<table>
<thead>
<tr>
<th>Title</th>
<th>A characterization of bounded Krull prime rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Marubayashi, Hidetoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 15(1) P.13-P.20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8723</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8723</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
A CHARACTERIZATION OF BOUNDED KRULL PRIME RINGS

HIDETOSHI MARUBAYASHI

(Received November 30, 1976)

In [9] we defined the concept of non commutative Krull prime rings from the point of view of localizations and we mainly investigated the ideal theory in bounded Krull prime rings (cf. [9], [10]).

The purpose of this paper is to prove the following:

Theorem. Let R be a prime Goldie ring with two-sided quotient ring Q. Then R is a bounded Krull prime ring if and only if it satisfies the following conditions:

1. R is a regular maximal order in Q (in the sense of Asano).
2. R satisfies the maximum condition for integral right and left v-ideals.
3. R/P is a prime Goldie ring for any minimal prime ideal P of R.

As corollary we have

Corollary. Let R be a noetherian prime ring. If R is a regular maximal order in Q, then it is a bounded Krull prime ring.

In case R is a commutative domain, the theorem is well known and its proof is easy (cf. [11]). We shall prove the theorem by using properties of one-sided v-ideals and torsion theories.

Throughout this paper let R be a prime Goldie ring, not artinian ring, having identity element 1, and let Q be the two-sided quotient ring of R; Q is a simple and artinian ring. We say that R is an order in Q. If R_1 and R_2 are orders in Q, then they are called equivalent (in symbol: $R_1 \sim R_2$) if there exist regular elements a_1, b_1, a_2, b_2 of Q such that $a_1R_1b_1 \subseteq R_2$, $a_2R_2b_2 \subseteq R_1$. An order in Q is said to be maximal if it is a maximal element in the set of orders which are equivalent to R. A right R-submodule I of Q is called a right R-ideal provided I contains a regular element of Q and there is a regular element b of Q such that $bI \subseteq R$. I is called integral if $I \subseteq R$. Left R-ideals are defined in a similar way.

If I is a right (left) R-ideal of Q, then $O_R(I) = \{x \in Q | xI \subseteq I\}$ is an order in Q and is equivalent to R. Similarly $O_L(I) = \{x \in Q |Ix \subseteq I\}$ is an order in Q and is equivalent to R. They are called a left order and a right order of I respectively.
We define the inverse of \(I \) to be \(I^{-1} = \{ q \in Q \mid Iq = q \subseteq O(I) \} \). Evidently \(I^{-1} = \{ q \in Q \mid Iq \subseteq O(I) \} \). Following [2], we define \(\star(I^{-1})^{-1} \). If \(I = I^* \), then it is said to be a right (left) \(\nu \)-ideal. If \(R \) is a maximal order, then \(I^{-1} = I^{-1} \) and so \(I^{-1} \) is a left (right) \(\nu \)-ideal, and the concept of right (left) \(\nu \)-ideals coincides with one of right (left) \(\nu \)-ideals defined in [9]. So the mapping: \(I \rightarrow I^* \) of the set of all right (left) \(R \)-ideals into the set of all right (left) \(\nu \)-ideals is a \(\star \)-operation in the sense of [9].

Lemma 1. Let \(R \) be a maximal order in \(Q \) and let \(S \) be any order equivalent to \(R \). Then \(S \) is a maximal order if and only if \(S = O(I) \) for some right \(\nu \)-ideal \(I \) of \(Q \).

Proof. If \(S = O(I) \) for some right \(\nu \)-ideal \(I \) of \(Q \), then it is a maximal order by Satz 1.3 of [1]. Conversely assume that \(S \) is a maximal order, then there are regular elements \(c, d \) in \(R \) such that \(cdR \subseteq R \). So \(cdR \) is a right \(R \)-ideal and is a left \(S \)-module. Hence \((cdR)^{-1} \) is a left \(R \)-ideal and is a right \(S \)-module. Similarly \(I = (cdR)^{-1} \) is a right \(\nu \)-ideal and is a left \(S \)-module so that \(O(I) \subseteq S \). Hence \(S = O(I) \).

Lemma 2. Let \(R, S \) be maximal orders in \(Q \) such that \(R \sim S \), and let \(\{I_i\}, I \) be right \(R \)-ideals. Then

1. If \(\bigcap_i I_i \) is a right \(R \)-ideal, then \(\bigcap_i I_i^* = (\bigcap_i I_i^*)^* \).
2. If \(\sum I_i \) is a right \(R \)-ideal, then \((\sum I_i)^* = (\sum I_i^*)^* \).
3. If \(J \) is a left \(R \) and right \(S \)-ideal, then \((IJ)^* = (J^* I)^* = (I^* J)^* \).
4. \((I^{-1} I^*)^* = R \) and \((I^* I^{-1})^* = T \), where \(T = O(I^*) \).

Proof. The proofs of (1) and (2) are similar to ones of the corresponding results for commutative rings (cf. Proposition 26.2 of [4]).

To prove (3) assume that \(I \subseteq cS \), where \(c \) is a unit in \(Q \). Then we have \((I^* J)^* \subseteq cS \) and \((IJ)^* \subseteq cS \), because \(c^{-1} I \subseteq S \Rightarrow c^{-1} I \subseteq J^{-1} \Rightarrow c^{-1} I^* \subseteq J^{-1} J^* = (c^{-1} I)^* \subseteq J^{-1} J^* \subseteq S \Rightarrow I^* J \subseteq cS \). Hence \((IJ)^* \) contains \((I^* J)^* \) and \((IJ)^* \) by Proposition 4.1 of [9]. The converse inclusions are clear. Therefore we have \((IJ)^* = (I^* J)^* = (IJ)^* \). From these it is clear that \((IJ)^* = (I^* J)^* \).

To prove (4), assume that \(I^{-1} I^* \subseteq cR \), where \(c \) is a unit in \(Q \). Then we have \(c^{-1} I^{-1} \subseteq I \) so that \(c^{-1} \subseteq O(I^{-1}) = R \) and thus \(R \subseteq cR \). Hence \((I^{-1} I^*)^* = R \) by Proposition 4.1 of [9]. The converse inclusion is clear. Therefore \((I^{-1} I^*)^* = R \).

Let \(R \) be a maximal order in \(Q \). We denote by \(F^*(R) (F^*(R)) \) the set of right (left) \(\nu \)-ideals and let \(F^*(R) = F^*(R) \cap F^*(R) \). It is clear that \(F^*(R) \) becomes a lattice by the definition; if \(I, J \in F^*(R) \), then \(I \cup J = (I \cup J)^* \), and the meet "\(\cap \)" is the set-theoretic intersection. Similarly \(F^*(R) \) and \(F^*(R) \) also become
lattices. For any \(I \in F^+_*(R) \) and \(L \in F^+_*(R) \), we define the product "\(\circ \)" of \(I \) and \(L \) by \(I \circ L = (IL)^* \). It is clear that \(I \circ L \subseteq F^+_*(S) \cap F^+_*(T) \), where \(S = O_1(I) \) and \(T = O_2(L) \). In particular, the semi-group \(F^*_*(R) \) becomes an abelian group (cf. Theorem 4.2 of [2]). For convenience we write \(F'_*(R) \) for the sublattice of \(F^*_*(R) \) consisting of all integral right \(\triangledown \)-ideals. Similarly we write \(F_{\triangledown}^*(R) \) and \(F'_{\triangledown}(R) \) for the corresponding sublattices of \(F^*(R) \) and \(F^*(R) \) respectively. Let \(M \) and \(N \) be subsets of \(R \). Then we use the following notations: \((M: N)_\triangledown = \{ x \in R | Nx \subseteq M \} \), \((M: N)_\triangledown = \{ x \in R | xN \subseteq M \} \). When \(N \) is a single element \(q \) of \(R \), then we denote by \(q^{-1}M \) the set \((M: N)_\triangledown \).

Lemma 3. Let \(R \) be a maximal order in \(Q \). Then

1. If \(I \in F^+_*(R) \) and \(q \in Q \), then \(q^{-1}I = (I^{-1}q + R)^{-1} \) and so \(q^{-1}I \in F'_*(R) \).
2. If \(I \in F^+_*(R) \) and \(J \) is a right \(R \)-ideal, then \((I:J)_\triangledown \subseteq F'_*(R) \) or \(0 \).
3. If \(I \in F^+_*(R) \) and \(J \subseteq F^*(R) \), then \((I \circ J)^{-1} = J^{-1}I^{-1} \).
4. If \(I, J \in F^+_*(R) \) and \(L \subseteq F^*_*(R) \), then \((I \cup J) \circ L = I \circ L \cup J \circ L \).

Proof. (1) Since \((I^{-1}q + R)^{-1}q^{-1}I \subseteq R \), we get \((I^{-1}q + R)^{-1} \supseteq q^{-1}I \). Let \(x \) be any element of \((I^{-1}q + R)^{-1} \). Then \((I^{-1}q + R)x \subseteq R \) so that \(x \in R \) and \(I^{-1}q \subseteq R \). Let \(S = O_1(I) \). Then it is a maximal order equivalent to \(R \) by Lemma 1. It is evident that \(Sx + I \) is a left \(S \)-ideal and that \(\triangledown^{-1}(Sx + I) \subseteq I \). Thus, by Lemma 2, we have

\[
q^{-1}I \subseteq (II^{-1})^{-1}S(Sx + I) \subseteq (II^{-1}S(Sx + I))^{-1} \subseteq (II^{-1}(Sx + I))^{-1} \subseteq I.
\]

Hence \(x \in q^{-1}I \) and so \(q^{-1}I \in F'_*(R) \) by Corollary 4.2 of [9].

(2) If \((I:J)_\triangledown \neq 0 \), then it is an \(R \)-ideal of \(Q \) and \(J(I:J)_\triangledown \subseteq I \). So \(J((I:J)_\triangledown)^* \subseteq (J(I:J)_\triangledown)^* \subseteq I \). Hence \((I:J)_\triangledown \subseteq (I:J)^* \subseteq ((I:J)_\triangledown)^* \).

(3) It is clear that \(O_1(I \circ J) \supseteq O_1(I) \) and so \(O_1(I \circ J) = O_1(I) \) by Lemma 1. Since \((I \circ J)^* (J^{-1}I^{-1}) = S \), where \(S = O_1(I) \), we get \((I \circ J)^{-1} \supseteq J^{-1}I^{-1} \). Let \(x \) be any element of \((I \circ J)^{-1} \). Then \(Ix \subseteq I \circ J \subseteq S \). Let \(T = O_1(J) \). Then \(Tx + J^{-1}I^{-1} \) is a left \(T \)-ideal and \(I(J(Tx + J^{-1}I^{-1})) \subseteq S \). Hence \(I \circ J^*(Tx + J^{-1}I^{-1}) \subseteq S \) by Lemma 2. By multiplying \(J^{-1}I^{-1} \) to the both side of the inequality we have \(x \subseteq (Tx + J^{-1}I^{-1}) \subseteq J^{-1}I^{-1} \). Therefore we get \((I \circ J)^{-1} = J^{-1}I^{-1} \).

(4) From Lemma 2, we have: \((I \cup J)^* \circ L = [(I + J)^* L]^* = [(I + J)L]^* = (IL + JL)^* = [(IL)^* + (JL)^*] = I \circ L \cup J \circ L \).

Let \(R \) be a maximal order. We consider the following condition:

\((A): F'_*(R) \) and \(F^*(R) \) both satisfy the maximum condition.

If \(R \) is a maximal order satisfying the condition \((A) \), then \(F^*(R) \) is a direct product of infinite cyclic groups with prime \(\triangledown \)-ideals as their generators by Theorem 4.2 of [2]. It is evident that an element \(P \) in \(F'(R) \) is a prime element in the lattice if and only if it is a prime ideal of \(R \).

Following [1], \(R \) is said to be regular if every integral one-sided \(R \)-ideal contains a non-zero \(R \)-ideal.
Lemma 4. Let R be a regular maximal order satisfying the condition (A) and let P be a non-zero prime ideal of R. Then P is a minimal prime ideal of R if and only if it is a prime v-ideal.

Proof. Assume that P is a minimal prime ideal. Let c be any regular element in P. Then since $(cR)^* = cR$ and R is regular, we get $P \supseteq cR \supseteq (P_i)^* \circ \ldots \circ (P_0)^*$, where P_i is a prime v-ideal. Hence $P \supseteq P_i$ for some i and so $P = P_i$. Conversely assume that $P \supseteq P_0 \neq 0$, where P_0 is a prime ideal. Then since $P_0^*(P_0^*P_0) = (P_0^*P_0)R_0 = P_0$ and $P_0 = P_0^*P_0$, we have $P_0^* \subseteq P_0$ and thus $P_0^* = P_0$. It follows that P_0 is a maximal element in $\mathcal{F}'(R)$ by [2, p. 11], a contradiction. Hence P is a minimal prime ideal of R.

Remark. Let R be a maximal order satisfying the condition (A). Then it is evident from the proof of the lemma that prime v-ideals are minimal prime ideals of R.

Let I be any right ideal of R. Then we denote by \sqrt{I} the set $\cup \{ (s^{-1}I:R), |s \in I, s \in R \}$. Following [3], if \sqrt{I} is an ideal of R, then we say that I is primal and that \sqrt{I} is the adjoint ideal of it. A right ideal I of R is called primary if $JA \subseteq I$ and $J \not\subseteq I$ implies that $A^* \subseteq I$ for some positive integer n, where J is a right ideal of R and A is an ideal of R. We shall apply these concepts for integral right v-ideals.

Lemma 5. Let R be a maximal order satisfying the condition (A) and let I be a meet-irreducible element in $\mathcal{F}'(R)$. Then I is primal, and \sqrt{I} is a minimal prime ideal of R or 0, and $\sqrt{I} = (x^{-1}I:R)$, for some $x \in I$.

Proof. If $\sqrt{I} = 0$, then the assertion is evident. Assume that $\sqrt{I} \neq 0$. By Lemma 3, $(s^{-1}I:R)$ is a v-ideal or 0. Hence the set $S = \{ (s^{-1}I:R), |s \in I, s \in R \}$ has a maximal element. Assume that $(s^{-1}I:R)$, and $(t^{-1}I:R)$, are maximal elements in S. Then $(sR + I)(s^{-1}I:R) \subseteq I$ implies that $(sR + I)^*(s^{-1}I:R) \subseteq I$ by Lemma 2 and so $(s^{-1}I:R) \subseteq (I:(sR + I)^*)$. The converse inclusion is clear. Thus we have $(s^{-1}I:R) = (I:(sR + I)^*)$. Similarly $(t^{-1}I:R) = (I:(tR + I)^*)$. Since I is irreducible in $\mathcal{F}'(R)$, we have $I \subseteq (sR + I)^* \cap (tR + I)^* = J$. Let x be any element in J but not in I. Then it follows that $(x^{-1}I:R), \supseteq (s^{-1}I:R), (t^{-1}I:R)$, so that $\sqrt{I} = (x^{-1}I:R) = (s^{-1}I:R)^*$, which is a v-ideal. Hence I is primal. If $AB \subseteq \sqrt{I}$ and $A \subseteq \sqrt{I}$, where A and B are ideals of R, then $xAB \subseteq I$ and $xA \subseteq I$. Let y be any element in xA but not in I. Then $yB \subseteq I$ and so $B \subseteq (y^{-1}I:R) \subseteq \sqrt{I}$. Thus \sqrt{I} is a prime ideal of R. It follows that \sqrt{I} is minimal from the remark to Lemma 4.

A right ideal of R is said to be bounded if it contains a non-zero ideal of R.
Lemma 6. Let R be a maximal order satisfying the condition (A) and let I be an irreducible element in $F'(R)$. If I is bounded, then it is primary and $(\sqrt{I})^n \subseteq I$ for some positive integer n.

Proof. Since $I \in F'(R)$ and is bounded, $(I:R)_r$ is non-zero and is a v-ideal. Write $(I:R)_r = (P_1^n)^* \cdot \cdots \cdot (P_k^n)^*$, where P_i are prime v-ideals. For any i ($1 \leq i \leq k$), we let $B_i = (P_i^n)^* \cdot \cdots \cdot (P_{i-1}^n)^* \cdot (P_i^{n+1})^* \cdot \cdots \cdot (P_k^n)^*$. Then $B_i \notin I$ and $B_i P_i \subseteq (I:R)_r \subseteq I$, because $F^*(R)$ is an abelian group. Thus $P_i^n \subseteq \sqrt{I}$ and so $P_i = \sqrt{I}$ ($1 \leq i \leq k$) by Lemma 5. Therefore $(\sqrt{I})^{n+\cdots+n} \subseteq I$. It is evident that I is primary.

If A is an ideal of R, then we denote by $C(A)$ those elements of R which are regular mod (A).

Lemma 7. Let R be a maximal order satisfying the condition (A). Let P be a prime v-ideal. Then

1. $C(P) = C((P^n)^*)$ for every positive integer n.
2. $C(P) \subseteq C(0)$.

Proof. (1) We shall prove by the induction on n (>1). Assume that $C(P) = C((P^{n-1})^*)$. If $cx \in (P^n)^*$, where $c \in C(P)$ and $x \in R$, then $cx(P^{n-1}) \subseteq (P^n)^*(P^{n-1})^* \subseteq P$ by Lemma 2. Since $cx \in (P^{n-1})^*$, we get $x \in (P^{n-1})^*$ and so $x(P^{n-1})^* \subseteq P$. Hence $x(P^{n-1})^* \subseteq P$. Then we have $(xR + P^*) (P^{n-1})^* \subseteq P^*$ so that $x \in (P^n)^*$ by Lemma 2. Conversely suppose that $cx \in P$, $c \in C((P^n)^*)$, $x \in R$. Then $cxP^{n-1} \subseteq (P^n)^*$ and so $xP^{n-1} \subseteq (P^n)^*$. Since $(xP + P^n)P^{n-1} \subseteq (P^n)^*(P^{n-1})^* \subseteq P^*$, we get $x \in P$ by Lemma 2. Therefore $C(P) = C((P^n)^*)$.

(2) If $0 \neq \cap_n (P^n)^*$, then it is a v-ideal by Lemma 2. Write $\cap_n (P^n)^* = (P_1^n)^* \cdot \cdots \cdot (P_k^n)^*$, where P_i are prime v-ideals. This is a contradiction, because $F^*(R)$ is an abelian group and P_i are minimal prime ideals of R. Hence $0 = \cap_n (P^n)^*$. Therefore (2) follows from (1).

If P is a prime ideal of a ring S, then the family $T_P = \{I: \text{right ideal } s^{-1}I \cap C(P) \neq \emptyset \text{ for any } s \in S\}$ is a right additive topology (cf. Ex. 4 of [12, p. 18]). The following lemma is due to Lambek and Michler if S is right noetherian. However, only trivial modifications to their proof are needed to establish the more general result.

Lemma 8. Let P be a prime ideal of S and let $\bar{S} = S/P$ be a right prime Goldie ring. Then the torsion theory determined by the S-injective hull $E(\bar{S})$ of \bar{S} coincides with one determined by the right additive topology T_P, that is, a right ideal I of S is an element in T_P if and only if $\text{Hom}_S(S/I, E(\bar{S})) = 0$ (Corollary 3.10 of [8]).

Lemma 9. Let R be a maximal order satisfying the condition (A) and let P
be a prime v-ideal such that $\overline{R}=R/P$ is a prime Goldie ring. If I is any element in $F' \cap C(R)$ such that $R \cong I \supseteq P$, then $I \cap C(P) = \emptyset$.

Proof. It is enough to prove the lemma when I is a maximal element $F' \cap C(R)$. Since $I^{-1} \cong R$, $P \circ I^{-1} \cap R \supseteq P$. If $P \circ I^{-1} \cap R = P$, then $P^{-1} = (P \circ I^{-1})^{-1} \cup *R$, because the mapping: $J \rightarrow J^{-1}$ is an inverse lattice isomorphism between $F'_\alpha(R)$ and $F'_\beta(R)$. By Lemma 3, $P^{-1} = I \circ P^{-1}$ and so $R = I$, a contradiction. Thus we have $P \circ I^{-1} \cap R \supsetneq P$. Let a be any element in $P \circ I^{-1} \cap R$ but not in P. Then $a \subseteq (P \circ I^{-1}) \subseteq P \circ I^{-1} \cap I = P$ so that $I \subseteq a^{-1}P \subseteq R$. Since $a^{-1}P$ is a right v-ideal by Lemma 3, we get $I = a^{-1}P$. Then $\text{Hom}(R/I, E(\overline{R})) \neq 0$, because $R/I = (aR + P)/P \subseteq \overline{R}$. Now assume that $I \cap C(P) \neq \emptyset$ and let c be any element in $I \cap C(P)$. Then $cR + P \subseteq T$, by Lemma 3.1 of [6]. Hence $I \subseteq T$ and thus $\text{Hom}(R/I, E(\overline{R})) = 0$ by Lemma 8. This is a contradiction and so $I \cap C(P) = \emptyset$.

For convenience, we write $M(p)$ for the family of minimal prime ideals of R. If R is a regular maximal order satisfying the condition (A), then we know from Lemma 4 that a prime ideal P is an element in $M(p)$ if and only if it is a prime element in $F'(R)$.

Lemma 10. Let R be a regular maximal order satisfying the condition (A), $P \in M(p)$ and let $I \in F'(R)$. If $\overline{R}=R/P$ is a prime Goldie ring, then $I \cup *P = R$ if and only if I contains an ideal B such that $B \supseteq P$.

Proof. Assume that $I \supseteq B$, where B is an ideal not contained in P. Then $I \supseteq B^*$ and $B^* \cup *P = R$, because P is a maximal element in $F'(R)$ (cf. [2, p. 11]). Therefore $I \cup *P = R$. Conversely assume that the family $S = \{ I \in F'(R) | I \cup *P = R, I \neq R \}$ is not empty and let I be a maximal element in S. If I is irreducible in $F'(R)$, then there exists P' in $M(p)$ such that $I \supseteq P'$ by Lemmas 5 and 6. Since $I \subseteq S$, we have $P = P'$. If $n=1$, then $R = I \cup *P = I$, a contradiction. We may assume that $I \supseteq P^{n-1}$ and $n > 1$. Then $(P^{n-1})^* = (I \cup *P) \circ (P^{n-1})^* = I \circ (P^{n-1})^* \cup *(P^*)^* \subseteq I^* = I$ by Lemmas 2 and 3. This is a contradiction. If I is reducible, then $I = I_1 \cap I_2$, where $I_i \in F'(R)$ and $I \supseteq I_i$ ($i=1, 2$). There are non zero ideals $B_i \supseteq P$ such that $I_i \supseteq B_i$. Thus I contains the ideal B_1B_2 not contained in P, a contradiction. Hence $S = \emptyset$. This implies that if $I \cup *P = R$, then I contains an ideal not contained in P.

Let P be a prime ideal of a ring S. If S satisfies the Ore condition with respect to $C(P)$, then we denote by S_P the quotient ring with respect to $C(P)$.

Lemma 11. Let R be a regular maximal order satisfying the condition (A) and let P be an element in $M(p)$ such that $\overline{R}=R/P$ is a prime Goldie ring. Then
Characterization of Bounded Krull Prime Rings

19

(1) R satisfies the Ore condition with respect to C(P).
(2) \(R_p = \lim_{\rightarrow} B^{-1}, \) where B ranges over all non zero ideals not contained in P.
(3) \(R_p \) is a noetherian, local and Asano order.

Proof. (1) It is clear that \(T = \lim_{\rightarrow} B^{-1}(B(\mathcal{P}); \text{ ideal}) \) is an overring of \(R. \)
Let \(c \) be any element in \(C(P). \) Then \(c \) is regular by Lemma 7 and so \(c R^F = \mathbb{R}. \)
Since \((cR \cup \mathcal{P}) \cap C(P) \neq \emptyset, \) we have \(c R \cup \mathcal{P} = R \) by Lemma 9 and so \(c R \) contains an ideal not contained in \(P \) by Lemma 10. Hence \(c^{-1} \in T. \) So for any \(r \in R, \)
\(c \in C(P), \) there exists an ideal \((cR^F) \) such that \(c^{-1} \in R. \) It is evident that
\(B \cap C(P) \neq \emptyset. \) Let \(d \) be any element in \(B \cap C(P). \) Then we have \(c^{-1}rd = s \)
for some \(s \in R, \) that is, \(rd = cs. \) This implies that \(R \) satisfies the right Ore condition
with respect to \(C(P). \) The other Ore condition is shown to hold by a symmetric proof.

(2) is evident from (1).

(3) We let \(P' = R_pP. \) Then clearly \(P' = R_pP \) and \(P = P' \cap R. \) So we may assume that \(\tilde{R} = R/P \cong \tilde{R}_p = R/P' \) as rings. By (1), \(\tilde{R}_p \) is the quotient ring of \(\tilde{R}. \)
Since \(P' \) is a maximal ideal of \(R_p, \) \(\tilde{R}_p \) is the simple artinian ring. Hence \(P' \) is a maximal ideal of \(R_p. \) Let \(V' \) be any maximal right ideal of \(R_p. \) Suppose
that \(V' \not\subseteq P'. \) Then \(V' + P' = R_p. \) Write \(1 = v + pc^{-1}, \) where \(v \in V', \)
\(p \in P \) and \(c \in C(P). \) Then \(c = vc + p \) and so \(vc = c - p \in C(P) \cap V'. \) This implies that
\(V' = R_p, \) a contradiction and so \(V' \subseteq P'. \) Hence \(P' \) is the Jacobson radical of \(R_p. \)
The ideal \(P^{-1}P \) properly contains \(P \) so that \(C(P) \cap P^{-1}P \neq \emptyset. \) It follows that
\(P^{-1}PR_p = R_p. \) Similarly \(R_pPP^{-1} = R_p. \) Hence \(P' \) is an invertible ideal of \(R_p. \)
Therefore \(R_p/P'^n \) is an artinian ring for any \(n, \) because \(\tilde{R}_p \) is an artinian ring.
Let \(L' \) be any essential right ideal of \(R_p. \) It is clear that \(L' = (L' \cap R)R_p. \)
Let \(c \) be any regular element of \(L' \cap R. \) Then, since \(c R \subseteq F'(R) \) and \(R \) is regular,
\(c R \) contains a non zero \(v \)-ideal \((P'^* \cap \mathcal{P}) \). Therefore \(L' = R_pP^n = P^n. \) Now we get \(L' \subsetneq R_pP^n = R_p. \) Hence \(R_p \) is left noetherian, local and Asano order by Proposition 1.3 of [7].

After all these preparations we now prove the following theorem which is
the purpose of this paper:

Theorem. A prime Goldie ring \(R \) is a bounded Krull prime ring if and only
if it satisfies the following conditions:
(1) \(R \) is a regular maximal order,
(2) \(R \) satisfies the maximum condition for integral right and left \(v \)-ideals,
(3) \(R/P \) is a prime Goldie ring for any \(P \in M(p). \)

Proof. Assume that \(R = \cap_i R_i \) is a bounded Krull prime ring, where \(R_i \) is a noetherian, local and Asano order with unique maximal ideal \(P'_i. \) (1) is
clear from Corollary 1.4 and Lemma 1.6 of [10]. Let \(I \) be any right (left) \(R \)-ideal. Then \(I^* = \cap IR_i (= \cap R_i I) \) by Proposition 1.10 of [10]. Since \(R_i \) is noetherian, (2) follows from the condition (K3) in the definition of Krull rings. Let \(P_i = P_i \cap R \). It follows that \(\{ P_i | i \in I \} = \mathcal{M}(p) \) by Proposition 1.7 of [10] so that (3) is evident from Proposition 1.1 of [9].

It remains to prove that the conditions (1), (2) and (3) are sufficient. Let \(P \) be any element in \(\mathcal{M}(p) \). Then \(R \) satisfies the Ore condition with respect to \(C(P) \) and \(R_P \) is a noetherian, local and Asano order by Lemma 11. Hence \(R_P \) is an essential overring of \(R \). It is clear that \(R \subseteq T = \cap R_p \), where \(P \in \mathcal{M}(p) \). To prove the converse inclusion let \(x \) be any element of \(T \). Then there is an ideal \(B_P (\subseteq P) \) such that \(xB_P \subseteq R \) by Lemma 11. Let \(B \) be the sum of all ideals \(B_P \). If \(B^* \) is different from \(R \), then \(B^* \) is contained in some \(P \) in \(\mathcal{M}(p) \). But \(B^* \subseteq P \) so that \(B^* = R \). Hence we have \(x \in (xR + R) \subseteq (xR + R)^* \cdot B^* = (xB + B)^* \subseteq R \). Thus we get \(R = \cap R_p \). Let \(c \) be any regular element in \(R \). Then \(cR \) contains a \(\mathfrak{u} \)-ideal \((P_1^*) \cdot \cdots \cdot (P_k^*) \), where \(P_i \in \mathcal{M}(p) \). It follows that \(cR_P = R_P \) for every \(P \in \mathcal{M}(p) \) different to \(P_1 (1 \leq i \leq k) \) by Lemma 11. Hence \(R \) is a bounded Krull prime ring. This completes the proof of the theorem.

Corollary. Let \(R \) be a regular, noetherian and prime ring. If \(R \) is a maximal order, then it is a bounded Krull prime ring.

References

