

Title	When is $Z[\alpha]$ the ring of the integers?
Author(s)	Uchida, Kôji
Citation	Osaka Journal of Mathematics. 1977, 14(1), p. 155-157
Version Type	VoR
URL	https://doi.org/10.18910/8668
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

WHEN IS Z[a] THE RING OF THE INTEGERS?

Dedicated to the memory of Professor Taira Honda

Kôji UCHIDA

(Received December 15, 1975)

Let Z be the ring of the rational integers and let Q be the field of the rational numbers. Let α be an algebraic integer. Then $Z[\alpha]$ is a subring of the ring of the integers in $Q(\alpha)$. We will show when $Z[\alpha]$ is just the ring of the integers. We deal with this problem in slightly more general situation.

Let R be a Dedekind ring. A polynomial f(X) of the form

$$f(X) = X^m + a_1 X^{m-1} + \dots + a_m, \ a_i \in R$$

is called an integral polynomial over R. Let S be an integral domain containing R. A element α of S is called integral over R if it is a zero of some integral polynomial over R. Then α is a zero of the integral irreduicble polynomial $\varphi(X)$ which is called the defining polynomial of α .

Theorem. Let R be a Dedekind ring. Let α be an element of some integral domain which contains R, and let α be integral over R. Then $R[\alpha]$ is a Dedekind ring if and only if the defining polynomial $\varphi(X)$ of α is not contained in \mathfrak{m}^2 for any maximal ideal \mathfrak{m} of the polynomial ring R[X].

First we prove the following lemma.

Lamma. Let \mathfrak{m} be a maximal ideal of R[X]. If \mathfrak{m} contains an integral polynomial, \mathfrak{m} is of the form $\mathfrak{m}=(\mathfrak{p},f(X))$, where \mathfrak{p} is a maximal ideal of R and f(X) is an integral polynomial which is irreducible mod \mathfrak{p} .

Proof. Let g(X) be an integral polynomial in \mathfrak{m} . Then the residue class ring R[X]/(g(X)) is integral over R. Hence its maximal ideal contains a maximal ideal \mathfrak{p} of R[1, Chap. V, 2]. Then \mathfrak{m} also contains \mathfrak{p} . As any maximal ideal of $(R/\mathfrak{p})[X]$ is generated by an irreducible polynomial, \mathfrak{m} is of the form $(\mathfrak{p}, f(X))$.

REMARK. This lemma holds for any commutative ring with identity. If we drop out the condition that m contains an integral polynomial, m is not necessarily of the above form. For example, let R be a semilocal Dedekind ring and let a be in the intersection of all maximal ideals. Then m=(aX-1) is a

156 K. Uchida

maximal ideal, because $R[X]/\mathfrak{m} \cong R[1/a]$ is a field. If a Dedekind ring R contains infinite number of maximal ideals, it can be shown that any maximal ideal is of the above form.

We now prove our theorem. Le $\varphi(X) \in \mathfrak{m}^2$ for some \mathfrak{m} . As $\mathfrak{m} = (\mathfrak{p}, f(X))$ by the above lemma, it holds

$$a\varphi(X) = p^2r(X) + pf(X)s(X) + f(X)^2t(X)$$
,

where $p \in \mathfrak{p}$ such that $(p) = \mathfrak{p}\mathfrak{a}$, $(\mathfrak{p}, \mathfrak{a}) = 1$ and $a \in \mathfrak{a}^2 - \mathfrak{a}^2\mathfrak{p}$, r(X), s(X) and $t(X) \in R[X]$. We can assume deg $\varphi(X) = \deg f(X)^2 t(X)$.

$$(f(\alpha)t(\alpha)/p)^2+(f(\alpha)t(\alpha)/p)^2s(\alpha)+r(\alpha)t(\alpha)=0$$
,

i.e., $f(\alpha)t(\alpha)/p$ is integral over $R[\alpha]$. As every element of $R[\alpha]$ is uniquely written as a polynomial of α of degree at most deg $\varphi(X)-1$ with coefficients in R, $f(\alpha)t(\alpha)/p$ is not an element of $R[\alpha]$ because $f(X)t(X)\equiv 0 \pmod{p}$. Hence $R[\alpha]$ is not integrally closed. Now let $\varphi(X)\notin \mathbb{m}^2$ for any \mathbb{m} . As $R[\alpha]$ is integral over R, every non-zero prime ideal is maximal. Then every non-zero ideal of $R[\alpha]$ contains a product of maximal ideals because $R[\alpha]$ is noetherian. If every maximal ideal is invertible, every non-zero ideal is equal to a product of maximal ideals and $R[\alpha]$ is a Dedekind ring. Let \mathbb{m} be any maximal ideal of $R[\alpha]$. Let \mathbb{m} be the inverse image of \mathbb{m} by the natural homomorphism $R[X] \to R[\alpha]$. Then $\mathbb{m} = (\mathfrak{p}, f(X))$ because \mathbb{m} is maximal and $\varphi(X) \in \mathbb{m}$. We can put

$$a\varphi(X) = ph(X) + af(X)k(X)$$
,

where p is an element of \mathfrak{p} such that $(p)=\mathfrak{pa}$, $(\mathfrak{p}, \mathfrak{a})=1$, $a\in\mathfrak{a}-\mathfrak{ap}$, h(X) and $k(X)\in R[X]$. If $f(\alpha)=0$, $\mathfrak{n}=\mathfrak{p}R[\alpha]$ which is invertible. We now assume $f(\alpha)\neq 0$. As $a\varphi(X)\notin \mathfrak{m}^2$, it holds $h(X)\notin \mathfrak{m}$ or $ak(X)\notin \mathfrak{m}$, i.e., $h(\alpha)\notin \mathfrak{n}$ or $ak(\alpha)\notin \mathfrak{n}$. As aq/p is in R for every element q of \mathfrak{p} , the above equation shows that $ak(\alpha)/p$ is in \mathfrak{n}^{-1} . Then $h(\alpha)=-f(\alpha)\cdot ak(\alpha)/p$ and $ak(\alpha)=p\cdot ak(\alpha)/p$ are in $\mathfrak{n}\cdot\mathfrak{n}^{-1}$. As $h(\alpha)$ or $ak(\alpha)$ is not an element of \mathfrak{n} , it holds $\mathfrak{n}\cdot\mathfrak{n}^{-1}\notin \mathfrak{n}$. This shows $\mathfrak{n}\cdot\mathfrak{n}^{-1}=R[\alpha]$, i.e., \mathfrak{n} is invertible. This completes the proof.

In the case R=Z, finite amount of calculations show if $\varphi(X)$ is contained in some m^2 or not. If $\varphi(X) \in m^2$ for m=(p, f(X)), it holds

$$\varphi(X) = p^2 r(X) + p f(X) s(X) + f(X)^2 t(X)$$

for some r(X), s(X) and $t(X) \in Z[X]$. This shows that $\varphi(X) \equiv 0 \pmod{p}$ has multiple roots, i.e., p is a prime factor of the discriminant of $\varphi(X)$. That is, only a finite number of prime numbers are possible. If such prime p is fixed, f(X) must be a multiple factor of $\varphi(X)$ mod p.

Example. Let $F_n(X)$ be the defining polynomial of a primitive *n*-th root ζ

of unity. It is known that $Z[\zeta]$ is the ring of the integers in $Q(\zeta)$. But the proof is not easy. We can show this more easily by our method. If $n=p^e$ is a power of a prime, this is very easy. But in the general case we must assume some arithmetic in $Q(\zeta)$. We only need to consider maximal ideals m which contain prime factors of n. Let p be a prime factor fo n, and let $n=p^e m$, (p,m)=1. As $F_n(X)$ divides $F_m(X^{p^e})$ and as $F_m(X^{p^e})\equiv F_m(X)^{p^e}$ (mod p), we can assume m=(p,f(X)), where f(X) is an irreducible factor of $F_m(X)$ mod p. Let p be a primitive m-th root of unity. Then there exists a prime divisor p of p in Q(p) such that $f(p) \in p$. As $F_n(X)$ divides $F_{p^e}(X^m)$, it is enough to show that $F_{n^e}(X^m) \notin m^2$. If $F_{n^e}(X^m) \in m^2$, we can put

$$F_{pe}(X^m) = p^2 r(X) + pf(X) s(X) + f(X)^2 t(X)$$
,

where r(X), s(X) and $t(X) \in Z[X]$. As

$$F_{{}_{p^{\boldsymbol{\theta}}}}\!(X) = X^{(p-1)p^{\boldsymbol{\theta}-1}}\!\!+\!\cdots\!+\!X^{p^{\boldsymbol{\theta}-1}}\!\!+\!1\;,$$

it holds

$$p = F_{ne}(1) = F_{ne}(\eta^m) = p^2 r(\eta) + p f(\eta) s(\eta) + f(\eta)^2 t(\eta)$$
.

As p is not ramified at $Q(\eta)$, it holds $p \in \mathfrak{p}^2$. But the right hand side is in \mathfrak{p}^2 . This is a contradiction. This shows $F_{n^e}(X^m) \in \mathfrak{m}^2$, i.e., $F_n(X) \in \mathfrak{m}^2$.

Tôhoku University

Reference

[1] O. Zariski and P. Samuel: Commutative algebra, van Nostrand.