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Abstract
In the previous paper we determinﬁt(X) of each Hopf surfaceX = W/G
with W = C2 — (0, 0) so that its holomorphic automorphism group is given by

Aut(X) = AUKX)/G. We calculate the group of connected componeri@ut(X))
by reviewing the classification.

A Hopf surface X is a compact complex surface whose univeregéring space
is W = C?— (0, 0). So,X = W/G by denoting its covering transformation group by
G. A Hopf surface is called primary if its fundamental gro@is isomorphic to the
group Z of integers, and secondary otherwise.

In Theorem 1 of [3] we determine@ﬂt(X) of each secondary Hopf surfaceé =
W/G so that its holomorphic automorphism group is given Ayt(X) = AUt(X)/G,
WhereAUt(X) is the normalizer ofG in the holomorphic automorphism group 6f
fixing (0, 0). Moreover, in the following cases (2) and (3) itirmdes with the nor-
malizer of G in GL(2, C). We calculaterrg(Aut(X)) including primary Hopf surfaces
as a continuation by correcting some parts of [3].

Before stating Theorem 2 we review the classification of Hepiffaces. Except
the special case (0) th& is not given by any subgroup @&L(2,C), we may assume
that G C GL(2,C) and G is an extension oH = {g € G; |detg| = 1} by Z. Let a be
a primitive m-th root of 1, o, = expfri/n), ¢ = ps4, € = exp(2ri/5) anda, B,y € C
with 0 < ||, |B], || < 1. Also, we defineK = {g € G; detg = 1} C H.

The case (1) thaG C GL(2, C) and G is abelian is divided into two cases:

(A) Gis generated bg(zi, z2) = (az1, Bz2) andh(zy, 22) = (az, a"z,) with (m,n) =1 and
(B) G is generated byy(z1, z2) = (¢z1 + 22, azp) and h(z1, ) = (az, az).

The case (2) thaG is not abelian and decomposable, that is, isomorphig toH

is divided into six cases.

2000 Mathematics Subject Classification. 32J15.



584 T. MATUMOTO AND N. NAKAGAWA

(C1) G = (y1) x Hy where Hy = (al) x By, ;) and K = Ay .1y with (2@ +

1),m) =1,2+1=3 andk > 3. Note thatBj,, ;= (0= (§ % ).h= (3 9))

such thats and d have finite orders I2+ 1 and 2 respectively. Note also that =
Ao +1) is generated by-h'.
(C2) G = (y1) x Hy whereH, = (al) x B, and K = B,, with (m, 4n) = 1 andn > 2.

Here B, = <((|) 6) (%” pgl)) is the binary dihedral group of orden4

(C3) G = (yl) x Hz where H3 = (al) x C and K = C with (m, 6) = 1. HereC =

<<6 —Oi ) (1/ﬁ)< ‘j Ez )) is the binary tetrahedral group of order 24.

(C4) G = (y1) x Hy where Hy = (al) x Cgy and K = B; with (m, 6) =1 andk >
;o _ (i O sl e

2. HereCp, = <(0 - ) (w/ﬁ)( . e

primitive 3¢-th root of 1.

(C5) G = (yl) x Hs whereHs = (al) x D and K = D with (m, 6) = 1. HereD =

<<g C(}l ) (1/ﬁ)< f; Ez )> is the binary octahedral group of order 48.

(C6) G = (yl) x Hg where Hg = (al) x E and K = E with (m, 30) = 1. Here
— 63 0 O -1 64—6 62—63 . . .
E= <( A 62), (1 0 ) (1/\/5)(62_63 Y )) is the binary icosahedral group of
order 120.
The case (3) thatG is indecomposable, that is, not isomorphic to the product

Zx H: G is given as

)> is a group of order 83 andw is a

G=GoUgGy Go=(y?l)xH and g=yu
in the following cases from (D1) to (D6) and in the exceptiocase (D7)
G =GoUgGyUg?Gy, Go=(y3I)xH and g=yu,

where H is a finite cyclic group or one of in the case (2) and € GL(2, C).

(D1) The caseH is abelian andK = <(8 S(_)l)> is of ordermg > 3: We can take

u= ((1) é) and the case is divided into the following three cases.

(D11) H = (al) x K with K = ((8 591)> wheres has the finite ordemg > 3 and
(m, mg) = 1.

_ b 0 c O -
(D1-2) H = (al) x ((0 b—1)> X <(0 —c‘1)> whereb and c have finite orders [2+
1> 1 and ¥ with k > 3 respectively. Moreover, we haven(2 + 1) = (m, 2) = 1,
mi = 2712 + 1) ands = bc?.

(D1-3) H = (al)x<<g b91>>x<<8 —Oc>> whereb andc have finite ordersi2+1> 3

and ¥ with k > 3 respectively. Moreoverng, 2 + 1) = (m, 2) =1, mx = 2(2 + 1)
ands = —b.
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(D2) The caseH is abelian andK = {£1}: H = (al) x((g _OC)) andu = (2 é)

wherec is a primitive Z-th root of 1 withk > 3 and (2,m) = 1.
(D3) H = Hy as in (C1) andu = (? tfl). We have two conjugate classds= 1 and

0
t =i. Their transformation groups are not isomorphic to eacleroth
(D4 and D5)H = (al) x B,, K = B,, as in (C2) andu = (pé" pql) where (D4) is
2n

the casen > 3 and (D5) is the casa = 2.

(D6-) H = (al) x C, K = C as in (C3) andi = (§ ;91)-
0

(D6-2) H = (al) x Cg4 with k > 2, K = B as in (C4) andu = (g ¢ l)'

(D7) H = (al) x By, K = B, as in (D5) andu = (1/v2)( f; EZ ).

Since we did not give a proof of the classification for the twaposable cases
(D1) to (D7), we will give an outline of proof. We may assurife## {1}, sinceG is
abelian otherwise (cf. [1] Proposition 8).

We consider the case th&t is abelian at first. Sinced operates onS® freely,

H is a cyclic group of ordemy. We may assume that the generator(ig d0n>

The matrixu is also determined as = (to t;) in this case by [1] Lemma 6 and
Proposition 8. The conditiom? = 1 modmy should be satisfied because the con-
jugation of the generator by is contained inH. Sinceu does not commute with
the generator oH, we get the conditiom # 1 modmy. Note thatn? = 1 mod pX
implies n = +1 mod pX for odd prime p. In casep = 2, n> = 1 mod ¥ implies
n=+1modZ for k =1,2 andn= 41 orn= 41+ 21 mod X for k > 3. Let
my = 2¢ p'l‘l .. p'éq be the prime decomposition.

(D1) Assume first than = +1 mod X. Then, we get the case (D11). When
k>3 andn = -1+ 21 mod X, we get the case (D1-2). Whan= 1+ 2~ mod X
with k > 3, it is easy to see thak = {£I} if and only if n = 1 mod pl]-<j for every
odd prime p;. Since we treat the casé # {+l} in (D1), the case whem = 1 +
2“1 mod Z with k > 3 andn # 1 mod p'j‘j for some odd primep; is named (D1-3).
We see also that the matrix above with anyt € C* is conjugate tou with t = 1 in
these three cases.

(D2) This is the remaining case when= 1+ 2! mod X with k > 3 andn =1
mod le_<. for every odd primep;. Note that this cas& = {%1} is studied separately
in [1] p. 229 andu is determined as above in the indecomposable case. For ttiex ma
u we can taket = 1 in the same way as in the case (D1).

When K is not abelian, [1, 2] Lemma 7 and Lemma imply that K andu are
uniquely determined as in the cases (D4) to (D7) includirg ¢hse (D6-2).

1The case (D6-1) is denoted by (D6) in [3] and (D6-2) was migshere.
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Finally whenK is abelian andH is not abelian, we may assume thdt= H; as
in (C1). SinceK = Ayz41), we are concerned only with Step 3 of [1] pp. 235-236.
Hence, the groupG is conjugate inGL(2, C) to one of the non-isomorphic groups

(W, h, yus) and (i, h, yuy), whereh' = (§ %), h= (3 9), u=(91)and

U, = 0 -1) we get the case (D3) and no others. This is the end of theneutli
i 0

of proof.
The case (D3) is subdivided and remarkable since the diffephic classes can
be distinguished byrg(Aut(X)).

Theorem 2. The group of connected componentgAut(X)) of the holomorphic
automorphism group A(K) = AUt(X)/G of each Hopf surface X% {C? — (0, 0)}/G
is described as follows.

(0) The case that G is not given by any subgroup ofZC) (m1(X) =~ Z x Z):

o(Aut(X)) = 0.

(1) The case that G is contained in @&, C) and abelian(my(X) =~ Z x Zp):

mo(AU(X)) = O,

except the caséA2) whena = g and n# n? = 1 modm where

ﬂo(AUt(X)) x~ 7.

(2) The case that G is decomposable and not abelian

mo(Aut(X)) = 0 in the caseqC5) and (C6).

mo(Aut(X)) = Z, in the caseqC1l), (C2)with n> 3, (C3) and (C4).

mo(Aut(X)) = D3 in the case(C2) with n = 2, where Ly is the dihedral group of
order 2Kk.

(3) The case that G is indecomposable

mo(Aut(X)) = 0 in the caseqD1-1) with odd nx, (D1-2), (D1-3), (D2), (D3)with
t =i, (D4), (D5), (D6-1), (D6-2)and (D7).

mo(Aut(X)) = Z, in the caseqD1-1) with even mx and (D3) with t = 1.

Corollary. For any primary Hopf surface X we see thag(Aut(X)) = O.

It is quite interesting to see that any decomposable Hogbserwith non-trivial
mo(Aut(X)) is a double or triple covering of the corresponding indeposable Hopf
surface: (A2)— (D1) or (D2), (C1)— (D3) with t =i, (C2) withn > 3 — (D4),
(C2) withn =2 — (D5) or (D7), (C3)— (D6-1) and (C4)— (D6-2). In fact, the
covering transformation element in these cases is non-trivial ing(Aut(X)). Simi-
larly (D1-1) with mg = 2| is a double covering of (D1-1) wittmg = 4l. But as is

well-known, the natural operation c«é —Oi )>/<(Bl _01>> =~ Z, on the Hopf sur-

face in the case (C1) is not fixed point free, and the same oc#se (D3) witht = 1.
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The proof of Theorem 2 follows easily from Theorem 1 of [3] the cases (0) and (1)
except (A2), we havey(Aut(X)) = 0 and hencerg(Aut(X)) = 0. In the case (A2)

To(AULX)) = C* | <(2 é)>/c*| ~ 7,.

Now note thatro((C*1 - G')/G) = 7o((C*I - G')/(C*I - G)) = mo((C*1 - G')/(C*I -
G”)) = G'/G” for a normal subgrou” of a finite subgroupgs’ of GL(2,C), provided
that C*l - G” = C*Il - G and no(G’) = 7o(C*I - G').

Then, in the case (2) we get the result by noticing tBat/B, =~ Z,, D/B; =~
S4/D2 = D3, D/C = Z; andC*I - Cg, = C*I -C. In fact, we takeG' = By@ 1) and
G” = By.1 in the case (C1). Here8, = <(? 6) (p(')“ pgl» and the fact((') —Oi ) ¢
By .1 is essential. In the other cases we tdke= B,, and G” = B, in the case (C2)
withn>3, G =D andG” = B; in the case (C2) with=2, G’ =D andG”" =C
in the cases (C3) and (C45’ = G” = D in the case (C5) ant’ = G” = E in the
case (C6).

The proof for the case (3) is a little more delicate. In theecéd1l) we have
Aut(X) = C*1 - Bm¢. Moreover, in the case (D1-1) ik is odd then—I € C*I - G
implies C*l - G = C*I - By, , otherwiseC*| - G = C*| - By, 2. In the case (D1-2)

¢ 0 )eccimplies(! %) eGandhence S %), (O 1) ec-G. onthe
0 —c 0 —i 0c i 0

other hand we can takbc = ppy, for my = 26712l + 1). So, we haveC*l - G =

C*I+Bp,. In the cases (D1-3) and (DZ)S _OC) € C*1 -G implies (6 ° ) eC*l-G
and henceC*l - G = C*| - Bya11), Wherel > 1 in the case (D1-3) antl= 0 in the
case (D2). We used the correctidut(X) = C*I - B, below in the case (D2) with

t = 1. Note that(6 3 ) = (? o )(—01 _01) is contained inC*l -G andC*I -G =
C*l - By@a41 in the case (D3) witlt =i. In the case (D3) witht = 1 the same elem-
ent is not contained il€*I -G and henceC*l -G = C*I - By 1. S0, we get the result
in these cases. For the other cases we have only to noteCtHat G = C*I - Byy

in the case (D4)C*l - G = C*I - By in the case (D5)C*l -G = C*I - D in the
case (D6-1) ancC*l -G = C*1 -C in the case (D7). Also, it is not difficult to see that
AU(X) = C*I -D = C*I -G and mo(Aut(X)) = 0 in the case (D6-2) which was missing
in Theorem 1 of [3]. This completes the proof of Theorem 2.

Finally we note that there are six errors in [3] to be corrdct&irst ‘splits’ in
the 7-th line from the bottom of the p.1 should read ‘decorepbsSecond shift the
condition fromk > 1 to k > 2 in the case (C4); the actio@,, on S* has fixed points.
Third in the case (D2) wher& = {£I} and H is abelian we should correch =
2(2 +1) > 6 tom = 22 + 1) with k > 3, wherem denotes the order oH. (In
the new description given in this paper= 2 + 1 and the order oH is (2 + 1).)
Fourth we should not restrict ourselves ttg4 1 in the case (D3); there are just two
conjugate classes as stated above. Fifth there is one meee(D&-2).
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Sixth in the case (D2) of Theorem 1 we should correct the csimh as follows:

(D2) AUt(X) :c*|<(‘o _OI) (‘t) t61)>gc*| . By.

The proof which is located in the last five lines of p.422 of jould read:
In the case (D2) we haveNg o c)(H) = {(a/ 0), (0 b/) ‘ a,p, ¢, d eC*}.

0 d ¢ 0
a 0) . (d/a 0 0L\ -
The commutator ofu and ( 0 d,) is ( 0 a//d’) and that ofu and (C, 0) is
/+—2 I/
(Cto/b b/t(z)/c/)' Since they should be contained K, we havea’ = +d’ and

¢ = +b't%. So, we get the result.
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