Title: On projective modules over directly finite regular rings satisfying the comparability axiom

Author(s): Kutami, Mamoru

Citation: Osaka Journal of Mathematics. 22(4) P.815-P.819

Issue Date: 1985

Text Version: publisher

URL: https://doi.org/10.18910/8685

DOI: 10.18910/8685

Osaka University Knowledge Archive: OUKA
http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
In [2], J. Kado has studied simple directly finite regular rings satisfying the comparability axiom, and completely determined the directly finiteness of projective modules over these rings. In this paper, without the assumption of simplicity in [2], we shall study projective modules over directly finite regular rings satisfying the comparability axiom. In Theorem 6, we shall give a criterion of the directly finiteness over these rings. Using this criterion, in Theorem 7, we shall show the following result: Let R be a directly finite regular ring satisfying the comparability axiom. If P and Q are directly finite projective R-modules, then so is $P \oplus Q$.

Throughout this paper, R is a ring with identity and R-modules are unitary right R-modules. If M and N are R-modules, then the notation $N \leq M$ (resp. $N \leq \oplus M$) means that N is isomorphic to a submodule of M (resp. N is isomorphic to a direct summand of M). For a cardinal number α and an R-module M, aM denotes a direct sum of α-copies of M.

First we recall some definitions and well-known results (cf. [1]).

Definition. A ring R is directly finite if $xy=1$ implies $yx=1$, for all $x, y \in R$. An R-module M is directly finite if $\text{End}_R(M)$ is directly finite. A ring R (a module M) is directly infinite if it is not directly finite. It is well-known that M is directly finite if and only if M is not isomorphic to a proper direct summand of M itself. A regular ring R is said to satisfy the comparability axiom provided that, for any $x, y \in R$, either $xR \leq yR$ or $yR \leq xR$, or equivalently, for any finitely generated projective R-modules P and Q, either $P \leq Q$ or $Q \leq P$. A ring R is said to be unit-regular if, for each $x \in R$, there is a unit (i.e. an invertible element) u of R such that $xux = x$.

Lemma 1. (a) Every directly finite regular ring satisfying the comparability axiom is unit-regular (cf. [1, Theorem 8.12]).

(b) Let R be a unit-regular ring. Then,

1. Every finitely generated projective R-module is directly finite ([1,
Proposition 5.2).]

(2) Let \(B, A_1, A_2, \ldots \) be projective \(R \)-modules. If each \(A_n \) is finitely generated and \(A_1 \oplus \cdots \oplus A_n \leq B \) for all \(n \), then \(\oplus A_n \leq B \) ([1, Proposition 4.8]).

(3) Let \(A \) be a finitely generated projective \(R \)-module. If \(B \) and \(C \) are any \(R \)-modules such that \(A \oplus B \cong A \oplus C \), then \(B \cong C \) ([1, Theorem 4.14]).

(4) Let \(A, B \) and \(C \) be projective \(R \)-modules such that \(A \cong B \oplus C \). If \(C \) is finitely generated, then \(A \) is directly finite if and only if \(B \) is directly finite.

An \(R \)-module \(M \) is said to have the exchange property if, for any direct decomposition \(G=M' \oplus C=\oplus_{i \in I} D_i \) with \(M' \cong M \) and the index set \(I \), there are submodules \(D'_i \leq D_i \) \((i \in I)\) such that \(G=M' \oplus (\oplus_{i \in I} D'_i) \).

Lemma 2. Every projective module over a regular ring has the exchange property.

Proof. This follows from [4, Theorem 3], [5, Proposition 3] and the proof of [3, Lemma 1].

Let \(R \) be a regular ring, and let \(P \) be a countably generated, but not finitely generated, projective \(R \)-module which has a cyclic decomposition \(P=\oplus_i \mathbb{Z} P_i \) satisfying the condition

\((*) \quad P_i \geq P_{i+1} \) for all \(i \), and there exists no nonzero \(R \)-module \(X \) such that \(X \leq P_i \) for all \(i \).

Consider the following conditions on \(\{P_i\} \);

(A) There exists a positive integer \(m \) such that

\((1)\) for each \(i \geq m \), \(P_i \leq t P_{i+1} \) for some positive integer \(t \), and

\((2)\) \(\oplus_{i \geq m} P_i \leq t P_m \) for some positive integer \(t \).

(B) There exists an increasing sequence \(i_1 < i_2 < \cdots \), of positive integers such that \(P_{i_n} \geq P_{i_{n+1}} \) for \(n=1, 2, \ldots \).

(C) There exists a positive integer \(m \) for which the condition (1) of (A) holds.

Lemma 3. Let \(R \) be a directly finite regular ring satisfying the comparability axiom. Then, for a countably generated, but not finitely generated, projective \(R \)-module \(P \) with a cyclic decomposition \(P=\oplus_i \mathbb{Z} P_i \) satisfying (*), either (B) or (C) hold, but not both.

Proof. It is clear from Lemma 1 that if \(P=\oplus_i \mathbb{Z} P_i \) does not satisfy (B), then \(P=\oplus_i \mathbb{Z} P_i \) satisfies (C). Assume that \(P=\oplus_i \mathbb{Z} P_i \) does not satisfy (C). Then there exists an increasing sequence \(j_1 < j_2 < \cdots \), of positive integers such that, for each \(n=1, 2, \ldots \), \(P_{j_n} \leq t P_{j_{n+1}} \) for all positive integers \(t \), and so \(P_{j_n} \geq P_{j_{n+1}} \) for \(n=1, 2, \ldots \), by Lemma 1. Therefore, taking \(i=1 \) and \(i_n=j_n \) for \(n=2, 3, \ldots \), we see that (B) holds for \(P=\oplus_i \mathbb{Z} P_i \).
Proposition 4. Let R be a directly finite regular ring satisfying the comparability axiom. For a countably generated, but not finitely generated, projective R-module P with a cyclic decomposition $P=\bigoplus_{i\in\mathbb{Z}} P_i$ satisfying (*) and (C), the following are equivalent:

(a) P is directly finite.

(b) There exists a positive integer $n>m$ such that $\bigoplus_{i\in\mathbb{Z}} P_i \subseteq P_m$.

(c) There exists a positive integer $t>1$ such that $\bigoplus_{i\in\mathbb{Z}} P_i \subseteq tP_m$.

Proof. (a) \Rightarrow (b). Assume that (b) does not hold. Then there exists an increasing sequence $m<m_1<m_2<\cdots$, of positive integers such that $P_{m+i} \supseteq P_m$ for $i=1, 2, \cdots$ by Lemma 1. Thus $\bigoplus_{i} P_m \subseteq P$ and so P is directly infinite. (b) \Rightarrow (c) is clear. (c) \Rightarrow (a). Assume, to the contrary, that P is directly infinite. Putting $Q=\bigoplus_{i} P_i$, in view of Lemma 1, we see that Q is directly infinite; so there exists a nonzero R-module X such that $X \leq Q$. Using (*), we can choose a positive integer $i>m$ such that $P_i \leq X$, and hence $tP_m \leq X \leq P_t$ for $i=1, 2, \cdots$. This contradicts the directly finiteness of tP_m.

REMARK. Let R and P be as in Proposition 4. This P is not always directly finite in general. Take, for example, a field F and set $R_n=M_2^n(F)$ for all $n=1, 2, \cdots$. Map each $R_n\to R_{n+1}$ along the diagonal, i.e., map $x\mapsto \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$, and set $R=\lim_{\to} R_n$ (see [1, Example 21.20]). Then R is a directly finite regular ring satisfying the comparability axiom and we can choose a cyclic projective R-module $Q_n=x_nR$ such that $N(x_n)=1/2^n$ for $n=1, 2, \cdots$, where N is a unique rank function on R. Put $Q_i=P_{i-1}=\cdots=P_{j+1-2}$ for $i=1, 2, \cdots$ and $P=\bigoplus_{i} P_i$. Then, using [2, Lemma 2.5], we see that $P \simeq \mathbb{R}R$ is a countably generated, but not finitely generated, directly infinite projective R-module with a cyclic decomposition $P=\bigoplus_{i} P_i$ satisfying (*) and (C).

Proposition 5. Let R be a directly finite regular ring satisfying the comparability axiom. Then, a countably generated, but not finitely generated, projective R-module P with a cyclic decomposition $P=\bigoplus_{i\in\mathbb{Z}} P_i$ satisfying (*) and (B) is directly finite.

Proof. Putting $P_i=P_{i+1}P_{i+2}\cdots P_{i+1}$ for each n, we have $P=\bigoplus_{n=1} P_{i_n}$ such that $S=\bigoplus_{n=1} P_{i_n}$ and $T=\bigoplus_{n=1} P_{i_n}'$. We have decompositions

$$P_{i_n}=P_{i_n}'+P_{i_n}''$$

such that

$$S=\bigoplus_{n=1} P_{i_n}'+\bigoplus_{n=1} P_{i_n}''$$

and $T=\bigoplus_{n=1} P_{i_n}'+\bigoplus_{n=1} P_{i_n}''$.
for each \(n = 1, 2, \ldots \) (Lemma 2). Noting \(T' \leq T \), we see by (*) that there exist a finitely generated nonzero submodule \(T'' \) of \(T \) and a positive integer \(i' \) such that \(P_{i''} \subseteq T'' \subseteq T \), and so that \(P_{i''} \subseteq U \), where \(U = (\bigoplus_{i''} P_{i''}) \oplus (\bigoplus_{n''} P''_{n''}) \) for some positive integer \(m > n \). Then \(P \cong S \) shows that \(U \leq (\bigoplus_{i = m + 1} P_{i''}) \oplus (\bigoplus_{n = m + 1} P_{i''}) \leq \bigoplus_{i} P_{i''} \leq U \) by Lemma 1, which contradicts the directly finiteness of \(U \). Therefore \(P \) is directly finite.

We are now in a position to prove the main theorem.

Theorem 6. Let \(R \) be a directly finite regular ring satisfying the comparability axiom, and let \(P \) be a projective \(R \)-module. Then, \(P \) is directly finite if and only if

1. \(P \) is finitely generated or
2. \(P \) is a countably generated \(R \)-module with a cyclic decomposition \(P = \bigoplus_{i} P_{i} \) satisfying (*) and (A), or (*) and (B). If, in addition, \(R \) has the nonzero socle, then a projective \(R \)-module \(P \) is directly finite if and only if \(P \) is finitely generated.

Proof. Put \(P = \bigoplus_{i \in I} P_{i} \), where each \(P_{i} \) is a nonzero cyclic projective submodule of \(P \). Denote by \(|I| \) the cardinal number of \(I \). If \(|I| < \aleph_0 \), then \(P \) is directly finite by Lemma 1. Assume that \(|I| > \aleph_0 \). Given \(j \in I \), we set \(I_{j} = \{ i \in I | P_{i} \leq P_{j} \} \). Suppose that all \(I_{j} \) are finite sets. Then we can choose a countable sequence \(\{ i_{1}, i_{2}, \ldots \} \) of \(I \) such that \(I_{1} \subseteq I_{2} \subseteq \cdots \) and \(\bigcup_{i = 1}^{\infty} I_{i} = I \). Hence there exists \(i_{0} \in I \) such that \(I_{0} \subseteq \bigcup_{i = 1}^{\infty} I_{i} \), which contradicts to the fact that \(I_{0} \) is a finite set. Thus there must exist an infinite set \(I_{j} \) such that \(\aleph_{1} P_{j} \leq \bigoplus_{i \in I_{j}} P_{i} \leq \bigoplus P \); so \(P \) is directly infinite. Now suppose that \(|I| = \aleph_0 \). Then, in order to observe that \(P \) is directly finite, we can assume that \(P \) has a cyclic decomposition \(P = \bigoplus_{i} P_{i} \) with (*). Lemma 3, Propositions 4 and 5 show that \(P \) is directly finite if and only if \(P = \bigoplus_{i} P_{i} \) satisfies (A) or (B). Thus the first part of the theorem has proved. Next, assume that the socle of \(R \) is nonzero. Then there exists a simple right ideal \(S \) of \(R \) such that \(S \leq P_{i} \) for all \(i \in I \). This, together with (1) and (2), shows that \(P \) is directly finite if and only if \(P \) is finitely generated.

Remark 1. Let \(R \) be a nonzero simple directly finite regular ring satisfying the comparability axiom. Then, every non-finitely generated directly finite projective \(R \)-module \(P \) is a countably generated module with a cyclic decomposition \(P = \bigoplus_{i} P_{i} \) satisfying (*) and (A), because \(R \) has a strictly positive dimension function ([1, Corollary 16.15]).

Remark 2. A directly finite regular ring \(R \) with the comparability axiom is classified into three cases:

1. all non-finitely generated directly finite projective \(R \)-modules \(P \) have a cyclic decomposition \(P = \bigoplus_{i} P_{i} \) satisfying (*) and (A).
(2) all non-finitely generated directly finite projective R-modules P have a cyclic decomposition $P = \bigoplus i \cong P_{i}$ satisfying (*) and (B).

(3) all directly finite projective R-modules are finitely generated.

Proof. Assume that there exist non-finitely generated directly finite projective R-modules P and Q with cyclic decompositions $P = \bigoplus i \cong P_{i}$ and $Q = \bigoplus i \cong Q_{i}$ satisfying the following:

1. $P_{i} \geq P_{i+1}$ and $Q_{i} \geq Q_{i+1}$ for each i,
2. if $X \leq P_{i}$ (resp. $X \leq Q_{i}$) for all i, then $X = 0$ (resp. $X = 0$),
3. there exists a positive integer m such that, for each $i = m, m+1, \ldots, P_{i} \leq t_{i}P_{i+1}$ for some positive integer t_{i}, and $\bigoplus i \cong P_{i} \leq tP_{m}$ for some positive integer t, and
4. there exists an increasing sequence $1 = i_{1} < i_{2} < \ldots$ of positive integers such that $Q_{i_{n}} \geq Q_{i_{n+1}}$ for $n = 1, 2, \ldots$. Then we can choose positive integers i_{n} and $m > m$ such that $P_{m} \geq Q_{i_{m}} \geq Q_{i_{m+1}} \geq P_{m}$, and so $t_{m-1} \cdots \omega_{m}P_{m} \geq P_{m} \geq Q_{i_{n}} \geq Q_{i_{n+1}} \geq \omega_{m}P_{m} \geq t_{m-1} \cdots \omega_{m}P_{m}$, which contradicts the directly finiteness of $t_{m-1} \cdots \omega_{m}P_{m}$.

From Lemma 1, Theorem 6 and Remark 2, we have the following result.

Theorem 7. Let R be a directly finite regular ring satisfying the comparability axiom. If P and Q are directly finite projective R-modules, then so is $P \oplus Q$.

References

Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi 753
Japan