<table>
<thead>
<tr>
<th>Title</th>
<th>A characterization of bounded Krull prime rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Marubayashi, Hidetoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 15(1) P.13-P.20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8723</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8723</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
A CHARACTERIZATION OF BOUNDED KRULL
PRIME RINGS

HIDETOSHI MARUBAYASHI

(Received November 30, 1976)

In [9] we defined the concept of non commutative Krull prime rings from the point of view of localizations and we mainly investigated the ideal theory in bounded Krull prime rings (cf. [9], [10]).

The purpose of this paper is to prove the following:

Theorem. Let R be a prime Goldie ring with two-sided quotient ring Q. Then R is a bounded Krull prime ring if and only if it satisfies the following conditions:

1. R is a regular maximal order in Q (in the sense of Asano).
2. R satisfies the maximum condition for integral right and left \(v \)-ideals.
3. \(R/P \) is a prime Goldie ring for any minimal prime ideal P of R.

As corollary we have

Corollary. Let R be a noetherian prime ring. If R is a regular maximal order in Q, then it is a bounded Krull prime ring.

In case R is a commutative domain, the theorem is well known and its proof is easy (cf. [11]). We shall prove the theorem by using properties of one-sided \(v \)-ideals and torsion theories.

Throughout this paper let R be a prime Goldie ring, not artinian ring, having identity element 1, and let Q be the two-sided quotient ring of R; Q is a simple and artinian ring. We say that R is an order in Q. If \(R_1 \) and \(R_2 \) are orders in Q, then they are called equivalent (in symbol: \(R_1 \sim R_2 \)) if there exist regular elements \(a_1, b_1, a_2, b_2 \) of Q such that \(a_1 R b_1 \subseteq R_2, a_2 R b_2 \subseteq R_1 \). An order in Q is said to be maximal if it is a maximal element in the set of orders which are equivalent to R. A right R-submodule I of Q is called a right R-ideal provided I contains a regular element of Q and there is a regular element b of Q such that \(bi \subseteq R \). I is called integral if \(I \subseteq R \). Left R-ideals are defined in a similar way. If I is a right (left) R-ideal of Q, then \(O(I) = \{ x \in Q | xI \subseteq I \} \) is an order in Q and is equivalent to R. Similarly \(O(I) = \{ x \in Q |Ix \subseteq I \} \) is an order in Q and is equivalent to R. They are called a left order and a right order of I respectively.
We define the inverse of I to be $I^{-1} = \{ q \in \mathbb{Q} | Iq \subseteq O_{\mathbb{Q}}(I) \} = \{ q \in \mathbb{Q} | qI \subseteq O_{\mathbb{Q}}(I) \}$. Evidently $I^{-1} = (I^{-1})^{-1}$. If $I = I^*$, then it is said to be a right (left) ν-ideal. If R is a maximal order, then $I^{-1} = I^{-1}_{\text{right}}$ and so I^{-1} is a left (right) ν-ideal, and the concept of right (left) ν-ideals coincides with one of right (left) ν-ideals defined in [9]. So the mapping: $I \mapsto I^*$ of the set of all right (left) R-ideals into the set of all right (left) ν-ideals is an $*$-operation in the sense of [9].

Lemma 1. Let R be a maximal order in Q and let S be any order equivalent to R. Then S is a maximal order if and only if $S = O_{\mathbb{Q}}(I)$ for some right ν-ideal I of Q.

Proof. If $S = O_{\mathbb{Q}}(I)$ for some right ν-ideal I of Q, then it is a maximal order by Satz 1.3 of [1]. Conversely assume that S is a maximal order, then there are regular elements c, d in R such that $cSd \subseteq R$. So SdR is a right R-ideal and is a left S-module. Hence $(SdR)^{-1}$ is a left R-ideal and is a right S-module. Similarly $I = (SdR)^{-1}$ is a right ν-ideal and is a left S-module so that $O_{\mathbb{Q}}(I) \subseteq S$. Hence $S = O_{\mathbb{Q}}(I)$.

Lemma 2. Let R, S be maximal orders in Q such that $R \sim S$, and let $\{I_i\}$, I be right R-ideals. Then

1. If $\bigcap_i I_i$ is a right R-ideal, then $\bigcap_i I_i^* = (\bigcap_i I_i)^*$.
2. If $\bigcup_i I_i$ is a right R-ideal, then $(\bigcup_i I_i)^* = (\bigcup_i I_i^*)^*$.
3. If J is a left R and right S-ideal, then $(IJ)^* = (I^* J)^* = (IJ^*)^* = (I^* J^*)^*$.
4. $(I^{-1} I)^* = R$ and $(I^* I^{-1})^* = T$, where $T = O_{\mathbb{Q}}(I^*)$.

Proof. The proofs of (1) and (2) are similar to ones of the corresponding results for commutative rings (cf. Proposition 26.2 of [4]).

To prove (3) assume that $IJ \subseteq cS$, where c is a unit in Q. Then we have $(I^* J) \subseteq cS$ and $(IJ^*) \subseteq cS$, because $c^{-1} I J \subseteq S \Rightarrow c^{-1} I \subseteq J^{-1} \Rightarrow c^{-1} I \subseteq J^{-1} \Rightarrow (IJ^*) \subseteq S \Rightarrow (IJ^*) \subseteq cS$, and $c^{-1} I \subseteq J^{-1} \Rightarrow c^{-1} I \subseteq J^{-1} \Rightarrow (IJ^*) \subseteq S \Rightarrow (IJ^*) \subseteq cS$. Hence $(IJ)^*$ contains $(IJ^*)^*$ and $(IJ^*)^*$ by Proposition 4.1 of [9]. The converse inclusions are clear. Therefore we have $(IJ)^* = (I^* J)^* = (IJ^*)^*$. From these it is clear that $(IJ)^* = (I^* J)^*$.

To prove (4), assume that $I^{-1} I^* \subseteq cR$, where c is a unit in Q. Then we have $c^{-1} I^{-1} \subseteq I^{-1}$ so that $c^{-1} \subseteq O_{\mathbb{Q}}(I^{-1}) = R$ and thus $R \subseteq cR$. Hence $(I^{-1} I^*)^* \subseteq R$ by Proposition 4.1 of [9]. The converse inclusion is clear. Therefore $(I^{-1} I^*)^* = R$. Similarly $(I^* I^{-1})^* = T$.

Let R be a maximal order in Q. We denote by $F^*_R(R)$ ($F^*_R(R)$) the set of all right (left) ν-ideals and let $F^*_R(R) = F^*_R(R) \cap F^*_R(R)$. It is clear that $F^*_R(R)$ becomes a lattice by the definition; if $I, J \in F^*_R(R)$, then $I \cap J = (I \cap J)^*$, and the meet "\cap" is the set-theoretic intersection. Similarly $F^*_R(R)$ and $F^*_R(R)$ also become...
lattices. For any \(I \in F^*(R) \) and \(L \in F^*(R) \), we define the product "\(\circ \)" of \(I \) and \(L \) by \(I \circ L = (IL)^* \). It is clear that \(I \circ L \subseteq F^*(S) \cap F^*(T) \), where \(S = O_L(I) \) and \(T = O_L(L) \). In particular, the semi-group \(F^*(R) \) becomes an abelian group (cf. Theorem 4.2 of [2]). For convenience we write \(F'(R) \) for the sublattice of \(F^*(R) \) consisting of all integral right \(\nu \)-ideals. Similarly we write \(F'_{\sig}(R) \) and \(F^*(R) \) for the corresponding sublattices of \(F^*(R) \) and \(F^*(R) \) respectively. Let \(M \) and \(N \) be subsets of \(Q \). Then we use the following notations: \((M: N) = \{x \in R \mid Nx \subseteq M\} \), \((M: N)_I = \{x \in R \mid xN \subseteq M\} \). When \(N \) is a single element \(q \) of \(Q \), then we denote by \(q^{-1}M \) the set \((M: N)_I \).

Lemma 3. Let \(R \) be a maximal order in \(Q \). Then

1. If \(I \in F^*(R) \) and \(q \in Q \), then \(q^{-1}I = (I^{-1}q + R)^{-1} \) and so \(q^{-1}I \in F'(R) \).
2. If \(I \in F^*(R) \) and \(J \) is a right \(R \)-ideal, then \((I: J) \subseteq F'(R) \) or \(0 \).
3. If \(I \in F^*(R) \) and \(J \in F^*(R) \), then \((I \circ J)^{-1} = J^{-1} \circ I^{-1} \).
4. If \(I, J \in F^*(R) \) and \(L \in F^*(R) \), then \((I \cup J) \circ L = I \circ L \cup J \circ L \).

Proof. (1) Since \((I^{-1}q + R)^{-1} \subseteq R \), we get \((I^{-1}q + R)^{-1} \subseteq q^{-1}I \). Let \(x \) be any element of \((I^{-1}q + R)^{-1} \). Then \((I^{-1}q + R)x \subseteq R \) so that \(x \in R \) and \(I^{-1}q \subseteq R \). Let \(S = O_L(I) \). Then it is a maximal order equivalent to \(R \) by Lemma 1. It is evident that \(Sx + I \) is a left \(S \)-ideal and so \((I^{-1}q + R)^{-1} \subseteq \). Hence \(x \in q^{-1}I \) and so \(q^{-1}I = (I^{-1}q + R)^{-1} \). It is clear that \(q^{-1}I \subseteq F'(R) \) by Corollary 4.2 of [9].

(2) If \((I: J) \subseteq Q \), then it is an \(\Lambda \)-ideal of \(Q \) and \(J \subseteq J \subseteq I \). So \((J(I: J)) \subseteq (I: J) \subseteq I \). Hence \((I: J) \subseteq I \), so that \((I: J) = (I: J) \).

(3) It is clear that \(O_L(J) = O_L(I) \) and so \(O_L(J) = O_L(I) \) by Lemma 1. Since \((I: J) \subseteq (J^{-1}I^{-1}) = S \), where \(S = O_L(I) \), we get \((J^{-1}I^{-1}) \subseteq J^{-1}I^{-1} \). Let \(x \) be any element of \((J^{-1}I^{-1}) \). Then \(Jx \subseteq (IJ)x \subseteq S \). Let \(T = O_L(J) \). Then \(Jx + T \subseteq I \) is a left \(T \)-ideal and \(IJ(Tx + J^{-1}I^{-1}) \subseteq S \). Hence \((I: J) \subseteq (I: J) \) by Lemma 2. By multiplying \((J^{-1}I^{-1}) \) to the both side of the inequality we have \(x \in (Tx + J^{-1}I^{-1}) \subseteq J^{-1}I^{-1} \). Therefore we get \((J^{-1}I^{-1}) \subseteq J^{-1}I^{-1} \).

(4) From Lemma 2, we have: \((I \cup J) \circ L = [(I + J)L]^* = [(I + J)L]^* = (IL + JL)^* = [(IL)^* \cup (JL)^*]^* = I \circ L \cup J \circ L \).

Let \(R \) be a maximal order. We consider the following condition:

\((A)\): \(F'(R) \) and \(F^*(R) \) both satisfy the maximum condition.

If \(R \) is a maximal order satisfying the condition \((A) \), then \(F^*(R) \) is a direct product of infinite cyclic groups with prime \(\nu \)-ideals as their generators by Theorem 4.2 of [2]. It is evident that an element \(P \) in \(F^*(R) \) is a prime element in the lattice if and only if it is a prime ideal of \(R \).

Following [1], \(R \) is said to be regular if every integral one-sided \(R \)-ideal contains a non-zero \(R \)-ideal.
Lemma 4. Let R be a regular maximal order satisfying the condition (A) and let P be a non-zero prime ideal of R. Then P is a minimal prime ideal of R if and only if it is a prime v-ideal.

Proof. Assume that P is a minimal prime ideal. Let c be any regular element in P. Then since $(cR)^* = cR$ and R is regular, we get $P \supseteq P_0 \supseteq (P_i^*)^* \supseteq (P_i^*)^*$, where P_i is a prime v-ideal. Hence $P \supseteq P_i$ for some i and so $P = P_i$. Conversely assume that $P \supseteq P_0 \neq 0$, where P_0 is a prime ideal. Then since $P_0^* (P_0^* P_0) = P_0^* P_0 R = P_0$ and $P_0^* P_0 \subseteq P_0$, we have $P_0^* \subseteq P_0$ and thus $P_0^* = P_0$. It follows that P_0 is a maximal element in $F'(R)$ by [2, p. 11], a contradiction. Hence P is a minimal prime ideal of R.

Remark. Let R be a maximal order satisfying the condition (A). Then it is evident from the proof of the lemma that prime v-ideals are minimal prime ideals of R.

Let I be any right ideal of R. Then we denote by \sqrt{I} the set $\cup \{ (s^{-1}I:R), s \in I, s \in R \}$. Following [3], if \sqrt{I} is an ideal of R, then we say that I is primal and that \sqrt{I} is the adjoint ideal of it. A right ideal I of R is called primary if $JA \subseteq I$ and $J \not\subseteq I$ implies that $A^* \subseteq I$ for some positive integer n, where J is a right ideal of R and A is an ideal of R. We shall apply these concepts for integral right v-ideals.

Lemma 5. Let R be a maximal order satisfying the condition (A) and let I be a meet-irreducible element in $F'(R)$. Then I is primal, and \sqrt{I} is a minimal prime ideal of R or 0, and $\sqrt{I} = (x^{-1}I : R)$, for some $x \in I$.

Proof. If $\sqrt{I} = 0$, then the assertion is evident. Assume that $\sqrt{I} \neq 0$. By Lemma 3, $(s^{-1}I : R)$ is a v-ideal or 0. Hence the set $S = \{(s^{-1}I : R), s \in I, s \in R \}$ has a maximal element. Assume that $(s^{-1}I : R)$, and $(t^{-1}I : R)$, are maximal elements in S. Then $(sR+I)(s^{-1}I : R), I$ implies that $(sR+I)(s^{-1}I : R) \subseteq I$ by Lemma 2 and so $(s^{-1}I : R), \subseteq (I : (sR+I)^*)$. The converse inclusion is clear. Thus we have $(s^{-1}I : R), = (I : (sR+I)^*)$. Similarly $(t^{-1}I : R), = (I : (tR+I)^*)$. Since I is irreducible in $F'(R)$, we have $I \subseteq (sR+I)^* \cap (tR+I)^* = I$. Let x be any element in J but not in I. Then it follows that $(x^{-1}I : R), \subseteq (s^{-1}I : R), (t^{-1}I : R), \sigma$, so that $\sqrt{I} = (x^{-1}I : R), = (s^{-1}I : R),$, which is a v-ideal. Hence I is primal. If $AB \subseteq \sqrt{I}$ and $A \not\subseteq \sqrt{I}$, where A and B are ideals of R, then $xA \subseteq I$ and $xA \not\subseteq I$. Let y be any element in xA but not in I. Then $yB \subseteq I$ and so $B \subseteq (y^{-1}I : R), \subseteq \sqrt{I}$. Thus \sqrt{I} is a prime ideal of R. It follows that \sqrt{I} is minimal from the remark to Lemma 4.

A right ideal of R is said to be bounded if it contains a non-zero ideal of R.
Lemma 6. Let R be a maximal order satisfying the condition (A) and let I be an irreducible element in $F(R)$. If I is bounded, then it is primary and $(\sqrt{I})^n \subseteq I$ for some positive integer n.

Proof. Since $I \in F(R)$ and is bounded, $(I:R)$ is non-zero and is a v-ideal. Write $(I:R) = \left((P_1^*)^\cdot \cdot \cdot (P_k^*)^* \right)^*$, where P_i are prime v-ideals. For any i ($1 \leq i \leq k$), we let $B_i = (P_1^*)^\cdot \cdot \cdot (P_{i-1}^*)^* o (P_{i+1}^*)^* \cdot \cdot \cdot o (P_k^*)^*$. Then $B_i \subseteq I$ and $B_i P_i \subseteq (I:R)$, because $F^*(R)$ is an abelian group. Thus $P_i \subseteq \sqrt{I}$ and so $\sqrt{I} = \sqrt{I} (1 \leq i \leq k)$ by Lemma 5. Therefore $(\sqrt{I})^n \subseteq I$. It is evident that I is primary.

If A is an ideal of R, then we denote by $C(A)$ those elements of R which are regular mod (A).

Lemma 7. Let R be a maximal order satisfying the condition (A). Let P be a prime v-ideal. Then

(1) $C(P) = C((P^n)^*)$ for every positive integer n.

(2) $C(P) \subseteq C(0)$.

Proof. (1) We shall prove by the induction on $n (>1)$. Assume that $C(P) = C((P^n)^*)$. If $cx \in (P^n)^*$, where $c \in C(P)$ and $x \in R$, then $cx (P^{-1})^{n-1} \subseteq (P^n)^*(P^{-1})^{n-1} \subseteq P$ by Lemma 2. Since $cx \in (P^n)^*$, we get $x \in (P^{-1})^{n-1}$ and so $x(P^{-1})^{n-1} \subseteq P$. Hence $x(P^{-1})^{n-1} \subseteq P$. Then we have $(xR + P^n)(P^{-1})^{n-1}P^{-1} \subseteq P$ so that $x \in (P^n)^*$ by Lemma 2. Conversely suppose that $cx \in P$, $c \in C((P^n)^*)$, $x \in R$. Then $cx P^{n-1} \subseteq (P^n)^*$ and so $cx P^{n-1} \subseteq (P^n)^*$. Since $(xP + P^n) P^{n-1}(P^{-1})^{n-1} \subseteq (P^n)^*(P^{-1})^{n-1} \subseteq P$, we get $x \in P$ by Lemma 2. Therefore $C(P) = C((P^n)^*)$.

(2) If $0 \neq \cap_n (P^n)^*$, then it is a v-ideal by Lemma 2. Write $\cap_n (P^n)^* = (P_1^*)^\cdot \cdot \cdot o (P_k^*)^*$, where P_i are prime v-ideals. This is a contradiction, because $F^*(R)$ is an abelian group and P_i are minimal prime ideals of R. Hence $0 = \cap_n (P^n)^*$. Therefore (2) follows from (1).

If P is a prime ideal of a ring S, then the family $T_P = \{ I : \text{right ideal } | s^{-1}I \cap C(P) \neq 0 \}$ for any $s \in S$ is a right additive topology (cf. Ex. 4 of [12, p. 18]). The following lemma is due to Lambek and Michler if S is right noetherian. However, only trivial modifications to their proof are needed to establish the more general result.

Lemma 8. Let P be a prime ideal of S and let $\overline{S} = S/P$ be a right prime Goldie ring. Then the torsion theory determined by the S-injective hull $E(\overline{S})$ of \overline{S} coincides with one determined by the right additive topology T_P, that is, a right ideal I of S is an element in T_P if and only if $\text{Hom}_S(S/I, E(\overline{S})) = 0$ (Corollary 3.10 of [8]).

Lemma 9. Let R be a maximal order satisfying the condition (A) and let P
be a prime \(v \)-ideal such that \(\overline{R} = R/P \) is a prime Goldie ring. If \(I \) is any element in \(F'_i(R) \) such that \(R \ni I \supseteq P \), then \(I \cap C(P) = \phi \).

Proof. It is enough to prove the lemma when \(I \) is a maximal element \(F'_i(R) \). Since \(I^{-1} \ni R, P \ni I^{-1} \cap R \supseteq P \). If \(P \ni I^{-1} \cap R = P \), then \(P^{-1} = (P \ni I^{-1})^{-1} \cup *R \), because the mapping: \(J \rightarrow J^{-1} \) is an inverse lattice isomorphism between \(F'_i(R) \) and \(F'_i(R) \). By Lemma 3, \(P^{-1} = I \ni P^{-1} \cup *R \). On the other hand \(P \subseteq I \) implies that \(R \subseteq I \ni P^{-1} \). Hence \(P^{-1} = I \ni P^{-1} \) and so \(R = I \), a contradiction. Thus we have \(P \ni I^{-1} \cap R \supseteq P \). Let \(a \) be any element in \(P \ni I^{-1} \cap R \) but not in \(P \). Then \(a \subseteq \ni (P \ni I^{-1}) \ni \subseteq P \ni I^{-1} \ni I = P \) so that \(I \ni a^{-1}P \supseteq R \). Since \(a^{-1}P \) is a right \(v \)-ideal by Lemma 3, we get \(I = a^{-1}P \). Then \(\text{Hom}(R/I, E(R)) \neq 0 \), because \(R/I = a^{-1}P \ni (aR + P)/P \ni R \). Now assume that \(I \cap C(P) = \phi \) and let \(e \) be any element in \(I \cap C(P) \). Then \(eR + P \in T \), by Lemma 3.1 of [6]. Hence \(I \subseteq T \), and thus \(\text{Hom}(R/I, E(R)) = 0 \) by Lemma 8. This is a contradiction and so \(I \cap C(P) = \phi \).

For convenience, we write \(M(p) \) for the family of minimal prime ideals of \(R \). If \(R \) is a regular maximal order satisfying the condition (A), then we know from Lemma 4 that a prime ideal \(P \) is an element in \(M(p) \) if and only if it is a prime element in \(F'(R) \).

Lemma 10. Let \(R \) be a regular maximal order satisfying the condition (A), \(P \subseteq M(p) \) and let \(I \in F'_i(R) \). If \(\overline{R} = R/P \) is a prime Goldie ring, then \(I \ni *P = R \) if and only if \(I \ni B \) such that \(B \subseteq P \).

Proof. Assume that \(I \ni B \), where \(B \) is an ideal not contained in \(P \). Then \(I \ni B * \) and \(*P \ni B * = R \), because \(P \) is a maximal element in \(F'(R) \) (cf. [2, p. 11]). Therefore \(I \ni *P = R \). Conversely assume that the family \(S = \{ I \in F'_i(R) \mid I \ni *P = R, I \ni P \text{ and } I \ni B \text{ for any ideal } B \text{ not contained in } P \} \) is not empty and let \(I \) be a maximal element in \(S \). If \(I \) is irreducible in \(F'_i(R) \), then there exists \(P' \) in \(M(p) \) such that \(I \ni P' \) by Lemmas 5 and 6. Since \(I \subseteq S \), we have \(P = P' \). If \(n = 1 \), then \(R = I \ni *P = I \), a contradiction. We may assume that \(I \ni P \ni 1 \) and \(n > 1 \). Then \((P \ni 1)^* = (I \ni *P \ni (P \ni 1)^*) = I \ni (P \ni 1)^* \ni (P \ni *) \ni I \approx I \) by Lemmas 2 and 3. This is a contradiction. If \(I \) is reducible, then \(I = I_1 \cap I_2 \), where \(I \ni F'_i(R) \) and \(I \ni I_i (i = 1, 2) \). There are non zero ideals \(B_i (\ni P) \) such that \(I_i \ni B_i \). Thus \(I \) contains the ideal \(B_1B_2 \) not contained in \(P \), a contradiction. Hence \(S = \phi \). This implies that if \(I \ni *P = R \), then \(I \) contains an ideal not contained in \(P \).

Let \(P \) be a prime ideal of a ring \(S \). If \(S \) satisfies the Ore condition with respect to \(C(P) \), then we denote by \(S_P \) the quotient ring with respect to \(C(P) \).

Lemma 11. Let \(R \) be a regular maximal order satisfying the condition (A) and let \(P \) be an element in \(M(p) \) such that \(\overline{R} = R/P \) is a prime Goldie ring. Then
CHARACTERIZATION OF BOUNDED KRULL PRIME RINGS

(1) R satisfies the Ore condition with respect to $C(P)$.
(2) $R_p = \lim_{\rightarrow} B^{-1}$, where B ranges over all non zero ideals not contained in P.
(3) R_p is a noetherian, local and Asano order.

Proof. (1) It is clear that $T = \lim_{\rightarrow} B^{-1}(B(\not\subseteq P); \text{ideal})$ is an overring of R.
Let c be any element in $C(P)$. Then c is regular by Lemma 7 and so $cR \subseteq P$ by Lemma 9 and so cR contains an ideal not contained in P by Lemma 10. Hence $c^{-1} \subseteq T$. So for any $r \in R$, $c \in C(P)$, there exists an ideal B of R such that $c^{-1}rB \subseteq R$. It is evident that $B \cap C(P) \not\subseteq P$. Then we have $c^{-1}rB = s$ for some $s \in R$, that is, $rd = cs$. This implies that R satisfies the right Ore condition with respect to $C(P)$. The other Ore condition is shown to hold by a symmetric proof.

(2) is evident from (1).

(3) We let $P' = PR_p$. Then clearly $P' = R_p$ and $P \subseteq P' \cap R$. So we may assume that $R/R' \subseteq R_p = R_p$ as rings. By (1), R_p is the quotient ring of R. Since P' is a maximal ideal of R_p. Let V' be any maximal right ideal of R_p. Suppose that $V' \not\subseteq P'$. Then $V' + P' = R_p$. Write $1 = v + pc^{-1}$, where $v \in V'$, $p \in P$ and $c \in C(P)$. Then $c = vc + p$ and so $vc = c - p \in C(P) \cap V'$. This implies that $V' = R_p$, a contradiction and so $V' \subseteq P'$. Hence P' is the Jacobson radical of R_p. The ideal $P^{-1}P$ properly contains P so that $C(P) \cap P^{-1}P \not\subseteq P$. It follows that $P^{-1}PR_p = R_p$. Similarly $R_pPP^{-1} = R_p$. Hence P' is an invertible ideal of R_p. Therefore R_p/P'^n is an artinian ring for any n, because R_p is an artinian ring. Let I' be any essential right ideal of R_p. It is clear that $I' = (I' \cap R)R_p$. Let c be any regular element of $I' \cap R$. Then, since $cR \subseteq F'(R)$ and R is regular, cR contains a non zero v-ideal $(P_1^n) \cdots (P_k^n)$, where $P_i \subseteq M(p)$. So we get $I' \subseteq R_pP^n = P^n$. Therefore essential right ideals of R_p satisfies the maximum condition. Since R_p is finite dimensional in the sense of Goldie, R_p is right noetherian. Similarly R_p is left noetherian. Hence R_p is a noetherian, local and Asano order by Proposition 1.3 of [7].

After all these preparations we now prove the following theorem which is the purpose of this paper:

Theorem. A prime Goldie ring R is a bounded Krull prime ring if and only if it satisfies the following conditions:

(1) R is a regular maximal order,
(2) R satisfies the maximum condition for integral right and left v-ideals,
(3) R/P is a prime Goldie ring for any $P \subseteq M(p)$.

Proof. Assume that $R = \bigcap_{i \in I} R_i$ is a bounded Krull prime ring, where R_i is a noetherian, local and Asano order with unique maximal ideal P_i. (1) is
clear from Corollary 1.4 and Lemma 1.6 of [10]. Let I be any right (left) R-ideal. Then $I^* = \cap IR_i (= \cap R_i I)$ by Proposition 1.10 of [10]. Since R_i is noetherian, (2) follows from the condition (K3) in the definition of Krull rings. Let $P_i = P \cap R$. It follows that $\{P_i | i \in I\} = M(p)$ by Proposition 1.7 of [10] so that (3) is evident from Proposition 1.1 of [9].

It remains to prove that the conditions (1), (2) and (3) are sufficient. Let P be any element in $M(p)$. Then R satisfies the Ore condition with respect to $C(P)$ and R_P is a noetherian, local and Asano order by Lemma 11. Hence R_P is an essential overring of R. It is clear that $R \subseteq T = \cap R_p$, where $P \in M(p)$. To prove the converse inclusion let x be any element of T. Then there is an ideal $B_x (\subseteq P)$ such that $xB_x \subseteq R$ by Lemma 11. Let B be the sum of all ideals B_x. If B^* is different from R, then B^* is contained in some P in $M(p)$. But $B^* \subseteq P$ so that $B^* = R$. Hence we have $x \in (xR + R) \subseteq (xR + R)^* \subseteq B^* = (xB + B)^* \subseteq R$. Thus we get $R = \cap R_p$. Let c be any regular element in R. Then cR contains a v-ideal $(P_1)^* \cdots (P_k)^*$, where $P_i \in M(p)$. It follows that $cR_p = R_p$ for every $P \in M(p)$ different to $P_i (1 \leq i \leq k)$ by Lemma 11. Hence R is a bounded Krull prime ring. This completes the proof of the theorem.

Corollary. Let R be a regular, noetherian and prime ring. If R is a maximal order, then it is a bounded Krull prime ring.

OSAKA UNIVERSITY

References

