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WHEN IS Z[cι] THE RING OF THE INTEGERS?

Dedicated to the memory of Professor Taira Honda
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Let Z be the ring of the rational integers and let Q be the field of the rational

numbers. Let a be an algebraic integer. Then Z\a\ is a subring of the
ring of the integers in Q(ά). We will show when Z[a] is just the ring of the
integers. We deal with this problem in slightly more general situation.

Let R be a Dedekind ring. A polynomial/^) of the form

f(X) = X«+aiX»-i+-+am , a^R

is called an integral polynomial over R. Let S be an integral domain containing
R. A element a of S is called integral over R if it is a zero of some integral
polynomial over R. Then a is a zero of the integral irreduicble polynomial
φ(X) which is called the defining polynomial of a.

Theorem. Let R be a Dedekind ring. Let a be an element of some integral
domain which contains R, and let a be integral over R. Then R\a\ is a Dedekind
ring if and only if the defining polynomial φ(X) of a is not contained in tn2 for
any maximal ideal m of the polynomial ring R\X\.

First we prove the following lemma.

Lamma. Let m be a maximal ideal of R\X\. If tn contains an integral
polynomial, m is of the form m=(p,f(X))y where $ is a maximal ίedal of R and
f(X) is an integral polynomial which is irreducible mod p.

Proof. Let g(X) be an integral polynomial in m. Then the residue class
ring R[X]/(g(X)) is integral over R. Hence its maximal ideal contains a maximal
ideal p of JR[1, Chap. V, 2]. Then m also contains p. As any maximal ideal of

is generated by an irreducible polynomial, m is of the form (

REMARK. This lemma holds for any commutative ring with identity.
If we drop out the condition that m contains an integral polynomial, tn is not
necessarily of the above form. For example, let J? be a semilocal Dedekind ring
and let a be in the intersection of all maximal ideals. Then τn=(aX — 1) is a
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maximal ideal, because R[X]/m^R[l/a] is a field. If a Dedekind ring R con-

tains infinite number of maximal ideals, it can be shown that any maximal ideal
is of the above form.

We now prove our theorem. Le φ( X) e m2 for some m.
As m=($,f(X)) by the above lemma, it holds

aφ(X) = p2r(X)+pf(X)s(X)+f(X)2t(X) ,

where p^p such that (p) = pα, (p, α) = 1 and #eα2— α2p, r( ί̂Γ), s(X) and
ί(J*Γ)e#[X]. We can assume deg φ(X)=de%f(X)2t(X).
Then

(/(^^α)//))^^^)^^)/^)2^)!-^^)^) = 0 ,

i.e., f(ά)t(a)/p is integral over R[a]. As every element of R[a] is uniquely
written as a polynomial of a of degree at most deg φ(X)—l with coefficients in

R,f(ά)t(ά)lp is not an element of R[a] because f(X)t(X)^Q (mod p). Hence
Λ[α] is not integrally closed. Now let φ(X)^m2 for any m. As R[a] is integral
over 1?, every non-zero prime ideal is maximal. Then every non-zero ideal of

R[a] contains a product of maximal ideals because R[a] is noetherian. If every

maximal ideal is invertible, every non-zero ideal is equal to a product of maximal

ideals and R[a] is a Dedekind ring. Let n be any maximal ideal of R[ά]. Let

m be the inverse image of n by the natural homomorphism R[X]-*R[a] Then

τn=(p,/(-X)) because m is maximal and φ(X)^m. We can put

aφ(X) = ph(X)+af(X)k(X) ,

where p is an element of p such that (/>)=pα, (t>, α)= 1, a&a— cψ, h(X) and

k(X)^R[X]. If /(α)=0, π=}xR[α] which is invertible. We now assume

/(tf)φθ. As aφ(X)$m2, it holds h(X)$m or 0Λ(JQ<$m, i.e., λ(α)<$π or
ak(a)&n. As ##//> is in R for every element q of p, the above equation shows

that ak(ά)lp is in rr1. Then h(a)=—f(ά) ak(a)lp and ak(ά)=p ak(ά)lp are in
π rr1. As h(ά) or 0&(α) is not an element of n, it holds π rr^cttΐ. This

shows n n~1=JR[α], i.e., n is invertible. This completes the proof.

In the case R=Z, finite amount of calculations show if φ(X) is contained
in some m2 or not. If φ(X)^m2 for tn=(p,/(-Y)), it holds

φ(X) =

for some r(X\ s(X) and /(Z)eZ[jr]. This shows that φ(X) = Q (mod/)) has

multiple roots, i.e., p is a prime factor of the discriminant of φ(X). That is,

only a finite number of prime numbers are possible. If such prime p is fixed,

f(X) must be a multiple factor of φ(X) mod p.

EXAMPLE. Let Fn(X) be the defining polynomial of a primitive w-th root ζ
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of unity. It is known that Z[ζ] is the ring of the integers in Q(ζ). But the

proof is not easy. We can show this more easily by our method. If n=pe is a

power of a prime, this is very easy. But in the general case we must assume

some arithmetic in Q(ζ). We only need to consider maximal ideals tn which

contain prime factors of n. Let p be a prime factor fo n, and let n=pem,

(py m)=l. As Fn(X) divides Fm(X*') and as Fm(X*')=Fm(Xy' (mod />), we can

assume m=(pJf(X))> where f(X) is an irreducible factor of Fm(X) mod p. Let

ΎI be a primitive m-th root of unity. Then there exists a prime divisor p of p in

Q(η) such that/(i7)et>. As Fn(X) divides Fpe(Xm), it is enough to show that

Fpe(Xm) φ m2. If Fpe(Xm) <Ξ m2, we can put

Fpe(X") = fr(X)+pf(X)s(X)+f(X)*t(X),

where r(X\ s(X) and t(X)^Z[X], As

Fpe(X) =

it holds

p = Fpe(l) =

Asp is not ramified at Q(η\ it holds p$Ξ$2. But the right hand side is in p2.

This is a contradiction. This shows Fpe(Xm)φm2, i.e., Fn(X)&m2.
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