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1. Introduction

In [17], F. Luo and R. Stong introduced the notion of “average edge order”

3- Fy(K)

po(K) = Fo(K)

K being a triangulation of a closed 3-manifold M3 with Eo(K) edges and Fy(K)
triangles.

The main properties of uo(K) and its relations with the topology of M3, both
in the closed and bounded case (which has been successively investigated by M.
Tamura in [20]), are collected into the following theorems:

Theorem 1. [17] Let K be any triangulation of a closed 3-manifold M?3.
Then:
(a) 3 < wuo(K) < 6, equality holds if and only if K is the triangulation of the
boundary of a 4-simplex.
(b)  If uo(K) < 4.5, then K is a triangulation of S°.
() Ifpo(K) = 4.5, then K is a triangulation of S®, S* x S*, or S2xS!.
(d) For every M3 and for every € > 0, there exist triangulations K, and K, of M?
such that po(K1) < 4.5+ € and po(Kz) > 6 —e.

Theorem 2. [20] Let K be any triangulation of a compact 3-manifold M3,
with non-empty boundary. Then:
(a) 2 < uo(K) < 6, equality holds if and only if K is the triangulation of one
3-simplex.
(b) Ifpo(K) < 3, then K is a triangulation of DA,
(¢) Ifuo(K) =3, then K is a triangulation of D*, D* x S', or D*xS'.
(d) For every M> and for every rational number r with 3 < r < 6, there exists a
triangulation K of M? such that uo(K) = r.

Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National Research
Council of Italy) and financially supported by M.U.R.S.T. of Italy (project “Topologia e Geome-
tria”).
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Now, if K is a triangulation of a compact PL n-manifold M™, with «;(K)
i-simplices, 0 < 7 < n, it is natural to define the average (n — 2)-simplex order as

-

The aim of the present paper is to investigate the properties of u(K), K being a
“coloured” triangulation of a compact PL n-manifold M™. In short, this means that
K is a pseudocomplex (see [14]) triangulating M™, whose vertices are labelled by
“colours” 0, 1, ..., m, so that the colouring is injective on each n-simplex of K. The
following statements show the existence of strong analogies with the 3-dimensional
simplicial cases ; here, S' x S"~! (resp. S! xS" ') denotes the orientable (resp. non
orientable) S '-bundle over S', while #,D" denotes the connected sum of h copies
of the n-disk D™ (i.e. the bounded PL-manifold obtained from S™ by deleting the
interiors of h disjoint n-disks).

Theorem 3. Let K be any coloured triangulation of a closed PL n-manifold

M™ (n > 3). Then:

(a) 2 < u(K) < 6, equality holds if and only if K is the standard (two n-simplices)
coloured triangulation of S™.

(b) Ifu(K) < (2(n+1))/(n—1), then K is a coloured triangulation of S™.

(c) For3<n<5,ifu(K)=(2(n+1))/(n—1), then K is a coloured triangulation
of one of the following n-manifolds : S™, S' x S"~!, S'XS™™! or (for n = 3)
the real projective space RP®.

(d) For every M™ and for every € > 0, there exists a coloured triangulation K, of
M™ such that u(K) < (2(n+1))/(n—1) + e

Theorem 4. Let K be any coloured triangulation of a compact PL n-manifold
M™ (n > 3), with (possibly disconnected) non-empty boundary. Then:
(a) (2(n+2))/(n+1) < u(K) < 6, equality holds if and only if K is the standard
(two n-simplices) coloured triangulation of D".
(b) e Forn=3,ifu(K) < (15)/(4), then K is a coloured triangulation of #,D°,
withl<h<2;
o Forn e {4,5}, if W(K) < (2(n+1))/(n — 1), then K is a coloured trian-
gulation of #,D", with1 < h <3;
o Foreveryn > 6, if u(K) < (2(n +1))/(n — 1), then K is a coloured
triangulation of #,D", with1 < h < 2.
(c)  For every M™ and for every € > 0, there exists a coloured triangulation K, of
M™ such that
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15
E+€ ifn=3
K.) <
B <9 o+
——1+6 for everyn > 4
n—

Both Theorem 3 and Theorem 4 will be proved in the third section, by making
use of combinatorial properties of coloured triangulations (see section 2) and of
the relationships with a known PL-manifold invariant, called regular genus (see
[10] and [11] for definitions and basic properties, [7], [8], [6] and [4] for further
developments).

2. Combinatorics of coloured triangulations of manifolds

If M™ is a compact PL n-manifold’ and K is any simplicial triangulation of
M™, then the vertices of the first barycentric subdivision K’ of K may be labelled
in a canonical way by the elements of the colour-set A,, = {0,1,...,n}, so that the
following conditions hold:

i)  each n-simplex of K’ has exactly one c-labelled vertex, for every ¢ € Ay;

ii)  each n-labelled vertex is internal in K'.

In fact, it is sufficient to assign every vertex of K’ the dimension of the simplex of
K whose barycenter is that vertex.

The resulting “labelled” complex K’ is nothing but a particular example of
coloured triangulation of M™. Actually, a coloured triangulation of M™ may be
defined as a pair (K, &), where:

e K is a pseudocomplex? (see [14]) triangulating M™, with vertex set So(K);
o (:5y(K)— A, is a map (vertex-labelling) satisfying the above conditions i)
and ii).

For example, Figure 1 (resp. Figure 2) shows a coloured triangulation of the ori-
entable (resp. non-orientable) surface of genus one with one boundary component.
Note that, in both cases, the depicted pseudocomplex is not a simplicial triangula-
tion of the associated surface.

In the existing literature, coloured triangulations of n-manifolds are usually
visualized by means of (n + 1)-coloured graphs, or n-gems (see [9], [1], [15], [16],
[5], [21] and their bibliography); however, the present paper works directly with
coloured triangulations, making suitable translations from known results of the
combinatorial theory, when it is necessary in order to analize the properties of the

1See [19] or [12] for basic notions on piecewise-linear (PL) category.

2Remember that a pseudocomplex is a ball-complex which differs from a simplicial complex
because its “h-simplices” may intersect in more than one face: thus, even if PL-manifolds may be
represented both by simplicial triangulations and by coloured triangulations, there is no inclusive
relation between the two classes.
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Fig. 1.

-

=

Fig. 2.

average (n — 2)—simpfex order.

From now on, let (X,£) be a coloured triangulation of M™. For simplicity,
the vertex-labelling £ will be often understood ; thus, the coloured triangulation
(K, &) will be simply denoted by the symbol K of its underlying pseudocomplex.
For every h > 0, an (n — h)-simplex of K is said to be a boundary (n — h)-simplex
(resp. an internal (n — h)-simplex) if it is contained (resp. if it is not contained) in
the boundary of K ; on the other hand, an n-simplex of K is said to be a boundary
n-simplex (resp. an internal n-simplex) if it has a boundary (n — 1)-face (resp. if its
(n — 1)-faces are internal in K).

Let p = a,(K) be the total number of n-simplices of K, p < p the number of
internal n-simplices and 5 = p — p > 0 the number of boundary n-simplices. For
every B C A,, with cardinality #B = h > 0, we will denote by g5 (resp. g z) (resp.
gs) the number of (n — h)-simplices of K (resp. internal (n — h)-simplices) (resp.
boundary (n — h)-simplices) which do not contain c-labelled vertices, for any c € B;
in particular, if B = {i,j} (resp. B = {3,, k}), we will often write g; j, f}i’j and
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Gi,j (resp. gijk» 9 ;% and g ;x) instead of gg, g5 and gg.

Obviously, relation gz = g g + gn is true for every B C A,, while relations
g8 = gpand gg=0hold if n ¢ Bor if oM™ = 0. If oM™ # () and B= {n} U B/,
let %p denote the number of (n — h)-simplices of K whose vertices are labelled
by An_1 — B’; then, equality g =% gs holds.

As far as the average (n — 2)-simplex order is concerned, it is easy to check that
the total number of (n — 2)-simplices of K is an—2(K) = 3, jca, 9i,j> While the
total number of (n — 1)-simplices of K is a,,_1(K) = (n+1)/2p + (n+2)/2p. Thus,
the following fundamental formula holds, for every coloured triangulation K of a
compact PL-manifold M™:

n+1)p +(n+2)p
2-3 5 jea, 9ii

(1) u(f()=n-(

Within the representation theory of PL-manifolds by coloured triangulations
(or (n+ 1)-coloured graphs), great importance is attached to the notion of regular
genus, which generalizes to arbitrary dimension the genus of a surface and the
Heegaard genus of a 3-manifold. For example, many results have been achieved in
order to classify PL n-manifolds with “low” regular genus : see [7], [8], [6], [4]
and related papers.

If K is any coloured triangulation of M™ and € = (€, €1,...,€, = m) is any
circular permutation of A, then the 1-skeleton of the ball complex dual to K is
proved to admit a particular kind of cellular embedding-called regular embedding 3-
onto a suitable surface F;; moreover, F results to be orientable (resp. closed) if and
only if M™ is orientable (resp. closed). '

The genus (resp. half the genus) of the orientable (resp. non-orientable) surface
F. is said to be the e-genus p.(K) of the coloured triangulation K ; according to [10]
and [11], the integer p. = p.(K) may be directly computed from the combinatorial
properties of K by means of the following formula:

0 D P
2) Z Geess T (1= n); +(2 - n)§ +‘9g€07€n_1 =2—2p,
1€Zn+1

Finally, the regular genus G(M™) of a PL n-manifold M™ may be defined as

K is a coloured triangulation of M™
€ = (o, €1,...,€n, = n) is a circular permutation of A,

G(M™) =min{p€(K')|

31n the closed case, this means that each embedding region is an open ball bounded by images
of edges which are alternatively dual to (A, — {¢;})-labelled and (A, — {€;+1})-labelled (n —1)-
simplices of K, for some i € A,. On the other hand, if M™ has non-empty boundary, the notion
of regular embedding has to be suitably modified, taking into account both the boundary of the
surface F. and the boundary of the pseudocomplex K (see [11] for details).
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Since pc(K) = p(e-1)(K) obviously holds, then the computation of the e-
genera {p.(K)}. may be restricted to the subset P, of circular permutations
€ = (eg, €1,...,€, = n) of A, where each permutation is identified with its inverse
one. Moreover, if P, = {€¢ € P,, / €,_1 = n — 1}, then every € € P,, induces a per-
mutation €; = (€, €1, .. .,€,—1 = n — 1) € P,_y; thus, the e-genus . = p(c,)(0K)
results to be well defined.

The following Lemma yields an useful relation among the total number of
(n — 2)-simplices of K and the whole set of e-genera for K and (possibly) 0K .

Lemma 1. Let K be a coloured triangulation of a compact (connected) PL n-
manifold M™, and let h > 0 be the number of connected components of its (possibly
empty) boundary OM™.

i) IfOM™ =0, then

Zgw—n+n(n—1) n-—l Zpe

1,JEAR €EPn

i)  IfOM™ # 0, then

3

Y gis=m—h)+nn-1)7 +@ -n+2)
1,J€EAR

- ('fl E 1)' Z (pE __8p6) + Z Pe

e€P), e€Pn—P),

Proof. If K is a coloured triangulation of a closed PL n-manifold M™ with
g > 1 connected components, then summing up relation (2) for every connected
component and for every permutation € € P, easily yields:

3) (n—1)! Z gij +n!- l—n) =nl-g— QZpe

1,J€EAR e€P,

Thus, statement (i) directly follows, when g = 1 is assumed.

On the other hand, if K is a coloured triangulation of a compact (connected)
PL n-manifold M™ with h > 1 boundary components, then summing up relation
(2) for every permutation € € P,, yields:

o n! p nl p
(=D Y Gty A-ne+ 2 2-nE+m-2 Y %,

i’jEA" ivjeAn—l
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In order to evaluate }°, ;A gij, the term £(n — 1)!- > ijea, Ui has to be
added: T

[(n—1)! Z gij+ -1 Z Gijl — (n—1)!- Z Gi

1,jE€EAR 1,JEAR 1,jE€EAR
n! p nl P 5
+3(1—n)3+5(2—n)§+(n—2)' Z 9i,j

iyjeAn—l

=n!—ZZ:pe

Eeﬁn

Then, since g; ; = 0 for every ¢,j € A,_; and g;, = p/2 for every i € A,—1,
the following identity is easily obtained:

p P
(n—1)! Z gi; +nl- 1—”)Z—n!'nz+(n—2)!-uz 0gii
HI€AR 4,J€EAR -1
=n!-2 Z De
e€Pn

Now, if formula (3) is applied to the boundary triangulation 8K (with h
connected components), then the previous relation becomes:

v
—_

o

(=11 g+ n—1)!-h+n!.(1_n)%_(n_1) (n? _n+2)1_’
1,J€AR
€€P,, e€Pn
Hence, statement (ii) results to be proved, by a direct computation. O

3. Proofs of the main results

Instead of directly proving Theorem 3 and Theorem 4, we subdivide the proofs
into steps, by making use of some preliminary Lemmas.

Lemma 2. Let K be a coloured triangulation of a compact (connected) PL
n-manifold M™, with n > 3. Then:

wK) <6

Proof. The Euler characteristic computation of the disjoint link of each (n —
3)-simplex of K easily yields the following formula, which is nothing but a particular
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case (corresponding to m = 3) of [2; Corollary 2]:

o — ﬁ
2 Z Gijk T Z Gijk=(n—1)- Z gi,j—n(n—l)("'l'l)ﬁ

i,5,k€A, i,7,k€AR 1,jEA,
—n(n— l)g —n(n—1)(n— 2)%
Thus, formula (1) may be restated as
n(K)
(n+1)p +(n+2)p

=n-

P D 2 o _
n(n+1) g +n(n+4)g + — (2 S Guget D Figk)
i,5,k€AR i,5,k€DR
(n+1)p +(n+2)p

=n-

p p. | P, 2 o _
n(n+1)E+n(n+2)g+ n§+m~(2- Z 9igkt Z 9ijk)
i,5,k€EA, i,j,k€EA,

Since p > 0, g; jr > 0 and f}i’j,k > 0 (for every 1,7,k € A,) obviously hold,
the statement follows. O

REMARK.  As already pointed out in [17] for the closed simplicial case, the
claim of Lemma 2 does not hold in dimension 2, where the average vertex order
results to be strictly related with the geometrical structure of the surface.

In fact, an easy Euler characteristic computation shows that, if K is a coloured
triangulation of an orientable (resp. non orientable) surface F' with genus g(F) > 0
(resp. G(F) > 1) and h > 0 boundary components, then:

3p+4p _ 3p+4p
2 i jen, Ji

n(K) =

o

P
X(F)+5+p

Further, if every boundary component is assumed to be triangulated by exactly two
1-simplices (i.e, if p = 2h), the previous relation becomes:

- 6x(F) + 4h

W) =6- _()___

2ijen; 9i

Thus, in this hypothesis (which is always trivially true in the closed case), u(K) < 6
holds if and only if x(F) > —(2h)/3, i.e. g(F) < 1—(h/6) (resp. §(F) < 2—(h/3)).4

41t may be interesting to note the relationship between the present conditions and the cases of
surfaces admitting §-regular triangulations, with 6 < 6: see [18].
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For example, if K; (resp. K>) is the bidimensional coloured triangulation depicted
in Figure 1 (resp. Figure 2), it is immediate to check that u(K;) = 20/3 > 6 (resp.
w(Kz) =14/3 < 6).

Lemma 3. Let K be any coloured triangulation of a closed PL n-manifold

M™ (n > 3). Then:

(i)  w(K) > 2, equality holds if and only if K is the standard (two n-simplices)
coloured triangulation of S™.

(ii) If M™#S", then u(K) > (2(n+1))/(n —1).

(i) wu(K) = (2(n+1))/(n —1) implies pc(K) = 1 for every € € Py.

(iv) For everyn > 3, there exists a coloured triangulation H™ (resp. H(™) of S* x
S™ ! (resp. of S'xS™ 1) with w(H™) = (2(n +1))/(n — 1) (resp. u(H™) =
2(n+1))/(n—1)).

Proof. In the closed case, formula (1) gives u(K) = n- ((n + 1)p)/(2 -
> ijea, 9i,j)- Since it is obvious that g;; < p/2 for every i,j € A,, the proof
of statement (i) directly follows:

5 nnt+1)-p _
M(K)—W—gll)%g_z

and p(K) = 2 if and only if g; ; = p/2 for every 4,j € A, (i.e. if and only if K
consists of two n-simplices with identified boundary).

On the other hand, if Lemma 1(i) is applied to formula (1), the following
relation is obtained:

n(n+1)-p

wK) =

D 2
2 n+n(n—1)z—(—n~_T)'Zpe
) Eeﬁn

Since the existence of a null e-genus is known to imply M™ being the n-sphere S™
(see [7]), if M™ # S™ we may assume p. > 1 for every € € Pp; so

_ nn+1)-p
u(K) >
p 2 n!
2 ”*"“"”rms]

and statements (ii) and (iii) result to be proved.

Finally, statement (iv) may be directly checked from formula (1), in case H ()
(resp. H™) being the “standard” coloured triangulation of St x S*7* (resp. of
S*xS™1) constructed in [7; Corollary 1] (resp. [13; Corollary 4]): in fact, both
H™ and H™ have p = 2(n+1) and g;; =n — 1 for every i,j € Ay, O
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Lemma 4. Let K be any coloured triangulation of a compact PL n-manifold
M™ (n > 3), with (possibly disconnected) non empty boundary. Then:
() w(K)>2(n+2)/(n+1), equality holds if and only if K is the standard (two
n-simplices) coloured triangulation of D".
(i) e Forn =3, if either M3 # #,D* or M3 = #,D? with h > 2, then u(K) >
15/4;
o For every n > 3, if either M™ # #,D™ or M"™ = #,D* with h > (2(n +
1))/(n = 1), then p(K) > (2(n +1))/(n — 1);
(iii) e There exists a coloured triangulation T2") of #,D" = D" x S with

15

1 ifn=3
(n)
wTy") <
2 1
(:+1) for everyn > 4

e Forn € {4,5}, there exists a coloured triangulation T?E") of #3D™ with

n 2(n+1
wri) < 204D,
n—1

Proof. In the bounded case, formula (1) and Lemma 1(ii) yield the following
relation:

(4)

u(K) =

n (n+1)p +(n+2)p

2 o _
R LR EEt rl DS LD )

e€P, e€P,—P),

Since the inequalities p. > 0 (resp. p. >?p.) are known to hold for every € € P,

(resp. € € P) and since n — h < (n — 1)(p/2) (use p > 2h > 2), we have:

_ 10 2_ )
MISER s RA )p_=z-<1+———”1“’ 20)
n(n—l)%+n(n+1)§ (n+1p—2p
p n+ 2
>2- (14— )=2.2"2
- ( (n+1)p) n+1

Moreover, equality holds if and only if p =0 and p = 2h = 2, i.e. if and only if K
consists of two n-simplices with n common (n — 1)-faces.
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In order to prove statement (ii), we apply to formula (4) only the inequalities
pe > 0 and p. >%p,, so that the following relation is obtained:

,u(R')>E' (n+1)p + (n+2)p
-2 p p
(n—h)+n(n—1)z+(n2—n+2)z
_2(n+1) 2p-(n? —3n —2) —8(n—h)(n+1)

n=l = (n=1n(n-1)p +(n*—n+2)p+4(n—h)]
In case n = 3, the previous relation yields:
- —p—24+8h 15 %13+7(h—3)
MB) 2t e o 6 —oh 4 35 1 4p 162
Thus, if A > 3, we have

v

*p
_ 15 4
k) > 7+ A —
4  3p+4p
This directly yields u(K) > 15/4, since p = 0 would imply K to be a cone over
its boundary® (i.e. a coloured triangulation of the 3-disk), against the assumption
h > 3.
For every n > 4, since p > 2h and n2—-3n—-2>0 trivially hold, we have:

n+1
2("+1)+ 4h_8n—1

) u(K) >
n—1 4+(n—1)p+%(ﬁ—2h)

Thus, formula (5) obviously implies that, if A > (2(n +1))/(n — 1) (ie, h >3
with n € {4,5}, and h > 2 with every n > 6), then pu(K) > (2(n +1))/(n — 1).

On the other hand, if M™ # #,D" is assumed, the main result of [8] ensures
that p. > 1 for every € € P, ; hence, formula (4) yields:

w(K) > n. (n+1)p +(n‘t2)ﬁ
p 2 P
(n—h)—(n—1)+n(n—1)z+(n —n+2)z
on.__ (nt1)p+(n+2)p
-2

n(n— 1)L 4 (n2—n+2)2
n+1 (n?—-3n—2)p
n=1" (n-1)[n(n-1)p + (n?—n+2)p]

5Note that, if K has no internal A, _;-labelled (n — 1)-simplex, then K contains exactly one
n-labelled vertex v, ; moreover, K results to coincide with the “star” of v, in K.
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In case n = 3, the previous inequality becomes

3,
i’ 1

_ 7 1
K)>2- 12— ——|=4——-+ —F"—— ;
uK) [ } 4 3p+4p 4

3p +4p
finally, if n > 4, the proof of statement (ii) is completed by noting that n?—3n—2 > 0
trivially holds.

As far as statement (iii) is concerned, it is important to check that M™ = #;,D"
(for every n > 3 and for every h > 1) admits a coloured triangulation T,(l") with
p=2h, p=2(h—-1)(n—-1) and pe(T,S")) = 0 for every € € P,. The construction
of T}E") is performed by induction on & in the following way:

o Let Tl(") = 6_, be the standard coloured triangulation of D" consisting of two
(vertex labelled) n-simplices with all (n — 1)-faces identified, but the A,_;-
labelled ones;

. Tr(i)l is obtained from T\™ by adding, for every n(r — 1) < i < nr — 1, an
n-dipole 6; involving the colour set A,, — {i mod.n}® within the unique (A, —
{t mod.n})-labelled (n—1)-face of 6;_,, and then by deleting the identifications
of A,,_1-labelled faces contained in 6,,,_1.

Now, the proof of formula (5) directly yields

n+1
(n) 2(n+1) 4h — Sn _
(Th )_ n—1 2 )
4+(n—1)p+;(;5—2h)
that is
(
<% fn=3and h <2
(n) 2(n+1) 2(n+1)
T aArT o ArPT 2
,u(h)<<n_1 if h < 1
2 1
:(n—+1) ifh:M (in particular, if n=5and h=3) [
\ n— n—

Lemma 5. Let M™ be a compact PL n-manifold (n > 3), with h > 0 boundary
components.
(i)  For every € > 0 there exists a coloured triangulation K. of M™ such that
WK < @n+1)/(n—1) +e.
(ii) In particular, if n = 3 and h > 1, then for every € > O there exists also a
coloured triangulation K. of M3 such that w(K) <15/4 +e.

8An n-dipole involving the colour set A, — {j} is a subcomplex which triangulates D™ and
consists of two (vertex labelled) n-simplices with all (n — 1)-faces identified, but the (A, — {j})-
labelled ones.
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Proof. Let K be any fixed coloured triangulation of M™, with average (n— 2)-
simplex order u(K) = (n- a,—1(K))/(an—2(K)).

Further, let K’ to be obtained from K by adding an internal I-dipole, i.e. a
subcomplex which triangulates D™ and consists of two internal n-simplices with
exactly one common (n — 1)-face (see [9] for related notions and results); as it
is easy to check, K’ is a new coloured triangulation of M™ with u(K') = (n -
[an—1(K) + (n+ 1)])/(an—2(K) + (3)). Hence, the proof of statement (i) follows
from the fact that, if K(") is obtained from K by successive addition of r internal
1-dipoles, then:

n - [oan—1(K) +7(n +1)] n+1
an—2(K)+r (;)

On the other hand, if M3 is a bounded 3-manifold, we may also add to K a
boundary 1-dipole, i.e. a subcomplex which triangulates D* and consists of two
boundary 3-simplices w1th exactly one common 2-face; thus, the resulting new

coloured trlangulatlonK has p,(K (3-[aa(K)+5])/(c1(K)+4). Now, statement

wKD) =

T — 400 ’I’L—l.

(ii) follows from the fact that, if K r ) is obtained from K by successive addition of
r boundary I-dipoles, then:

w(&") =

3- [aa(K) +57] 15
aj(K)+4r  r— +oo >Z' L

Proof of Theorem 3. Obviously, the proof of statement (a) (resp. (b)) (resp.
(d)) is a direct consequence of Lemma 2 and Lemma 3 (i) (resp. of Lemma 3 (ii))
(resp. of Lemma 5 (i)).

On the other hand, in order to prove statement (c), it is sufficient to make use of
Lemma 3 (iii) and (iv), and of the existing classifications of PL n-manifolds (n < 5)
with “low” regular genus: see [6] and [4].” O

Proof of Theorem 4. Obviously, the proof of statement (a) (resp. (b)) (resp.
(c)) is a direct consequence of Lemma 2 and Lemma 4 (i) (resp. of Lemma 4 (ii)
and (iii)) (resp. of Lemma 5 (i) and (ii)). O

7As far as dimension n = 3 is concerned, it is useful to remember that regular genus coincides
with the classical Heegaard genus for 3-manifolds ; moreover, a detailed analysis of closed 3-
manifold coloured triangulations K with average edge order u(K) = 4 was already performed in

(3]
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