

Title	On the higher dimensional Mordell conjecture over function fields
Author(s)	Maehara, Kazuhisa
Citation	Osaka Journal of Mathematics. 1991, 28(2), p. 255-261
Version Type	VoR
URL	https://doi.org/10.18910/8677
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Maehara, K.
Osaka J. Math.
28 (1991), 255–261

ON THE HIGHER DIMENSIONAL MORDELL CONJECTURE OVER FUNCTION FIELDS

KAZUHISA MAEHARA

(Received November 2, 1989)

Introduction

The purpose of this note is to give a partial answer to the following conjecture which is a function theoretic analogue of Mordell conjecture and was formulated by S. Lang, E. Bombieri and J. Noguchi ([6], [10], [11]):

Let K be a function field over the complex number field \mathbf{C} . Let V be a projective variety defined over K , $\Omega_{V/K}$ the sheaf of regular differential 1-forms ω_V the canonical invertible sheaf. Recall that V is called a variety of general type if the rational mapping associated with the l -th pluri-canonical system $|\omega_V^l|$ for an integer $l > 0$ is birational. We say that V is isotrivial if there exist a projective variety V_0 defined over \mathbf{C} and a finite extension K' of K such that $V \otimes_K K'$ is birationally equivalent to $V_0 \otimes_{\mathbf{C}} K'$.

Conjecture M. *Let V be a projective variety of general type defined over K . Suppose that V is not isotrivial. Then the set of K -rational points of V cannot be Zariski dense in V .*

(i) Mordell conjectured that any curve of genus ≥ 2 defined over a number field \mathfrak{K} does not admit an infinite number of \mathfrak{K} -rational points, which is proved by G. Faltings. An analogue of Mordell conjecture over function fields was proved by Y. Manin and H. Grauert ([2], [3], [6]).

In this case a curve is assumed to be not isotrivial over the definition function field.

(ii) J. Noguchi ([11]) and M. Deschamps ([1]) proved Conjecture *M* under the assumption that $\Omega_{V/K}$ is ample, in other words the fundamental sheaf $\mathcal{O}_{P(\Omega_{V/K})}(1)$ of the projective bundle $P(\Omega_{V/K})$ is ample. Note that if $\mathcal{O}_{P(\Omega_{V/K})}(1)$ is ample then $\mathcal{O}_{P(\Omega_{V/K})}(\alpha) \otimes \omega_{P(\Omega_{V/K})}^{-1}$ for some $\alpha > 0$ is ample, which turns out to be nef and big (for the definition see §1).

(iii) A compact analytic space X is said to be hyperbolic if any holomorphic map from \mathbf{C} into X is constant, i.e., X does not contain any singular elliptic curve as well as any rational curve. It is conjectured that a hyperbolic variety is a

variety of general type.

(iv) D. Riebesehl ([12]) proved Conjecture M under the hypothesis of negative curvature and the assumption that all the fibres have negative curvature. Further J. Noguchi ([10]) proved it under the hypothesis that V is hyperbolic with the Chern class $c(\omega_V)$ represented by a semipositive $(1, 1)$ -form.

(v) Conjecture M follows from the boundendness hypothesis to the effect that the intersection number (Γ, ω_X) is bounded above for any non-singular curve Γ with fixed genus contained in a given variety ([9]).

The main result of this paper is the following:

Let K be a function field over \mathbf{C} and let V be a projective non-singular variety over K .

Theorem. *Assume that V is of general type and that the fundamental sheaf $\mathcal{O}_{P(\Omega_{V/K})}(1)$ of the projective bundle $P(\Omega_{V/K})$ is K -nef and K -big and that there exists $\alpha > 0$ such that $\mathcal{O}_{P(\Omega_{V/K})}(\alpha) \otimes \omega_{P(\Omega_{V/K})}^{-1}$ is K -nef. The set of K -rational points $\{s_\lambda(K)\}$ is not dense in V provided that V is not isotrivial over K .*

REMARKS. (a) Under the same assumption as above, V does not contain any rational curve but may contain a singular elliptic curve.

(b) In the previous paper ([9]), the same result was proved under the assumption that $\mathcal{O}(\alpha) \otimes p^* \omega_X^{-1}$ is $f \circ p$ -nef over the whole X , not only over the generic fibre.

1. Notation

We recall the following

DEFINITION ([4]). Let $f: X \rightarrow S$ be a proper morphism onto a variety S and L an invertible sheaf on X . Let η be the generic point of S and L_η denote the restriction of L to the generic fibre X_η . An invertible sheaf L is f -ample if for any coherent sheaf \mathcal{F} , the natural homomorphisms $f^* f_*(\mathcal{F} \otimes L^m) \rightarrow \mathcal{F} \otimes L^m$ for some m_0 and any $m \geq m_0$ are surjective. An invertible sheaf L is said to be f -big, if for any invertible sheaf M on X , the natural homomorphism $f^* f_*(M \otimes L^m) \rightarrow M \otimes L^m$ for some $m > 0$ is not zero, in other words $f_*(M \otimes L^m) \neq 0$. And an invertible sheaf L is said to be f -nef if $\deg_D L_D \geq 0$ for every curve D which is mapped to a point on S by f . When $S = \text{Spec } K$, f -big and f -nef are said to be K -big and K -nef, respectively.

Let $f: X \rightarrow S$ be a proper surjective morphism of projective complex manifolds. Let K be the function field of S and V the generic fibre of f . We let $\Omega_{V/K}$ denote the sheaf of the Kähler differential on V , let $P(\Omega_{V/K})$ denote the projective bundle associated to $\Omega_{V/K}$ over V and let $\mathcal{O}_{P(\Omega_{V/K})}(1)$ denote the funda-

mental sheaf over $\mathbf{P}(\Omega_{V/K})$. We denote by ω_V the canonical invertible sheaf, i.e., $\det \Omega_{V/K}$. We have the exact sequence

$$0 \rightarrow f^*\Omega_K \rightarrow \Omega_V \rightarrow \Omega_{V/K} \rightarrow 0.$$

Then $\mathbf{P}(\Omega_{V/K}) \subset \mathbf{P}(\Omega_V)$. We have $\Omega_V = \mathcal{O}_V \otimes_{\mathcal{O}} (\Omega_X|_V)$ and $\Omega_K = K \otimes_{\mathcal{O}} \Omega_S$;

$$\begin{array}{ccc} \mathbf{P}(\Omega_{X/S}) & \supset & \mathbf{P}(\Omega_{V/K}) \\ \downarrow & \square & \downarrow \\ X & \supset & V \\ F \downarrow & \square & \downarrow f \\ S & \supset & \text{Spec } K \end{array} \quad \begin{array}{ccc} \mathbf{P}(\Omega_X) & \supset & \mathbf{P}(\Omega_V) \\ \downarrow & \square & \downarrow \\ X & \supset & V \end{array}$$

Here \square means that the diagram is cartesian.

2. Proof of the main theorem

In order to prove the theorem, we first consider the case in which $\text{tr. deg } K/\mathbf{C} = 1$. In this case, we denote S by C .

Lemma 1. *Some power $\mathcal{O}(\beta)$ of the fundamental sheaf $\mathcal{O}(1)$ on $\mathbf{P}(\Omega_V)$ is generated by its global sections for any $\beta \gg 0$.*

Proof. We will use the following Kawamata-Shoklov's base point free theorem (see [4], Base Point Free Theorem):

Let X be a compact manifold and $f: X \rightarrow S$ a proper surjective morphism onto a variety. Assume that $L^ \otimes \omega_X^{-1}$ is f -nef and f -big for some $\alpha > 0$ and that L is f -nef. Then there exists a positive integer m_0 such that $f^* f_* L^m \rightarrow L^m$ is surjective for any $m \geq m_0$.*

We return to the proof.

Observing the exact sequence $0 \rightarrow \mathcal{O}_V \rightarrow \Omega_V \rightarrow \Omega_{V/K} \rightarrow 0$, one sees that $\mathbf{P}(\Omega_{V/K})$ is identified with a member D of the complete linear system $|\mathcal{O}(1)|$ on $\mathbf{P}(\Omega_V)$. One has the following exact sequence:

$$0 \rightarrow \mathcal{O}(\beta-1) \rightarrow \mathcal{O}(\beta) \rightarrow \mathcal{O}_D(\beta) \rightarrow 0.$$

By the assumption of the theorem, one has $H^1(\mathcal{O}_D(\beta)) = 0$ for $\beta > \alpha$ using Kawamata-Viehweg vanishing theorem ([4]). Hence $\dim H^1(\mathcal{O}(\beta))$ is a monotonous decreasing function in β if $\beta \gg 0$. Thus $H^0(\mathcal{O}(\beta)) \rightarrow H^0(\mathcal{O}_D(\beta))$ is surjective for sufficiently large number β . On the other hand, applying Kawamata-Shoklov's base point free theorem [4] to $\mathcal{O}_D(1)$, one sees that $\mathcal{O}_D(\beta)$ is base point free for $\beta > \beta_0 \gg 0$. Combining these observations, one proves the lemma. \square

Set $g = f \circ p$. Then the surjection $g^* g_* \mathcal{O}(l) \rightarrow \mathcal{O}(l)$ for $l \gg 0$ gives a g-birational morphism $\varphi: \mathbf{P}(\Omega_V) \rightarrow \mathbf{P}(g_* \mathcal{O}(l))$. Thus one obtains the following diagram:

$$\begin{array}{ccc}
 \mathbf{P}(\Omega_V) & & \\
 p \downarrow & \searrow \varphi & \\
 & \mathbf{P}(g_*\mathcal{O}(l)) & \\
 V & \swarrow & \\
 f \downarrow & & \\
 K & &
 \end{array}$$

Let \mathcal{F} be a coherent sheaf over V and let $T \rightarrow V$ be a map such that there exists a surjection $\mathcal{F}_T \rightarrow \mathcal{L}$, where \mathcal{L} is an invertible sheaf over T . Then there exists a unique map $T \rightarrow \mathbf{P}(\mathcal{F})$ over V such that $\mathcal{F}_T \rightarrow \mathcal{L}$ is the pull-back to T of the fundamental surjection $\mathcal{F}_{\mathbf{P}(\mathcal{F})} \rightarrow \mathcal{O}_{\mathbf{P}(\mathcal{F})}(1)$. Applying this to the natural surjections $\Omega_V|_{s_\lambda(K)} \rightarrow \Omega_{s_\lambda(K)}$, we have the Gauss maps $\sigma_\lambda: s_\lambda(K) \rightarrow \mathbf{P}(\Omega_V)$. Let Z be a component of the Zariski closure of the set of K -rational points $\{\sigma_\lambda(s_\lambda(K))\}$ defined by Gauss map such that $p(Z) = V$. For each l , the l multiple of the divisor $D = \mathbf{P}(\Omega_{V/K})$ is the pull-back of a hyperplane Σ of $\mathbf{P}(g_*(l))$. We denote $\varphi(Z)$ by W . We divide into two cases:

- (i) $\dim W = 0$,
- (ii) $\dim W > 0$.

We prove some preliminary lemmas.

Lemma 2. *Let U denote $\mathbf{P}(\Omega_V) - \mathbf{P}(\Omega_{V/K})$. Put $\sigma_\lambda(s_\lambda(K)) =$ the rational point defined by the natural surjection $\Omega_V|_{s_\lambda(K)} \rightarrow \Omega_{s_\lambda(K)}$ defining $\sigma_\lambda: s_\lambda(K) \rightarrow \mathbf{P}(\Omega_V)$. Then σ_λ factors through U . Let T be any scheme over V such that there exist an invertible sheaf L and a surjection $\Omega_V|_T \rightarrow L$. Then we have a V -morphism $\phi: T \rightarrow \mathbf{P}(\Omega_V)$. We have the following diagram:*

$$\begin{array}{ccccccc}
 0 & \longrightarrow & \mathcal{O}_V|_T & \longrightarrow & \Omega_V|_T & \longrightarrow & \Omega_{V/K}|_T \longrightarrow 0 \\
 & & a(T) \searrow & & \downarrow & & \\
 & & & & \mathcal{O}(1)|_T & &
 \end{array}$$

Let t be a point of T . If $\phi(t) \in D$, we have $a(t) = 0$ and if $\phi(t) \in U$, $a(t)$ is bijective. Hence if $T \subset U$, $a(T)$ is bijective and the exact sequence above splits over T .

Proof. Since $f^*\Omega_K = \sigma_\lambda^*\mathcal{O}(1)$, the result follows. (cf. [1])

Lemma 3. *Let $u: M \rightarrow N$ be a proper surjective morphism between varieties. Suppose that N is a normal variety. Then the exact sequence $0 \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0$ of locally free sheaves of finite rank on N splits if and if the pull back of this sequence splits on M .*

Proof. It follows from the injectivity of the natural map $H^1(L) \rightarrow H^1(u^*L)$ for any locally free coherent sheaf L . \square

Case (i).

Note that $\varphi(Z)$ consists of a single point. From Lemmas 2 and 3, one has

the splitting of the exact sequence $0 \rightarrow f^* \Omega_K \rightarrow \Omega_V \rightarrow \Omega_{V/K} \rightarrow 0$. We take a projective non-singular model of $f: V \rightarrow \text{Spec } K$, denoted by $f: X \rightarrow C$. Thus $f: X \rightarrow C$ is locally trivial in the sense of etale topology.

Case (ii).

Note that $Z \cap D \neq \emptyset$.

Lemma 4. *The K -rational points $\{\sigma_\lambda \circ s_\lambda(K)\}$ on $P(\Omega_V)$ are not contained in $\text{Bs}|\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k}|$ for general λ nad some β and $k > 0$.*

Proof. Observing the exact sequence $0 \rightarrow \mathcal{O}_V \rightarrow \Omega_V \rightarrow \Omega_{V/K} \rightarrow 0$, one sees that $P(\Omega_{V/K})$ on $P(\Omega_V)$ is a divisor of the complete linear system $|\mathcal{O}(1)|$. One has the following exact sequence:

$$0 \rightarrow \mathcal{O}(\beta-1) \otimes \omega_{\bar{P}}^{-k} \rightarrow \mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k} \rightarrow \mathcal{O}_D(\beta+k) \otimes \omega_{\bar{D}}^{-k} \rightarrow 0.$$

By the assumption of the theorem we can apply Kawamata-Viehweg's vanishing theorem to obtain $H^1(\mathcal{O}_D(\beta+k) \otimes \omega_{\bar{D}}^{-k}) = 0$, if $\beta > \alpha(k+1) - k$. Hence $\dim H^1(\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k})$ is a monotonous decreasing function in β if $\beta \gg 0$. Thus $H^0(\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-1}) \rightarrow H^0(\mathcal{O}_D(\beta+k) \otimes \omega_{\bar{D}}^{-k})$ is surjective for sufficiently large number β . By the hypothesis of the theorem, applying Kawamata's base point free theorem [4] to $\mathcal{O}_D(\alpha') \otimes \omega_{\bar{D}}^{-1}$ for $\alpha' > 2\alpha$, one concludes that $\mathcal{O}_D(k\alpha') \otimes \omega_{\bar{D}}^{-k}$ is base point free for sufficiently large $k \gg 0$. On the other hand some power of $\mathcal{O}_D(1)$ is generated by its global sections by Kawamata's theorem. Thus $\mathcal{O}_D(\beta+k) \otimes \omega_{\bar{D}}^{-k}$ is generated by its global sections for sufficiently large β and $k \gg 0$. Hence $\text{Bs}|\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k}| \cap D = \emptyset$. Since $Z \cap D \neq \emptyset$, we conclude that $\text{Bs}|\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k}|$ does not include Z .

Considering $f: X \rightarrow C$, we have some ample invertible sheaf L on C such that the natural map

$$\mathcal{O}_{\sigma_\lambda \circ s_\lambda(C)} \otimes H^0(\sigma_\lambda \circ s_\lambda(C), \mathcal{O}(\beta) \otimes \mathcal{O}(\omega_{\bar{P}}^{-k}) \otimes p^* f^* L) \rightarrow \mathcal{O}(\beta) \otimes \mathcal{O}(\omega_{\bar{P}}^{-k}) \otimes p^* f^* L|_{\sigma_\lambda \circ s_\lambda(C)}$$

is generically surjective for suitable $\beta, k > 0$. Hence we have a dense set of curves $\{\sigma_\lambda(s_\lambda(C))\}$ in Z such that the intersection $(\mathcal{O}(\beta) \otimes \omega_{\bar{P}}^{-k} \otimes p^* f^* L, \sigma_\lambda \circ s_\lambda(C)) \geq 0$. recalling that

$$(\mathcal{O}(1), \sigma_\lambda \circ s_\lambda(C)) = 2g-2, \quad \omega_{P/X} = \mathcal{O}(-n-1) \otimes p^* \det \Omega_X,$$

one has

$$\deg_{\sigma_\lambda(s_\lambda(C))} p^* \omega_X^k = (\sigma_\lambda(s_\lambda(C)), p^* \omega_X^k) \leq (g(C)-1)(\beta+n-1) + \frac{1}{2} \deg_C L.$$

By the projection formula, one obtains

$$(s_\lambda(C), \omega_X) \leq \frac{\beta+n-1}{k} (g(C)-1) + \frac{1}{2k} \deg_C L.$$

By the Viehweg formula ([14]), one has $\kappa(\omega_X \otimes f^*L) = \kappa(\omega_V) + 1$. Hence for any ample invertible sheaf H over X there exist a positive integer ν and an effective divisor F such that $(\omega_X \otimes f^*L)^\nu = H + F$. Thus we can bound the degree of sections $C_\lambda = \sigma_\lambda(C)$ which are not contained in F of X and we have at most a finite number of Hilbert polynomials of the graphs Γ_λ of sections C_λ in $C \times X$. Thus we let H be a Hilbert scheme parametrizing proper subschemes in $C \times X$ with the Hilbert polynomials mentioned above. Thus we have a subvariety T^0 which parametrizes the graphs Γ_λ of sections C_λ , whose set is dense in X . Let T be a compactification of T^0 . Hence we have the following commutative diagram:

$$\begin{array}{ccc} \{\Gamma_\lambda\} \subset X \times T & & \\ \swarrow \quad \downarrow & & \\ C \times T & \xrightarrow{\quad} & X \\ \searrow \quad \swarrow & & \\ & C & \end{array}$$

Thus $f: X \rightarrow C$ is birationally trivial over C from the lemma ([7], section 5 (p. 115), Appendix (p. 119)):

Let T be a complete variety and $\phi: T \times S \rightarrow X$ be a dominant S -rational map. Then X is birationally trivial over S .

We can easily reduce the general case to the case when $\text{tr. deg } K/C = 1$. Considering the pluri- S -canonical mapping $X/S \rightarrow \mathbf{P}_S(f_* \omega_{X/S}^{\otimes k})$ for $k \gg 0$ and noting that varieties of general type have no infinitesimal automorphisms except for finite automorphisms, we have a dense open S^0 in S such that every fibre of X/S is birational, since we can join any two points in S^0 by a non singular curve in S^0 . Hence one can find etale covering S' over S such that the pull-back of the pluri- S -canonical mapping $X/S \rightarrow \mathbf{P}_S(f_* \omega_{X/S}^{\otimes k})$ is trivial. Q.E.D.

References

- [1] M. Deschamps: *Propriétés de descente des variétés à fibre cotangent ample*, Ann. Inst. Fourier, Grenoble, 33 (1984), 39–64.
- [2] M. Deschamps: *La construction de Kodaira-Parshin*, Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Soc. Math. France, Astérisque 127 (1985), 261–271.
- [3] H. Grauert: *Mordells Vermutung über rationale Punkte auf Algebraischen Kurven und Funktionenkörper*, Publ. Math. IHES 25 (1965), 1–95.
- [4] Y. Kawamata, K. Matsuda, K. Matsuki: *Introduction to the minimal model problem*, Advanced Studies in Pure Mathematics 10, Algebraic Geometry, 283–360,

Sendai (1985), 1987.

- [5] K. Kodaira and D.C. Spencer: *On deformation of complex analytic structures I*, Ann. of Math. **68** (1958), 328–401.
- [6] S. Lang: *Hyperbolic and Diophantine analysis*, Bull. Amer. Math. Soc. **14** (1986), 159–205.
- [7] K. Maehara: *Finiteness property of varieties of general type*, Math., Ann., **265** (1983), 101–123.
- [8] K. Maehara: *The weak 1-positivity of direct image sheaves*, J. Reine und Angewante Math. **364** (1986), 112–129.
- [9] K. Maehara: *The Mordell-Bombieri-Noguchi conjecture over function fields*, Kodai Math. J. **11** (1988), 1–4.
- [10] J. Noguchi: *Hyperbolic fibre spaces and Mordell's conjecture over function fields*, Publ. R.I.M.S. Kyoto Univ., **21** (1985), 27–46.
- [11] J. Noguchi: *A higher dimensional analogue of Mordell's conjecture over function fields*, Math. Ann. **258** (1981), 207–212.
- [12] D. Riebesehl: *Hyperbolische komplexe Räume und die Vermutung von Mordell*, Math. Ann **257** (1981), 99–110.
- [13] P. Samuel: *Lectures on old and new results on algebraic curves*, Tata Inst. F.R., Bombay, 1966.
- [14] E. Viehweg: *Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces*, in Algebraic Varieties and Analytic varieties, Advanced Studies in Pure Math. 1, 329–353: Tokyo and Amsterdam, 1983.

Tokyo Institute of Polytechnics
1583 Iiyama,
Atsugi city,
Kanagawa, 243–02
Japan

