

Title	Cobordism groups of immersions
Author(s)	Uchida, Fuichi
Citation	Osaka Journal of Mathematics. 1971, 8(2), p. 207-218
Version Type	VoR
URL	https://doi.org/10.18910/8652
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Uchida, F.
 Osaka J. Math.
 8 (1971), 207-218

COBORDISM GROUPS OF IMMERSIONS

FUICHI UCHIDA

(Received November 9, 1970)

1. Introduction

In the previous paper [3] we have introduced the cobordism groups $\mathbf{I}(n, k)$, $\mathbf{E}(n, k)$ and $\mathbf{G}(n, k)$ of immersions, embeddings and generic immersions of n -manifolds into $(n+k)$ -manifolds respectively. Mainly we have considered the cobordism group $\mathbf{G}(n, k)$, and we have obtained the following exact sequence:

$$0 \rightarrow \mathbf{E}(n, k) \rightarrow \mathbf{G}(n, k) \rightarrow \mathbf{B}(n-k, k) \rightarrow 0$$

where the group $\mathbf{B}(n, k)$ is the cobordism group of bundles over manifolds with involution defined in [3].

In general $\mathbf{E}(n, k)$ is isomorphic to the bordism group $\mathfrak{N}_{n+k}(MO(k))$, so we have studied the cobordism group $\mathbf{B}(n, k)$ in [3], [4], in order to study the cobordism group $\mathbf{I}(n, k)$, since $\mathbf{I}(n, k)$ is canonically isomorphic to $\mathbf{G}(n, k)$ in the meta-stable range (i.e. $2k > n+1$). Especially, as one of the consequence of the previous paper, the forgetting homomorphism

$$\alpha_* : \mathbf{E}(n, k) \rightarrow \mathbf{I}(n, k)$$

is injective in the meta-stable range.

One of the results of the present paper is that the homomorphism

$$\alpha_* : \mathbf{E}(n, k) \rightarrow \mathbf{I}(n, k)$$

is injective without restriction of the meta-stable range.

First we will introduce the notion “completely regular (p) -immersion” and study some properties of completely regular (p) -immersions in sections 2, 3. We will define the cobordism group $\mathbf{C}(n, k; p)$ of completely regular (p) -immersions in section 4, and we will show, in section 5, that the forgetting homomorphism

$$\alpha_p : \mathbf{C}(n, k; p) \rightarrow \mathbf{C}(n, k; p+1)$$

is injective. Therefore the homomorphism

$$\alpha_* : \mathbf{E}(n, k) \rightarrow \mathbf{I}(n, k)$$

is injective.

Next, in section 6, we will study the oriented cobordism groups of completely regular (p)-immersions. In the final section 7, we will return to the unoriented case and study the cokernel of the homomorphism α_p .

2. Definitions and notations

Let M, N be C^∞ -differentiable manifolds.

2.1. First we will give some definitions.

DEFINITION 2.1. A C^∞ -differentiable mapping $f: M \rightarrow N$ is *proper* if $f^{-1}(\partial N) = \partial M$ and there are collar neighborhoods

$$\begin{aligned} c: \partial M \times [0, 1] &\rightarrow M \\ c': \partial N \times [0, 1] &\rightarrow N \end{aligned}$$

for which the following diagram is commutative:

$$\begin{array}{ccc} \partial M \times [0, 1] & \xrightarrow{c} & M \\ \downarrow (f| \partial M) \times 1 & & \downarrow f \\ \partial N \times [0, 1] & \xrightarrow{c'} & N \end{array}$$

DEFINITION 2.2. Subspaces V_1, V_2, \dots, V_p of a vector space V are *in general position* if

$$\dim (V_{i_1} \cap \dots \cap V_{i_k}) = \sum_{r=1}^k \dim (V_{i_r}) - (k-1) \dim V$$

for $1 \leq i_1 < i_2 < \dots < i_k \leq p$.

DEFINITION 2.3. A proper immersion $f: M \rightarrow N$ is *completely regular* if the subspaces $df(M_{x_1}), \dots, df(M_{x_p})$ of N , are in general position for x_1, \dots, x_p in M such that $y = f(x_1) = \dots = f(x_p)$, where M_x is a tangent space of M at x , and $df: M_x \rightarrow N_{f(x)}$ is a differential of f .

DEFINITION 2.4. A completely regular immersion $f: M \rightarrow N$ is *completely regular (p)-immersion* if $f^{-1}(f(x))$ has at most p -elements for any point x in M .

Lemma 2.5. Let V_1, \dots, V_p be subspaces of a vector space V , then the following conditions are equivalent:

- (a) V_1, \dots, V_p are in general position,
- (b) $V_{i_0} + (V_{i_1} \cap \dots \cap V_{i_k}) = V$ for mutually distinct indices i_0, i_1, \dots, i_k ,
- (c) orthogonal complements of V_1, \dots, V_p are linearly independent for some

inner product of V .

2.2. Next we will fix some notations.

$\mathbf{E}(M, N)$: the set of all proper embeddings from M to N ,

$\mathbf{I}(M, N)$: the set of all proper immersions from M to N ,

$\mathbf{CR}(M, N)$: the set of all proper completely regular immersions from M to N ,

$\mathbf{CR}_{(p)}(M, N)$: the set of all proper completely regular (p)-immersions from M to N ,

$C^\infty(M, N)$: the set of all proper C^∞ -differentiable mappings from M to N . Then

$$\mathbf{E}(M, N) = \mathbf{CR}_{(1)}(M, N) \subset \mathbf{CR}_{(2)}(M, N) \subset \cdots \subset \mathbf{CR}_{(p)}(M, N)$$

$$\subset \mathbf{CR}_{(p+1)}(M, N) \subset \cdots,$$

$$\mathbf{CR}(M, N) = \bigcup_{p \geq 1} \mathbf{CR}_{(p)}(M, N), \quad \mathbf{CR}(M, N) \subset \mathbf{I}(M, N) \subset \mathbf{C}^\infty(M, N),$$

$\mathbf{CR}_{(p)}(M, N) = \mathbf{CR}(M, N)$ for $p(\dim N - \dim M) > \dim M$,

$\mathbf{CR}(M, N) = \mathbf{I}(M, N)$ for $\dim M = \dim N$.

3. Completely regular immersions

Let X be a set. Denote by $X^{(p)}$ the p -fold cartesian product of X , $\Delta^p X$ the diagonal set of $X^{(p)}$ and

$$\Delta_{(p)} X = \{(x_1, \dots, x_p) \in X^{(p)} \mid x_i = x_j \text{ for some } i < j\}.$$

Let $f: X \rightarrow Y$ be a mapping. Denote by

$$f^{(p)}: X^{(p)} \rightarrow Y^{(p)}$$

the mapping defined by $f^{(p)}(x_1, \dots, x_p) = (f(x_1), \dots, f(x_p))$.

Then we have the following result from the definition of the transverse regularity condition.

Lemma 3.1. *Let M, N be C^∞ -differentiable manifolds without boundary and $f: M \rightarrow N$ be a C^∞ -differentiable mapping. Then the C^∞ -differentiable mapping $f^{(p)}: M^{(p)} - \Delta_{(p)} M \rightarrow N^{(p)}$ is transverse regular over the diagonal $\Delta^p N$, if and only if*

$$dfM_{x_1} + (dfM_{x_2} \cap \cdots \cap dfM_{x_p}) = N_y$$

for $(x_1, \dots, x_p) \in M^{(p)} - \Delta_{(p)} M$ such that $y = f(x_1) = \cdots = f(x_p)$.

As a corollary of this lemma we have the following result.

Theorem 3.2. *Let M, N be C^∞ -differentiable manifolds without boundary and $f: M \rightarrow N$ be an immersion. Then*

(a) f is completely regular if and only if $f^{(p)}: M^{(p)} - \Delta_{(p)}M \rightarrow N^{(p)}$ is transverse regular over the diagonal $\Delta^p N$ for all $p \geq 2$,

(b) f is completely regular (p) -immersion if and only if $f^{(k)}: M^{(k)} - \Delta_{(k)}M \rightarrow N^{(k)}$ is transverse regular over the diagonal $\Delta^k N$ for $2 \leq k \leq p$ and $f^{(p+1)}(M^{(p+1)} - \Delta_{(p+1)}M)$ does not meet the diagonal $\Delta^{p+1} N$.

Corollary 3.3. $\mathbf{CR}(M, N)$ and $\mathbf{CR}_{(p)}(M, N)$ are open subsets of $\mathbf{I}(M, N)$ with respect to the fine C^1 -topology.

Corollary 3.4. Let $f: M \rightarrow N$ be a completely regular (p) -immersion and $X = \{x \in M \mid f^{-1}(f(x)) \text{ has just } p \text{-elements}\}$. Then X is a closed submanifold of M with dimension $\dim N - p(\dim N - \dim M)$.

Theorem 3.5. Let M be a compact C^∞ -differentiable manifold and N a C^∞ -differentiable manifold. Then

(a) the set $\mathbf{CR}(M, N)$ is a dense open subset of $\mathbf{I}(M, N)$ with respect to the fine C^1 -topology,

(b) let A be a closed subset of M and $f: M \rightarrow N$ be an immersion, if the restriction of f over A is completely regular and $f(A)$ does not intersect $f(M - A)$, then, as an arbitrarily closed C^1 -approximation of f , there is a completely regular immersion $g: M \rightarrow N$ such that $g = f$ on A .

Proof. This is an immediate corollary of Theorem 3.2 and the generalized transversality theorem (Theorem 1.10[1]).

Corollary 3.6. Any immersion $f: M \rightarrow N$ is differentiably homotopic to a completely regular immersion.

Proof. This follows from Theorem 3.5 and the fact that $\mathbf{I}(M, N)$ is locally contractible with respect to the fine C^1 -topology (cf. [2]).

4. Cobordism of immersions

4.1. A completely regular (p) -immersion of dimension (n, k) is a triple (f, M, N) consisting of two closed C^∞ -differentiable manifolds M, N of dimensions $n, n+k$ respectively and a completely regular (p) -immersion $f: M \rightarrow N$. We identify (f, M, N) with (f', M', N') if and only if there are diffeomorphisms $\varphi: M \rightarrow M'$ and $\psi: N \rightarrow N'$ for which $\psi f = f' \varphi$.

A completely regular (p) -immersion (f, M, N) of dimension (n, k) will be said to be *cobordant to zero* if there exists a triple (F, V, W) where:

(1) V and W are compact C^∞ -differentiable manifolds of dimensions $n+1, n+k+1$ respectively, and

(2) $F: V \rightarrow W$ is a proper completely regular (p) -immersion such that $(F|_{\partial V}, \partial V, \partial W) = (f, M, N)$.

Then we denote $\partial(F, V, W) = (f, M, N)$. Two completely regular (p)-immersions (f_0, M_0, N_0) and (f_1, M_1, N_1) of dimension (n, k) will be said to be *cobordant* if and only if the disjoint union $(f_0, N_0, M_0) + (f_1, M_1, N_1)$ is cobordant to zero.

This cobordism relation is an equivalence relation and denote by $\mathbf{C}(n, k; p)$ the set of equivalence classes under this relation of completely regular (p)-immersions of dimension (n, k) . As usual, an abelian group structure is imposed on $\mathbf{C}(n, k; p)$ by disjoint union, which is called the cobordism group of completely regular (p)-immersions of dimension (n, k) , and every element of $\mathbf{C}(n, k; p)$ is its own inverse.

4.2. In the above definition, if the term “completely regular (p)-immersion” is replaced by “embedding”, “immersion” and “completely regular immerison”, one may define the cobordism groups of embeddings $\mathbf{E}(n, k)$, immersions $\mathbf{I}(n, k)$ and completely regular immersions $\mathbf{C}(n, k)$, of dimension (n, k) respectively.

By definition $\mathbf{E}(n, k) = \mathbf{C}(n, k; 1)$ and there are natural forgetting homomorphisms

$$\begin{aligned}\alpha_p &: \mathbf{C}(n, k; p) \rightarrow \mathbf{C}(n, k; p+1) \\ \bar{\alpha}_p &: \mathbf{C}(n, k; p) \rightarrow \mathbf{I}(n, k) \\ \alpha_* &: \mathbf{E}(n, k) \rightarrow \mathbf{I}(n, k)\end{aligned}$$

such that $\alpha_* = \bar{\alpha}_p \circ \alpha_{p-1} \circ \dots \circ \alpha_2 \circ \alpha_1$.

REMARK. (a) $\bar{\alpha}_p$ is an isomorphism for $kp > n+1$,

(b) α_1 is injective, since $\mathbf{C}(n, k; 2) = \mathbf{G}(n, k)$ the cobordism group of generic immersions defined in the previous paper ([3], Section 4).

In the next section, we will prove that the homomorphism α_p is injective for all $p \geq 1$.

5. Splitting homomorphisms

5.1. Let $f: M \rightarrow N$ be a proper completely regular (p)-immersion where M, N are compact C^∞ -differentiable manifolds of dimensions $n, n+k$ respectively. Let

$$X = \{x \in M \mid f^{-1}(f(x)) \text{ has just } p\text{-elements}\}$$

and $Y = f(X)$. Then X and Y are closed submanifolds of M, N respectively, and $\dim X = \dim Y = n - (p-1)k$. Moreover $f|X: X \rightarrow Y$ is a p -fold covering. Then

Lemma 5.1. *There are Riemannian metrics on M, N such that*

- (a) the differential $df: M_x \rightarrow N_{f(x)}$ is isometric for $x \in X$,
- (b) the orthogonal complements of $dfM_{x_1}, \dots, dfM_{x_p}$ in N , are mutually orthogonal if $y = f(x_1) = \dots = f(x_p)$.

Proof. Firstly, define a Riemannian metric satisfying (b) on a neighborhood in N of each point of Y . Define a Riemannian metric on N satisfying the condition (b) by making use of a C^∞ -differentiable partition of unity on N . Next, define a Riemannian metric on M as the induced metric by df .

5.2. Let $\nu(X)$ and $\nu(Y)$ be the normal bundles of the embeddings $X \subset M$, $Y \subset N$ respectively, with respect to the above Riemannian metrics. Denote by $E(\nu(X))$, $E(\nu(Y))$ the total spaces of these normal bundles, and $E_\varepsilon(\nu(X))$, $E_\varepsilon(\nu(Y))$ the set of all normal vectors with length $\leq \varepsilon$.

Then the differential df maps $E(\nu(X))$ into $E(\nu(Y))$ and the following diagram is commutative:

$$\begin{array}{ccc} E(\nu(X)) & \xrightarrow{df} & E(\nu(Y)) \\ \downarrow & & \downarrow \\ X & \xrightarrow{f|X} & Y \end{array}$$

where the vertical mappings are bundle projections. Then we have the following result by an elementary method.

Lemma 5.2. *There is a differentiably homotopic approximation g of f such that*

- (a) $g = f$ on X ,
- (b) $dg = df$ on $E(\nu(X))$,
- (c) the following diagram is commutative for some $\varepsilon > 0$:

$$\begin{array}{ccc} E_{2\varepsilon}(\nu(X)) & \xrightarrow{dg} & E_{2\varepsilon}(\nu(Y)) \\ \downarrow \exp & g & \downarrow \exp \\ M & \xrightarrow{g} & N \end{array}$$

where \exp is the exponential mapping.

5.3. Under these notations, let

$$\begin{aligned} M_0 &= M - \exp(\text{int } E_\varepsilon(\nu(X))), \\ N_0 &= N - \exp(\text{int } E_\varepsilon(\nu(Y))), \\ \partial_1 M_0 &= \exp(\partial E_\varepsilon(\nu(X))), \\ \partial_1 N_0 &= \exp(\partial E_\varepsilon(\nu(Y))), \end{aligned}$$

Then $\partial_1 M_0$ and $\partial_1 N_0$ have fixed point free C^∞ -differentiable involutions a , b

induced from the bundle involutions of $E(\nu(X))$, $E(\nu(Y))$ respectively, and the following diagram is commutative:

$$\begin{array}{ccc} \partial_1 M_0 & \xrightarrow{g/\partial_1 M_0} & \partial_1 N_0 \\ \downarrow a & & \downarrow b \\ \partial_1 M_0 & \xrightarrow{g/\partial_1 M_0} & \partial_1 N_0 \end{array}$$

Let M_1 be the quotient space of M_0 by the relation $x=a(x)$ for $x \in \partial_1 M_0$. Let N_1 be the quotient space of N_0 by the relation $y=b(y)$ for $y \in \partial_1 N_0$. Then M_1, N_1 have naturally C^∞ -differentiable structures and a mapping $g_1: M_1 \rightarrow N_1$ is induced from the mapping $g|_{M_0}: M_0 \rightarrow N_0$ which is proper completely regular $(p-1)$ -immersion.

Theorem 5.3. *There is a homomorphism.*

$$\gamma_p: C(n, k; p) \rightarrow C(n, k; p-1)$$

such that $\gamma_{p+1} \circ \alpha_p = \text{identity}$.

Pfoof. By the above notations, the correspondence from (f, M, N) to (g_1, M_1, N_1) is cobordism invariant, and this defines a desired homomorphism.

Corollary 5.4. *The homomorphism $\alpha_p: C(n, k; p) \rightarrow C(n, k; p+1)$ is injective for all $p \geq 1$ and the image of α_p is a direct summand.*

Corollary 5.5. *The homomorphism $\alpha_*: E(n, k) \rightarrow I(n, k)$ is injective.*

Proof. If $k > 0$, then this follows from the above corollary. If $k = 0$, then this follows directly from the definition of $E(n, k)$ and $I(n, k)$.

6. Oriented cobordism of immersions

6.1. By similar argument to the unoriented case one may define the oriented cobordism groups of completely regular (p) -immersions $C^0(n, k; p)$, embeddings $E^0(n, k)$, immersions $I^0(n, k)$ and completely regular immersions $C^0(n, k)$, of dimension (n, k) respectively, where we consider orientation preserving mappings if $k=0$.

By definition $E^0(n, k) = C^0(n, k; 1)$ and there are forgetting homomorphisms

$$\begin{aligned} \alpha_p^0: C^0(n, k; p) &\rightarrow C^0(n, k; p+1) \\ \bar{\alpha}_p^0: C^0(n, k; p) &\rightarrow I^0(n, k) \\ \alpha_*^0: E^0(n, k) &\rightarrow I^0(n, k) \end{aligned}$$

such that $\alpha_*^0 = \bar{\alpha}_p^0 \circ \alpha_{p-1}^0 \circ \cdots \circ \alpha_2^0 \circ \alpha_1^0$.

REMARK. (a) $\bar{\alpha}_p^0$ is an isomorphism for $k > n+1$,

(b) $C^0(n, k; 2) = G^0(n, k)$ the oriented cobordism group of generic immersions defined in the previous paper ([3], Section 10).

We could not find such a homomorphism as γ_p , so we do not know in general whether the homomorphisms α_p^0 and α_*^0 are injective or not. In the following we give some partial results.

6.2. First, we consider the case of low codimensions. Let s be a point of k -sphere S^k . Let M, N be oriented closed C^∞ -differentiable manifolds of dimensions $n, n+k$ respectively, and define a mapping

$$f: M \rightarrow N + M \times S^k$$

by $f(x) = (x, s)$, then f is an embedding. The function

$$\iota: \Omega_n \oplus \Omega_{n+k} \rightarrow E^0(n, k)$$

defined by $\iota([M], [N]) = [f, M, N + M \times S^k]$ is a well-defined homomorphism.

Lemma 6.1. *The homomorphism*

$$\alpha_*^0 \circ \iota: \Omega_n \oplus \Omega_{n+k} \rightarrow I^0(n, k)$$

is injective and the image of ι is a direct summand of $E^0(n, k)$.

Proof. Let $\pi: I^0(n, k) \rightarrow \Omega_n \oplus \Omega_{n+k}$ be a homomorphism defined by $\pi([f, M, N]) = ([M], [N])$, then $\pi \circ \alpha_*^0 \circ \iota = \text{identity}$. Therefore we have the desired result.

Proposition 6.2. *The homomorphism*

$$\alpha_*^0: E^0(n, k) \rightarrow I^0(n, k)$$

is injective for $k=0$ and $k=1$.

Proof. In general $E^0(n, k)$ is isomorphic to $\Omega_{n+k}(MSO(k))$. If $k=1$, then $MSO(1)$ is homotopy equivalent to the circle and hence $\Omega_*(MSO(1))$ is isomorphic to the tensor product $H_*(MSO(1); \mathbb{Z}) \otimes \Omega_*$. Therefore $E^0(n, 1)$ is isomorphic to $\Omega_n \oplus \Omega_{n+1}$ and α_*^0 is injective by Lemma 6.1. If $k=0$, then the results follows directly from the definition of $E^0(n, 0)$ and $I^0(n, 0)$.

6.3. If $k > n+1$, then the homomorphism

$$\alpha_*^0: E^0(n, k) \rightarrow I^0(n, k)$$

is isomorphic by Remark in 6.1. We consider the case $k=n+1$ and $k=n$.

Proposition 6.3.

- (a) $\alpha_*^0: E^0(n, n+1) \rightarrow I^0(n, n+1)$ is an isomorphism,
- (b) $\alpha_*^0: E^0(n, n) \rightarrow I^0(n, n)$ is injective.

Proof. Since the homomorphism

$$\bar{\alpha}_2^0: C^0(n, k; 2) \rightarrow I^0(n, k)$$

is an isomorphism in both case except $n=k=1$, and $E^0(1, 1)=0$, it is sufficient to consider the homomorphism

$$\alpha_1^0: E^0(n, k) \rightarrow C^0(n, k; 2) = G^0(n, k).$$

There are exact sequences [3]:

$$\begin{aligned} G^0(2s-1, 2s-1) &\xrightarrow{\beta} B^-(0, 2s-1) \xrightarrow{\partial} E^0(2s-2, 2s-1) \xrightarrow{\alpha_1^0} G^0(2s-2, 2s-1) \rightarrow 0, \\ G^0(2s, 2s) &\xrightarrow{\beta} B^+(0, 2s) \xrightarrow{\partial} E^0(2s-1, 2s) \xrightarrow{\alpha_1^0} G^0(2s-1, 2s) \rightarrow 0. \end{aligned}$$

Now define a mapping

$$f: S_1^n + S_2^n \rightarrow S^n \times S^n$$

by $f(x)=(x, s)$ for $x \in S_1^n$ and $f(y)=(s, y)$ for $y \in S_2^n$, where S_i^n is a copy of S^n and $s \in S^n$ is a base point. Then f is a completely regular (2)-immersion with unique double point and therefore the homomorphisms β are onto in the above sequences. Consequently the homomorphism α_1^0 is an isomorphism.

Next, since $B^-(1, 2s-1)=0$ in the exact sequence

$$B^-(1, 2s-1) \xrightarrow{\partial} E^0(2s-1, 2s-1) \xrightarrow{\alpha_1^0} G^0(2s-1, 2s-1) \xrightarrow{\beta} B^-(0, 2s-1) \rightarrow 0,$$

the homomorphism $\alpha_1^0: E^0(2s-1, 2s-1) \rightarrow G^0(2s-1, 2s-1)$ is injective and not onto since $B^-(0, 2s-1)=Z_2$.

Lastly, $B^+(1, 2s)=Z_2$ in the following exact sequence

$$G^0(2s+1, 2s) \xrightarrow{\beta} B^+(1, 2s) \xrightarrow{\partial} E^0(2s, 2s) \xrightarrow{\alpha_1^0} G^0(2s, 2s).$$

We will prove that β is onto, and it is sufficient to show the existence of a completely regular (2)-immersion (f, M, N) of dimension $(2s+1, 2s)$ such that

$$X_f = \{x \in M \mid f^{-1}(f(x)) \text{ has 2-elements}\}$$

is diffeomorphic to the circle S^1 . Let CP^s be the complex projective space and

$$f: S^1 \times CP^s \rightarrow S^1 \times CP^{2s}$$

a mapping defined by

$$\begin{aligned} & f(e^{2i\theta}, \langle z_0, z_1, \dots, z_s \rangle) \\ &= (e^{4i\theta}, \langle z_0 e^{i\theta}, z_1 \cos \theta, \dots, z_s \cos \theta, z_1 \sin \theta, \dots, z_s \sin \theta \rangle) \end{aligned}$$

where $\langle z_0, z_1, \dots, z_s \rangle$ is a homogeneous coordinate of CP^s . Then f is a completely regular (2)-immersion and

$$X_f = S^1 \times \{ \langle 1, 0, \dots, 0 \rangle \}$$

REMARK. By direct calculation, if $n+k \leq 7$ but $(n, k) \neq (4, 2)$, then the homomorphism

$$\alpha_*^0: E^0(n, k) \rightarrow I^0(n, k)$$

is injective, and the homomorphism

$$\alpha_1^0: E^0(4, 2) \rightarrow C^0(4, 2; 2) = G^0(4, 2)$$

is injective.

7. Bundles over covering spaces

7.1. Now we return to the unoriented case. The homomorphism

$$\alpha_p: C(n, k; p) \rightarrow C(n, k; p+1)$$

is injective and the image of α_p is a direct summand by Corollary 5.4, so we study now the cokernel of α_p . For this purpose, we introduce new cobordism groups as follows.

7.2. Let k, p be fixed non-negative integers. A pair of bundles over a covering space is a quadruple (ξ, η, h, \bar{h}) , where

$$\xi: E(\xi) \rightarrow B(\xi), \quad \eta: E(\eta) \rightarrow B(\eta)$$

are C^∞ -differentiable vector bundles over compact C^∞ -differentiable manifolds with fibre dimensions $pk, (p+1)k$ respectively,

$$\bar{h}: B(\xi) \rightarrow B(\eta)$$

is a $(p+1)$ -fold covering which is a proper C^∞ -differentiable mapping, and

$$h: E(\xi) \rightarrow E(\eta)$$

is a C^∞ -differentiable mapping covering \bar{h} . The following must be satisfied:

- (1) h maps each fibre ξ_x over $x \in B(\xi)$ linearly one to one into a fibre $\eta_{\bar{h}(x)}$,
- (2) for each y in $B(\eta)$ and x_0, x_1, \dots, x_p in $B(\xi)$ such that $y = \bar{h}(x_0) = \bar{h}(x_1) = \dots = \bar{h}(x_p)$, subspaces $h(\xi_{x_0}), \dots, h(\xi_{x_p})$ of a vector space η_y are in general position.

7.3. A quadruple (ξ, η, h, \bar{h}) is identified with a quadruple $(\xi', \eta', h', \bar{h}')$ if and only if there is a quadruple (a, \bar{a}, b, \bar{b}) of C^∞ -diffeomorphisms

$$\begin{aligned} a : E(\xi) &\rightarrow E(\xi'), \quad \bar{a} : B(\xi) \rightarrow B(\xi'), \\ b : E(\eta) &\rightarrow E(\eta'), \quad \bar{b} : B(\eta) \rightarrow B(\eta'), \end{aligned}$$

such that $b \circ h = h' \circ a$ and a, b are bundle mappings covering \bar{a}, \bar{b} respectively.

For a quadruple (ξ, η, h, \bar{h}) , denote by $\partial(\xi, \eta, h, \bar{h})$ a quadruplet consisting of the restrictions

$$\begin{aligned} \xi | \xi^{-1}(\partial B(\xi)) &: \xi^{-1}(\partial B(\xi)) \rightarrow \partial B(\xi), \\ \eta | \eta^{-1}(\partial B(\eta)) &: \eta^{-1}(\partial B(\eta)) \rightarrow \partial B(\eta), \\ h | \xi^{-1}(\partial B(\xi)) &: \xi^{-1}(\partial B(\xi)) \rightarrow \eta^{-1}(\partial B(\eta)), \\ \bar{h} | \partial B(\xi) &: \partial B(\xi) \rightarrow \partial B(\eta). \end{aligned}$$

7.4. The cobordism group $\mathbf{B}(n, k; p)$ of pairs of bundles over a covering spaces of n -manifold may be now defined. If $B(\xi_0)$ and $B(\xi_1)$ are closed n -manifolds, then a quadruple $(\xi_0, \eta_0, h_0, \bar{h}_0)$ is cobordant to a quadruple $(\xi_1, \eta_1, h_1, \bar{h}_1)$ if and only if there is a quadruple (ξ, η, h, \bar{h}) as such that

$$\partial(\xi, \eta, h, \bar{h}) = (\xi_0, \eta_0, h_0, \bar{h}_0) + (\xi_1, \eta_1, h_1, \bar{h}_1)$$

where the symbol $+$ denotes disjoint union. Then this cobordism relation is an equivalence relation. Denote by $\mathbf{B}(n, k; p)$ the set of all cobordism classes. As usual an abelian group structure is imposed on $\mathbf{B}(n, k; p)$ by disjoint union, then every element is its own inverse.

REMARK. $\mathbf{B}(n, k; 1)$ is naturally isomorphic with the cobordism group $\mathbf{B}(n, k)$ of bundles over manifolds with involution defined in the previous paper ([3], Section 3).

7.5. Now we define homomorphisms

$$\begin{aligned} \beta_p : \mathbf{C}(n, k; p+1) &\rightarrow \mathbf{B}(n-pk, k; p), \\ \pi_p : \mathbf{B}(n, k; p) &\rightarrow \mathbf{C}(n+pk, k; p+1). \end{aligned}$$

(7.5.1) Let $a \in \mathbf{C}(n, k; p+1)$ be represented by a completely regular $(p+1)$ -immersion $f: M \rightarrow N$. Let

$$X = \{x \in M \mid f^{-1}(f(x)) \text{ has just } (p+1) \text{-elements}\}$$

and $Y = f(X)$. Then there are Riemannian metrics on M, N satisfying the conditions of Lemma 5.1. Let $\nu(X), \nu(Y)$ be the normal bundles of the embeddings $X \subset M, Y \subset N$ respectively, with respect to these Riemannian metrics, and then the differential df maps $E(\nu(X))$ into $E(\nu(Y))$. Define $\beta_p(a)$ the cobordism class

of the quadruple $(\nu(X), \nu(Y), df|E(\nu(X)), f|X)$.

(7.5.2.) Let $b \in \mathbf{B}(n, k; p)$ be represented by a quadruple (ξ, η, h, \bar{h}) . Define $\pi_p(b)$ the cobordism class of a completely regular $(p+1)$ -immersion defined by the mapping

$$P(h \oplus 1) : P(\xi \oplus \theta^1) \rightarrow P(\eta \oplus \theta^1)$$

where θ^1 is the trivial line bundle, $P(\xi \oplus \theta^1)$ and $P(\eta \oplus \theta^1)$ are the total spaces of the associated projective space bundles, and $P(h \oplus 1)$ is a mapping canonically induced from the mapping h .

Theorem 7.1. *There is an exact sequence:*

$$0 \longrightarrow \mathbf{C}(n, k; p) \xrightarrow{\alpha_p} \mathbf{C}(n, k; p+1) \xrightarrow{\beta_p} \mathbf{B}(n-pk, k; p) \longrightarrow 0.$$

Proof. The homomorphism α_p is injective by Corollary 5.4, and the homomorphism β_p is surjective since $\beta_p \circ \pi_p = \text{identity}$ by definition (cf. [3] Theorem A'). The exactness at $\mathbf{C}(n, k; p+1)$ is proved by the handle attaching construction (cf. [3], Section 5), so we omit the details.

OSAKA UNIVERSITY

References

- [1] A. Haefliger: *Plongements différentiables de variétés dans variétés*, Comment. Math. Helv. **36** (1961), 47-82.
- [2] J. Munkres: *Elementary Differential Topology*, Annals of Mathematics Studies, Princeton, 1963.
- [3] F. Uchida: *Exact sequences involving cobordism groups of immersions*, Osaka J. Math. **6** (1969), 397-408.
- [4] F. Uchida: *The structure of the cobordism groups $\mathbf{B}(n, k)$ of bundles over manifolds with involution*, Osaka J. Math. **7** (1970), 193-202.