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1. Introduction

In [17], F. Luo and R. Stong introduced the notion of "average edge order"

3 F0(K)
μo(κ} = ΊΰKΓ

K being a triangulation of a closed 3-manifold M3 with E0(K) edges and FQ(K)
triangles.

The main properties of μo(K) and its relations with the topology of M3, both
in the closed and bounded case (which has been successively investigated by M.
Tamura in [20]), are collected into the following theorems:

Theorem 1. [17] Let K be any triangulation of a closed 3-manifold M3 .
Then:
(a) 3 < μo(K) < 6, equality holds if and only if K is the triangulation of the

boundary of a ^-simplex.
(b) I f μ 0 ( K ) < 4.5, then K is a triangulation ofS3.
(c) Ifμo(K) = 4.5, then K is a triangulation of§3, S2 x S1, orS2xSl.
(d) For every M3 and for every e > 0, there exist triangulations K\ and K2 ofM3

such that μo(Kι) < 4.5 + e and μo(^2) > 6 - e.

Theorem 2. [20] Let K be any triangulation of a compact ^-manifold M3,
with non-empty boundary. Then:
(a) 2 < μo(K) < 6, equality holds if and only if K is the triangulation of one

3 -simplex.
(b) Ifμo(K) < 3, then K is a triangulation 0/D3.
(c) Ifμo(K) = 3, then K is a triangulation o/D3, D2 x S1, orD2x§1.
(d) For every M3 and for every rational number r with 3 < r < 6, there exists a

triangulation K ofM3 such that μo(K) = r.

Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National Research
Council of Italy) and financially supported by M.U.R.S.T. of Italy (project "Topologia e Geome-
tria").
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Now, if K is a triangulation of a compact PL n-manifold Mn, with ai(K)

z-simplices, 0 < ί < n, it is natural to define the average (n — ̂ -simplex order as

The aim of the present paper is to investigate the properties of μ(K), K being a

"coloured" triangulation of a compact PL n-manifold Mn. In short, this means that

K is a pseudocomplex (see [14]) triangulating Mn, whose vertices are labelled by
"colours" 0, 1, . . ., n, so that the colouring is injective on each n-simplex of K. The

following statements show the existence of strong analogies with the 3-dimensional
simplicial cases here, S1 x Sn-1 (resp. S1xSn~1) denotes the orientable (resp. non

orientable) Sn~1-bundle over S1, while #tβ>n denotes the connected sum of h copies
of the n-disk Dn (i.e. the bounded PL-manifold obtained from Sn by deleting the
interiors of h disjoint n-disks).

Theorem 3. Let K be any coloured triangulation of a closed PL n-manifold
Mn (n > 3). Then:
(a) 2 < μ(K) < 6, equality holds if and only ίfK is the standard (two n-sίmplices)

coloured triangulation o/Sn.
(b) Ifμ(K) < (2(n + l))/(n - 1), then K is a coloured triangulation of§>n.

(c) For 3 < n < 5, ifμ(K) = (2(n+l))/(n — 1), then K is a coloured triangulation

of one of the following n-manίfolds : Sn, S1 x S71"1, S1 xB>n~l or (for n = 3)
the real projective space RP3.

(d) For every Mn and for every e > 0, there exists a coloured triangulation Ke of

Mn such that μ(Ke) < (2(n + l))/(n - 1) -h e.

Theorem 4. Let K be any coloured triangulation of a compact PL n-manifold
Mn (n > 3), with (possibly disconnected) non-empty boundary. Then:

(a) (2(ra + 2))/(n + 1) < μ(K) < 6, equality holds if and only ifK is the standard
(two n-simplices) coloured triangulation ofW1.

(b) For n = 3, ifμ(K) < (15)/(4), then K is a coloured triangulation of#hί)
3,

with l<h<2;

• Forn e {4, 5}, if μ(K) < (2(n 4- l))/(n - 1), then K is a coloured trian-
gulation of#h1D)n, with 1 < h < 3

• For every n > 6, if μ(K) < (2(n -h l))/(n - 1), then K is a coloured
triangulation ofφj])n, with 1 < ft < 2.

(c) For every Mn and for every e > 0, there exists a coloured triangulation Ke of
Mn such that
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if n = 3

, _ for every n > 4
n — I

Both Theorem 3 and Theorem 4 will be proved in the third section, by making
use of combinatorial properties of coloured triangulations (see section 2) and of
the relationships with a known PL-manifold invariant, called regular genus (see
[10] and [11] for definitions and basic properties, [7], [8], [6] and [4] for further
developments).

2. Combinatorics of coloured triangulations of manifolds

If Mn is a compact PL n-manifold1 and K is any simplicial triangulation of
Mn, then the vertices of the first barycentric subdivision K' of K may be labelled
in a canonical way by the elements of the colour-set Δn = {0,1,..., n}, so that the
following conditions hold:
i) each n-simplex of K' has exactly one c-labelled vertex, for every c G Δn;
ii) each n-labelled vertex is internal in K'.
In fact, it is sufficient to assign every vertex of K' the dimension of the simplex of
K whose barycenter is that vertex.

The resulting "labelled" complex K' is nothing but a particular example of
coloured triangulation of Mn. Actually, a coloured triangulation of Mn may be
defined as a pair (K,ξ), where:

• K is a pseudocomplex2 (see [14]) triangulating Mn, with vertex set S$(K)\
• ξ : SQ(K) —> Δn is a map (vertex-labelling) satisfying the above conditions i)

and ii).
For example, Figure 1 (resp. Figure 2) shows a coloured triangulation of the ori-

entable (resp. non-orientable) surface of genus one with one boundary component.
Note that, in both cases, the depicted pseudocomplex is not a simplicial triangula-
tion of the associated surface.

In the existing literature, coloured triangulations of n-manifolds are usually
visualized by means of (n + ^-coloured graphs, or n-gems (see [9], [1], [15], [16],
[5], [21] and their bibliography); however, the present paper works directly with

coloured triangulations, making suitable translations from known results of the
combinatorial theory, when it is necessary in order to analize the properties of the

1See [19] or [12] for basic notions on piecewise-linear (PL) category.
2Remember that a pseudocomplex is a ball-complex which differs from a simplicial complex

because its "h-simplices" may intersect in more than one face: thus, even if PL-manifolds may be
represented both by simplicial triangulations and by coloured triangulations, there is no inclusive
relation between the two classes.
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Fig. 2.

average (n — 2)-simplex order.
From now on, let (K, ξ) be a coloured triangulation of Mn. For simplicity,

the vertex-labelling ξ will be often understood thus, the coloured triangulation
(K, ξ) will be simply denoted by the symbol K of its underlying pseudocomplex.
For every h > 0, an (n — /ι)-simplex of K is said to be a boundary (n — h)-simplex

(resp. an internal (n — ti)-simplex) if it is contained (resp. if it is not contained) in
the boundary of K on the other hand, an n-simplex of K is said to be a boundary

n-simplex (resp. an internal n-simplex) if it has a boundary (n — l)-face (resp. if its
(n — 1)-faces are internal in K).

Let p = an(K) be the total number of n-simplices of K, p < p the number of

internal n-simplices and p = p — p > 0 the number of boundary n-simplices. For

every B c Δn, with cardinality #B = h > 0, we will denote by gg (resp. g β) (resp.
g&) the number of (n — /ι)-simplices of K (resp. internal (n — fo)-simplices) (resp.
boundary (n — /ι)-simplices) which do not contain c-labelled vertices, for any c G B;
in particular, if B = {ij} (resp. B = {ί,j,k}), we will often write giiJ9 g ̂  and
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Sij (resp. gijίk, gijίk and gitjtk) instead of gβ, gB and gβ.

Obviously, relation gβ = g β + gβ is true for every B c Δn, while relations

gB= gβanάgβ = Q hold if n £ β or if <9Mn = 0. If <9Mn ^ 0 and β = {n} U B',

let ag#/ denote the number of (n — /ι)-simplices of dK whose vertices are labelled
by Δn_ι — #'; then, equality gβ =dQB> holds.

As far as the average (n — 2)-simplex order is concerned, it is easy to check that
the total number of (n — 2)-simplices of K is an-2(K) = J^ GΔ^ ρίj<7 , while the

total number of (n — l)-simplices of K is an-ι(K) = (n + l ) / 2 p + (n + 2)/2p. Thus,
the following fundamental formula holds, for every coloured triangulation K of a
compact PL-manifold Mn:

(1)

Within the representation theory of PL-manifolds by coloured triangulations

(or (n + l)-coloured graphs), great importance is attached to the notion of regular
genus, which generalizes to arbitrary dimension the genus of a surface and the

Heegaard genus of a 3-manifold. For example, many results have been achieved in

order to classify PL n-manifolds with "low" regular genus : see [7], [8], [6], [4]
and related papers.

If K is any coloured triangulation of Mn and c — (e0, ei, . . . , en = n) is any
circular permutation of Δn, then the 1-skeleton of the ball complex dual to K is

proved to admit a particular kind of cellular embedding-called regular embedding 3-
onto a suitable surface Fe; moreover, Fe results to be orientable (resp. closed) if and
only if Mn is orientable (resp. closed).

The genus (resp. half the genus) of the orientable (resp. non-orientable) surface
Fe is said to be the e-genus pe(K) of the coloured triangulation K according to [10]

and [11], the integer pe = pe(R) may be directly computed from the combinatorial
properties of K by means of the following formula:

(2)

Finally, the regular genus Q(Mn] of a PL n-manifold Mn may be defined as

K is a coloured triangulation of Mn

c = (eo, e i , . . . , cn = n) is a circular permutation of Δr

3 In the closed case, this means that each embedding region is an open ball bounded by images
of edges which are alternatively dual to (Δn - {ei})-labelled and (Δn - {ei+ι})-labelled (n - 1)-
simplices of K, for some i G Δn. On the other hand, if Mn has non-empty boundary, the notion
of regular embedding has to be suitably modified, taking into account both the boundary of the
surface Fe and the boundary of the pseudocomplex K (see [11] for details).
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Since p€(K) = p^e-^(K) obviously holds, then the computation of the e-
genera {pe(K)}e may be restricted to the subset Pn of circular permutations
e — (e0, e i , . . . , en = n) of Δn, where each permutation is identified with its inverse
one. Moreover, if P'n = {e EPn / en_ι = n — 1}, then every e ePf

n induces a per-
mutation €fι = (e0, e i , . . . , en_ι = n — 1) G 7\-ι; thus, the e-genus dpe = p(ef.)(dK)
results to be well defined.

The following Lemma yields an useful relation among the total number of
(n — 2)-simplices of K and the whole set of e-genera for K and (possibly) dK.

Lemma 1. Let K be a coloured triangulation of a compact (connected) PL n-
manifold Mn, and let h > 0 be the number of connected components of its (possibly
empty) boundary dMn.
i) IfdMn = 0, then

Σ ι \P ^
lj' ~" ^ 'a in — 1}I

ii) IfdMn ^ 0, then

(n - 1)! Σ

Proof. If K is a coloured triangulation of a closed PL n-manifold Mn with
g > 1 connected components, then summing up relation (2) for every connected
component and for every permutation e e Pn easily yields:

(3) (n-l)!

Thus, statement (i) directly follows, when g — 1 is assumed.
On the other hand, if K is a coloured triangulation of a compact (connected)

PL n-manifold Mn with h > 1 boundary components, then summing up relation
(2) for every permutation e € Pn yields:

(»-DI Σ fl«j + (l-») + (2-n) + (»-2)!
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In order to evaluate Σ<j6ΔΛ 9w the term ±(n ~ 1V ' Σi,jGΔτι 9i,j has to be
added:

j] -(*-!)!• 53 Sij

- n! - 2 ̂  pe

eGP.

Then, since <^j = 0 for every ij G Δn_ι and g^n = p/2 for every i E Δn_ι,
the following identity is easily obtained:

n ) . -„!•„ + („- 2)!

= n! - 2

Now, if formula (3) is applied to the boundary triangulation dK (with h > 1
connected components), then the previous relation becomes:

Hence, statement (ii) results to be proved, by a direct computation. Π

3. Proofs of the main results

Instead of directly proving Theorem 3 and Theorem 4, we subdivide the proofs
into steps, by making use of some preliminary Lemmas.

Lemma 2. Let K be a coloured triangulation of a compact (connected) PL
n-manίfold Mn, with n > 3. Then.

μ(K) < 6

Proof. The Euler characteristic computation of the disjoint link of each (n —
3)-simplex of K easily yields the following formula, which is nothing but a particular
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case (corresponding to m = 3) of [2; Corollary 2]

2 ' Σ 9 M,* + Σ Sij,k = (n - 1)

Thus, formula (1) may be restated as

_
— *

(n + 1) p + (n + 2)p

n(n +

0

6
-h n(n + 2) — h

— c\

3 n — 1 •(2
V^ o

, v^ -
2_^ yιj ύ

Since p > 0, ^j,/c > 0 and

the statement follows.

> 0 (for every i,j,k e Δn) obviously hold,

D

REMARK. As already pointed out in [17] for the closed simplicial case, the

claim of Lemma 2 does not hold in dimension 2, where the average vertex order

results to be strictly related with the geometrical structure of the surface.

In fact, an easy Euler characteristic computation shows that, if K is a coloured

triangulation of an orientable (resp. non orientable) surface F with genus g(F) > 0

(resp. g(F) > 1) and h > 0 boundary components, then:

Further, if every boundary component is assumed to be triangulated by exactly two

1-simplices (i.e, if p = 2/ι), the previous relation becomes:

Thus, in this hypothesis (which is always trivially true in the closed case), μ(K) < 6

holds if and only i f χ ( F ) > -(2ft)/3, i.e. g(F) < l-(h/6) (resp. g(F) < 2-(/ι/3)).4

4It may be interesting to note the relationship between the present conditions and the cases of
surfaces admitting 8-regular triangulations, with 6 < 6: see [18].
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For example, if KI (resp. K2) is the bidimensional coloured triangulation depicted
in Figure 1 (resp. Figure 2), it is immediate to check that μ(-KΊ) = 20/3 > 6 (resp.
μ(K2) = 14/3 < 6).

Lemma 3. Let K be any coloured triangulation of a closed PL n-manifold
Mn (n > 3). Then:
(i) μ(K) > 2, equality holds if and only if K is the standard (two n-simplices)

coloured triangulation 0/Sn.

(ii) IfMn φ Sn, then μ(K) > (2(n + l))/(n - 1).

(iii) μ(K) = (2(n + l))/(n - 1) implies p^(K) = 1 for every e G Pn.
(iv) For every n > 3, there exists a coloured triangulation H^ (resp. H^) 0/S1 x

S71'1 (resp. o/S^S71-1) with μ(ff<n>) - (2(n+ l))/(π - 1) (resp.

(2(n

Proof. In the closed case, formula (1) gives μ(R) — n ((n + l)p)/(2

ΣijGΔ ^,j) Since it is obvious that g^j < p/2 for every i,j G Δn, the proof
of statement (i) directly follows:

=2

p

'2

and μ(X) = 2 if and only if g^j = p/2 for every i, jf G Δn (i.e. if and only if K
consists of two n-simplices with identified boundary).

On the other hand, if Lemma l(i) is applied to formula (1), the following

relation is obtained:

μ(K)=

2

"
P 2

4 (n-1)! SΛ
Since the existence of a null e-genus is known to imply Mn being the n-sphere S71

(see [7]), if Mn ^ Sn we may assume pe > 1 for every e G Pn\ so

>

and statements (ii) and (iii) result to be proved.

Finally, statement (iv) may be directly checked from formula (1), in case H^
(resp. H^) being the "standard" coloured triangulation of S1 x S71"1 (resp. of

S^S7*"1) constructed in [7; Corollary 1] (resp. [13; Corollary 4]): in fact, both

ff(n) and H(n"> have p = 2(n + 1) and gitj = n - 1 for every i,j G Δn. D
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Lemma 4. Let K be any coloured triangulation of a compact PL n-manifold

Mn (n > 3), with (possibly disconnected) non empty boundary. Then.
(i) μ(K) > 2(n + 2)/(n + 1), equality holds if and only ifK is the standard (two

n-simplices) coloured triangulation o/Dn.
(ii) Forn = 3, if either M3 ^ ̂ D3 or M3 = ̂ D3 with h > 2, then μ(K) >

15/4;
• For every n > 3, if either Mn ^ #hD

n or Mn = #^D3 with h > (2(n +

l))/(n - 1), then μ(K) > (2(n + l))/(n - 1);
(iii) There exists a coloured triangulation Γ2

(n) ofφϊW1 = D1 x Sn-1 with

, (n), .

} - f

/or every n > 4
n — 1

For n G {4, 5}, ίAere exz'ste α coloured triangulation T% o/#3

Proof. In the bounded case, formula (1) and Lemma l(ii) yield the following
relation:

(4)

μ(K) =

n (π + 1) p + (n + 2)p
o

P 2 P 2

^ θ V-/ ^ (Pe Pe) + / ^ Pe

Since the inequalities pe > 0 (resp. pe >
ap€) are known to hold for every e G Pn

(resp. e E P^) an<^ since n — h<(n — l)(p/2) (use p>2h> 2), we have:

Moreover, equality holds if and only if p = 0 and p = 2/ι = 2, i.e. if and only if
consists of two n-simplices with n common (n — l)-faces.
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In order to prove statement (ii), we apply to formula (4) only the inequalities

pe > 0 and pe >ape, so that the following relation is obtained:

μ(K)>-
o _

(n-h)+ n(n - I)— + (n2 - n 4- 2)-

_ 2(n -hi) 2p - (n2 - 3n - 2) - 8(n - h)(n + 1)

n-l (n- l)[n(n- 1) p + (n2 - n + 2)p + 4(n - ft)]

In case n — 3, the previous relation yields:

3 0 15,. _ ,

Thus, if ft > 3, we have

This directly yields μ(K) > 15/4, since p = 0 would imply K to be a cone over

its boundary5 (i.e. a coloured triangulation of the 3-disk), against the assumption

h > 3.
For every n > 4, since p > 2h and n2 — 3n — 2 > 0 trivially hold, we have:

Thus, formula (5) obviously implies that, if ft > (2(n + l))/(n - 1) (i.e., ft > 3
with n e {4, 5}, and ft > 2 with every n > 6), then μ(K) > (2(n + l))/(n - 1).

On the other hand, if Mn ^ #hβn is assumed, the main result of [8] ensures

that pe > 1 for every e G Pn hence, formula (4) yields:

-(n + ϊ

2 |Γ
(n — ft) — (n — 1) + n(n — 1) —

n (n + 1) p + (n + 2)p

~~ 2
n(n —

o " + 1

" n-l

l)|- + (n2

11
(n — l ) [ ι

-n + 2)f

(n2 - 3n - 2)p

( 1 \ ° I / O
n — l)p + (n2 — n + 2)p]

5 Note that, if K has no internal Δn_ι-labelled (n - 1)-simplex, then K contains exactly one
n-labelled vertex vn moreover, K results to coincide with the "star" of vn in K.
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In case n = 3, the previous inequality becomes

μ(K) > 2 Ϊ2 -
3p+4pJ 4 3p+4p 4 '

finally, if n > 4, the proof of statement (ii) is completed by noting that n2—3n—2 > 0
trivially holds.

As far as statement (iii) is concerned, it is important to check that Mn = #^Dn

(for every n > 3 and for every h > 1) admits a coloured triangulation T^ with

p — 2/ι, p = 2(h — l)(n — 1) and pe(T^} = 0 for every e 6 TV The construction

of T£ is performed by induction on h in the following way:

• Let TI = 0_ι be the standard coloured triangulation of Dn consisting of two
(vertex labelled) n-simplices with all (n — l)-faces identified, but the Δn_ι-
labelled ones;

• T^_\ is obtained from Tr by adding, for every n(r — 1) < i < nr — 1, an
n-dipole θi involving the colour set Δn — {ί mod.n}6 within the unique (Δn —
{ί mod.n})-labelled (n—l)-face of ̂ _1? and then by deleting the identifications
of Δn_ι-labelled faces contained in θnr-\.

Now, the proof of formula (5) directly yields

o,-,n 4»-8^l) , n- 1
n-1 2II J. Λ . ( -i \ . •" /

4 + (n — 1m H—(
n

that is

< — if n = 3 and h < 2
4

<2(n±l) .^Hίn+l)
n — 1 n — 1

= — —- if h = — (in particular, if n = 5 and h — 3) Π
n — 1 n — 1

Lemma 5. LetMn be a compact PL n-manifold(n > 3), with h > 0 boundary
components.
(i) For every e > 0 there exists a coloured triangulation Ke of Mn such that

μ(K€) < (2(n H- l))/(n — 1) + e.
(ii) In particular, if n = 3 and h > 1, then for every e > 0 there exists also a

coloured triangulation R€ ofM3 such that μ(R€] < 15/4 + e.

6An n-dipole involving the colour set Δn - {j} is a subcomplex which triangulates Dn and
consists of two (vertex labelled) n-simplices with all (n - l)-faces identified, but the (Δn - {j})-
labelled ones.
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Proof. Let K be any fixed coloured triangulation of Mn, with average (n — 2)-

simplex order μ(K) = (n - an-1(K))/(an.2(R})
Further, let K' to be obtained from K by adding an internal 1-dipole, i.e. a

subcomplex which triangulates Dn and consists of two internal n-simplices with
exactly one common (n — l)-face (see [9] for related notions and results); as it
is easy to check, K' is a new coloured triangulation of Mn with μ(K') = (n -

[an-ι(R) + (n + l)])/(an-2(R) + (?))• Hence, the proof of statement (i) follows

from the fact that, if K^ is obtained from K by successive addition of r internal
1-dipoles, then:

n- Γ

On the other hand, if M3 is a bounded 3-manifold, we may also add to K a
boundary l-dipole, i.e. a subcomplex which triangulates D3 and consists of two

boundary 3-simplices with exactly one common 2-face; thus, the resulting new

coloured triangulation R has μ(R ) — (3 [α2(JβΓ)+5])/(αι(J?)+4). Now, statement

(ii) follows from the fact that, if K is obtained from R by successive addition of

r boundary 1-dipoles, then:

-5rl 15 „

Proof of Theorem 3. Obviously, the proof of statement (a) (resp. (b)) (resp.

(d)) is a direct consequence of Lemma 2 and Lemma 3 (i) (resp. of Lemma 3 (ii))
(resp. of Lemma 5 (i)).

On the other hand, in order to prove statement (c), it is sufficient to make use of
Lemma 3 (iii) and (iv), and of the existing classifications of PL n-manifolds (n < 5)
with "low" regular genus: see [6] and [4].7 Π

Proof of Theorem 4. Obviously, the proof of statement (a) (resp. (b)) (resp.

(c)) is a direct consequence of Lemma 2 and Lemma 4 (i) (resp. of Lemma 4 (ii)

and (iii)) (resp. of Lemma 5 (i) and (ii)). D

7 As far as dimension n = 3 is concerned, it is useful to remember that regular genus coincides
with the classical Heegaard genus for 3-manifolds moreover, a detailed analysis of closed 3-
manifold coloured triangulations K with average edge order μ(K) = 4 was already performed in
[3].
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