n, k)3=(4, 2), then the
homomorphism

ay: E’(n, k) — I'(n, k)
is injective, and the homomorphism
aY: E°4,2)—> C'4, 2;2)= G4, 2)
is injective.
7. Bundles over covering spaces
7.1. Now we return to the unoriented case. The homomorphism
ay: C(n, k; p) — C(n, k; p+1)

is injective and the image of «, is a direct summand by Corollary 5.4, so we
study now the cokernel of ;. For this purpose, we introduce new cobordism
groups as follows.

7.2. Let k, p be fixed non-negative integers. A pair of bundles over a
covering space is a quadruple (£, 7, A, k), where

£: E)— B(), n: E(n)— B()

are C*~-differentiable vector bundles over compact C*~-differentiable manifolds
with fibre dimensions pk, (p+ 1)k respectively,

k: B(§) — B(n)
is a (p+1)-fold covering which is a proper C~-differentiable mapping, and
h: E(E) — E(n)

is a C~-differentiable mapping covering 2. 'The following must be satisfied:
(1) & maps each fibre £, over x& B(£) linearly one to one into a fibre 7;,,,
(2) for each y in B(7) and x,, x,, -+, x, in B(£) such that y=/h(x,)=h(x,)=

«-+=h(x,), subspaces A(£,,), -+, h(E,,) of a vector space 7, are in general position.
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7.3. A quadruple (&, 7, k, k) is identified with a quadruple (&', 7', k', k')
if and only if there is a quadruple (&, @, b, b) of C=-diffeomorphisms

a: E()— E("), a: B(§)— B(&"),
b: E(n)— E(v'), b: B(n)— B(%'),

such that boh=h'oa and a, b are bundle mappings covering &, b respectively.
For a quadruple (&, #, &, k), denote by (&, n, h, k) a quadruplet consisting
of the restrictions

EIET(0B(E)) : £7'(0B(§)) — 9B(8),
7177 (0B(7)) : 7"} (6B(n)) — 3B(x),
h|E7(0B(£)) : £7(0B(§)) — 77 (9B(n)),
R|9B(E) : 0B(£) — 0B(n).

7.4. The cobordism group B(n, k; p) of pairs of bundles over a covering
spaces of n-manifold may be now defined. If B(&,) and B(&,) are closed n-
manifolds, then a quadruple (&,, 7,, Ao, 5,) is cobordant to a quadruple (&, 7, A,
k) if and only if there is a quadruple (&, 7, A, &) as such that

6(5, n, h, il) = (‘Eo» Moy Po, Eo)_f‘(gn s hy, El)

where the symbol+-denotes disjoint union. Then this cobordism relation is an
equivalence relation. Denote by B(n, k; p) the set of all cobordism classes. As
usual an abelian group structure is imposed on B(n, k; p) by disjoint union,
then every element is its own inverse.

RemARK. B(nm, k; 1) is naturally isomorphic with the cobordism group
B(n, k) of bundles over mainfolds with involution defined in the previous paper
([3], Section 3).

7.5. Now we define homomorphisms
By C(n, k; p+-1) — B(n—pk, k; p),
7y : B(n, k; p) — C(n+pk, k; p+1).

(7.5.1) LetasC(n, k; p+1) be represented by a completely regular (p+-1)-
immersion f: M—N. Let

X={xe M| f~'(f(x)) has just (p+1)-elements}

and Y=f(X). Then there are Riemannian metrics on M, N satisfying the con-
ditions of Lemma 5.1. Let »(X), »(Y)be the normal bundles of the embeddings
Xc M, YCN respectively, with respect to these Riemannian metrics, and then
the differential df maps E(v(X)) into E(»(Y)). Define B3 ,(a) the cobordism class
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of the quadruple (v(X), »(Y), df | E(v(X)), f | X).

(7.5.2.) Let b B(n, k; p) be represented by a qudaruple (&, », &, k).
Define 7 ,(b) the cobordism class of a completely regular (p-1)-immersion
defined by the mapping

P(hpl) : P(EDE) — P(nD0")

where @' is the trivial line bundle, P(§6") and P(n6") are the total spaces of
the associated projective space bundles, and P(A1) is a mapping canonically
induced from the mapping A.

Theorem 7.1. There is an exact sequence:

0 —— C(n, k; p) —Oﬁ’» C(n, k;p+1)££->B(n—pk, k; p) — 0.

Proof. The homomorphism «, is injective by Corollary 5.4, and the homo-
morphism @, is surjective since 3,07 ,—identity by definition (cf. [3] Theorem
A"). The exactness at C(n, k; p—+1) is proved by the handle attaching construc-
tion (cf. [3], Section 5), so we omit the details.
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