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WHEN IS Z[«¢] THE RING OF THE INTEGERS?
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Let Z be the ring of the rational integers and let O be the field of the rational
numbers. . Let « be an algebraic integer. Then Z[a] is a subring of the
ring of the integers in Q(«). We will show when Z[a] is just the ring of the
integers. We deal with this problem in slightly more general situation.

Let R be a Dedekind ring. A polynomial f(X) of the form

fX) = X"+a X"+ 4a,, a,ER

is called an integral polynomial over R. Let S be an integral domain containing
R. A element a of S is called integral over R if it is a zero of some integral
polynomial over R. Then « is a zero of the integral irreduicble polynomial
@(X) which is called the defining polynomial of a.

Theorem. Let R be a Dedekind ring. Let o be an element of some integral
domain which contains R, and let o be integral over R. Then R[a] is a Dedekind
ring if and only if the defining polynomial ¢(X) of a is not contained in m* for
any maximal ideal m of the polynomial ring R[X].

First we prove the following lemma.

Lamma. Let m be a maximal ideal of R[X]. If m contains an integral
polynomial, m is of the form m=(p, (X)), where p is a maximal iedal of R and
f(X) is an integral polynomial which is irreducible mod p.

Proof. Let g(X) be an integral polynomial in m. Then the residue class
ring R[X]/(g(X)) is integral over R. Hence its maximal ideal contains a maximal
ideal p of R[1, Chap. V, 2]. Then m also contains p. As any maximal ideal of
(R/p)[X] is generated by an irreducible polynomial, m is of the form (p, f(X)).

ReMARK. This lemma holds for any commutative ring with identity.
If we drop out the condition that m contains an integral polynomial, m is not
necessarily of the above form. For example, let R be a semilocal Dedekind ring
and let a be in the intersection of all maximal ideals. Then m=(aX—1)is a
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maximal ideal, because R[X]/m=R[1/a] is a field. If a Dedekind ring R con-
tains infinite number of maximal ideals, it can be shown that any maximal ideal
is of the above form.

We now prove our theorem. Le ¢(X)&m? for some m.
As m=(p, f(X)) by the above lemma, it holds

ap(X) = pr(X)+pAX)(X)+AXPHX),

where pEp such that (p)=ba, (b, a)=1 and a€a®*—a?p, 7(X), s(X) and
t(X)eR[X]. We can assume deg @(X)=deg f(X)%(X).
Then

(f(@))p)y+(f () () p )’s(ct)+r(a)t(er) = 0,

i.e., f(a)t(a)/p is integral over R[a]. As every element of R[a] is uniquely
written as a polynomial of « of degree at most deg @(X)—1 with coefficients in
R, f(a)t(a)/p is not an element of R[a] because f(X)t{(X)=%=0 (mod p). Hence
R[] is not integrally closed. Now let ¢(X)& m?for any m. As R[«] is integral
over R, every non-zero prime ideal is maximal. Then every non-zero ideal of
R[] contains a product of maximal ideals because R[«a] is noetherian. If every
maximal ideal is invertible, every non-zero ideal is equal to a product of maximal
ideals and R[] is a Dedekind ring. Let n be any maximal ideal of R[a]. Let
m be the inverse image of n by the natural homomorphism R[X]—R[a]. Then
m=(Y, f(X)) because m is maximal and @(X)em. We can put

ap(X) = ph(X)+af(X)k(X),

where p is an element of p such that (p)=pa, (b, a)=1, aca—ap, ~(X) and
R(X)eR[X]. If f(a)=0, n=pR[a] which is invertible. We now assume
fla)*+0. As ap(X)gEm? it holds A(X)eEm or ak(X)&m, ie., h(a)égEn or
ak(a)eEn.  As ag/p is in R for every element g of p, the above equation shows
that ak(a)/p is in n~'. Then h(a)=—f(a)-ak(cx)/p and ak(a)=p-ak(a)/p are in
n.n-l.  As k(a) or ak(a) is not an element of n, it holds n.-n-'dn. This
shows n-n-'=R[«], i.e., n is invertible. This completes the proof.

In the case R=Z, finite amount of calculations show if ¢(X) is contained
in some m? or not. If p(X)em? for m=(p, f(X)), it holds

P(X) = pr(X)+pAX)(X)+AXYYX)

for some r(X), s(X) and #X)eZ[X]. This shows that ¢(X)=0 (mod p) has
multiple roots, i.e., p is a prime factor of the discriminant of ¢(X). That is,
only a finite number of prime numbers are possible. If such prime p is fixed,
f(X) must be a multiple factor of ¢(X) mod p.

ExampLE. Let F,(X) be the defining polynomial of a primitive z-th root §
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of unity. Itis known that Z[{] is the ring of the integers in Q({). But the
proof is not easy. We can show this more easily by our method. If n=p°isa
power of a prime, this is very easy. But in the general case we must assume
some arithmetic in Q(¢). We only need to consider maximal ideals m which
contain prime factors of n. Let p be a prime factor fo n, and let n=p°m,
(p, m)=1. As F,(X) divides F,(X?*) and as F,(X?)=F,(X)?" (mod p), we can
assume m=(p, f(X)), where f(X) is an irreducible factor of F,(X) mod p. Let
7 be a primitive m-th root of unity. Then there exists a prime divisor p of p in
O(7) such that f(y)ep. As F,(X) divides F,(X™), it is enough to show that
F (XMeEm’. If F (X™)Em? we can put

F,(X™) = pr(X)+pA(X)s(X)+A(X)H(X)
where 7(X), s(X) and ¥X)€Z[X]. As
F (X)= X0-Dr ' po. X011
it holds
p = F,(1) = F, (") = p’r(n)+pf(n)s(n) +f(n)t() .

As p is not ramified at Q(7), it holds pep?. But the right hand side is in P2
This is a contradiction. This shows F,(X™)e&m? i.e., F (X)&Em?
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