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1. Introduction

We will consider stochastic differential games for the system governed by

stochastic partial differential equation (1.1),

(1.1) dX(t) = {AX{t) + β(X(t),Y(t), Z{t)))dt + dM(t), 0<t<T,

with initial condition X(0) — η (£ H),

where A is a uniformly elliptic differential operator, M a noise and Y and Z are

admissible controls of players. The pay-off J is given by (1.2),

(1.2) J ( ί , η;Y,Z)=E [ h(X(8),Y(8), Z(s))ds + q(X(t)), 0<t<T.

In our game, player I controls Y and wishes to maximize J and player II

controls Z and tries to minimize J. Using upper and lower semi-discrete approxi-

mations, we showed in [7] that their limit functions provided the unique viscosity

solutions of associated Isaacs equations respectively. But it was a problem whether

these limit functions coincide with the upper and lower value functions of game

respectively. The aim of this paper is to prove that the value functions are also

unique viscosity solutions of associated Isaacs equations (see Theorem 4.2). So the

upper (resp. lower) value function coincides with the upper (resp. lower) limit

function.

Let Wk, k = 1,2,. . . , be independent 1-dimensional Brownian motions. D

denotes a bounded and convex open domain of Rn with smooth boundary. Let

Y and Z be compact convex subsets of L2(D,RL) and L2(D,RM) respectively.

A process taking values in Y (resp.Z) is called an admissible control of player I

(resp. II), if it is Ft-progressively measurable and right-continuous paths with left

limits, where Ft is the σ-field generated by { Wfc(s), s<t, k — 1,2, •• }. Let us
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put Hk = H*(D), || ||* = its norm and H = H°(= L2(D)), || || = || | |0 for

simplicity.

When players I and II apply admissible controls Y and Z respectively, the

system X evolves according to the stochastic differential equation (1.1) on H and

the pay-off J is given by (1.2); We assume

^WΪ +Σn /(*)§ Φ)C Ceff1

β : H x Y x Z ^ H , and dM(t) is an H valued colored noise having
the form, dM(t) = ΣT=i V™kekdWk(t), with Σmk{— m put) < oo and

an orthonormal base ê  (G CQ°(D)), k = 1, 2, . Precise formulations and
assumptions are given in Section 2.

y (resp.Z) denotes the set of admissible controls of player I (resp. II). We
call a non-anticipative mapping a : Z ->> y (resp.7 : y -ϊ Z) an admissible
strategy of player I (resp. II). Denoting by A (resp. TV) the set of admissible
strategies of player I (resp. II), we define upper and lower value functions ( in
Elliott-Kalton sense) as follows,

(1.3) upper value function: U(t,η) = sup inf J(t,η m,aZ,Z),

(1.4) lower value function: u(t,77) = inf sup J(t,η ;Y,

Thus our main step is to show that these value functions are unique viscosity
solutions of the associated Isaacs equations (1.5) and (1.6) respectively (Theorem
4.2), employing similar arguments as [4], with B-norm (see (2.1)).

^(t,η) -(A*dU(t,η),η)- inf sup ((dU(t,η),β(η,y,z)) + h(η,y,z))
Cft z£Z y e γ

(1.5) - \trace Sd2U(t,η) = 0, 0 < t < T, η <E iJ,
Li

with initial condition U(0) — q

θu
— (t,η) ~(A*du(t,η),η)- sup ini ((du(t,η),β(η,y,z)) + h(η,y,z))
eft y e Y zez

(1.6) - -trace Sd2u(t,η) = 0, 0 < t < T, η e #,

with initial condition u(0) — q
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where A*= adjoint operator of A , S = linear operator on H defined by Sβk =

rrikek, k = 1,2, •••, d = Frechet derivative on H and ( , ) = duality pair

between H~ι and JT1.

As an application of our results, we will study small noise asymptotics of value

functions of risk sensitive control. Regarding a controller as player II, we consider

the following system ξε and the exponential criterion Jε',

dξε(t) = (Aξε(t)+δ(ξε(t),Z(t)))dt + y/idM{t\ 0 < * < T,

with initial condition £ε(0) = n

and

/Jε(t,η;Z) = Eexp(- / f(ξε(s)) ds).
ε Jo

The value function Wε and its logarithmic transformation vε are defined by

Wε(t,η) = inf• Jε(t,η;Z),

and

Then, i/ε is the unique viscosity solution of Isaacs equation (1.7), by the Legendre

transformation,

^ ( t , η ) - ( A fli/(t,q),η)- inf <fli/(*,q), δ(η, z)) - f(η)

- sup«&/(*,77), SO " J ^ C O ) - |*™ce Sd2v(t,η) - 0,2 λ

(1.7) 0 < ί < Γ, 77 G # ,

with initial condition i/(0) = 0.

In [6] we proved that the small noise limit of vε exists and its limit v becomes the

unique viscosity solution of (1.7) with ε=0. Moreover it coincides with the value

function of deterministic differential game on H. In this paper, we will construct

the associated game of (1.7) without passing to small noise limit, using our results.

So we can characterize vε as the upper value of the stochastic differential game

on H (Theorem 5.2). This yields the speed of convergence of i/ε, as ε tends to

0,(Theorem 5.3),

\uε(t,η) —1/(2,77) I ^ const.y/ε.

The paper is organized as follows. Section 2 is preliminaries, where we give

precise formulations and assumptions and also recall some results on stochastic
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differential equations on iJ, for the later use. Sectin 3 is devoted to study
the properties of value functions. The relations between value functions and
Isaacs equations are investigated in Section 4, using the notion of viscosity solution.
Section 5 deals with risk sensitive control from the point of view of stochastic
differential games.

2. Preliminaries

Let (Ω,F,Fβ,P) be a canonical coodinate space with a standard Wiener
measure P, namely Ω is the path space {ω £ C([0,T], i?N), ω(0) = 0} endowed
with the usual product topology, where N denotes the set of natural numbers.
Hence it follows that the coordinate functions Wk(t,ω) = ωk(t), k — 1,2, ,
are independent 1-dimensional Brownian motions on Ω. FQ denotes the σ-field
generated by {ωk(s), s < θ, k = 1,2, •} and F = FT- Ocasionally we use
the probability space (Ωt, Ft,Fe,Pt), replacing T by t. Using the stopped path
ωf (s) = ω(s), s £ [0,t], and the shifted path ωf(s) - ω(s + t) - ω(t),s E
[0,T-t], we can identify Ω = Ω£ x ΩT-t and P = Pt x Pτ-t, by the
mapping Π̂  : Ω -^ Ωt x Ωτ-t, Ut(ω) = (ω^,ω^~).

Let us assume the conditions (A1)~(A3) on A,

(Al). aιj and rι are bounded and continuous up to third derivatives
(A2). nxn matrix (aιj(x)) is uniformly positive definite, say

n aij(x)titj >λo\t\2 for t=(tU'"tn), withλo>0
=l

(A3). c( ) is non-negative and continuous.

Then, from (A2) and (A3), it follows that -A is coercive, say

(-Aζ, ζ) > λ||C||i - ^||CI|2

5 with a positive λ.

The operator B : H ->- H2 defined by

(2.1) B = [I -(A- ^ n _ r{ — ) ] - 1 with boundary value 0,

is a compact operator on H and satisfies the structural condition

(-A*Bφ,φ) > \\\φ\f-p\φ\%

with a constant p > 0, where \ \B is called B-norm given by | φ \2

B = (Bφ, φ).
When H carries B-norm, we denote H by HB> We will prove the strucural
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condition. Putting

Σ
n . Q

rι -r— and ψ = Bφ,
<=i dxi

we have

(-A*Bφ,φ) =\\Φ\? -\Φ\2B + Σn

i=i{^-{riψ),φ)

and
I the 3rd term \ < -\\φ\\2 + &| |^ | |IJ with a constant k.

Since (A2) and (A3) derive

\φ\2

B = {φ, (I - L)φ) > HVII2 + λo||aVΊ|2 > mm.(l, λo)||VH?,

we can conclude the structural condition.
Moreover we assume (A4) ~ (A6), besides (Al) ~ (A3), putting | |i = norm

of Y and | | 2 = norm of Z.

(A4). β is bounded and Lipshitz continuous, say

4 = s u p | | / 9 ( C , y , * ) | | and \\β(ζ,y,z)-β(ζ,y,z)\\<H\\ζ-ζ\\ + \.y-y\1 + \z-z\2)

(A5). h is bounded and Lipshitz continuous, say

h = sap\h(ζ,y,z)\ and \ h(ξ,y,z) - h(ζ,y,z) | < ί(\\ξ - ζ\\ + \y -y |i + | z- z |2)
ζyz

(A6). q is bounded and B-Lipshitz continuous, say

q = sup\q(ζ)\ and \ q(ζ) - q(ζ) \ < ί\\ξ - ζ\\B.
C

Denoting by M2{Q,T\Hλ) the subset of L2((0,T) x Ω iJ1) consisting of Ft

-progressively measurable processes, we will define a solution of (1.1).

DEFINITION 2.1. X e M2 ((^T i/1) is called a solution of (1.1), if X <E

C([0,T]; H) a.s. and for any t and smooth function φ with support in D,

, φ) = (η, φ)+ [ (AX(s), φ) + (β(X(s),Y(8), Z(β)), φ)ds + (M(t), φ),
Jo

with probability 1.

Now we have
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Proposition 2.1. There is a unique solution X( 77, F, Z) of (1.1) having

the following properties

E(«aτ>\\X(t;η,Y,Z)\\2 + ί \\X{s;η,Y,Z)\\lds) <

a n d

\\2ds) < K{\η \2| ( ) | ^ / | | ( ;η,Y,Z)\\2ds) < Kλ{\η \2

B + 1)
t<τ Jo

where K\ is independent of Y and Z.

Proof. Since we can see the first inequality in [8, Theorem 4 of Section 3],
we will only show the second one. Putting X(t) — X{t;η,Y,Z), we have, by the
structural condition,

d\X{t)\2

B = 2(BX(t),dX(t))

+ (2p + ΐ)\X(t) \l + k)dt + 2(BX(t),dM(t)),

where k = m + β2. Hence integrating from 0 to t, we get the following three

evaluations,

2[ E\\X(s)\\2ds < I η \2

B + kt + (2p + 1) / E\ X(s) \2

Bds
Jo Jo

and

sup\X(θ)\2

B<\η\2

B + kt+(2p+l) ί \X(s)\2

Bds+ 2sup [ (BX(s),dM(s)).
θ<t Jo θ<t Jo

Recalling the definition of dM and noting
pθ nθ pθ

E (BX(s),dM(s))2 <m E\\BX{s)\\2ds,<m I E\X(s)\%ds,
Jo Jo Jo

we see, from a martingale inequality

Esup /
Θ<T Jo

Combining the above calculations together, we can conclude the second inequality.
D

Since the dynamics of X(t 77, Y, Z) - X(t 77, F, Z) is independent of M( ), we
see
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Proposition 2.2. (see Propositions 2.2 and 2.3 in [7]). With probability

1, (2.2),(2.3) and (2.4) hold,

\2 /);η,Y,Z)-X(t;ή,Y,Z)\\2+ / \\X(t;η,Y,Z) - X(t;ή,Y,Z)\\*ds
t<τ Jo

(2.2) <^2| |»7-^| | 2

\\X(t;η,Y,Z)-X(t;ή,Y,Z)\\2ds\% [
t<τ Jo

(2.3) <K2\η-ή\2

B,

with K2 independent of Y, Z and ω G Ω,

\X(t;η,Y,Z)-X(t;η,Ϋ,Z)\2

B<\\X(t;η,Y,Z)-X(t;η,Ϋ,Z)\\2

(2.4) < K3 ί\\ Y(s) - Ϋ(s) \\ + I Z{s) - Z{s) \l) ds,
Jo

with K3 independent of 77, t and ω E Ω.

For the continuity w.r.to time, we need finer calculations using structural

condition.

Proposition 2.3.

(2.5) E(\X(t^Y,Z)-X(s η^Z)\2

B)<K,{l + \\η\\2)\t-s\

(2.6) E (sup \\X(t 77, y, Z) - r/||4) < X4(sup | | e t A 77 - ry||4 + θ2),
t<θ t<θ

where K± is independent of 77, Y and Z.

Proof. Since we see (2.5) in Proposition 2.4 in [7], we will only prove (2.6).

Putting X(t) = X(t] η, Y, Z) and ξ(t) = X(t) - etAη, we have

dξ(t) = (Aξ{t) + β(X(t),Y(t),Z{t))dt + dM(t), for 0<t<T,

with initial condition ξ(0) — 0.

From the coercive condition, we see

< (2(r + l)\\Φ)\? + k)dt + 2(ξ(t),dM(t)),
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with a constant k. Hence we get

and

t<θ t<θ Jo

Taking the square of both sides, we obtain

e-
2^r^s (ξ(s), dM (s)))2

/

t<θ t<θ Jo

Since a martingale inequality derives

t<θ
/

Jθ
(ξ{s),βi)2ds

rθ
<4m / e-^r+1

Jo
the above calculations yield

£supe- 4 ( r + 1 ) ί | | ξ (*) | | 4 < hθ2, for 0<θ<T.
t<θ

Now we complete the proof of (2.6), recalling the definition of ξ(t). •

Setting τ(η,d) = exit time from the ball of radius d centered at 77, and fixing

small 0(77, d) such that

(2.7) ΘKdQβsuvle^l)-1 and sup \\etΛη - η\\ < ^,
t<§ ό

where I I means the operator norm, we get (2.8), by (2.6),

(2.8) P ( τ ( η , d ) <s) < K5s
2d~4 whenever s < θ(η,d),

where K§ is independent of 77, d, Y and Z.

3. Value functions

First of all, we define strategies of players.

DEFINITION 3.1. An admissible strategy a (resp. 7) of player I (resp. II)
is a mapping a : Z -> y (resp. 7 : y-> Z), which is (B[0,Γ] x F,B(Y))-
measurable and non-anticipative, namely

if P(Z(s) = Z(5)) = 1 /or 5 < ί, ^en P(aZ(t) = aZ(t)) = 1.
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(resp. if P(Y(s) = Ϋ(s)) = 1 for s < ί, then P(jY{t) = jΫ{t)) = 1).

Λ (resp. TZ) denotes the set of admissible strategies of player I (resp.
II). Putting ω~ = cjt~ and CJ4" = ωf for simplicity and Z^-^jUΓ1") =
Z(θ + t, (u;~,α;+)) for θ G [0,Γ — ί], we note that Z^- can be regarded as an
admissible control of player II on Ωτ_t, for almost all ω~ £ Ω£. But, it is a
ploblem whether a(Zω- )(#, ω+) is measurable w.r.to (θ, α;~, u;"1"), as Fleming and
Souganidis pointed out [4]. Therefore we introduce some restrictive class where
the measurability holds.

DEFINITION 3.2. ([4]). When a(e Λ) satisfies the following additional
property (R), we call α an r-strategy of player I.

(R). For any t e ( 0 , T ) and Z e Z, the mapping: (θ,ω)-> a(Zω-)(θ,ω+),

is (B[0,Γ - t] x F,B(Y))-measurable.

A denotes the set of r-strategies of player I. Similarly, we define r-strategy
of player II with their collection denoted by R. Replacing Λ and ΊZ in the
definitions (1.3) and (1.4) by A and R respectively, we define r-value functions.

DEFINITION 3.3.

r-upper value function U(t,η) = supα ( Ξ A inf^G£ J(t,η;a,Z)
r-lower value function \i(t,η) = inf7eR,supye;y J(t, 77; Y, 7)

where J(t,η a,Z) = J(t,η\aZ,Z) and J(t,η\Y,j) = J(t,η]Y,jY).

From (2.3) and (2.5), we can easily see

Proposition 3.1.

(3.1) \J(t,η;Y,Z)\<hT + q

( 3 . 2 ) \ J ( t , m Y , Z ) - J ( s Λ ; Y , Z ) \ < K 6 [ \ η - C\B + (1 + \\η\\W\t ~ s\]

where KQ is independent of Y and Z.

Hence, both of U(ί,η) and u(t,η) also satisfy (3.1) and (3.2).

Proposition 3.2.

Upper-optimality dynamic programming principle

(3.3)

sup inf E[ / h(X(s; η, a, Z),aZ(s), Z(s)) ds + U(ί - Θ,X{Θ; η, a, Z)) ] < U(ί, η)

aeAZ^z Jo
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Sub-optimality dynamic programming principle

(3.4)

inf sup

Proof. Using B-norm, we can apply the standard method because of condition

(R). So, we only give an outline for (3.3), since (3.4) is proved in a similar way.

We set W(t,η) = the right hand side of (3.3). For ε > 0, there is ά G A

such that

fθ

W(t,η)<E[ h(X(s;η,α, Z),αZ(«), Z(s)) ds + U(ί - θ,X{θ;η,a,
Jo

(3.5) for any Z e Z,

On the other hand, there is aζ G A such that

-θχ)< inf J ( t - f l ,C;α c ,Z)+ε.

Dividing H = Ujli ^j w ^ n B-diam.(Aj) < -^- and choosing ζj G Aj

arbitrarily, we define α* by

oo

ά,Z,ω-))α^

where α^ = α^., /^ = indicator of set A and ω~ = CJ "̂, u;+ = α j " . Since ά

and (Xj are r-strategies, α* is also r-strategy. Moreover, (3.2) yields

(3.6) U(ί - fl, 0 < inf J(ί - 0, £ αj, Z) + 3ε /or ξ € A, ,

Hence, from (3.5) and (3.6), we see for Z G Z

fθ

W(t,η) <E[

3 = 1

Since Z is arbitrary,

ί, ry) < inf J(ί, /;; α*, Z) + 5ε < U(ί, ry) + 5ε.
ZξZ
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This completes the proof of (3.3). D

4. Isaacs equations

We recall the definition of viscosity solution of Isaacs equations [2], putting

F+(η,p,Q) = - mfsup[(jp,β(η,y,z))+h(η,y,z)]- \trace(SQ)
z e z γ 1

and
F~{η,p,Q) = - s u p inϊ[(p,β(η,y,z)) + h(η,y,z)}- -trace(SQ)

where p E H and Q E L(H) (=the Banach space of bounded linear operators
equipped with the operator norm I I).

Φ € C12((0,T) x H) is called a test function, if
(i). Φ is weakly lower semi-continuous and bounded from below, and
(ii). dΦ(t,η) e H2 and both of dΦ and A*dΦ are continuous.

g G C2(H) is called radial, if g(η) — g{\\η\\) with g E C2[0,oo) increasing
from 0 to 00.

By virtue of (A1)~(A3), there is a constant μ > 0 such that

(-AζΛ)+μ\\ζ\\2>0 for ζeH1.

Hence, —A = —A + μl is dissipative. Putting β(η,y,z) = β(η,y,z) -f μη,
we can replace A and β in the Isaacs equations (1.5) and (1.6) by A and β
respectively. Moreover noting

swp(d(Φ + g)(t,η),β(η,y,z)) -
yeY

we have the definition 4.1, according to [2].

DEFINITION 4.1. V e C([0,Γ] x H) is called a sub-solution (resp. super-
solution) of (1.5), if V(0,r/) = q(η) and the following condition (1) (resp.(2)) holds
for any test function Φ and radial function g,

(1). If V — Φ — g has a local maximum at (i,ή) G (0,Γ) x H, then

(2). If V H- Φ + g has a local minimum at (i, ή) E (0, T) x H, then

8Φ
- — (ί,η)+(A*dΦ(t,ή),η)+F+(ή, -d(Φ+g)(t,η), -d2(Φ+g)(t,η)) > -μg'
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V is called a viscosity solution, if it is both a sub- and super-solution.

Replacing F+ by F~, we define a viscosity solution of (1.6). Since our

value functions are B-continuous, local maximum (resp.minimum) can be replaced

by strictly local maximum (resp. minimum) in Definition 4.1,[3].

Theorem 4.1.
(i). U is a super-solution of (1.5), and (ii). u is a sub-solution of (1.6).

Proof. We only prove (i), because (ii) follows in a similar way.
Appealing to the super-optimality (3.3), we employ a routine method. So,

we only show the outline of proof.
Supose U + Φ + g has a local minimum at (£, 77), say

(4.1)

V(i,ή) + Φ(i,ή)+g(ή)<V(t,η)+Φ(t,η)+g(η), for 11 - t \,\\η - η\\ < δ.

F o r έ > 0, t h e r e is δ > 0, s u c h t h a t if | ί - ί | < < 5 a n d | | r ? - ^ | | < « 5 t h e n

(4-2) \f(t,η)-f(t,ή)\<έ,

where f = Φ,g, ̂ , <9Φ, dg, A*<9Φ, 92Φ, d2g and | | means their own norms.
Let us set δ = min(ί, δ) and r =exit time form the closed ball of radius δ
centered at ή. Putting

dΦ 1
λ = aj-(M) " (A*dΦ(t,ή),η) - -trace SΘ2(Φ + g)(t,ή) - μ(dg(η),ή)

and using (2.8), (4.1), (4.2) and Itό's formula, we obtain

JS[U(ί-fl,X(fl;^α,Z))-U(ί,η); r > θ]

(4.3)

>XΘ-E[ f (Θ(Φ + g)(iή),β(ή,aZ(s),Z(s)))ds] - hVθ3δ~2 - k2(ε + δ)θ,
Jo

for θ < θ(ή,δ), (see (2.7)), where k\ and k<ι are independent of a and Z. On
the other hand, (2.8) yields

(4.4)

E[Ό(t-θ,X(θ;ή,a,Z))-V(i,ή);τ<θ] > -2(ΛΓ + q)P{τ < θ) > -k3θ
2δ~4.

Now, (4.3) and (4.4) together with the super-optimality dynamic programming
principle yield

(4.5)

0 > sup inf E[ ί F(aZ(s), Z{s)) ds] + λθ- kA-/f δ~2 - k5(έ + δ)θ,
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where

F{y,z) = h{η,y,z) - (d(Φ + g)(t,ή),β(ή,y,z)).

Assume that there is a positive c such that

λ + inf sup F(y,z) > c.
zezyeY

From Lipshitz continuity of h and β, it follows that there is Δ > 0, such that

)\<l if \z-z\<A.
λ

Thus dividing Z = U^ 1 Zj with diam.(Zj) < Δ and fixing Zj G Zj arbitrarily,

we can take yj such that

F{yj,zά)>c-λ, j = l,2,. .JV.

Let us define ά : Z ->• y by

N

aZ(t,ω) = ΣyjI
3=1

Then,

Noting

(4.8)

& e

(4-

A

5),

and

inf E[

we thus get

o>

rθ

2 "

For έ, δ < gj^ and small ^, (4.7) contradicts to c > 0. Hence Theorem 4.1,(i)
holds. D

In [7], we constructed the unique viscosity solutions V (resp.v) of (1.5)
(resp. (1.6)), as follows. Putting Δ = 2~NT, N = 1,2, , we call Z(e Z) a Δ-step
control, if Z{t) = z for t G [0,Δ) and Z(t) = Z(feΔ) for t G [λΔ,(* + 1)Δ).
ZN denotes the set of Δ-step controls of player II. j(e ΊZ) is called Δ-step,
if ηY G ZN and 7F(ί)., ί G [0, Δ), does not depend on Y. TZj^f denotes their
collection. Let us define

VN(t,η)= inf sup J(t,η]Y,'y).

Then, VN is decreasing and satisfies the evaluations (3.1) and (3.2). Moreover,
the limit function, V(t,η) — limiγ_̂ oo Vjγ(̂ ry), is the unique viscosity solution of
(1.5). Therefore from the comparison theorem [9], it follows that

U(t,η)>V(t,η)>V(t,η).
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Next we will show the opposite inequality, U(t,η) < V(t,η). Since, for any
a £ A and 7 e TZN, there exist Ϋ £ y and Z £ ZN such that aZ = Ϋ
and ηY — Z, (see (2.5) in [4]), we get

sup J(t, η; y, 7) > J(t, η; y, 7) = J(t, 77; α, Z) > inf J(t, 77; α, Z).

Hence, for any α G i , we have

VN(t,η)> inf J(*,η;α,Z).

Taking supremum w.r.to α and letting TV tend to 00, we get the opposite inequality
U(t,η) < V(t,η), which yields U(t,η) = V(t,η). •

Consequently, we obtain the main theorem,

Theorem 4.2. The upper value function U (resp. lower value function
u) is the unique viscosity solution of (1.5) (resp. (1.6)), in C&([0,T] x Hw) (=
the set of bounded weakly continuous functions).

Collary. Under Isaacs condition, our stochastic differential game has the
value.

Recalling the definitions of value functions, we see

U(t,η) = lim VN(t,η) = inf sup J{t,η;Y,η) > u(t,η).
N-ϊoo £UΊZ Y

Hence, if U(t,η) - u(t,η) (= c put) > 0, then for any step strategy 7(6

sup J(ί,?/;y,7) >u(t,η) + c.
Yey

Namely, 7 can not be nearly optimal.

5. Application to sensitive control

Regarding a controller as player II, we will consider the following stochastic
control. For ε > 0, when a controller applies an admissible control Z, the
system ξε and the pay-off Jε are given by (5.1) and (5.2) respectively,

(5.1) dξε(t) = (Aξε(t) + δ(ξε(t), Z{t))) at + v/εdAf (ί), 0 < t < Γ,

with initial condition ζε(O)=η (G H),
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and

(5.2) Jε(t,η Z) =E(exp- ί f(ξε(s))ds)
£ Jo

where δ and / are bounded and Lipshitz continuous.

Let us define the value vunction Wε by

Wε(t,η)= inf Jε(t,η;Z).

Then Wε is the unique viscosity solution of Hamilton-Jacobi-Bellman equation

(5.3),

dW 1
— (t,η) - (A*dW(t,η),η) - inf (dW(t,η),δ(η,z)) - -f(η)W(t,η)

(5.3) -Urace Sd2W (t, η) =0, 0<t<T, η £ H,

with initial condition W(0) = 1.

Hence its logarithmic transformation vε

u%t,η)=εlogWε(t,η)

is the unique viscosity solution of (5.4) in C&([0,T] x Hw) >

dv
— (t,η) - (A*dv{t,η),η) - inf {dv(t,η),δ(η,z)) - f(η)
Oi zξzL

(5.4)

~(Sdv(t,η)>dv(t,η))-^traceSd2v(t,η)=O, 0 < t < T, η E H,

with initial condition u(0) = 0.

But, (5.4) turns out to be the Isaacs equation (1.7) by Legendre transformation.

Moreover, we showed [6] that the small noise limit of z/ε, say v, exists and turns

out to be the unique viscosity solution of (1.7) with ε = 0, which coincides with

the value function of deterministic differential game on H.

Since H is not compact, we will introduce admissible controls and strategies

of stochastic differential game associated with (1.7) as follows. Putting Λ =

Λ/5, we set YN = {Λ( G # ; ||C|| < N}. Then YN is compact.

Replacing Y in previous sections by Y#, we denote the set of admissible

controls and strategies by 3 ^ &nd AN respectively. Let us set

oo oo oo

Y = U YJV, y= \JyN, A= \j AN,
ΛΓ=1 N=l JV=1
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β(η,y,z) = δ(η,z)+Ay, h(η,y) = f(η) - ±\\y\\2.

When players I and II apply admissible controls Y and Z respectively, the system
Xε evolves according to stochastic differential equation,

dXε(t) = (AXε(t) + β(Xε(t), Y(t), Z(t))) dt + y/εdM(t), 0 < t < Γ,

with initial condition Xε(0) = η (E iϊ"),

and the pay-oίf J e is defined by

Jε(t,η;Y,Z) = E / /ι(X£(5;7y,y, Z),F(s)) ds.

Using similar notations as before, we define

UΛΓ(^^) — mf S UP e/e (ί, 77; y, /̂)

Then, we have

ί7ε(ί,r/) = sup inf Jε(t,η;a,Z) = lim Uε

N(t,η)

uε(t,η)= inf sup Jε(t,η;Y, 7) > lim uε

N(t,η).
iZTZYy ΛΓ->-oo

From Theorem 4.2, it follows that Uε

N — uε

N and they are unique viscosity
solutions of the following Isaacs equation,

^(t,η) - (A*dU(t,η),η) - mϊ(dU(t,η),δ(η,z)) - f(η)
OX zζ.L

—trace Sd2U(t,η) - sup ((dU(t,η),Aζ) - hζ\\2) = 0, 0 < t < Γ,
λ ζeYN

 z

with initial condition U(0) = 0.

Proposition 5.1. Putting / = sup^€JH-1 /(C) I? we have | Uε

N{t,η) \ < ft.

Proof. Since the strategy 0 belongs to AN,

Uε

N(t,η)> inϊ Jε(t,η-,0,Z)>-ft
ZξiZ

holds. Noting h( ) < f, we complete the proof. •
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Proposition 5.2.

I Uε

N(t, η) - Uε

N(s, 0 I < c\ η - ζ \B + f\ t - s \

with a constant c, independent of N and ε.

Proof. In a similar way as (2.3), we get

/ \\Xε{t η,Y,Z)-Xε(t fί,Y,Z)\\2ds<c1\ η-ή\%
o

with ci independent of Y, Z, N, ε and ω E ft. Hence we have

(5.5) s u p I Uε

N(t,η) - Uε

N{t,ζ)\<c\η-ζ\B.
t<τ

Next we evaluate the continuity w.r.to t, using similar arguments as in [1],

For ε > 0, taking α* = a*(s,η,έ) E AN such that

Uε

N(s,η) < inf Jε(s,η',a*,Z)+έ,
ZζZ

and defining ά E AN by

άZ(θ)=a*Z(θ) for 0 € [ O , « ) , = 0 for flG[s,Γ],

we have

(5.6)

Uε

N(t,η)-Uε

N(s,η)> mi Je{t,η;ά,Z)- inΐ Je(s,η;ά,Z) - έ >-f(t - s) - ε.
ZξiZ ZζZ

Choosing a = ά(t,η,ε) E AN and Z e Z such that

and

inf Jε(t,η;ά,Z) > Jε{t,η;ά,Z) - ε,

we have

Uε

N(t,η)-Uε

N{s,η)< inf Jε(t,η;ά,Z) - inf Jε(s,η;ά,Z) + ε

(5.7) < Jε{t,η\ά,Z) - J£(s^;a,Z) + 2ε < /(ί - s) + 2ε.

Now, Proposition 5.2 follows from (5.5),(5.6) and (5.7). D
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Since Uε

N(t,η) is increasing to Uε(t,η), as N ->- oo, Propositions 5.1 and

5.2 yield the following theorem,

Theorem 5.1. As TV -> oo, ί/̂  is increasing to Uε uniformly on any

bounded set of [0,T] x iJ. Moreover, Vs is bounded and B-coninuous and

the unique viscosity solution of (1.7) in C&([0,T] x Hw)

Recalling that vε is the unique viscosity solution of (1.7), we have

Theorem 5.2. vε has a min-max expression

vε(t,η) = sup inf Jε(t,η;a,Z) (= [/ε(*,77)).

For ε = 0, we define X°, J° and [7° in a similar way. Then we get by

standard arguments

snPE(\\Xε(t;η,Y,Z)-X°(t;η,Y,Z)\\2)<c3ε
t<τ

with a constant c$ independent of 77, Y and Z. So, we have

(5.8) \Uε(t,η)-U°(t,η)\<c^

with a constant c4 independent of t and 77. Therefore Uε converges to

U° uniformly, as ε —> 0. Form this fact, it follows that U° is the unique

viscosity solution of (1.7) with ε = 0. Consequently U° = v. Now,

(5.8) yields the speed of convergence of vε.

Theorem 5.3. There is a constant c independent of t and 77, such

that
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