



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | A characterization of bounded Krull prime rings                           |
| Author(s)    | Marubayashi, Hideyoshi                                                    |
| Citation     | Osaka Journal of Mathematics. 1978, 15(1), p. 13-20                       |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/8723">https://doi.org/10.18910/8723</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

## A CHARACTERIZATION OF BOUNDED KRULL PRIME RINGS

HIDETOSHI MARUBAYASHI

(Received November 30, 1976)

In [9] we defined the concept of non commutative Krull prime rings from the point of view of localizations and we mainly investigated the ideal theory in bounded Krull prime rings (cf. [9], [10]).

The purpose of this paper is to prove the following:

**Theorem.** *Let  $R$  be a prime Goldie ring with two-sided quotient ring  $Q$ . Then  $R$  is a bounded Krull prime ring if and only if it satisfies the following conditions;*

- (1)  *$R$  is a regular maximal order in  $Q$  (in the sense of Asano).*
- (2)  *$R$  satisfies the maximum condition for integral right and left  $v$ -ideals.*
- (3)  *$R/P$  is a prime Goldie ring for any minimal prime ideal  $P$  of  $R$ .*

As corollary we have

**Corollary.** *Let  $R$  be a noetherian prime ring. If  $R$  is a regular maximal order in  $Q$ , then it is a bounded Krull prime ring.*

In case  $R$  is a commutative domain, the theorem is well known and its proof is easy (cf. [11]). We shall prove the theorem by using properties of one-sided  $v$ -ideals and torsion theories.

Throughout this paper let  $R$  be a prime Goldie ring, not artinian ring, having identity element 1, and let  $Q$  be the two-sided quotient ring of  $R$ ;  $Q$  is a simple and artinian ring. We say that  $R$  is an *order* in  $Q$ . If  $R_1$  and  $R_2$  are orders in  $Q$ , then they are called *equivalent* (in symbol:  $R_1 \sim R_2$ ) if there exist regular elements  $a_1, b_1, a_2, b_2$  of  $Q$  such that  $a_1 R_1 b_1 \subseteq R_2$ ,  $a_2 R_2 b_2 \subseteq R_1$ . An order in  $Q$  is said to be *maximal* if it is a maximal element in the set of orders which are equivalent to  $R$ . A right  $R$ -submodule  $I$  of  $Q$  is called a *right  $R$ -ideal* provided  $I$  contains a regular element of  $Q$  and there is a regular element  $b$  of  $Q$  such that  $bI \subseteq R$ .  $I$  is called *integral* if  $I \subseteq R$ . Left  $R$ -ideals are defined in a similar way. If  $I$  is a right (left)  $R$ -ideal of  $Q$ , then  $O_r(I) = \{x \in Q \mid xI \subseteq I\}$  is an order in  $Q$  and is equivalent to  $R$ . Similary  $O_l(I) = \{x \in Q \mid Ix \subseteq I\}$  is an order in  $Q$  and is equivalent to  $R$ . They are called a *left order* and a *right order* of  $I$  respectively.

We define the inverse of  $I$  to be  $I^{-1} = \{q \in Q \mid IqI \subseteq I\}$ . Evidently  $I^{-1} = \{q \in Q \mid Iq \subseteq O_R(I)\} = \{q \in Q \mid qI \subseteq O_R(I)\}$ . Following [2], we define  $I^* = (I^{-1})^{-1}$ . If  $I = I^*$ , then it is said to be a *right (left) v-ideal*. If  $R$  is a maximal order, then  $I^{-1} = I^{-1-1}$  and so  $I^{-1}$  is a left (right) *v-ideal*, and the concept of right (left) *v-ideals* coincides with one of right (left) *v-ideals* defined in [9]. So the mapping:  $I \rightarrow I^*$  of the set of all right (left)  $R$ -ideals into the set of all right (left) *v-ideals* is a  $*$ -operation in the sense of [9].

**Lemma 1.** *Let  $R$  be a maximal order in  $Q$  and let  $S$  be any order equivalent to  $R$ . Then  $S$  is a maximal order if and only if  $S = O_R(I)$  for some right *v-ideal*  $I$  of  $Q$ .*

Proof. If  $S = O_R(I)$  for some right *v-ideal*  $I$  of  $Q$ , then it is a maximal order by Satz 1.3 of [1]. Conversely assume that  $S$  is a maximal order, then there are regular elements  $c, d$  in  $R$  such that  $cSd \subseteq R$ . So  $SdR$  is a right  $R$ -ideal and is a left  $S$ -module. Hence  $(SdR)^{-1}$  is a left  $R$ -ideal and is a right  $S$ -module. Similarly  $I = (SdR)^{-1-1}$  is a right *v-ideal* and is a left  $S$ -module so that  $O_R(I) \cong S$ . Hence  $S = O_R(I)$ .

**Lemma 2.** *Let  $R, S$  be maximal orders in  $Q$  such that  $R \sim S$ , and let  $\{I_i\}$ ,  $I$  be right  $R$ -ideals. Then*

- (1) *If  $\bigcap_i I_i$  is a right  $R$ -ideal, then  $\bigcap_i I_i^* = (\bigcap_i I_i^*)^*$ .*
- (2) *If  $\sum_i I_i$  is a right  $R$ -ideal, then  $(\sum_i I_i)^* = (\sum_i I_i^*)^*$ .*
- (3) *If  $J$  is a left  $R$  and right  $S$ -ideal, then  $(IJ)^* = (I^*J)^* = (IJ^*)^* = (I^*J^*)^*$ .*
- (4)  *$(I^{-1}I^*)^* = R$  and  $(I^*I^{-1})^* = T$ , where  $T = O_R(I^*)$ .*

Proof. The proofs of (1) and (2) are similar to ones of the corresponding results for commutative rings (cf. Proposition 26.2 of [4]).

To prove (3) assume that  $IJ \subseteq cS$ , where  $c$  is a unit in  $Q$ . Then we have  $(I^*J) \subseteq cS$  and  $(IJ^*) \subseteq cS$ , because

$c^{-1}IJ \subseteq S \Rightarrow c^{-1}I \subseteq J^{-1} \Rightarrow c^{-1}IJ^* \subseteq J^{-1}J^* \subseteq S \Rightarrow IJ^* \subseteq cS$ , and  $c^{-1}I \subseteq J^{-1} \Rightarrow c^{-1}I^* \subseteq J^{-1} \Rightarrow c^{-1}I^*J \subseteq J^{-1}J \subseteq S \Rightarrow I^*J \subseteq cS$ . Hence  $(IJ)^*$  contains  $(IJ^*)^*$  and  $(I^*J)^*$  by Proposition 4.1 of [9]. The converse inclusions are clear. Therefore we have  $(IJ)^* = (I^*J)^* = (IJ^*)^*$ . From these it is clear that  $(IJ)^* = (I^*J^*)^*$ .

To prove (4), assume that  $I^{-1}I^* \subseteq cR$ , where  $c$  is a unit in  $Q$ . Then we have  $c^{-1}I^{-1} \subseteq I^{-1}$  so that  $c^{-1} \subseteq O_R(I^{-1}) = R$  and thus  $R \subseteq cR$ . Hence  $(I^{-1}I^*)^* \cong R$  by Proposition 4.1 of [9]. The converse inclusion is clear. Therefore  $(I^{-1}I^*)^* = R$ . Similarly  $(I^*I^{-1})^* = T$ .

Let  $R$  be a maximal order in  $Q$ . We denote by  $F_r^*(R)$  ( $F_l^*(R)$ ) the set of right (left) *v-ideals* and let  $F^*(R) = F_r^*(R) \cap F_l^*(R)$ . It is clear that  $F_r^*(R)$  becomes a lattice by the definition; if  $I, J \in F_r^*(R)$ , then  $I \cup^* J = (I+J)^*$ , and the meet “ $\cap$ ” is the set-theoretic intersection. Similarly  $F_l^*(R)$  and  $F^*(R)$  also become

lattices. For any  $I \in F_r^*(R)$  and  $L \in F_l^*(R)$ , we define the product “ $\circ$ ” of  $I$  and  $L$  by  $I \circ L = (IL)^*$ . It is clear that  $I \circ L \in F_l^*(S) \cap F_r^*(T)$ , where  $S = O_r(I)$  and  $T = O_l(L)$ . In particular, the semi-group  $F^*(R)$  becomes an abelian group (cf. Theorem 4.2 of [2]). For convenience we write  $F'_r(R)$  for the sublattice of  $F_r^*(R)$  consisting of all integral right  $v$ -ideals. Similarly we write  $F'_l(R)$  and  $F'(R)$  for the corresponding sublattices of  $F_l^*(R)$  and  $F^*(R)$  respectively. Let  $M$  and  $N$  be subsets of  $Q$ . Then we use the following notations:  $(M:N)_r = \{x \in R \mid Nx \subseteq M\}$ ,  $(M:N)_l = \{x \in R \mid xN \subseteq M\}$ . When  $N$  is a single element  $q$  of  $Q$ , then we denote by  $q^{-1}M$  the set  $(M:N)_r$ .

**Lemma 3.** *Let  $R$  be a maximal order in  $Q$ . Then*

- (1) *If  $I \in F_r^*(R)$  and  $q \in Q$ , then  $q^{-1}I = (I^{-1}q + R)^{-1}$  and so  $q^{-1}I \in F'_r(R)$ .*
- (2) *If  $I \in F_r^*(R)$  and  $J$  is a right  $R$ -ideal, then  $(I:J)_r \in F'(R)$  or 0.*
- (3) *If  $I \in F_r^*(R)$  and  $J \in F_l^*(R)$ , then  $(I \circ J)^{-1} = J^{-1} \circ I^{-1}$ .*
- (4) *If  $I, J \in F_r^*(R)$  and  $L \in F_l^*(R)$ , then  $(I \cup^* J) \circ L = I \circ L \cup^* J \circ L$ .*

Proof. (1) Since  $(I^{-1}q + R)q^{-1}I \subseteq R$ , we get  $(I^{-1}q + R)^{-1} \supseteq q^{-1}I$ . Let  $x$  be any element of  $(I^{-1}q + R)^{-1}$ . Then  $(I^{-1}q + R)x \subseteq R$  so that  $x \in R$  and  $I^{-1}qx \subseteq R$ . Let  $S = O_r(I)$ . Then it is a maximal order equivalent to  $R$  by Lemma 1. It is evident that  $Sqx + I$  is a left  $S$ -ideal and that  $II^{-1}(Sqx + I) \subseteq I$ . Thus, by Lemma 2, we have

$qx \in S(Sqx + I) \subseteq (II^{-1})^* \circ (Sqx + I)^* = (II^{-1}(Sqx + I))^* \subseteq I$ . Hence  $x \in q^{-1}I$  and so  $q^{-1}I = (I^{-1}q + R)^{-1}$ . It is clear that  $q^{-1}I \in F'_r(R)$  by Corollary 4.2 of [9].

(2) If  $(I:J)_r \neq 0$ , then it is an  $R$ -ideal of  $Q$  and  $J(I:J)_r \subseteq I$ . So  $J((I:J)_r)^* \subseteq (J(I:J)_r)^* \subseteq I$ . Hence  $((I:J)_r)^* \subseteq (I:J)_r$  so that  $((I:J)_r)^* = (I:J)_r$ .

(3) It is clear that  $O_r(I \circ J) \supseteq O_r(I)$  and so  $O_r(I \circ J) = O_r(I)$  by Lemma 1. Since  $(I \circ J) \circ (J^{-1} \circ I^{-1}) = S$ , where  $S = O_r(I)$ , we get  $(I \circ J)^{-1} \supseteq J^{-1} \circ I^{-1}$ . Let  $x$  be any element of  $(I \circ J)^{-1}$ . Then  $IJx \subseteq (I \circ J)x \subseteq S$ . Let  $T = O_l(J)$ . Then  $Tx + J^{-1}I^{-1}$  is a left  $T$ -ideal and  $IJ(Tx + J^{-1}I^{-1}) \subseteq S$ . Hence  $I \circ J \circ (Tx + J^{-1}I^{-1})^* \subseteq S$  by Lemma 2. By multiplying  $J^{-1} \circ I^{-1}$  to the both side of the inequality we have  $x \in (Tx + J^{-1}I^{-1})^* \subseteq J^{-1} \circ I^{-1}$ . Therefore we get  $(I \circ J)^{-1} = J^{-1} \circ I^{-1}$ .

(4) From Lemma 2, we have:  $(I \cup^* J) \circ L = [(I+J)^*L]^* = [(I+J)L]^* = (IL+JL)^* = [(IL)^* + (JL)^*]^* = I \circ L \cup^* J \circ L$ .

Let  $R$  be a maximal order. We consider the following condition:

(A):  $F'_r(R)$  and  $F'_l(R)$  both satisfy the maximum condition.

If  $R$  is a maximal order satisfying the condition (A), then  $F^*(R)$  is a direct product of infinite cyclic groups with prime  $v$ -ideals as their generators by Theorem 4.2 of [2]. It is evident that an element  $P$  in  $F'(R)$  is a prime element in the lattice if and only if it is a prime ideal of  $R$ .

Following [1],  $R$  is said to be *regular* if every integral one-sided  $R$ -ideal contains a non-zero  $R$ -ideal.

**Lemma 4.** *Let  $R$  be a regular maximal order satisfying the condition (A) and let  $P$  be a non-zero prime ideal of  $R$ . Then  $P$  is a minimal prime ideal of  $R$  if and only if it is a prime  $v$ -ideal.*

Proof. Assume that  $P$  is a minimal prime ideal. Let  $c$  be any regular element in  $P$ . Then since  $(cR)^* = cR$  and  $R$  is regular, we get  $P \supseteq cR \supseteq (P_i^*)^* \circ \dots \circ (P_k^*)^*$ , where  $P_i$  is a prime  $v$ -ideal. Hence  $P \supseteq P_i$  for some  $i$  and so  $P = P_i$ . Conversely assume that  $P \supsetneq P_0 \neq 0$ , where  $P_0$  is a prime ideal. Then since  $P_0^*(P_0^{-1}P_0) = (P_0^*P_0^{-1})P_0 \subseteq RP_0 = P_0$  and  $P_0^{-1}P_0 \not\subseteq P_0$ , we have  $P_0^* \subseteq P_0$  and thus  $P_0^* = P_0$ . It follows that  $P_0$  is a maximal element in  $F'(R)$  by [2, p. 11], a contradiction. Hence  $P$  is a minimal prime ideal of  $R$ .

REMARK. Let  $R$  be a maximal order satisfying the condition (A). Then it is evident from the proof of the lemma that prime  $v$ -ideals are minimal prime ideals of  $R$ .

Let  $I$  be any right ideal of  $R$ . Then we denote by  $\sqrt{I}$  the set  $\cup \{(s^{-1}I:R), |s \notin I, s \in R\}$ . Following [3], if  $\sqrt{I}$  is an ideal of  $R$ , then we say that  $I$  is *primal* and that  $\sqrt{I}$  is the *adjoint ideal* of it. A right ideal  $I$  of  $R$  is called *primary* if  $JA \subseteq I$  and  $J \not\subseteq I$  implies that  $A^n \subseteq I$  for some positive integer  $n$ , where  $J$  is a right ideal of  $R$  and  $A$  is an ideal of  $R$ . We shall apply these concepts for integral right  $v$ -ideals.

**Lemma 5.** *Let  $R$  be a maximal order satisfying the condition (A) and let  $I$  be a meet-irreducible element in  $F'(R)$ . Then  $I$  is primal, and  $\sqrt{I}$  is a minimal prime ideal of  $R$  or 0, and  $\sqrt{I} = (x^{-1}I:R)$ , for some  $x \in I$ .*

Proof. If  $\sqrt{I} = 0$ , then the assertion is evident. Assume that  $\sqrt{I} \neq 0$ . By Lemma 3,  $(s^{-1}I:R)$  is a  $v$ -ideal or 0. Hence the set  $S = \{(s^{-1}I:R), |s \notin I, s \in R\}$  has a maximal element. Assume that  $(s^{-1}I:R)$  and  $(t^{-1}I:R)$  are maximal elements in  $S$ . Then  $(sR+I)(s^{-1}I:R) \subseteq I$  implies that  $(sR+I)^*(s^{-1}I:R) \subseteq I$  by Lemma 2 and so  $(s^{-1}I:R) \subseteq (I:(sR+I)^*)$ . The converse inclusion is clear. Thus we have  $(s^{-1}I:R) = (I:(sR+I)^*)$ . Similarly  $(t^{-1}I:R) = (I:(tR+I)^*)$ . Since  $I$  is irreducible in  $F'(R)$ , we have  $I \subseteq (sR+I)^* \cap (tR+I)^* = J$ . Let  $x$  be any element in  $J$  but not in  $I$ . Then it follows that  $(x^{-1}I:R) \supseteq (s^{-1}I:R)$ ,  $(t^{-1}I:R)$ , so that  $\sqrt{I} = (x^{-1}I:R) = (s^{-1}I:R)$ , which is a  $v$ -ideal. Hence  $I$  is primal. If  $AB \subseteq \sqrt{I}$  and  $A \not\subseteq \sqrt{I}$ , where  $A$  and  $B$  are ideals of  $R$ , then  $xAB \subseteq I$  and  $xA \not\subseteq I$ . Let  $y$  be any element in  $xA$  but not in  $I$ . Then  $yB \subseteq I$  and so  $B \subseteq (y^{-1}I:R) \subseteq \sqrt{I}$ . Thus  $\sqrt{I}$  is a prime ideal of  $R$ . It follows that  $\sqrt{I}$  is minimal from the remark to Lemma 4.

A right ideal of  $R$  is said to be *bounded* if it contains a non-zero ideal of  $R$ .

**Lemma 6.** *Let  $R$  be a maximal order satisfying the condition (A) and let  $I$  be an irreducible element in  $F'(R)$ . If  $I$  is bounded, then it is primary and  $(\sqrt{I})^n \subseteq I$  for some positive integer  $n$ .*

Proof. Since  $I \in F'(R)$  and is bounded,  $(I:R)$ , is non-zero and is a  $v$ -ideal. Write  $(I:R) = (P_1^n)^* \circ \dots \circ (P_k^n)^*$ , where  $P_i$  are prime  $v$ -ideals. For any  $i$  ( $1 \leq i \leq k$ ), we let  $B_i = (P_1^n)^* \circ \dots \circ (P_{i-1}^n)^* \circ (P_{i+1}^n)^* \circ \dots \circ (P_k^n)^*$ . Then  $B_i \subseteq I$  and  $B_i P_i^n \subseteq (I:R) \subseteq I$ , because  $F^*(R)$  is an abelian group. Thus  $P_i^n \subseteq \sqrt{I}$  and so  $P_i = \sqrt{I}$  ( $1 \leq i \leq k$ ) by Lemma 5. Therefore  $(\sqrt{I})^{n_1 + \dots + n_k} \subseteq I$ . It is evident that  $I$  is primary.

If  $A$  is an ideal of  $R$ , then we denote by  $C(A)$  those elements of  $R$  which are regular mod  $(A)$ .

**Lemma 7.** *Let  $R$  be a maximal order satisfying the condition (A). Let  $P$  be a prime  $v$ -ideal. Then*

- (1)  $C(P) = C((P^n)^*)$  for every positive integer  $n$ .
- (2)  $C(P) \subseteq C(0)$ .

Proof. (1) We shall prove by the induction on  $n (> 1)$ . Assume that  $C(P) = C((P^{n-1})^*)$ . If  $cx \in (P^n)^*$ , where  $c \in C(P)$  and  $x \in R$ , then  $cx(P^{-1})^{n-1} \subseteq (P^n)^*(P^{-1})^{n-1} \subseteq P$  by Lemma 2. Since  $cx \in (P^{n-1})^*$ , we get  $x \in (P^{n-1})^*$  and so  $x(P^{-1})^{n-1} \subseteq R$ . Hence  $x(P^{-1})^{n-1} \subseteq P$ . Then we have  $(xR + P^n)(P^{-1})^{n-1}P^{n-1} \subseteq P^n$  so that  $x \in (P^n)^*$  by Lemma 2. Conversely suppose that  $cx \in P$ ,  $c \in C((P^n)^*)$ ,  $x \in R$ . Then  $cxP^{n-1} \subseteq (P^n)^*$  and so  $xP^{n-1} \subseteq (P^n)^*$ . Since  $(xP + P^n)P^{n-1}(P^{-1})^{n-1} \subseteq (P^n)^*(P^{-1})^{n-1} \subseteq P$ , we get  $x \in P$  by Lemma 2. Therefore  $C(P) = C((P^n)^*)$ .

(2) If  $0 \neq \cap_n (P^n)^*$ , then it is a  $v$ -ideal by Lemma 2. Write  $\cap_n (P^n)^* = (P_1^n)^* \circ \dots \circ (P_k^n)^*$ , where  $P_i$  are prime  $v$ -ideals. This is a contradiction, because  $F^*(R)$  is an abelian group and  $P, P_i$  are minimal prime ideals of  $R$ . Hence  $0 = \cap_n (P^n)^*$ . Therefore (2) follows from (1).

If  $P$  is a prime ideal of a ring  $S$ , then the family  $T_P = \{I: \text{right ideal } |s^{-1}I \cap C(P) \neq \emptyset \text{ for any } s \in S\}$  is a right additive topology (cf. Ex. 4 of [12, p. 18]). The following lemma is due to Lambek and Michler if  $S$  is right noetherian. However, only trivial modifications to their proof are needed to establish the more general result.

**Lemma 8.** *Let  $P$  be a prime ideal of  $S$  and let  $\bar{S} = S/P$  be a right prime Goldie ring. Then the torsion theory determined by the  $S$ -injective hull  $E(\bar{S})$  of  $\bar{S}$  coincides with one determined by the right additive topology  $T_P$ , that is, a right ideal  $I$  of  $S$  is an element in  $T_P$  if and only if  $\text{Hom}_S(S/I, E(\bar{S})) = 0$  (Corollary 3.10 of [8]).*

**Lemma 9.** *Let  $R$  be a maximal order satisfying the condition (A) and let  $P$*

be a prime  $v$ -ideal such that  $\bar{R}=R/P$  is a prime Goldie ring. If  $I$  is any element in  $F'(R)$  such that  $R \not\supseteq I \supseteq P$ , then  $I \cap C(P)=\phi$ .

Proof. It is enough to prove the lemma when  $I$  is a maximal element in  $F'(R)$ . Since  $I^{-1} \not\supseteq R$ ,  $P \circ I^{-1} \cap R \not\supseteq P$ . If  $P \circ I^{-1} \cap R=P$ , then  $P^{-1}=(P \circ I^{-1})^{-1} \cup *R$ , because the mapping:  $J \rightarrow J^{-1}$  is an inverse lattice isomorphism between  $F^*(R)$  and  $F^{\#}(R)$ . By Lemma 3,  $P^{-1}=I \circ P^{-1} \cup *R$ . On the other hand  $P \subseteq I$  implies that  $R \subseteq I \circ P^{-1}$ . Hence  $P^{-1}=I \circ P^{-1}$  and so  $R=I$ , a contradiction. Thus we have  $P \circ I^{-1} \cap R \not\supseteq P$ . Let  $a$  be any element in  $P \circ I^{-1} \cap R$  but not in  $P$ . Then  $aI \subseteq (P \circ I^{-1})I \subseteq P \circ I^{-1} \circ I=P$  so that  $I \subseteq a^{-1}P \subseteq R$ . Since  $a^{-1}P$  is a right  $v$ -ideal by Lemma 3, we get  $I=a^{-1}P$ . Then  $\text{Hom}(R/I, E(\bar{R})) \neq 0$ , because  $R/I=R/a^{-1}P \cong (aR+P)/P \subseteq \bar{R}$ . Now assume that  $I \cap C(P) \neq \phi$  and let  $c$  be any element in  $I \cap C(P)$ . Then  $cR+P \in T_P$  by Lemma 3.1 of [6]. Hence  $I \in T_P$  and thus  $\text{Hom}(R/I, E(\bar{R}))=0$  by Lemma 8. This is a contradiction and so  $I \cap C(P)=\phi$ .

For convenience, we write  $M(p)$  for the family of minimal prime ideals of  $R$ . If  $R$  is a regular maximal order satisfying the condition (A), then we know from Lemma 4 that a prime ideal  $P$  is an element in  $M(p)$  if and only if it is a prime element in  $F'(R)$ .

**Lemma 10.** *Let  $R$  be a regular maximal order satisfying the condition (A),  $P \in M(p)$  and let  $I \in F'(R)$ . If  $\bar{R}=R/P$  is a prime Goldie ring, then  $I \cup *P=R$  if and only if  $I$  contains an ideal  $B$  such that  $B \not\subseteq P$ .*

Proof. Assume that  $I \supseteq B$ , where  $B$  is an ideal not contained in  $P$ . Then  $I \supseteq B^*$  and  $B^* \cup *P=R$ , because  $P$  is a maximal element in  $F'(R)$  (cf. [2, p. 11]). Therefore  $I \cup *P=R$ . Conversely assume that the family  $S=\{I \in F'(R) \mid I \cup *P=R, I \neq R \text{ and } I \not\supseteq B \text{ for any ideal } B \text{ not contained in } P\}$  is not empty and let  $I$  be a maximal element in  $S$ . If  $I$  is irreducible in  $F'(R)$ , then there exists  $P'$  in  $M(p)$  such that  $I \supseteq P'^n$  by Lemmas 5 and 6. Since  $I \in S$ , we have  $P=P'$ . If  $n=1$ , then  $R=I \cup *P=I$ , a contradiction. We may assume that  $I \not\supseteq P^{n-1}$  and  $n>1$ . Then  $(P^{n-1})^*=(I \cup *P) \circ (P^{n-1})^*=I \circ (P^{n-1})^* \cup *(P^n)^* \subseteq I^*=I$  by Lemmas 2 and 3. This is a contradiction. If  $I$  is reducible, then  $I=I_1 \cap I_2$ , where  $I_i \in F'(R)$  and  $I \not\subseteq I_i$  ( $i=1, 2$ ). There are non zero ideals  $B_i$  ( $\not\subseteq P$ ) such that  $I_i \supseteq B_i$ . Thus  $I$  contains the ideal  $B_1 B_2$  not contained in  $P$ , a contradiction. Hence  $S=\phi$ . This implies that if  $I \cup *P=R$ , then  $I$  contains an ideal not contained in  $P$ .

Let  $P$  be a prime ideal of a ring  $S$ . If  $S$  satisfies the Ore condition with respect to  $C(P)$ , then we denote by  $S_P$  the quotient ring with respect to  $C(P)$ .

**Lemma 11.** *Let  $R$  be a regular maximal order satisfying the condition (A) and let  $P$  be an element in  $M(p)$  such that  $\bar{R}=R/P$  is a prime Goldie ring. Then*

- (1)  $R$  satisfies the Ore condition with respect to  $C(P)$ .
- (2)  $R_P = \varinjlim B^{-1}$ , where  $B$  ranges over all non zero ideals not contained in  $P$ .
- (3)  $R_P$  is a noetherian, local and Asano order.

Proof. (1) It is clear that  $T = \varinjlim B^{-1}(B \neq P)$ : ideal is an overring of  $R$ . Let  $c$  be any element in  $C(P)$ . Then  $c$  is regular by Lemma 7 and so  $cR \in F'(R)$ . Since  $(cR \cup *P) \cap C(P) \neq \phi$ , we have  $cR \cup *P = R$  by Lemma 9 and so  $cR$  contains an ideal not contained in  $P$  by Lemma 10. Hence  $c^{-1} \in T$ . So for any  $r \in R$ ,  $c \in C(P)$ , there exists an ideal  $B \neq P$  such that  $c^{-1}rB \subseteq R$ . It is evident that  $B \cap C(P) \neq \phi$ . Let  $d$  be any element in  $B \cap C(P)$ . Then we have  $c^{-1}rd = s$  for some  $s$  in  $R$ , that is,  $rd = cs$ . This implies that  $R$  satisfies the right Ore condition with respect to  $C(P)$ . The other Ore condition is shown to hold by a symmetric proof.

(2) is evident from (1).

(3) We let  $P' = PR_P$ . Then clearly  $P' = R_P P$  and  $P = P' \cap R$ . So we may assume that  $\bar{R} = R/P \subseteq \bar{R}_P = R_P/P'$  as rings. By (1),  $\bar{R}_P$  is the quotient ring of  $\bar{R}$ . Since  $\bar{R}$  is a prime Goldie ring,  $\bar{R}_P$  is the simple artinian ring. Hence  $P'$  is a maximal ideal of  $R_P$ . Let  $V'$  be any maximal right ideal of  $R_P$ . Suppose that  $V' \not\supseteq P'$ . Then  $V' + P' = R_P$ . Write  $1 = v + pc^{-1}$ , where  $v \in V'$ ,  $p \in P$  and  $c \in C(P)$ . Then  $c = vc + p$  and so  $vc = c - p \in C(P) \cap V'$ . This implies that  $V' = R_P$ , a contradiction and so  $V' \supseteq P'$ . Hence  $P'$  is the Jacobson radical of  $R_P$ . The ideal  $P^{-1}P$  properly contains  $P$  so that  $C(P) \cap P^{-1}P \neq \phi$ . It follows that  $P^{-1}PR_P = R_P$ . Similarly  $R_P PP^{-1} = R_P$ . Hence  $P'$  is an invertible ideal of  $R_P$ . Therefore  $R_P/P^n$  is an artinian ring for any  $n$ , because  $\bar{R}_P$  is an artinian ring. Let  $I'$  be any essential right ideal of  $R_P$ . It is clear that  $I' = (I' \cap R)R_P$ . Let  $c$  be any regular element of  $I' \cap R$ . Then, since  $cR \in F'(R)$  and  $R$  is regular,  $cR$  contains a non zero  $v$ -ideal  $(P^n)^* \circ (P_1^n)^* \circ \dots \circ (P_k^n)^*$ , where  $P_i \in M(p)$ . So we get  $I' \supseteq R_P P^n = P^n$ . Therefore essential right ideals of  $R_P$  satisfies the maximum condition. Since  $R_P$  is finite dimensional in the sense of Goldie,  $R_P$  is right noetherian. Similarly  $R_P$  is left noetherian. Hence  $R_P$  is a noetherian, local and Asano order by Proposition 1.3 of [7].

After all these preparations we now prove the following theorem which is the purpose of this paper:

**Theorem.** *A prime Goldie ring  $R$  is a bounded Krull prime ring if and only if it satisfies the following conditions :*

- (1)  $R$  is a regular maximal order,
- (2)  $R$  satisfies the maximum condition for integral right and left  $v$ -ideals,
- (3)  $R/P$  is a prime Goldie ring for any  $P \in M(p)$ .

Proof. Assume that  $R = \cap_i R_i$  ( $i \in I$ ) is a bounded Krull prime ring, where  $R_i$  is a noetherian, local and Asano order with unique maximal ideal  $P'_i$ . (1) is

clear from Corollary 1.4 and Lemma 1.6 of [10]. Let  $I$  be any right (left)  $R$ -ideal. Then  $I^* = \cap IR_i (= \cap R_i I)$  by Proposition 1.10 of [10]. Since  $R_i$  is noetherian, (2) follows from the condition (K3) in the definition of Krull rings. Let  $P_i = P'_i \cap R$ . It follows that  $\{P_i \mid i \in I\} = M(p)$  by Proposition 1.7 of [10] so that (3) is evident from Proposition 1.1 of [9].

It remains to prove that the conditions (1), (2) and (3) are sufficient. Let  $P$  be any element in  $M(p)$ . Then  $R$  satisfies the Ore condition with respect to  $C(P)$  and  $R_P$  is a noetherian, local and Asano order by Lemma 11. Hence  $R_P$  is an essential overring of  $R$ . It is clear that  $R \subseteq T = \cap R_P$ , where  $P \in M(p)$ . To prove the converse inclusion let  $x$  be any element of  $T$ . Then there is an ideal  $B_P$  ( $\not\subseteq P$ ) such that  $xB_P \subseteq R$  by Lemma 11. Let  $B$  be the sum of all ideals  $B_P$ . If  $B^*$  is different from  $R$ , then  $B^*$  is contained in some  $P$  in  $M(p)$ . But  $B^* \not\subseteq P$  so that  $B^* = R$ . Hence we have  $x \in (xR + R) \subseteq (xR + R)^* \circ B^* = (xB + B)^* \subseteq R$ . Thus we get  $R = \cap R_P$ . Let  $c$  be any regular element in  $R$ . Then  $cR$  contains a  $v$ -ideal  $(P_1^*)^* \circ \dots \circ (P_k^*)^*$ , where  $P_i \in M(p)$ . It follows that  $cR_P = R_P$  for every  $P \in M(p)$  different to  $P_i$  ( $1 \leq i \leq k$ ) by Lemma 11. Hence  $R$  is a bounded Krull prime ring. This completes the proof of the theorem.

**Corollary.** *Let  $R$  be a regular, noetherian and prime ring. If  $R$  is a maximal order, then it is a bounded Krull prime ring.*

OSAKA UNIVERSITY

---

### References

- [1] K. Asano: *Zur Arithmetik in Schiefringen* I. *Osaka Math. J.* **1** (1949), 98–134.
- [2] A. Asano and K. Murata: *Arithmetical ideal theory in semigroups*, *J. Inst. Polytec. Osaka city Univ.* **4** (1953), 9–33.
- [3] W.E. Barnes: *Primal ideals and isolated components in noncommutative rings*, *Trans Amer Math. Soc.* **82** (1956), 1–16.
- [4] R. Gilmer: *Multiplicative ideal theory* II, Queen's Series in Pure and Applied Math. Queen's Univ. Kingston, Ontario, 1968.
- [5] A.W. Goldie: *The structure of prime rings under ascending chain conditions*, *Proc. London Math. Soc.* **8** (1958), 589–608.
- [6] A.W. Goldie: *Localization in non-commutative noetherian rings*, *J. Algebra* **5** (1967), 89–105.
- [7] C.R. Hajarnavis and T.H. Lenagan: *Localisation in Asano orders*, *J. Algebra* **21** (1972), 441–449.
- [8] J. Lambek and G. Michler: *The torsion theory at a prime ideal of a right noetherian ring*, *J. Algebra* **25** (1973), 364–389.
- [9] H. Marubayashi: *Non commutative Krull rings*, *Osaka J. Math.* **12** (1975), 703–714.
- [10] H. Marubayashi: *On bounded Krull prime rings*, **13** (1976), 491–501.
- [11] P. Samuel: *Lectures on unique factorization domains*, Tata Inst. of Fundamental Research, Bombay, 1964.
- [12] B. Stenström: *Rings and modules of quotients*, Lecture notes in Math. vol. 237, Berlin-Heidelberg-New York, Springer, 1971.