

Title	A remark on asymptotic sufficiency up to higher orders in multidimensional parameter case
Author(s)	Suzuki, Takeru
Citation	Osaka Journal of Mathematics. 1980, 17(1), p. 245-252
Version Type	VoR
URL	https://doi.org/10.18910/8729
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

A REMARK ON ASYMPTOTIC SUFFICIENCY UP TO HIGHER ORDERS IN MULTI-DIMENSIONAL PARAMETER CASE

TAKERU SUZUKI

(Received March 5, 1979)

1. Introduction. Suppose that n -dimensional random vector $z_n = (x_1, x_2, \dots, x_n)$ is distributed according to a probability measure $P_{\theta, n}$ parameterized by $\theta \in \Theta \subset \mathbf{R}^p$, and each component x_i is independently and identically distributed. In Suzuki [3] it was shown that when $p=1$ a statistic $t_n^* = (\hat{\theta}_n, \Phi_n^{(1)}(z_n, \hat{\theta}_n), \dots, \Phi_n^{(k)}(z_n, \hat{\theta}_n))$ is asymptotically sufficient up to order $o(n^{-(k-1)/2})$ in the following sense: For each n t_n^* is sufficient for a family $\{Q_{\theta, n}; \theta \in \Theta\}$ of probability measures and that

$$\lim_{n \rightarrow \infty} n^{(k-1)/2} \|P_{\theta, n} - Q_{\theta, n}\| = 0$$

uniformly on any compact subset of Θ (where $\|\cdot\|$ means the total variation norm of a signed measure). Here $\hat{\theta}_n$ is some reasonable estimator of θ and $\Phi_n^{(i)}(z_n, \theta)$ means the i -th logarithmic derivative relative to θ of the density of $P_{\theta, n}$. In this paper we show that the result can be extended to the case where underlying distribution $P_{\theta, n}$ has multi-dimensional parameter θ . Exact form of t_n^* would be found in the statement of the theorem in Section 3. In Michel [2] a similar result was obtained with order of sufficiency $o(n^{-(k-2)/2})$, and hence ours is more accurate one.

2. Notations and assumptions. Let $\Theta(\neq \phi)$ be an open subset of p -dimensional Euclidean space \mathbf{R}^p . Suppose that for each $\theta \in \Theta$ there corresponds a probability measure P_θ defined on a measurable space (X, \mathcal{A}) . For each $n \in N = \{1, 2, \dots\}$ let $(X^{(n)}, \mathcal{A}^{(n)})$ be the cartesian product of n copies of (X, \mathcal{A}) , and $P_{\theta, n}$ the product measure of n copies of P_θ . For a signed measure $\tilde{\lambda}$ on $(X^{(n)}, \mathcal{A}^{(n)})$, $\|\tilde{\lambda}\|$ means the total variation norm of $\tilde{\lambda}$ over $\mathcal{A}^{(n)}$. For a function h and a probability P , $E[h; P]$ stands for the expectation of h under P . In the following it will be assumed that the map: $\theta \rightarrow P_\theta$ is one to one, and that for each $\theta \in \Theta$ P_θ has a density $f(x, \theta)$ relative to a sigma-finite measure μ on (X, \mathcal{A}) . We assume that $f(x, \theta) > 0$ for every $x \in X$ and every $\theta \in \Theta$. We denote by μ_n the product measure of n copies of the same com-

ponent μ . We define $\Phi(x, \theta) = \log f(x, \theta)$ for each $x \in X$ and $\theta \in \Theta$, and $\Phi_n(z_n, \theta) = \sum_{v=1}^n \Phi(x_v, \theta)$ for each $n \in N$, each $z_n = (x_1, \dots, x_n) \in X^{(n)}$ and $\theta \in \Theta$. For a vector $u \in \mathbf{R}^p$, $\|u\|$ denotes the usual Euclidean norm of u . For $\varepsilon > 0$ and $a \in \mathbf{R}^p$ we define $U(a; \varepsilon) = \{u \in \mathbf{R}^p; \|u - a\| < \varepsilon\}$ and $V(a; \varepsilon) = \{u \in \mathbf{R}^p; \|u - a\| \leq \varepsilon\}$. Let k be a fixed positive integer.

Condition R. (1) For every $x \in X$ $\Phi(x, \theta)$ is $(k+2)$ -times continuously differentiable with respect to θ in Θ . For $m \in N$ define $J_m = \{(i_1, \dots, i_m); i_j = 1, \dots, p (j=1, \dots, m)\}$. For each $m (1 \leq m \leq k+2)$ and each $(i_1, i_2, \dots, i_m) \in J_m$ define

$$\Phi^{i_1 \dots i_m}(x, \theta) = \partial^m \Phi(x, \theta) / \partial \theta_{i_1} \dots \partial \theta_{i_m},$$

and

$$\Phi_n^{i_1 \dots i_m}(z_n, \theta) = \sum_{v=1}^n \Phi^{i_1 \dots i_m}(x_v, \theta).$$

(2) For every $a = (a_1, \dots, a_p) \in \mathbf{R}^p (a \neq 0)$ and every $\theta \in \Theta$ we have

$$P_\theta \left(\sum_{i=1}^p a_i \Phi^i(x, \theta) \neq 0 \right) > 0.$$

(3) For every $\theta \in \Theta$, there exists a positive number ε such that

- a. $\sup_{\tau \in V(\theta; \varepsilon)} E \left[\sup_{\sigma \in V(\theta; \varepsilon)} \{ \Phi^{i_1 \dots i_{k+2}}(x, \sigma) \}^2; P_\tau \right] < \infty$ for every $(i_1, \dots, i_{k+2}) \in J_{k+2}$
- b. $\sup_{\tau \in V(\theta; \varepsilon)} E[|\Phi^{i_1 \dots i_{k+1}}(x, \tau)| \cdot u_\varepsilon^i(x, \tau); P_\tau] < \infty$ and $E[u_\varepsilon^i(x, \theta)] < \infty$ for every $(i_1, \dots, i_{k+1}) \in J_{k+1}$ and every $i (1 \leq i \leq p)$, where $u_\varepsilon^i(x, \tau) = \sup_{\sigma \in V(\tau; \varepsilon)} [|(\partial f(x, \theta) / \partial \theta_i)_{\theta=\sigma}| / f(x, \tau)]$.
- c. $0 < \inf_{\tau \in V(\theta; \varepsilon)} \text{Var}(\Phi^{i_1 \dots i_{k+1}}(x, \tau); P_\tau) \leq \sup_{\tau \in V(\theta; \varepsilon)} \text{Var}(\Phi^{i_1 \dots i_{k+1}}(x, \tau; P_\tau) < \infty$

for every $(i_1, \dots, i_{k+1}) \in J_{k+1}$.

We define for each $\varepsilon' > 0$, $\sigma \in \Theta$ and $(i_1, \dots, i_{k+1}) \in J_{k+1}$

$$\bar{Z}^{i_1 \dots i_{k+1}}(x; \varepsilon', \sigma) = \sup \{ \Phi^{i_1 \dots i_{k+1}}(x, \tau) - E[\Phi^{i_1 \dots i_{k+1}}(x, \tau); P_\tau]; \tau \in V(\sigma; \varepsilon') \cap \Theta \}$$

and

$$\underline{Z}^{i_1 \dots i_{k+1}}(x; \varepsilon', \sigma) = -\inf \{ \Phi^{i_1 \dots i_{k+1}}(x, \tau) - E[(\Phi^{i_1 \dots i_{k+1}}(x, \tau); P_\tau]; \tau \in V(\sigma; \varepsilon') \cap \Theta \}$$

(4) For each $\theta \in \Theta$ there exist positive numbers η and ρ such that for every $(i_1, \dots, i_{k+1}) \in J_{k+1}$ and every $(t, \varepsilon') \in (-\rho, \rho) \times (0, \eta]$ the moment generating functions (m.g.f.s) of $\bar{Z}^{i_1 \dots i_{k+1}}(x; \varepsilon', \sigma)$ and $\underline{Z}^{i_1 \dots i_{k+1}}(x; \varepsilon', \sigma)$ converge uniformly in $\sigma \in U(\theta; \eta)$.

3. Asymptotic sufficient statistics up to higher orders. An esti-

mator of θ depending on $z_n = (z_1, \dots, z_n) \in X^{(n)}$ is an $A^{(n)}$ -measurable function from $X^{(n)}$ to R^p . Such estimator will be called strict if its range is a subset of Θ . For each $\delta (0 < \delta < 1/2)$ we denote by $C_k(\delta)$ the class of all sequences of strict estimators $\hat{\theta}_n$ of θ such that for every compact subset K of Θ

$$\sup_{\theta \in K} P_{\theta, n}(n^{1/2} ||\hat{\theta}_n(z_n) - \theta|| > n^\delta) = o(n^{-(k-1)/2}).$$

Here the notation $o(a_n)$ means that $\lim_{n \rightarrow \infty} o(a_n)/a_n = 0$. In Pfanzagl [1] it was shown that under Condition R for any δ satisfying $0 < \delta < 1/2$ $C_k(\delta)$ does not empty. Let $\delta_0 = 1/[2(k+2)]$ and $C_k = \bigcup_{0 < \delta < \delta_0} C_k(\delta)$. We have the following result which is an extension of Tehorem 2 in Suzuki [3] to a multi-dimensional parameter case. Since the proof is much analogous to the one in [3] we shall only sketch the outlines and details will be omitted (see [3] for precise arguments).

Theorem. *Suppose that Condition R is satisfied, and that $\{\hat{\theta}_n\} \in C_k$ then there exists a sequence $\{Q_{\theta, n}; \theta \in \Theta\}$, $n \in N$, of families of probability measures on $(X^{(n)}, A^{(n)})$ with the following properties: (1) For each $n \in N$, the statistic $t_n^* = (\hat{\theta}_n, \Phi_n(z_n, \hat{\theta}_n) (i=1, \dots, p), \Phi_n^{ij}(z_n, \hat{\theta}_n) ((i, j) \in J_2), \dots, \Phi_n^{i_1 \dots i_k}(z_n, \hat{\theta}_n) ((i_1, \dots, i_k) \in J_k))$ is sufficient for $\{Q_{\theta, n}; \theta \in \Theta\}$. (2) For every compact subset K of Θ*

$$\sup_{\theta \in K} ||P_{\theta, n} - Q_{\theta, n}|| = o(n^{-(k-1)/2})$$

Proof. Suppose that Condition R is satisfied, and that $\{\hat{\theta}_n\} \in C_k(\delta_1)$ where δ_1 satisfies $0 < \delta_1 < \delta_0$. Let δ and γ be two numbers satisfying $\delta_1 < \delta < \delta_0$ and $\delta < \gamma < (1/2) - (k+1)\delta$, and let $\varepsilon_n = n^{\delta - (1/2)}$ $\varepsilon'_n = n^{\gamma - (1/2)}$. Define

$$\begin{aligned} W_n^1 &= \{z_n \in X^{(n)}; ||\theta - \hat{\theta}_n(z_n)|| \leq \varepsilon_n \text{ and } [\theta: \hat{\theta}_n] \subset \Theta\} \\ W_n^2 &= \{z_n \in X^{(n)}; \gamma_n(z_n) \leq \varepsilon'_n\} \end{aligned}$$

where

$$[\theta: \hat{\theta}_n] = \{t\theta + (1-t)\hat{\theta}_n; 0 \leq t \leq 1\}$$

and

$$\gamma_n(z_n) = \max_{i_1, \dots, i_{k+1} \in J_{k+1}} \sup_{\tau \in V(\hat{\theta}_n: 2\varepsilon_n) \cap \Theta} \{ |\Phi_n^{i_1 \dots i_{k+1}}(z_n, \tau)/n - E[\Phi^{i_1 \dots i_{k+1}}(x, \tau); P_\tau]| ;$$

$$\tau \in V(\hat{\theta}_n: 2\varepsilon_n) \cap \Theta \} .$$

By a Taylor expansion of $\Phi_n(z_n, \theta)$ around $\theta = \hat{\theta}_n$ we have

$$(3.1) \quad \Phi_n(z_n, \theta) = \Phi_n(z_n, \hat{\theta}_n) + \Psi_n(t_n^*, \theta) + R_n(z_n, \theta)$$

where denoting by $\hat{\theta}_{n,i}$ the i -th comonents of $\hat{\theta}_n$

$$\Psi_n(t_n^*, \theta) = \sum_{m=1}^k \sum_{i_1=1}^p \dots \sum_{i_m=1}^p \prod_{j=1}^m (\theta_{i_j} - \hat{\theta}_{n,i_j}) \cdot \Phi_n^{i_1 \dots i_m}(z_n, \hat{\theta}_n)/m! + s_n'(\theta_n, \theta),$$

$$s'_n(\hat{\theta}_n, \theta) = n \sum_{i_1=1}^p \cdots \sum_{i_{k+1}=1}^p \prod_{j=1}^{k+1} (\theta_{i_j} - \hat{\theta}_{n,i_j}) E[\Phi^{i_1 \cdots i_{k+1}}(x, \theta); P_\theta] / (k+1)!$$

$$R_n(Z_n, \theta) = \begin{cases} \Phi_n(z_n, \theta) - \Phi_n(z_n, \hat{\theta}_n) - \Psi_n(t_n^*, \theta) & (\text{if } [\theta: \hat{\theta}_n] \subset \Theta), \\ n \sum_{i_1=1}^p \cdots \sum_{i_{k+1}=1}^p \prod_{j=1}^{k+1} (\theta_{i_j} - \hat{\theta}_{n,i_j}) [\int_0^1 (1-\lambda)^k \{\Phi_n^{i_1 \cdots i_{k+1}}(z_n, \hat{\theta}_n + \lambda(\theta - \hat{\theta}_n))\} / n \\ - E[\Phi^{i_1 \cdots i_{k+1}}(x, \theta); P_\theta] \} d\lambda] / k! & (\text{if } [\theta: \hat{\theta}_n] \subset \Theta). \end{cases}$$

Define

$$(3.2) \quad q_n^*(z_n, \theta) = I_{W_n^1}(z_n) \cdot I_{W_n^2}(z_n) \cdot \exp \{\Phi_n(z_n, \hat{\theta}_n) + \Psi_n(t_n^*, \theta)\}$$

$$= r_n^*(t_n^*, \theta) \cdot s_n^*(z_n) \geq 0,$$

where

$$r_n^*(t_n^*, \theta) = I_{W_n^1}(z_n) \exp \{\Psi_n(t_n^*, \theta)\},$$

$$s_n^*(z_n) = I_{W_n^2}(z_n) \cdot \exp \{\Phi_n(z_n, \hat{\theta}_n)\}$$

and $I_{W_n^i}(z_n)$ mean the indicator functions of W_n^i . The integrability of $q_n^*(\cdot, \theta)$ follows from (3.4). Let $Q_{\theta,n}^*$ be a measure on $(X^{(n)}, A^{(n)})$ defined by

$$Q_{\theta,n}^*(A) = \int_A q_n^*(z_n, \theta) d\mu_n(A \in A^{(n)}).$$

By (3.1) and (3.2) we have

$$(3.3) \quad \int_{X^{(n)}} |p_n(z_n, \theta) - q_n^*(z_n, \theta)| d\mu_n = T_n^1(\theta) + T_n^2(\theta) + T_n^3(\theta)$$

where

$$p_n(z_n, \theta) = \prod_{v=1}^n f(x_v, \theta),$$

$$T_n^1(\theta) = \int_{W_n^1 \cap W_n^2} |1 - \exp \{-R_n(z_n, \theta)\}| |p_n(z_n, \theta)| d\mu_n,$$

$$T_n^2(\theta) = P_{\theta,n}((W_n^1)^c) \quad \text{and}$$

$$T_n^3(\theta) = P_{\theta,n}(W_n^1 \cap (W_n^2)^c).$$

Let θ_0 be an arbitrarily fixed point of Θ , and let K be a compact subset of Θ . We assume without loss of generality that K contains θ_0 . From Condition R it follows that there exist positive numbers ε^* , ρ^* and η^* depending only on K but not depending on θ in K such that

$$M_1 = \sum_{i_1, \dots, i_{k+2} \in J_{k+2}} \sup_{\theta \in K} \sup_{\tau \in \mathcal{V}(\theta; \varepsilon^*)} E[\sup_{\sigma \in \mathcal{V}(\theta; \varepsilon^*)} \{\Phi^{i_1 \cdots i_{k+2}}(x, \sigma)\}^2; P_\tau] < \infty$$

$$M_2 = \max_{i_1, \dots, i_{k+1} \in J_{k+1}} \sum_{j=1}^p \sup_{\theta \in K} E[|\Phi^{i_1 \cdots i_{k+1}}(x, \theta)| \cdot u_{\hat{a}^*}^j(x, \theta); P_\theta] < \infty$$

$$0 < \inf_{\tau \in K} \text{Var}(\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau)$$

$$\leq \sup_{\tau \in K} \text{Var}(\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau) < \infty \quad (\text{for every } (i_1, \dots, i_{k+1}) \in J_{k+1})$$

and that for every $\theta \in K$ and every $(t, \varepsilon', \sigma) \in (-\rho^*, \rho^*) \times (0, \eta^*] \times U(\theta; \eta^*)$ the m.g.f.'s of $\bar{Z}^{i_1 \cdots i_{k+1}}(x; \varepsilon', \sigma)$ and $Z^{i_1 \cdots i_{k+1}}(z; \varepsilon', \sigma)$ exist and converge uniformly in $\sigma \in U(\theta; \eta^*)$. Hence there exists a number n_1 such that for every $n \geq n_1$, $\theta \in K$, $(i_1, \dots, i_{k+1}) \in J_{k+1}$ and every $z_n \in W_n^1 \cap W_n^2$ we have

$$\begin{aligned} & \sup_{\tau \in V(\theta; \varepsilon_n)} |\Phi_n^{i_1 \cdots i_{k+1}}(z_n, \tau)/n - E[\Phi^{i_1 \cdots i_{k+1}}(x, \theta); P_\theta]| \\ & \leq \sup_{\tau \in V(\theta; \varepsilon_n)} |\Phi_n^{i_1 \cdots i_{k+1}}(z_n, \tau)/n - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau]| \\ & + \sup_{\tau \in V(\theta; \varepsilon_n)} |E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau] - E[\Phi^{i_1 \cdots i_{k+1}}(x, \theta); P_\theta]| \\ & \leq \sup_{\tau \in V(\theta; 2\varepsilon_n)} |\Phi_n^{i_1 \cdots i_{k+1}}(z_n, \tau)/n - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau]| + [M_1^{1/2} + M_2] \cdot \varepsilon_n \\ & \leq \gamma_n(z_n) + \varepsilon'_n \\ & \leq 2\varepsilon'_n. \end{aligned}$$

Thus we have

$$\begin{aligned} \sup_{\theta \in K} T_n^1(\theta) & \leq \sup_{\theta \in K} \int_{X^{(n)}} |R_n(z_n, \theta)| \cdot \exp(|R_n|) dP_{\theta, n} \\ & \leq 4 \cdot n^{-(k-1)/2} n^{(k+1)\delta + \gamma - (1/2)} / (k+1)! \end{aligned}$$

for sufficiently large n . Therefore

$$(3.4) \quad \sup_{\theta \in K} T_n^1(\theta) = o(n^{-(k-1)/2}).$$

By the definition of $C_k(\delta_1)$ we have easily

$$(3.5) \quad \sup_{\theta \in K} T_n^2(\theta) = o(n^{-(k-1)/2}).$$

Next we evaluate the third term $T_n^3(\theta)$ as follows.

$$\begin{aligned} (3.6) \quad \sup_{\theta \in K} T_n^3(\theta) & = \sup_{\theta \in K} P_{\theta, n}(|\theta - \hat{\theta}_n(z_n)| \leq \varepsilon_n, [\theta: \hat{\theta}_n] \subset \Theta, \gamma_n(z_n) > \varepsilon'_n) \\ & \leq \sup_{\theta \in K} P_{\theta, n} \left(\max_{(i_1, \dots, i_{k+1}) \in J_{k+1}} \sup_{\tau \in V(\theta; 3\varepsilon_n)} |\Phi_n^{i_1 \cdots i_{k+1}}(z_n, \tau)/n \right. \\ & \quad \left. - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau]| > \varepsilon'_n \right) \\ & \leq \sum_{(i_1, \dots, i_{k+1}) \in J_{k+1}} \sup_{\theta \in K} P_{\theta, n} \left(\sum_{v=1}^n \sup_{\tau \in V(\theta; 3\varepsilon_n)} \{ \Phi^{i_1 \cdots i_{k+1}}(x_v, \tau) \right. \\ & \quad \left. - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau] \} > n\varepsilon'_n \right) \\ & \quad + \sum_{(i_1, \dots, i_{k+1}) \in J_{k+1}} \sup_{\theta \in K} P_{\theta, n} \left(\sum_{v=1}^n \inf_{\tau \in V(\theta; 3\varepsilon_n)} \{ \Phi^{i_1 \cdots i_{k+1}}(x_v, \tau) \right. \\ & \quad \left. - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau] \} < -n\varepsilon'_n \right). \end{aligned}$$

Let $a(\varepsilon) = \varepsilon/[4 \cdot M_1^{1/2} + 2M_2]$ and let $Z_v(\varepsilon, \theta) = \bar{Z}^{i_1 \cdots i_{k+1}}(x_v; a(\varepsilon), \theta)$ ($v = 1, \dots, n$). According to the lemma in Suzuki [3] there exist constants $\beta > 0$ and $\varepsilon^{**} > 0$ such that

$$\sup_{\theta \in K} P_{\theta, n} \left(\sum_{v=1}^n Z_v(\varepsilon, \theta) \geq n\varepsilon \right) \geq (1 - \beta\varepsilon^2)^n$$

for every $n \in N$ and every ε satisfying $0 < \varepsilon \leq \varepsilon^{**}$. Hence we have

$$\begin{aligned} (3.7) \quad & \sup_{\theta \in K} P_{\theta, n} \left(\sum_{v=1}^n \sup_{\tau \in \mathcal{V}(\theta : 3\varepsilon_n)} \{ \Phi^{i_1 \cdots i_{k+1}}(x_v, \tau) - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau] \} \right) > n\varepsilon'_n \\ & \leq \sup_{\theta \in K} P_{\theta, n} \left(\sum_{v=1}^n Z_v(\varepsilon'_n, \theta) \geq n\varepsilon'_n \right) \\ & = o(n^{-(k-1)/2}). \end{aligned}$$

Considering the random variable $Z^{i_1 \cdots i_{k+1}}(x; a(\varepsilon), \theta)$ instead of $\bar{Z}^{i_1 \cdots i_{k+1}}(x; a(\varepsilon), \theta)$ we obtain by a similar method to (3.7) that

$$\begin{aligned} (3.8) \quad & \sup_{\theta \in K} P_{\theta, n} \left(\sum_{v=1}^n \inf_{\tau \in \mathcal{V}(\theta : 3\varepsilon_n)} \{ \Phi^{i_1 \cdots i_{k+1}}(x_v, \tau) - E[\Phi^{i_1 \cdots i_{k+1}}(x, \tau); P_\tau] \} \right) < -n\varepsilon'_n \\ & = o(n^{-(k-1)/2}). \end{aligned}$$

From (3.6), (3.7) and (3.8) we have

$$(3.9) \quad \sup_{\theta \in K} T_n^3(\theta) = o(n^{-(k-1)/2}).$$

From (3.3), (3.4), (3.5) and (3.9) we have

$$(3.10) \quad \sup_{\theta \in K} ||P_{\theta, n} - Q_{\theta, n}^*|| = o(n^{-(k-1)/2}).$$

Since θ_0 is contained in K it follows from (3.10) that there exists a number n_0^* such that for every n satisfying $n \geq n_0^*$

$$||P_{\theta_0, n} - Q_{\theta_0, n}^*|| < 1/2.$$

Hence particularly for every $n \geq n_0^*$ we have

$$(3.11) \quad \int_{X^{(n)}} q_n^*(z_n, \theta_0) d\mu_n > 0.$$

Define $\Theta_n = \{\theta \in \Theta; \int_{X^{(n)}} q_n^*(z_n, \theta) d\mu_n > 0\}$, $c_n(\theta) = [\int_{X^{(n)}} q_n^*(z_n, \theta) d\mu_n]^{-1}$ for $\theta \in \Theta_n$ and $c_n(\theta) = 0$ for $\theta \notin \Theta_n$. From (3.11) $n \geq n_0^*$ implies $\theta_0 \in \Theta_n$. Let $d_n(\theta)$ be the indicator function of Θ_n i.e., $d_n(\theta) = 1$ if $\theta \in \Theta_n$ and $d_n(\theta) = 0$ if $\theta \notin \Theta_n$. We define a 'sufficient density' $q_n(z_n, \theta)$ as follows: $q_n(z_n, \theta) = [c_n(\theta) r_n^*(t_n^*, \theta) + c_n(\theta_0) (1 - d_n(\theta)) r_n^*(t_n^*, \theta_0)] s_n^*(z_n)$ for each $n \geq n_0^*$, $= p_n(z_n, \theta_0)$ for each n satisfying $1 \leq n \leq n_0^* - 1$ where $z_n \in X^{(n)}$ and $\theta \in \Theta$. It can be easily seen that for every $n \in N$ and every $\theta \in \Theta$

$$\int_{X^{(n)}} q_n(z_n, \theta) d\mu_n = 1.$$

Let $Q_{\theta, n}$ be a probability measure on $(X^{(n)}, A^{(n)})$ defined by

$$Q_{\theta,n}(A) = \int_A q_n(z_n, \theta) d\mu_n \quad (A \in \mathcal{A}^{(n)}) .$$

We note that the density $q_n(z_n, \theta)$ has the following form:

$$q_n(z_n, \theta) = r_n(t_n^*, \theta) \cdot s_n(z_n)$$

where

$$\begin{aligned} r_n(t_n^*, \theta) &= c_n(\theta) r_n^*(t_n^*, \theta) + c_n(\theta_0)(1 - d_n(\theta)) r_n^*(t_n^*, \theta_0) & \text{for } n \geq n_0^* \\ &= 1 & \text{for } n \leq n_0^* - 1 \end{aligned}$$

and

$$\begin{aligned} s_n(z_n) &= s_n^*(z_n) & \text{for } n \geq n_0^* \\ &= p_n(z_n, \theta_0) & \text{for } n \leq n_0^* - 1 . \end{aligned}$$

Hence according to the factorization theorem t_n^* is sufficient for the family $\{Q_{\theta,n}; \theta \in \Theta\}$ for each $n \in N$.

By (3.10) there exists a number n_1^* such that for every $n \geq n_1^*$ we have

$$\sup_{\theta \in K} \|P_{\theta,n} - Q_{\theta,n}^*\| < 1/2 .$$

Hence $n \geq n_1^*$ implies $K \subset \Theta_n$. Thus if $n \geq n_2^* = \max(n_0^*, n_1^*)$ then for every $\theta \in K$

$$q_n(z_n, \theta) = c_n(\theta) \cdot q_n^*(z_n, \theta) .$$

From this we have for every $n \geq n_2^*$

$$\begin{aligned} 2 \cdot \|Q_{\theta,n}^* - Q_{\theta,n}\| &= |1 - c_n^{-1}(\theta)| = |P_{\theta,n}(\mathbf{X}^{(n)}) - Q_{\theta,n}^*(\mathbf{X}^{(n)})| \\ &\leq \|P_{\theta,n} - Q_{\theta,n}^*\| , \end{aligned}$$

and hence

$$\sup_{\theta \in K} \|P_{\theta,n} - Q_{\theta,n}\| \leq \sup_{\theta \in K} \|P_{\theta,n} - Q_{\theta,n}^*\| + \sup_{\theta \in K} \|Q_{\theta,n}^* - Q_{\theta,n}\| \leq 2 \cdot \sup_{\theta \in K} \|P_{\theta,n} - Q_{\theta,n}^*\| .$$

Thus by (3.10) we obtain

$$\sup_{\theta \in K} \|P_{\theta,n} - Q_{\theta,n}\| = o(n^{-(k-1)/2}) .$$

This completes the proof of the theorem.

Acknowledgment. The author wishes to express his thanks to Professor T. Kusama for informing him of the literature [2], and also to the referee for many helpful comments.

References

- [1] J. Pfanzagl: *Further results on asymptotic normality* I, Mimeographed note, 1971.
- [2] R. Michel: *Higher order asymptotic sufficiency*, Mimeographed note, 1977.
- [3] T. Suzuki: *Asymptotic sufficiency up to higher orders and its applications to statistical tests and estimates*, Osaka J. Math. **15** (1978), 575-588.

Department of Mathematics
School of Science and Engineering
Waseda University
Shinjuku, Tokyo 160, Japan