

Title	Correction to : "A note on Galois covering"
Author(s)	Takeuchi, Yasuji
Citation	Osaka Journal of Mathematics. 1973, 10(1), p. 209-210
Version Type	VoR
URL	https://doi.org/10.18910/8665
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Takeuchi, Y.
Osaka J. Math.
10 (1973), 209-210

**CORRECTION TO
A NOTE ON GALOIS COVERING**

YASUJI TAKEUCHI

This Journal, vol. 6 (1969), 321-327.

(Received June 1, 1972)

Prof. L.N. Gupta has pointed out the author that there is a gap in the proof of Theorem 2.2 [3]. In this theorem we need to put certain assumptions. To give it, we shall extend to the case of preschemes certain notions defined by Chase, Harrison and Rosenberg in [1].

Let $\sigma, \tau: X \rightarrow Z$ be two morphisms of preschemes where X is affine. Then σ and τ are called to be strongly distinct if, for any sum $X \cong X_1 \amalg X_2$, such that X_i are affine schemes ($i=1, 2$), $\sigma\varphi$ and $\tau\varphi$ are distinct where φ is the canonical morphism: $X_1 \rightarrow X$.

Let X be a Galois covering of a prescheme Y with a Galois group \mathfrak{G} , $\Phi: X \rightarrow Y$ the structure morphism and Z an intermediate prescheme between X and Y with the structure morphism $\Phi_1: X \rightarrow Z$, $\Phi_2: Z \rightarrow Y$. We shall say that Z is \mathfrak{G} -strong if there is an affine open covering $\{V_\gamma\}_{\gamma \in I}$ of Y such that for any pair $\sigma, \tau \in \mathfrak{G}$, $\Phi_1\sigma$ and $\Phi_1\tau$ are equal or their restrictions to $\Phi_1^{-1}(V_\gamma)$ are strongly distinct for all $\gamma \in I$.

One can show that \mathfrak{G} -strongness is independent on an affine open covering.

Let $\varphi: X \rightarrow Y$ be a surjective morphism of preschemes which is finite and locally free. Let Z_1, Z_2 be two intermediate preschemes between X and Y such that the structure morphisms $\psi_i: Z_i \rightarrow Y$ are affine for $i=1, 2$. Z_1 and Z_2 are said to be isomorphic as intermediate preschemes if there is a Y -isomorphism $\psi: Z_1 \rightarrow Z_2$ such that the diagram

$$\begin{array}{ccc} & X & \\ & \swarrow \varphi \quad \searrow \psi & \\ Z_1 & \xrightarrow{\psi} & Z_2 \end{array}$$

is commutative where the unadorned morphisms are structural. We shall call an intermediate covering between X and Y an isomorphism class of intermediate preschemes between X and Y .

A correct form of Theorem 2.2 in [3] can be obtained by strengthening

hypotheses in the following manner.

Theorem 2.2. *Let Y be a prescheme and X a Galois covering of Y with a Galois group \mathfrak{G} . Let Z be an intermediate covering between X and Y . If Z is a quasi-unramified covering of Y which is \mathfrak{G} -strong, then there exists a unique subgroup \mathfrak{H} of \mathfrak{G} such that Z is the quotient prescheme X/\mathfrak{G} of X by \mathfrak{H} .*

Proof. It follows from modifying the proof of Theorem 2.2. in [3], noting the following facts;

1) Since a union of two disjoint affine open sets in a prescheme is also affine, we can choose an affine open covering $\{V_\gamma\}_{\gamma \in I}$ of Y satisfying that, for any pair $(\alpha, \beta) \in I \times I$, there is a sequence $V_\alpha = V_{\gamma_0}, V_{\gamma_1}, \dots, V_{\gamma_\lambda} = V_\beta$ with $V_{\gamma_i} \cap V_{\gamma_{i+1}} \neq \emptyset$ for $\gamma_i \in I$.

2) Let $\varphi: Z \rightarrow Y$ be the structure morphism. For an affine open set V in Y , the ring of $\varphi^{-1}(V)$ is \mathfrak{G} -strong in sense of Chase, Harrison and Rosenberg [1].

KOBE UNIVERSITY

References

- [1] S.U. Chase, D.K. Harrison and A. Rosenberg: *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. 52 (1965), 15–33
- [2] A. Grothendieck: *Eléments de Géométrie Algébrique I, II*. Inst. Hautes Etudes Sci. Publ. Math. 4, 8 (1960, 1961)
- [3] Y. Takeuchi: *A note on Galois covering*, Osaka J. Math. 6 (1969), 321–327.