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Introduction

This is a continuation of our first and second papers [5]. In this paper we
shall study on the spectra of the Jacobi differential operator S for minimally
immersed spheres into spheres.

Computing the matrix expressions of the linear mappings S,, defined in
subsection 5.2 of our first paper [5], we show that every eigenvalue of the Jacobi
differential operator S is an algebraic number (Theorem 10.4.4, 11.4.4 and
12.3.3), however not a rational number in general. This suggests us that S
will not be described only by Casimir operators. We give a lower bound for
the nullity of S(Theorem 10.6.2 and 11.6.2). In particular, for the minimally
immersed 2-dimensional sphere S? the nullity is explicitly computed (Theorem
12.4.1) and we show that the nullity is equal to twice the Killing nullity (Theorem
12.4.3).

We shall denote by [I] (resp. by [II]) our first paper [5] (resp. our second
paper [5]) for short. We retain the definitions and notation in [I] and [II].

The author would like to express his sincere gratitude to Professor M.
Takeuchi and Professor S. Murakami for their valuable suggestions and encour-
agements.

10. Minimal immersions of (2A—1)-dimensional sphere S*~(h=2)

In this section we assume that G=SO(2k) and K=SO(2h—1), h=2.
The assumptions and the notation are the same as in section 9 of [II]. And in
this paper, we will not distinguish G-modules and representations of G.
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10.1. In this subsection we consider the full equivariant minimal isome-
tric immersion F: (87!, ¢{ , >)—S induced from the second real spherical
representation p, of (G,K). Then by the formula of Freudenthal (cf. Takeuchi
[6] p. 205) and Proposition 3.2.1 of [I], we have

c— A

2h—1"
Therefore it follows from Remark 8.3.1 of [II] that the Jacobi differential oper-
ator S on C=(G; (V")) is given by

(10.1.2) S = 2"‘1(2"1913‘ 8 Lmo: 4 -

(10.1.1)

Therefore for each [¢]€D(G; K, p") the operator S acts on o, (N(S*71)€) as
a scalar, which will be denoted by ¢(c). We have by Proposition 9.2.1 of [II]

= Vo+ Vi+-V,,

where V; is the irreducible K-submodule of V¢ with the highest weight i¢,_;.
Hence

(10.1.3) VY =V, V=V, (VY=
Theorem 10.1.1. Let F: (S, ¢, D)= S, F(xK)= p,(x)F(0), be the full

equivariant minimal isometric immersion induced from p=p,.
(1) We have
D(G; K, p) = {[o]€D(G); Ay = s+, with |s] <2
and th} R
where A, is the highest weight of the complex irreducible representation o of G.
The multiplicity of each [a]€D(G; K, p") is equal to 1.
(2) We have for [c]€D(G; K, p") with Ay=s¢,_1+1¢d,

(o) = L {os-+-2h— )1t 20—2)— 80} .
(3) The cases where c(a) <0 are the followings:
(o) As
<O | 2¢ +di+2¢s £2¢1+26,, 3,
P=2 T +pit3¢
hs 2 <0 2¢4, P12 2¢04-1+2h4 3

=0 ¢h—-1+3¢h
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Proof. (1) We have the assertion by Proposition 9.2.1 of [II], the Frobenius
reciprocity (cf. Takeuchi [6] p. 16) and (10.1.3).

(2) We have the equality by (10.1.2) and the formula of Freudenthal.

(3) We obtain the table from (2) by easy computations. Q.E.D.

Remark 10.1.1. It follows from the above theorem and Proposition 3.4.2
of [I] that the nullity of F is equal to its Killing nullity.

Remark 10.1.2. (a) The case £=2: Every eigenspace of S is decomposed
into at most two G-irreducible components. If ¢(o)=c(c’) with oc#¢’ and
A,=s¢,+1p,, then s=£0 and A, =—s¢,+1¢,.

(b) The case h>2: Every eigenspace of S is G-irreducible.

10.2. Let o: G—GL(W) be an irreducible unitary representation with
the highest weight k¢,(k>0), and ¢, the eigenvalue of the Casimir operator of
o. We have by Proposition 9.2.1 of [II]

W=2:W;,

where W, is the irreducible K-submodule of W with the highest weight i¢,_;.
We shall compute ¢(o)’;, 7, j=0,1,---,k, in subsection 6.3 of [II]. It follows
from the degree formula of Weyl (cf. Takeuchi [6] p. 157) that

(+2h—4)!(2i4-2h—3)
il(2h—3)! '
If the K-module p°@W; contains the irreducible K-module W,, then we have

i=p—1, p or p+1 by (9.4.1) of [II]. Therefore we have by (2) of Lemma
6.2.3 and (a) of Proposition 6.3.7 of [II]

(10.2.1) dim W, =

(10.2.2) oo);j=0 for 7, j=0,1, -+, k with |i—j|>1.
We have

Proposition 10.2.1.

(o) o = (h—i) (k- 2h—i—3),
i (1) (k—i) 2R+ 2h—i—3)
(10.2.3) Ao) ki 2k+2h—2i—3 ’
do)int,., — D) (k- 2h—i—4) 2h+2h—i=3)
- 2k+2h—2i—5
for i=0,1, - k—1.

Proof. We shall prove the proposition by the induction on 7. We have
by (3) of Lemma 6.3.4 of [II]
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(10.2.4) oo; By = i(i+2h—3) i=0,1,--, k.

(a) The case h==2: Note that the space W, is the irreducible K-submodule
of W with the highest weight i¢p;. Put Hy =[Xy,, X_4] (see subsection 9.1 of
[1I]). Then Hy=+/—1 ¢y, and gxy,°=1{X,, Yy, Hy } ¢ is a Lie subalgebra of

g° by Lemma 7.2.2 of [II]. Considering W as a gx4 ®-module, let W=‘Z:_‘l 1464
be the decomposition of (7.3.4) of [II]. Let w;EW, be an i¢,-weight vector
with |w;|=1 and let ;=31 /a7 g w; ; , With w;, € V%, |w;;,|=1and a;, 20.
Then we have Zk a;, q=1,qi_,=0, 1,---,k. Since the vector w, is contained in V%
and |¢,| =1, ‘;,;' have by (7.3.6) of [II]

|do(X_g)wp|? = k.

It follows from Lemma 6.2.2 and (9.4.1) of [II] (applied to K) that the vector
do(X _4 )w is contained in the subspace W, +W,_, of W. Let fi(resp. f,_,) be a
K-homomorphism of p°@W, to W(resp. to W,_,) with the property of f, in
subsection 6.4 of [II]. It follows from (1) of Proposition 6.4.2 of [II] that
there exist complex numbers d*, and d*~?; such that

dO’(X—cbl)u’k = dkkfh(X—¢l®wk)+dk_1kfk—1(X—¢1®wk) .
Then we have by Lemma 9.4.5 of [1I] (applied to K)

(10.2_5) lfk(X_d,l@wk) | 2= %_}_1) Ifk—l(X-—¢ ®wk) 12 = ;:;i .

It follows from (6.4.1) and (2) of Lemma 6.3.4 of [II] that
(10.2.6) |d%|* = c(o; P)n 14417 = c(o)* .

Therefore we have the following equalities by the above arguments, Lemma
6.3.2, (6.3.10) of [II] and (10.2.2):

1 2k—1
k+1 2k+1
dim Wk—-l C(O’)k—lk e dlm Wk C(O’)kk._l 1y
c(o; Dfst-c(o; P)it-c(o)opor=—c, = k(k+2).

We have by (10.2.1) and (10.2.4)

c(o; P)t

C(O')k_lh == k N

(10.2.7)

__ k(2k+1)
2k—1

(o p)kk =0, C(O')kk—l =R, C(O')k—lk

Therefore the formulas (10.2.3) are valid for 7=0. Suppose that the equalities



Jacosr DI1FFEReENTIAL OPERATORS 111 245

(10.2.3) hold for #~1 with i<k. The vector do(Xy )w,.; belongs to the K-
weight (k—i+1)¢,;, and hence it follows from (9.4.1) of [II] that it is contained
in W,_;;;. Then there exists a complex number d’*~i*!,_; such that

(10.2.8) do (X )wy_; = A Wi .
By (2) of Lemma 6.3.4 and (6.4.1) of [II], we have
Id/k"i'("lk_i IZ — C(o_)k-‘i'i-lk—i .

Comparing the F*-components of the both sides of (10.2.8), we have by (7.3.6)
of [II]

_;_ 2k —i+ 1) 0 = () i Bpminrs b5

(10.2.9) % ((—1)2k—)a;; 4-1= () i @pminri a1
(k=41 ap i pmiv1 = (o) i @hmiir s pminr -

We have by (7.3.6) of [II] and (10.2.9)

|do (X _g ) ws-; |2 = g%@k*i—f) (E—j+D)asi:4-;
= 20 % (2k—i—j) (i—j+1)as-;: -+ (R—1) (1—223)%—:' )
— kit 31 () @h—i—j+ D
— h—it 2 0D A A

— k—i+0(0)k—i+lk_,

It follows from (9.4.1) of [II] that the vector do"(X _4 )w,—; is contained in W,_;,,
+ Wi+ Wy_io. Let v,y (resp. v,-; and v,_;_,) be the W,_;,;-component
(resp. the W,_;-component and the W,_;_,-component) of do(X_¢ )w;_;. Then
we have the followings by (2) of Lemma 6.3.4, (6.4.1) and Lemma 9.4.6 of [II]:

[Vp-iga |2 = L (o) i,

(k—z—l—l) (Zh—2i+1)
C(O'; p)k-ik—i ’

Zk 2z
2k—2i4-1

[‘Z’k—i|2=

22— et

l‘vk t—llz

Therefore we have the following equalities by the above arguments, Lemma
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6.3.2, (6.3.10) of [II] and (10.2.2)

1
(k—it1) (2k—2i+1)
2k—2i— kisl : kit

o C i k—i+ ! —-iy
(10.2.10) 2% 271 )
dim W,_;_, c(o) s = dim Wy_; c(a) i,
(o) hminte(o; OF i tc(o; Y it e(o)f nioa

= k(k+2).

C(O')k_iﬂk—i"‘ EF—itl C(O'; p)k_ik—z

Applying the assumptions of the induction, (10.2.1) and (10.2.4), we obtain the
equalities (10.2.3) for z.

(b) The case A>2: It follows from (9.4.1) of [II] that the K-module
PCQW,; does not contain the irreducible K-module W;. Therefore by (3) of
Lemma 6.2.3, Proposition 6.3.7 of [II] and (10.2.4), we have

(10.2.11) (o) = c(o; ¥ = i(i+2h—3) .
We have the following equalities by Lemma 6.3.2, (6.3.10) of [II] and (10.2.2):

{dim Wiy (o) Y = dim W, (o)t ,
(o) te(o) oy = —cp = k(k+2h—2).

We have by (10.2.1) and (10.2.11)

(10.2.12)

(k-+2h—4) (2k-+2h—3)

R Gl 2k+2h—5

Therefore the formulas (10.2.3) are valid for z=0. Suppose that the equalities
(10.2.3) hold for i—1 with 7<<k. We have the following equalities by Lemma
6.3.2, (6.3.10) of [II] and (10.2.2):

(10 2 13) {dlm Wk—i—l C(O‘)k—i_lk_,' = dim Wk__,- C(O’)k_ik_,'_l ,
o c(a)k—ik—i+1+c(0')k‘ik—i_i‘c(o')k—-ik—i—l = k(k+2h"2) .

We have the equalities (10.2.3) by the assumptions of the induction, (10.2.1)
and (10.2.11). Q.E.D.

10.3. In this subsection let o: G— GL(W) be an irreducible unitary re-
presentation with the highest weight s¢,_,+2¢,, s+0, and ¢, the eigenvalue of
the Casimir operator of o.

We shall first consider the case ~=2. Then we have by Proposition 9.2.1
of [II]

W= > Wi,

Isisist
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where W is the irreducible K-submodule of W with the highest weight i¢,. We
shall compute ¢(o)’}, 7, j=|s|, |s|+1, -, 2. We have in the same way as for
(10.2.2) and (10.2.4)

(103.1) {c(a-)‘j—.——() 3y for 4,j = |s.|, [s|4+1, -, ¢ with |i—j|>1,
c(o; b)Y = i(i+1) for = |s|, |s|+1, -+, 2.
We have
Proposition 10.3.1. (a) If |s|=t, we have
(o) = 2t(t+1).
(b) If |s|<t, we have for i=0,1, -, t— |s|—1

o; P)E :M
(s )7 ems (t—i) (t—it1)’
(10.3.2) (o) sy = D @—it]) @ —s—i) (s+1—1)

(t—i) (2t—2i+1)

C(a_)t—i—l e (l+1) (Zt""i‘{‘l) (t_s"i) (S+t—i)
- (t—i) (2t—2i—1) |

Proof. (a) Since W=W,, we have by (6.3.10) of [II]
(o) = —c, = 2t(t+1).

(b) We shall prove the above equalities (10.3.2) in the similar way to the
proof (a) of Proposition 10.2.1. Let w,&W; be an i¢,-weight vector with
|lw;|=1,7i=]|s|, |[s|+1, ---,2. Considering W as a gx4 °-module, we obtain
the following equalities in the similar way to (10.2.7):

e, 1 oy 2t—1
|dO'(X‘¢l)wt| =1 t+16(d,p)t+2t+1
dim W,_, (o)™ = dim W, (o)1,

c(a; ¥)itc(a; p)ite(o) oy = S+HE(t+2) .

We have by (10.2.1) and (10.3.1)

c(a')'_lt ’

oo b= D),
t

(o) = (t—s) (s+12) :

t
(o), = ZEED E=9) (s+2)
‘ t(2t—1) :

Therefore the equalities (10.3.2) are valid for =0. Suppose that the equalities
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(10.3.2) hold for i—1 with i<t—|s| —1. We obtain the following equalities
in the similar way to (10.2.10):

ldo(X _4 )ew;-; |? = t—itc(a)' s

= 1 tmitl 1 RVIE
(t—i+ 1) (2t—2i+ 1) C(G') t—'+t___i+1 C(a', p) t-i
+ %:;—z;% (o)™ N

dim W,_;_, e(a) Y. = dim W,_; c(a) " oic1s
C(G')t_it—i+1+f(0'; f)t_it—i_}"c(o'; p)'_i:—i‘f'f(o')t_it—i—l
= $S+1(t+2) .

Applying the assumptions of the induction, (10.2.1) and (10.3.1), we have the
equalities (10.3.2). Q.E.D.

Next we shall consider the case 2>2. We have by Proposition 9.2.1 of
[11]
W= 21 W

0Sp<S<est L
where W, , is the irreducible K-submodule of W with the highest weight pe,_,+
qps-1.  We shall compute ¢(c)™ ;,7,j=s,5+1,-+,¢. If the K-module p°QW,,
contains the irreducible K-module W, ;, then we have by Lemma 9.2.4 of [II]
p=0or1l,
and
{q=i—1 ori+1 if p=0,
qg=1 if p=1.
Therefore by (2) of Lemma 6.2.3 and (a) of Proposition 6.3.7 of [II], we have
jc(a-)°'io,j =0 for i,j=sys,s+1, -, ¢ with |i—j|>1,
(10.3.3) (o)™ ;=0 for i,j=s,s+1, -, ¢t with i=j,
(o), ;=0 fori,j=s,s+1,-+,¢ and p>1.
We have

Proposition 10.3.2. (a) If s=t, we have
(o) = t(t-+2h—3),
C(O’ o'tl.t == t(t+2h—3) >

g = D),

(b) If .<t, we have for i=0,1,---,t—s—1
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(o) s = (t—1) (t4-2h—i—3),
(o) sy = (D) Q4 2h—i—3) (t—s—i) (s+t+ 2h—i—4)
; (t-+2h—i—4) (2t+2h—2i—3)

_ (1) (2t+2h—i—3) (t—s—i) (o +t+2h—i—4)
- (t—1) (2t+2h—2i—5) ’
_ S(s+2h—4) (¢+1) (£+2h—3)

(t—i+1) (t4+2h—i—4)
_ S(s+2h—4) (¢41) (t+2h—3)
(2h—3) (t—1) (t4+2h—i—3)

c(o')o’t_i_lo,t

(10.3.4)

C(U)O’I_il't——i

)

C(a')l't—io,t—i

Proof. We have by the degree formula of Weyl

_ (i4+2h—5)4(i+2h—3) (2i+2h—3)
(i+1)!(2h—4)! ‘

We have the following in the similar way to (10.2.11):
(10.3.6) o(a)%; = i(i+2h—3)  i=s,s+1, 2.

(a) We have the following equalities by (6.3.10), Lemma 6.3.2 of [II]
and (10.3.3):

(10.3.5) dim W, ,

{c(o—)""l_,—l—c(a-)“"o,, = —c¢, = 2t(t+2h—3),
dim Wy, ¢(o)"; = dim W, c(o)" ;.

Therefore we have by (10.3.6), (10.2.1) and (10.3.5)

{c(o')o"l,, = t(t+2h—3),
e (t41) (¢+2k—4)
(o) = h—3 .

(b) We shall prove the equalities (10.3.4) in the similar way to the proof
(a) of Proposition 10.2.1. Put H,, =[X,, , X 4, ] and gx4,_°={X,, .,
X _ 4y Hy, }e. Let w,eW,; be an i, ,-weight vector with |w;|=1,i=
s,5+1,+,t. Considering W as a gx4, ,°~module, we obtain the following
equalities in the similar way to (10.2.7):

ldo(X g, _Jw:|* =1
ey (21 24—5)
@) (2= " gy eran—3) @ e
dim W, ¢(o)" = dim W, c(a)
dim WO.f—-l C(O")O't_IO.t = dim WO,t C(O')o’to't_l y
C(U')o'fl,t+c(0')°"o,t+C(o')o'to,t-l = —C,

— s(s+2h—4)+H(t+2h—2) .
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We have by (10.2.1), (10.3.5) and (10.3.6)
_ (=) (s+t+2h—4)

(a)*"0,0-1 t 2h—4 ,
(o), — (BtH2h=3) (=) (s+1+2h—4)
o #(2t+2h—5) ’
ot _ S(s-+2h—4) (t-+2h—3)
(o)1 T 2h 4 ,
Lt s(s+2h—4)(t+1)
(o) s 22h—3) .

Therefore the equalities (10.3.4) are valid for i=0. Suppose that the equalities
(10.3.4) hold for i—1 with i<<i—s—1. We obtain the following equalities in
the similar way to (10.2.10):

ldo(X g, _Jw_;|* = t—it-c(a)" "y s

= 2h—3 0,¢—i+1
(=it 1) (it 2h—2i—3) 1) o
R o

(t—i+1) (t+2r—1—4)
(t—7) (2t42h—2i—5)
(t+2h—i—4) (2t+2h—2:—3)

dim W, ,_; c(o')l't—io,,_; =dim W, ,_; c(a')o’t—'.l,t_; .
dim Wo,t—i—l C(O')o'tﬁi—lo,t—i = dim Wo,t—i c(a')o't—io,t—i-l ’
c(o-)o't—iO,t—-i+1+c(0')o’t_il,t-i+c(0')o't_io,t—i+c(a')o’t_i0,t—-i—l

= s(s+2h—4)+1(t+2h—2).

C(O_)O,t—i—lo’t_i ,

+

Applying the assumptions of the induction, (10.2.1), (10.3.5) and (10.3.6), we
obtain the equalities (10.3.4). Q.E.D.

10.4. In the rest of this section we consider the full equivariant minimal
isometric immersion F: (S*7!¢( , >)—.S induced from the k-tk real spherical
representation p=p,; of (G,K), k=2,3,:-. Then by the formula of Freuden-
thal and Proposition 3.2.1 of [I], we have

_ k(k+2h—2)
10.4.1 = AT E)
(104D T -1
We have by Proposition 9.2.1 of [II]

Ve = V-Vt 4V,

where V; is the irreducible K-submodule of V¢ with the highest weight i¢,_;.
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Hence
(10.4.2) (V) =V, (VS =V, (VM)° =31V

It follows from Corollary for Proposition 9.2.1 and the argument in subsection
6.5 of [II] that there exist complex numbers c;, 7=0,1, -+ &k, such that

n+p
(10.4.3) ST {dp(E) (@p(Be)" Y |y, = ey,
Then we have

Lemma 10.4.1.

0 lf 1= O) 1 ’
) oy 2k—1)(k+2h—1) o
o — 1 — {h(E+28—2) JEEB=1y i i2,
—k(k+2h—2) ifi>2.

Proof. We obtain the above equalities by Proposition 6.5.1, Proposition
6.3.8 of [II], Proposition 10.2.1 and (10.2.2). Q.E.D.

It follows from Proposition 9.2.1 of [II] and the Frobenius reciprocity that
D(G; K, p) = {[e]€D(G); A, = sy 11, |5 <k, 252}

and that the multiplicity of the above [¢]€D(G;K, p¥) is equal to Min{k—1,
k—|s|+1,2—1,t—|s|+1}. We have

Lemma 104.2. Let o: G—GL(W) be a complex irreducible representation
with [c]1€D(G; K, p") and A,=t¢p,. Then there exists a basis {w'p, 0’1, "4}
of (W*QVC), such that {w’s, '3, -, 0’} is a basis of (W*Q(V™)C), and that

Lic* o\ — (2hti—4) (k4-2h+i—3) (t+2h+i—3) ,
(0' ) P)w i 2h+2i_5 ®' i

i DD

for i=0,1,,d,

where d=Minik, t} and o' _,=w’;,,=0.

Proof. We may choose orthonormal bases {v;;1,v;;4 -+, v;; .0} of V5,
1=0, 1, --+, k, with the following properties: Each of the vectors v;;q, =1, 2,
-+, n(), is a weight vector of the K-module V;, the vector v;;, is an i¢, ;-
weight vector, and

dP(th,,_l)'Ui;l = \/C(P)H-li Vig;1 1=0,1, -, k—1.
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In fact take an arbitrary unit vector in ¥ as v,;;. Then by (9.4.1), (2) of Lemma
6.3.4 and (6.4.1) of [II], dp(X4, )v,:1 is a ¢,_,-weight vector in V; and |dp
(Xes_)v0:112=c(p)'y. Then ¢(p)'y=0 by Proposition 10.2.1. Put

V151 = Vc(p)l dP(X«b;. 1)'00 1

and choose an orthonormal basis {v;;1,71;3 **,%1; 2} of V7 in such a way that
each v,;, is a weight vector of V;. Now we may choose inductively ortho-
normal bases {2;;1,%;;2 **,%;; .0} of V; with the above property. We have by
Proposition 9.2.1 of [II]

W=3'W
=0

where W, is the irreducible K-submodule of W with the highest weight j,_;.
Then we may choose orthonormal bases {w;;;,w;;, ", @;; .5} of W; j=0,1,
-+,t, and unitary K-isomorphisms a;: V,—W,, i=0,1,---,d, such that
{dacxmxgwﬂlzzx/day“jwﬁdn for j=0,1,-,2—1,
a(Viia) = Wiia for i=0,1,-,d and a=1,2, -, n(z).
Put
()
=2wi;a*®7)i;a t=0,1,-,4d,
0 -1 0
E,= |1 ED.
0
Take an orthonormal basis {E,,E,,-+,E,} of f. Then the basis {EyE,, -,
E,X4,X_4;;j=1,2,--,h—1} of g€ satisfies the assumption of Proposition 6.3.9
of [II]. Considering the weights to which the vectors dp(E()v;;q, dp(X)\);;e
belong, l=0: 17 ) d'_ly a=1,2, '":n(i)) A= i¢'1, :thZ’ Tt :t(l)h—ly we have
Cith'=0 for j=0,1, -, p,
C\itli=10 unless A = ¢, and a=1,
Co,_ 1i+ \/C(P)'Hn Dy, _ 1:+1 b= \/C(o')iﬂi ’
where C; ;Z \i%, D, j8 D, j& are those in subsection 6.3 of [II], but for the

representatlons p and o. Therefore by (a) of Proposition 6.3.9 of [II] and Pro-
position 10.2.1, we have

C(o‘ P)z+1 \/C(P):‘H C(O')i+1,'

_ 1+l — o _
= grraimy Y ) (k2 i=2) (1= (4 2h+i-2).
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We have by Lemma 6.3.2 of [II] and (10.2.1)

x v 2hti—3 o o ———
c(o*, p)in ——2h+2i_3\/(k ) (k+-2h+i—2) (t—i) (t+-2F11—2) .

We have by (9.4.1) of [II] and the proof of Proposition 10.2.1
Coii=0  a,B8=12-,1n0),
{ e =0 A= dd,ddy s Edpna, B=1,2, -, n().
Therefore we have by (b) of Proposition 6.3.9 of [II]
c(o*, p)'i = c(a*, p; ¥)’;.
Since a;: V;—W, is a unitary K-isomorphism, we have
C,i5=D;i8 j=12,-,p, a,B=12, -, n().
Therefore by (b) of Proposition 6.3.9 and (3) of Lemma 6.3.4 of [II], we have
c(a*, p)'i = c(p; V)'; = i(2h+i-3).

It follows from (9.4.1), (2) of Lemma 6.2.3 and (a) of Proposition 6.3.7 of [II]
that

c(a*, p);=0 for 7,7 =0,1, -+, d, with |i—j|>1.
Put

o'y = V(k—i) (k+2h+i—3)! (t—1) | (t+2h+i—3)] w; .

Then the basis {w'p, 0}, -+, @';} of (W*QVC), has the required property.
Q.E.D.
Lemma 104.3. Let o: G— GL(W) be a complex irreducible representation
with [¢]€D(G; K, p") and Ay=s¢,-1+1tp;, s+0. Then there exists a basis
{0151, @ 15141, %> @'a} of (W¥QVE)y such that {w',, & nir, -+, 0’5} s a basis of
(W*Q(VY)C), and that
_ (B+2h+1—3) (t+2h+1—3) (i—s) (s+2h+i—4) o'
i(2h+2i—1t) -

. oy (1) (B=0) (t—i)
+i(2h+i—3)o’ i+ hiZi1 Wit

for i=|s|, |s|+1, -, d,

L(c*, p)o';

where d=Min{k, t}, m=Max{2, |s|} and &'\-1==0"4:.=0.

Proof. Choose the orthonormal bases {v;;,, v;;2 ***, Vi; n} of V; in the
proof of Lemma 10.4.2. We have by Proposition 9.2.1 of [II]
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where W, (resp. W,) is the irreducible K-submodule of W with the highest
weight pe,_2+ g¢,-i(resp. with the highest weight p¢,). We may choose
orthonormal bases {w;;,, @;;s, =, w;j; up} of Wi j, j=Isl, |s|4+1 +-,d and
unitary K-isomorphisms a;: V(=W ; i=|s| [s|+1, -+, d, such that
{do'(X¢;,_1)wj;1 = \/C(a')(o)'jﬂ(o),j Wisrs1 J = |s|, [s|+1, -, d
(Vi) =Wisa 1= |s|,|s|+]1,d, a=12 - n().

Here Wy j(resp. ¢(a)®* g ;) means W, ;(resp. c(a)"*, ;) if h>2, and W;
(resp. c(a)’™) if h=2. Put o=, :4*®yseri= s, Is|+1, -+, d. Applying
Proposition 10.2.1, 10.3.1 and 10.3.2, we have the following equalities in the
similar way to the proof of Lemma 10.4.2:

(o™, 6" = Vel (),

. V(z+ 1) (k—i) (k+2h+i—2) (t——z) (t+2h+i—2)(i—s+1) (s—i—2h+z—3)
- (2h+i—3) (2h+2i—1)?

C(O'*, P)ii-{-l
B V(2h+z—3)(k—z)(k+2h+z——2)(t~—z)(t—}—2h+z—2)(z—s—|—1)(s+2h+z—3)
= G+1)(2h+2i—3y

o(*, p); = i(2h+i—3),

(o*, p); =0 if Jij|>1.
Put

=) R 2= 3) (=) (- 2hi—3) [ G—s)! ¢ T
o —x/ Bl I (42— 4o
Then the basis {&'|s, @ |51, =+ @'} of (W¥QVC), has the required property.

Q.E.D.

Theorem 10.4.4. Let F:(S**7', ¢, D)= S, F(xK)=p(x)F(0), be the full
equivariant minimal isometric immersion induced from p=p,, k,h=2. Then we have

(1) Every eigenvalue of the Jacobi differential operator S is an algebraic
number.

(2) For any [c]1€D(G; K, p¥) the multiplicity of every eigenspace of S in
0 (N(S*7Y)C) is equal to 1. (Recall that the operator S leaves o, j(IN(S* 1))
invariant.)

Proof. By virtue of Theorem 3 of [I], it is sufficient to show that for any
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[c]€D(G; K, p") every eigenvalue of the operator S, in subsection 5.2 of [I]
is an algebraic number and that every eigenspace of S, is of dimension 1. Let
W be the representation space of ¢. Put

_ 4(k—1) (k+2k—1)
2h+1 )

a —

(a) The case A,=1¢;; Let {0y, @'y, -+, @'} be the basis of (W*QVC),
in Lemma 10.4.2. Put for 7/=0,1,---,d

gt 22hti—4) (kt2hti—3) (t+2h+i—3)
: 2h+2i—5

@; = t(i+2h—2)—2i(2h+i—3)

_2(i+1) (k—i) (t—i)
2h+2i—1

b

i+l
atl =

Let A be the matrix expression of the linear mapping S, of (W*®(V*)¢), with
respect to the basis {w'5, 5, ***,0’s}. Then by (10.4.1), Lemma 10.4.1, Lemma
10.4.2 and (5.2.3) of [I], we have

a’yta a’
3

_ 2h—1 ay @ L
k(k+2h—2) 0’ R L Y

Therefore all eigenvalues of S, are algebraic numbers. Since a’*;3+0, 1=2,
3,-:-,d—1, each eigenspace of S, is of dimension 1.

(b) The case A,=sp;_,+1¢p, with s=0: Let {0, ® 531, ***, s} be the
basis of (W*®V¢),in Lemma 10.4.3. Put for i=|s]|, |s|+1, -+, d

piot — 20k 2h+i—3) (1+2h+i—3) (i—s) (s+2h+i—4)
: i(2h+2i—5) ’

b'; = s(s-+2h—4)+t(t+2h—2)—24(2F+1—3),

g 20641) (k—i) (1—i)
! 2h-+-2i—1

Let B be the matrix expression of S, with respect to the basis {w’,, ® i1, =", @'a}.
Then we have the followings by (10.4.1), Lemma 10.4.1, Lemma 10.4.3 and
(5.2.3) of [T]:

[1] The case |s|=1, 2:
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Vpta b
= —-—Zh_l b32 b33 . - .
k(k+2k—2) L by
<. bdd;1 b,

[2] The case |s| >2:

| Isl
b\ b .

2h—1 b|s|+1Isl blsH-l

)

Isl+1 . bd_ld .
0 . C

: bdd—-l bdd
Therefore we obtain the required assertion in the same way as (a). Q.E.D.

ReMARK 10.4.1. The eigenvalues of S are not necessarily rational. For
example, if k=h=3 and A,=4¢,, the eigenvalues of S, are not rational.

10.5. In the rest of this section, we shall compute eigenvalues of the
operator S, for [¢]€D(G; K, p") with Ay=s¢,_1+tp;, |s|=3, and give
some estimates for the nullity of F. For this purpose we prepare a proposition
on the decomposition of tensor products.

In this subsection we denote by W, the Weyl group of G=SO(2k) with
respect to the Cartan subalgebra t, and by 8,=¢;+2¢p;+ ---+(h—1)¢, the half
sum of all positive roots of g¢=280(2k,C), h=2. Let 8, be the symmetric
group of degree %, P, the family of all subsets of the set N={1, 2, ---, A}, and
P’, the family of all subsets consisting of even elements of N. We consider
8, and P, as subgroups of GL(1) in the following manner: If T8,

T(¢i):¢'r(i) 1= 1’21'“)h'
If repP,,
¢,~ lf T’GE’T ,
wwy={"
—¢; if ieT.
Then we have

W, = 8, X P’; (semi-direct product).

For an element 7€ W, we define a non-negative integer a,(7) as follows:
h

ay(7) = 23 |bi(7)| ,

i=1

where 8,,—7(8,,)=$b;(7)¢i. We claim that a,(7) is even. We shall first
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show this for r€8,. Put
N,= {ieN; 7)) =14},
N, = {ieN; (), T @) <},
N, = {ieN; (@), v'(¢) >},
N, = {ieN; () <i<7(d)},
N,= {ieN; r@)<i<t (i)} .

Then N is a disjoint union of N, N, -+, N,. Since ah(7)=ﬁ | 7(¢)—i|, we have
am=_3 i+ RN @)— 3 6)—_ 3 i.
iENJUN, iEN,UN3 IENJUN iIENJUN;
If i&N,U N (resp. ieN,U N,), then 7(f) €N, U N(resp. 7)) €N, UN,;). There-

fore we have

a,(t) =2(X2} i—i§2i) ,

iIEN.
which is an even integer. Next let T=7'17';E W, with 7,8, and 7,&P’,. Then
we have
(10.5.1) a(7) 2;2“—:2 | T(2)—7| +;EETZ(TI(i)+i—2) .
If we put m;=Min {7, 74(7)}, then
ay(t) =23 |m(e)—i| + ‘EZ_}Z {l Ty(8)—2| +-2(m;—1)}

igT,

= ah(71)+2;§2(m‘—1) .

Therefore a,(7) is an even integer.
Put

{W’h = {rEW,; (1) = ¢4} »
W= {r€W's; 7(di-1) = du-1} -

We may identify this subgroup W',(resp. W”,) of W, with the group W,_,
(resp. with the subgroup W’,_, of W,_;). Under this identification we have
for T W,h'

(10.5.2) ay-i(7) = ay(7) .
Lemma 10.5.1. Suppose that h=3. We have for a non-negative integer i
<h+gi__2@_ 2) <h+m_ 3)._.(2i—a,,(7)+ 1)
2 2 2
SV det(7)
TEW ) (h—2)!

2i —a(T)20

=1.
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Proof. We shall prove the lemma by the induction on 4. If A=3, strai-
ghtforward calculations show that the equality is valid. Suppose that the
equality holds for ~—1. Put for r€W,

K,(,7)

= det(r) A0 2) (20 5) - (B0 1)

(h—2)!

The subgroup W', is decomposed to left cosets modulus its subgroup W”, in
the following way:

(10.5.3) W', = W",U(h—2, h—)W", U {h—2, h—1} W",
U (h—2, h—1) {h—2, =1} ", U ", h— )W,
UG A1) 2, 13w,

where (7,7) (resp. {7,j}) denotes the transposition of 7 and j(resp. the subset of
N consisting of 7 and j). Applying (10.5.1), we see easily that

(10.5.4) ay((h—2,h—1)71) = ay(t)+2  for TeW”,.

Therefore if 2i—a,(t)=0 for re(h—2, h—1)W",, then (h—2,h—1)reW”,
and 2i—a,((h—2, h—1)7)>0. Suppose that r€W”,, 2i—a,(t)=0 and
2i—a,((h—2, h—1)7)<<0. Then since a,(7) is even, it follows from (10.5.4)
that 2i—a,(7)=0. Hence

K@, (h—2,h—1)T)=10.
Therefore we have

2 Ki@n+ 2 K@)

TEW/ TECh-2,h- DWW/,
2§ —ap(TH20 2{ —8p(TH20
= 2 AK@E 1) +FKu(@E, (=2, h—1)7)} .
TEW )
2§ - a,(T)20

And we have by (10.5.4) and (10.5.2)
K,@, )+ K@, (h—2,h—1)1) = K, (i, 7) for reW”,.

Therefore we have by the assumption of the induction

(10.5.5) >V Ky, )+ N K, (i, )
TEW), TECh-2,h—-1DW' '}
2§ —ap(T)=0 2 =@p(T)=0
= 2 Kh—l(i) 'T) = 1 .
TEW p-1

2i = _1(T)20
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Applying (10.5.1), we have
a(h—2,h—1)7) = ay(v)  for r€{h—2,h—1}W",.

Therefore
(10.5.6) 2V Ky )+ pD Kz, 7)
TE(h~2,h~1)W"} TEh=2,h=1)(h=2,h =1} W}
2i-ap(T)20 2§ —85(T)Z0

- KL, K0, (h—2, h—1)m)}
TE(R-2,h -1 )W/}
2§ ~a(TH20

=0.
Suppose that j=1,2,:,A—3. Then since (h—2,h—1)(j,h—1)=(j,h—1)
(j, h—2), it follows that if 7 is contained in (f, A—1)W”, (resp. in (j,h—1)
{h—2,h—1}W"),), (h—2,h—1)r is also contained in (j,A—1)W”, (resp. in
(J, A—1){h—2, h—1}W"},). Applying (10.5.1), we have
a(h—2, h—1)7) = a,(7)
for re(j, h—1)W",U(j, h—1){h—2,h—1} W",.

Therefore we have

(10.5.7) 2 K,(G,7m)= 2] K, 7)
TEG,h-DWy TEUG,h~1) (h—2,h =1} W’/
2i =8;,(TH20 2§ —84(TY20
=0.
We obtain the lemma by (10.5.3), (10.5.5), (10.5.6) and (10.5.7). Q.E.D.

Proposition 10.5.2. Let p;: G—GL(W)) and o: G—GL(W) be complex
trreductble representations with the highest weights j, and s¢,_,+tp, respectively.
Then the tensor product o*®p; contains a spherical representation of (G,K), if
and only if j= |s|. The highest weights of the spherical representations contained in
a*Q®p; are the followings:

(+t—Isl—240)¢p, ¢=0,1,, Min{j—|s]|,z—|s|}.
Proof. We have by Proposition 9.2.1 of [II]

0 if j<l|s|,

: * A —
dim(W*Q W), {Min{j—lsl-f—l)t_‘lsl‘*"l} if j=|s|.

Therefore the tensor product ¢*®p; contains a spherical representation, if and
only if j = |s|. In the representation space of a spherical representation of (G,K),
the subspace of K-fixed vectors is of dimension 1(cf. Takeuchi [6] p. 104).
Therefore the sum of the multiplicities of the spherical representations contained

in 6c*Qp; is equal to Min{j— [s| 41, t—[s|+1}. Let 4ry: G—>GL(V,) be a
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complex irreducible representation with the highest weight A, and m, the multi-
plicity of 4 in 7*®p;. Then we have (cf. Chevalley [2] p. 188)

my = SGXG*QP]X‘IIA dx ,

where dx is the normalized Haar measure of G and X,+g,, (resp. Xy,) is the
character of ¢*@p;(resp. of yr,). Suppose that . is a spherical representa-
tion. Since the characters X,; and Xy, are real valued by Remark 3.2.2 of [I],
we have

My = Scx¢*®ij¢Adx - Saxwxp,.xhdx

= S XX, Xy \dx = S Xogo; Xy dx .
G G

Therefore m, is equal to the multiplicity of 4r, in ¢®p,;. On the other hand
we have Lemma 9.1.1 of [II]

my = 2 det (7) m(A+8,—7(spy-1+Eut84); jbi) -

We consider the case of A= (j-+t— |s| —i)¢, with 0=i<Min{2(j— |s]), (2(z—
[s)}. Then

JtHt—ls|—i=|s].
For 7€ W, we define a non-negative integer ¢(7) by
h
(1) = kE_l lel(T)]
h
where (i+2— |s| —2)ps+8i—T(Spis_1+tdst8)) = kzﬂck('r)¢,<. Let r=71,eW,
with 7,8, and 7, P’,. If 7(¢s) =+ ¢ps, we have

e(t) = |erm(T) |+ lew(T) |
2 |t+-h—1—(h—2) |+ | j+t—|s| —i+h—1—(|s| +h—2)]|
— 21— |s))—i+i+22j+2.

If 7(¢p4)=—2s we have
c(r)= |ey(t)| = 2t—|s| —itj+2h—225+2.
Therefore unless 7(¢,)=¢;, we have by Proposition 9.3.2 of [II]
m((j+1—1s| —0)but-04—T(5ps-1+1ds+84); jps) = 0.
Hence we have

(10.5.8) m(j+t—ls|~f)4’h
=, 2, det(r) m((j+-2—|s| =d)but3—(sps-1H1dst084); jbs) -
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(a) The case h=2: It follows from (10.5.8) that
Mjre-tsi-, = M(—Spr+-(j— |s| —1)ai j2) -
Applying Proposition 9.3.2 of [II], we have
0 if 7 is odd,
Mjrt-1s1-0¢y == { 1

if 7 is even.

Therefore ¢*®p; contains spherical representations vy, A=(j+2— |s| —27)¢s,
i=0,1, -, Min{j— |s|, t—|s]}.

(b) The case A>2: Let reW’,. If j—s—i=0, we have
J=e(r) = j—(stayr)Hj—s—1) = i—a,(7).
If j—s—i<0, we have
J=(7) = j—(s+ay(r)+s+i—j) = 2i—2s—i—a(7) .

Recall that a,(7) is even. If { is odd, then we have by Proposition 9.3.2 of [II]
and (10.5.8)

m(j+l—s—i)¢h = O .

If /—s—7=0 and 7 is even, we have by (10.5.8), Proposition 9.3.2 of [II] and
Lemma 10.5.1

M(jst-s-idoy = T;W;,h det(7) (Hi-anmne— sl i-apo-2112)
i=ap(T)20

=1.
If j—s—i<<0 and 7 is even, we have in the same way as above

M(irt-s—idpy = 1.

Therefore o*®p; contains spherical representations vry, A=(j+t—s—2%)¢p,,
i=0,1,---,Min{j—s, t—s}.

Since the sum of the multiplicities of the spherical representations contained

in ¢*Q®p; is equal to Min {j— |s|+1, #—|s|+1}, we obtain the proposition.

Q.E.D.

10.6. We consider again the full equivariant minimal isometric immersion
F: (87, ¢, D)= 8, F(xK)=p,(x)F(0), induced from p=p;, k=2,3, .

Let o: G—>GL(W) be a complex irreducible representation with [s]E
D(G; K, p"), Ag=5¢,_1+td,. We define a linear mapping T, of (W*QVC), by

TU' == ‘—'(Ca-lw*ch—I_zL(o'*, p)) .
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Since ¢,»=c¢,, we have by (5.2.1) of [I]
(10.6.1) T,_.,. = ——(Ca.*®p—6plw*®yc) ,

where C,sg, is the Casimir operator of the tensor product o*®p. It follows
from Proposition 10.5.2 that there exists a basis {yrg,Vry, -**, ¥, } of (W*QVC),,
m=Min{k— [s|,2— |s|}, such that every ), is a K-fixed vector in the irreducible
G-submodule of W*@V ¢ with the highest weight (k+t— |s| —27)¢,. Therefore
it follows from (10.6.1) and the formula of Freudenthal that the eigenvalues of
T, are given by

(10.6.2)  (t—|s| —24) (k+t+2h— |s|—2i—2)  i=0,1,-,m.

Suppose that [c]ED(G;K, p") and |s|=3. Then we have by Proposi-
tion 9.2.1 of [II] and (10.4.2)

(W*@V )y = (W*Q(V™)), .
And we have by Lemma 10.4.1

n+p
1@ ?;{ {dP(E;) (dp(Ei)*)N}NI(W*®(V‘N)C)O = ¢l a0y, -

Therefore it follows from Lemma 5.2.2 of [I] that the operator S, of (W*®
(VM)), coincides with %Tc,. Hence we have the following theorem by (10.6.2).

Theorem 10.6.1. Let F:(S*',c , >)—S, F(xK)=py(x)F(0), be the full
equivariant minimal isometric immersion induced from p=p,, k=3,4,---. Suppose
that [c]€D(G; K, p") and A,=s¢p;_,+t¢p, with |s|=3. Then the eigenvalues of
S, are given by

2h—1 . .
_ LR |5|—24) (2R t4-2h— |s| —2i—2
W L2y (91729 @20 15| —2i-2)
i=0,1,, Min{k—|s|, t—|s|} .

Let U, be the 0-eigenspace of the operator S in C=(G;(V")¢). Put
II, = {[¢c]€D(G; K, p"); S, has an eigenvalue 0} .

Then it follows from (2) of Theorem 10.4.4 that U, is decomposed into a direct
sum of the irreducible G-submodules of U as follows:
(JO = 2 U[o’] ’
[oiT,
where U, is the irreducible G-submodule of U, with the highest weight A,.
The following theorem gives a lower bound for the nullity of the minimal im-
mersion F.
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Theorem 10.6.2. Put

I’y = {[c]€D(G; K, p¥); A, = s¢,_1+1p, satisfies
(1) Isl=1 or |s|=3
and
(1) |s|+t=2k and t—|s| iseven

Then we have
Ir,c1I,.

If [o] s contained in 11, and satisfies the above condition (i), then [o] is contained in
Ir',.

Proof. We have for [¢] € D(G; K, p") with A,=s¢,-1+tp, and for
1=0,1,---, Min {k— |s|, t—|s]|}
(10.6.3) 2k+t+42h— |s| —2i—2=t+ |s| +2h—2>0.
If |s|+2>2k, we have for i=0,1, ---, Min {k— |s|,#— [s]}
(10.6.4) t—|s| —2i=t—|s| —2(k—|s|) = |s|+t—2k>0.
Suppose that [s|+t=2k. Then we have

|s|+t<2k, 2t,

and hence
(10.6.5) t—|s| =2(k—|s]), 2(¢—|s]) .

(a) The case where [0]€D(G;K,p") and |s|=3: Suppose that [o]
satisfies the condition (ii). It follows from Theorem 10.6.1 and (10.6.5) that
[o] is contained in II,. Conversely if [¢] is contained in II,, it follows from
Theorem 10.6.1, (10.6.3) and (10.6.4) that |s|-+#=<2k and that z— |s]| is even.

(b) The case where [c]€D(G; K, pV) and |s|=1: Take the basis {0'},w’,,
w0y} of (W*QVC), in Lemma 10.4.3. Let B’ be the matrix expression of T,
with respect to this basis, and let 7Y, b, b**'; and B denote the same ones as in
the proof of Theorem 10.4.4. Then we have

Bob,
Bob, . 0
B — B, . -
R
0 e

by 0%
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Since
b = (¢—1) (¢+2h—1), by = —(k+2h—1) (t+2h—1),
B — _4k—1)(t—1)
1 T A7 1
2h—1
we have

det B' = (t—1) (t4+2h—1)x

1 —(k+2h—1)
_4(k—1) TR 0
2h+1 5 p
det 2 ’.
0 R
By

= (t—1) (t4+2h—1) det (cB).
On the other hand we have by (10.6.2)
det B =TI (t—2i—1) (2k-+1-+2h—2i—3).

Since t=2 and t+2k—1>0, we have

2k+t+2h—3 41 . .
=== TI(t—2i—1) (2k+1t+2h—2i-3).
Applying (10.6.3), (10.6.4), (10.6.5) and (10.6.6), we obtain the assertion in the

same way as in (a). Q.E.D.

(10.6.6) det (cB) =

Remark 10.6.1. Suppose that k=3. Computing the matrices 4 and B
for |s|=2 in the proof of Theorem 10.4.4, we have by the above theorem

Hoz H,Os

Remark 10.6.2. (1) Suppose that k=3. Applying Proposition 3.4.2 of
[I], we see by the above remark that the nullity of F coincides with its Killing
nullity.

(2) Suppose that k=4. Then the sum of dim Ui, [c]EIT’, is greater
than the Killing nullity of F. Therefore the nullity is greater than the Killing
nullity.

11. Minimal immersions of 2k-dimensional sphere S%(h=2)

In this section we assume that G=SO(2h-+1) and K=SO(2k), h=2. The
assumptions and the notation are the same as in section 9 of [II].

11.1. In this subsection we consider the full equivariant minimal iso-
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metric immersion F: (S*,¢( , >)— S induced from the second real spherical
representation p, of (G, K). Then we have by the formula of Freudenthal
and Proposition 3.2.1 of [I]
(11.1.1) ¢ =2+l

h
Therefore it follows from Remark 8.3.1 of [II] that the operator S on C*(G;
(VM) is given by
_h
2h+1
Hence for every [¢]€D(G; K, p") the operator S acts on o, (IN(S*)€) as a
scalar, which will be denoted by ¢(c). We have by Proposition 9.2.1 of [II]

(11.1.3) (VO =V, (VO° =TV, (VN =T1,,

where V; is the irreducible K-submodule of V¢ with the highest weight i¢,. We
have

Theorem 11.1.1. Let F:(S*,c, D)— S, F(xK)= p,(x)F(0), be the full
equivariant minimal isometric immersion induced from p= p,.

(1) We have
D(G; K, p") = {[c]€D(G); A, = sy, +1tp, with 0§s§2}
and t=2) ,

where A, is the highest weight of the complex irreducible representation o of G.
The multiplicity of each [c1€D(G; K, p) is equal to 1.
(2) We have for [¢]€D(G; K, p") with A,=s¢,_1+1tP,
_ k
A7) = 2nt1
(3) The cases where c(a) =0 are the followings:

n+p
(11.1.2) S=— (g EEA42h+ 1)1 MO ) -

{s(s+2h—3) ++#(t+2h—1)—4(2h-+1)} .

¢(o) A,
< 0 2¢h) ¢h—l+2¢h’ 2¢h—1+2¢h7 3¢’h
=0 Di-1+3,

Proof. Applying Proposition 9.2.1 of [II], the Frobenius reciprocity and
the formula of Freudenthal, we obtain the theorem in the similar way to Theorem
10.1.1. Q.E.D.

Remark 11.1.1. It follows from the above theorem and Proposition 3.4.2
of [I] that the nullity of F is euqal to its Killing nullity.
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RemaRrk 11.1.2. (a) The case h/=2: Every eigenspace of S is G-irreducible.

(b) The case A>2: The eigenspace corresponding to the eigenvalue
h(3—9h—4)

2h+1
the highest weights k¢, and 2¢,_,+(A—1)¢p;. The other eigenspaces are G-
irreducible.

is decomposed into two G-irreducible components, which have

11.2. Let o: G—GL(W) be an irreducible unitary representation with
the highest weight k¢p,, k>0. We have by Proposition 9.2.1 of [II]

WZZkWi)
i=0

where W; is the irreducible K-submodule of W with the highest weight i¢,.
We shall compute ¢(o)’;, 7, j=0,1, ---, k. It follows from (9.4.1), (2) of Lemma
6.2.3 and (a) of Proposition 6.3.7 of [II] that

(11.2.1) «(a)’; =0 for i,j=0,1,,kwith [i—j|>1.
We have
Proposition 11.2.1

(o) ey = (k—i) (k+2h—i—2),
g (i+1)(k—i) (2k-+2h—i—2)

C(a-)k—ik—i—l =

2(k+h—i—1)
(o), = U1 (k- 2h—i—3) Qk+2h—i~2)
- 2(k+h—i—2) '

Proof. It follows from (9.4.1), (3) of Lemma 6.2.3, Proposition 6.3.7 and
(3) of Lemma 6.3.4 of [II] that

(11.2.2) (o) = c(o; B = i(i+2h—2) .

Applying Lemma 6.3.2, (6.3.10) of [II], (11.2.1) and (11.2.2), we obtain the
proposition in the similar way to the proof of (b) of Proposition 10.2.1. Q.E.D.

11.3. Let o: G—GL(W) be an irreducible unitary representation with
the highest weight s¢,_,+¢;, s>0. We have by Proposition 9.2.1 of [II]
W, if h=2,
W — {1<5sest

. if B> 2,
0SP=S<ast

where W, , is the irreducible K-submodule of W with the highest weight p¢,_;+

g¢pis. We shall compute ¢(o)™, ), ¢, j=s,5+1,+,¢. It follows from Lemma
9.2.4, (2) of Lemma 6.2.3 and (a) of Proposition 6.3.7 of [II] that
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Proof. We have in the same way as in (11.2.2)
(11.3.2) (o)™, = i(i+2h—2).

(a) Applying Lemma 6.3.2, (6.3.10) of [II], (11.3.1) and (11.3.2), we
obtain the equalities in the similar way to the proof of (a) of Proposition 10.3.2.
(b) Put Hy,=[Xy,, X _4,] and gx4,°={Xs,, X _4,, Hs,}¢. Considering W
as a gx4,°-module, we obtain the equalities in the similar way to the proof of

(b) of Proposition 10.3.2. Q.E.D.

1.4. In the rest of this section we consider the full equivariant minimal
isometric immersion F: (S*,¢{ , >)— S induced from the k-th real spherical
representation p=p, of (G,K), k=2,3,---. Then we have by the formula of
Freudenthal and Proposition 3.2.1 of [I]

. _ k(k+2h—1)

11.4.1
(11.4.1) o

We have by Proposition 9.2.1 of [II]
(11.4.2) (V) =Vo (VT =V, (P =31V,

where V; is the irreducible K-submodule of V¢ with the highest weight i¢,.
It follows from Corollary for Proposition 9.2.1 and the argument in subsection
6.5 of [II] that there exist complex numbers c;, 1=0,1, -+, %, such that

{dp(E) (dp(Be)"s ¥y, = cily,

i=1

n+

>

Then we have the following lemma by Proposition 6.5.1, Proposition 6.3.8 of
[11], Proposition 11.2.1 and (11.2.1).

Lemma 11.4.1.

0 if 1=0,1,
6= —{k(k+2h—1)—@:%@} if i=2,
| —k(k+2n—1) if i>2.

It follows from Proposition 9.2.1 of [II] and the Frobenius reciprocity that
D(G; K, p") = {[s]€D(G); A, = sdy_1+1tdy, 0Ss=k, 254},

and that the multiplicity of the above [o] € D(G; K, p") is equal to Min
{k—1, k—s+1,t—1, t—s+1}. We have

Lemma 11.4.2. Let o: G— GL(W) be a complex irreducible representation
with [c]€D(G; K, p") and A,=tp,. Then there exists a basis {w'y, 'y, -+, 0’} of
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(W*QVE), such that {w's,a's, -, o's} is a basis of (W*QVY)C), and that

Lio*, o', = Pti=3) (k- 2hki=2) ¢+ 2h+i=2)
S 2(h-+i—2) o
op o on o (D) (k—i)(t—d)
+i(2h+1—2)0";+ 2(h i) © i+
for i=0,1,-,d,

where d=Min{k,#} and o’'_;=w’;4,=0.

Proof. We may choose orthonormal bases {v;;1,%;; ***,9;; s} of V;and
{w;; ;52 % .»} of W;, and unitary K-isomorphisms a;: V;—>W,, i, j=
1, -+, d, such that

dp(Xg,)vi;1 = \/C(P)H'li Vit151)
do(Xg)wji1= Ve(a) ™ wii1:1,

ai(‘vi;a):‘wi;m oA = 1,2,"',71(1).
7(8)

Put 0;=2 w;;o*®7v;,;47=0,1, --,d. Then applying Proposition 6.3.9, Lemma
@=1

6.3.2, (3) of Lemma 6.3.4 of [II] and Proposition 11.2.1, we have the following
equations in the similar way to the proof of Lemma 10.4.2:

o(o*, p)*y =D =iy R 2hi—1) (1—) (- 2hFi—1),

2(h 1)
(6%, P = .22(%:_% VE—3) (T 2hi—1) (t—1) (1 2h1i—T1),

C(O'*, p)i‘- = l(2h+'l—2) )
o(c*, ;=0  ij=0,1,-,d with |i—j|>1.

Put

o' = V(k—i) (k- 2h+i—2)1(t—i) | (t+ 2h+1—2)  w; .

Then the basis {w'p, @', ", 0y} of (W*®VC), has the required property.
Q.E.D.

Lemma 11.4.3. Let o: G— GL(W) be a complex irreducible representation
with [c] € D(G; K, pV) and A,=sp,_1+tdps, $s>0. Then there exists a basis
{0’ 0 11, oy 0'g} of (W*QVEC), succh that {o' o wi1, > o's} is a basis of
(W*Q(V™)€), and that

L(c*, p)’; = (k+2h+1i—2) (l+2{t+i—.2) (1—s) (s+2h+i—3) ot
2i(h+1—2)

. oy sy (1) (R—1) (1) o’
+i(2h+i—2)0’;+ 2(h i) i+l
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for i =s,541,--,d
where d=Min{k, t}, m=Max{2, s} and &',_;=0';4,=0.

Proof. We may choose orthonormal bases {v;;1,v;;2, ***,0i; 20} of V; and
{Wj; w52, w;; .} of W, ;, and unitary K-isomorphisms a;: V=W, ;, ¢, j=
s,s+1, -+, d, such that

dp(X¢h)7) 31— \/C(p) iYit151)

dO’(.Xd,h)w] 1= \/C(O') Wit151

i(vi;a)_wi:a a—-l,z, "”(i)'
(i)

Put w;= 2 w;;4*®v;;a,1=5,5+1, -=-,d. Applying Proposition 11.2.1 and
@=1

Proposition 11.3.1, we have the following equalities in the similar way to the
proof of Lemma 10.4.2:

x+1

(o™, p)

_ V(z—l—l)(k——z)(k—f—2h+z~1)(t—z)(t+2h+z—1)(z—s+1)(s—f—2h—{—z——2)
HhtiyCh+i—2)

C(O‘*, P)ii+1
AV/(2]1—}—1—2) (k—2)(k+2h+i—1)(t—2) (¢4 2h+i—1) (F—s+ 1)(s+2h+z—2)
4(i+1) (h+1—1)°

c(a*, p)i = i(2h+i—-2),
c(a*, p)j=0 if [i—j|>1.
Put

Then the basis {w';, sy, **+, @'s} of (W*QVC), has the required property.
Q.E.D.

Theorem 11.4.4. Let F: (S*, ¢, D)— S, F(xK)=p,(x)F(0), be the full
equivariant minimal isometric immersion induced from p=p,, h=2, k=2,3, ---.
Then we have

(1) Every eigenvalue of the Jacobi differential operator S is an algebraic
number.

(2) For any [¢]€D(G; K, p"), the multiplicity of every eigenspace of S in
o, 1(IN(S?*)€) is equal to 1.

Proof. By virtue of Theorem 3 of [I], it is sufficient to show that for any
[¢]€D(G; K, p") every eigenvalue of the operator S, is an algebraic number
and that every eigenspace of S, is of dimension 1. Let W be the representation
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space of &. Put
_ _2(k—1) (k+2h)
h+1 '

(a) The case A,=t¢,: Let {o'y,w’}, **,»';} be the basis of (W*QVC),in
Lemma 11.4.2. Put for i=0,1,---,d

Ja,.ﬂ. __ (2h+i—3) (k+2h+i—2) (t+2h—i—2)

h+i—2
a'; = H(t+2h—1)—24(2h+i—2),
l i+l _(i+1) (k_i) (t—i)
’ h+1 '

Let A be the matrix expression of the linear mapping S, with respect to the
basis {w'y, @3+, ®';}. Then we have by (11.4.1), Lemma 11.4.1, Lemma

11.4.2 and (5.2.3) of [T]

a

a’ta a . 0
2% a’, ay
A= ——"2— ...
k(k+2h—1) P S
0 B a”d:1 a; .

Therefore all eigenvalues of S, are algebraic numbers. Since a'*!;%0,7=2,3, ---,
d—1, each eigenspace of S, is of dimension 1.

(b) The case A,=s¢;_1+1¢p;, s>0: Let {o', @'y, -+, ©'s} be the basis
of (W*®V°),in Lemma 11.4.3. Put for i=s,s+1,-++,d

pi-t — _ (kF-2hti—2) (t+2h+i—2) (i—s) (s+2h+i—3)
' i(h+i—2) ’
b, = s(s+2h—3)+t(t+2h—1)—2i(2h+i—2)

bitl — (i“l‘l) (k_i) (t_ i)
¥ h+i '

Let B be the matrix expression of S, with respect to the basis {&’,, ® i1, **,
o';}. Then we have the followings by (11.4.1), Lemma 11.4.1, Lemma 11.4.3
and (5.2.3) of [I]:

[1] The case s=1, 2:

b’ta b 0
b® b :
B—_ 2k | 7P TR
k(k1-2h—1) R

0 e, b
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[2] The case s>2:

b b 0
R T
k(k+2h—1) R
0 R
Therefore we obtain our assertion. Q.E.D.

11.5. In this subsection the notation W,, 8,, P, and a,(7) are the same as
in subsection 10.5. We have

W, = 8,X P, (semi-direct product).
Let r=71,€W, with 1,€8, and 7,&P,. Then we have
(11.5.1) a,(t) = “EETZ | T1(2)—1] +.-52«-2 (m()+i—1).
Identifying the subgroup W’, of W, with the group W,_,, we have for re W’,
(11.5.2) ay_o(7) = ay(7).
Lemma 11.5.1. Suppose that h=2. We have for a non-negative integer i
(=T oo =)0 (=5

1§/h det (1) =

§=8(T)=0
{ 1 if i is even,
Lo if 1 is odd.

Proof. We obtain the lemma by the induction on % in the similar way to
the proof of Lemma 10.5.1. Q.E.D.

Proposition 11.5.2. Let p;: G—GL(W;) and o: G—GL(W) be complex
irreducible representations with the highest weight j¢, and s¢,_,+1tp, respectively.
Then the tensor product o*Q p; contains a spherical representation of (G,K), if and
only if s<j. The highest weights of the spherical representations contained in
o*Q®p; are the followings:

(jH+t—s—20)¢, i=0,1, -, Min{j—s, t—s} .

Proof. We have the followings in the similar way to the proof of Proposi-
tion 10.5.2.

(a) The tensor product o*®p; contains a spherical representation of
(G,K), if and only if s< .
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(b) The sum of the multiplicities of the spherical representations con-
tained in o*®p; is equal to Min{j—s+1, #—s+1}.

(c) Let 4, be a spherical representation of (G,K) and m, the multiplicity
of Yy in 6*@p;. Then m, is equal to the multiplicity of Yr, in c@p;.

(d) If A=(j+t—s—i)¢, and 0={<Min{2(j—s), 2(¢—s)}, we have

M(jrt-s-i)dy =T(§/hdet('r)m((j+t_s—i)¢h+Bh—T(s¢h—1+t¢h+8h);j¢'h) .
Therefore we have by Proposition 9.3.2 of [1I]

2 det(T)hH[(i—-a],('r))/ﬂ if ]_s-i;O )
TEW
i —ap(THI20
Mis—ivpy =13 " o )
e Z det(T)hH[(Zj—Zs—i-—ah('r)}lz] if ]_3_1<0 .

TEW )
2j-25—i—ap(TH20

Applying Lemma 11.5.1, we obtain the proposition. Q.E.D.

11.6. We consider again the full equivariant minimal isometric immersion
F: (8%, ¢, >)— S, F(xK)=py(x)F(0), induced from p=p,, k=2,3, -, Let
T,, I1, and IT'; denote the same ones as in subsection 10.6. Let [¢]€D(G; K,
pY) and A,=s¢,_,+tp,. Then we have in the similar way to (10.6.2) that the
eigenvalues of T, are

(11.6.1) (F—s—28) 2k+-t42h—s—2i—1)  i=0,1, -, Min{k—s, t—s} .
Suppose that [¢]€D(G; K, p") and s=3. Then we have that (W*QV°),
=(W*®Q((V")¢), and S,,:%T,. Therefore we have

Theorem 11.6.1. Let F: (S*,¢C , D)— S, F(xK)=py(x)F(0), be the full
equivariant minimal isometric immersion induced from p=p;, k=3, 4, ---. Suppose
that [c]1€D(G; K, p") and A ,=s¢,_1-+1t¢p, with s=3. Then eigenvalues of S, are
given by

k (k+22h—h—1) (t—s—2i) 2k-+t+2h—s—2i—1)  i=0,1, -, Min{k—s, 1} .
Theorem 11.6.2. We have

r,cIi,.
Suppose that [c] €11, Ay=s¢p,_1+tp;,. Then if s=1 or s=3, [o] is contained in
T,
Proof. Let [c]€D(G;K,p") and A,=s¢,_1+1tp,. Then we have
2k+t+2h—s—2i—1>0  for i=0,1,---,Min{k—s, t—s} ,
(11.6.2) {t—s—2:>0 for ¢=0,1,:--,Min{k—s, t—s} if s-+t>2k,
t—s<2(k—s), 2(t—s) if s+t=<2k.
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(a) The case where [¢]€D(G; K, p¥) and s=3: Applying Theorem
11.6.1 and (11.6.2), we have that [¢] €I, if and only if [¢]EIT’,.

(b) The case where [¢]€D(G; K, p") and s=1: Take the basis {w’}, o5,
0’} of (W*®VC),in Lemma 11.4.3. Let B’ be the matrix expression of T,
with respect to this basis, and let 57, &%, b**!; and B denote the same ones as in
the proof of Theorem 11.4.4. Then we have in the similar way to the proof
(b) of Theorem 10.6.2

det B’ = (¢—1) (¢+2h) det(cB) .
Therefore we have by (11.6.1)

(11.6.3)  det(cB) = %’i*-t’jz—zh"—zh (t—2i—1) (2k-+t-+2h—2i—2).

Applying (11.6.2) and (11.6.3), we obtain the assertion. Q.E.D.
Remark 11.6.1. If k=3, we have I1,=IT,.

RemMARK 11.6.2. (1) If k=3, the nullity of F coincides with its Killing
nullity.

(2) If k=4, the sum of dim Up,, [c]EII’,, is greater than the Killing
nullity of F. Therefore the nullity is greater than the Killing nullity.

12, Minimal immersions of 2-dimensional sphere S*

In this section we assume that G=S0O(3) and K=S0O(2). The assump-
tions and the notation are the same as in section 9 of [II].

12.1. In this subsection we consider the full equivariant minimal isome-
tric immersion F: (S%¢C , >)—.S induced from the second real spherical re-
presentation p, of (G,K). Then we have by the formula of Freudenthal and
Proposition 3.2.1 of [I]

(12.1.1) c=3.

It follows from Remark 8.3.1 of [II] that the operator S on C~(G;(V¥)%), is
given by

(12.1.2) S = —% (Z__": EE+12 1eeo; w70,) -

Therefore for each [¢]€D(G;K,p") the operator S acts on op,j(IN(S?F€) as a
scalar, which is denoted by ¢(c). We have by Proposition 9.2.1 of [II]

(12.13) (VN =TV, (VO =V_ 4V, (V¥ =V_,+V,,

where V; is the i¢,-weight space of V¢ relative to t=%.
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Theorem 12.1.1. Let F: (S% <, D)= S, F(xK)=py(x)F(0), be the full
equivariant minimal isometric immersion induced from p= p,.
(1) We have

D(G; K, p¥) = {[c]€D(G); A, = t¢ 122},
where A, is the highest weight of the complex irreducible representation o. The
multiplicity of each [c]1€D(G; K, p") is equal to 2.
(2) We have for [c]€D(G; K, p") with A,=1t¢,
(o) = _31_ (E+1—12).

(3) The cases where c(c) <0 are the followings:

(o) A,
<0 26,
=0 3¢,

Proof. Applying Proposition 9.2.1 of [II], the Frobenius reciprocity and
the formula of Freudenthal, we obtain the theorem. Q.E.D.

ReMARK 12.1.1. It follows from the above theorem and Proposition 3.4.2
of [I] that the nullity of F is equal to twice its Killing nullity.

12.2. Let o: G—GL(W) be an irreducible unitary representation with
the highest weight k¢,(k>0), and ¢, the eigenvalue of the Casimir operator of
o. We have by Proposition 9.2.1 of [II]

W= Wet 2} (W_i+ W),

where W; is the i¢,-weight space of W relative to t=%f. We shall compute
(o), 4,j=0,41,---, Lk, It follows from (9.4.1), (2) of Lemma 6.2.3 and (a)
of Proposition 6.3.7 of [II] that

(12.2.1)  ¢(o)'j=0  for 4,j=0,41, -, 4k with |[i—j|>1.
We have
Proposition 12.2.1.
(o) s = (k—i)?,

12.2.2 . .
( ) C(o-)k_ik—-i—l = (o) = (ZH#Q:L) for i=0,1,---,2k—1.
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(12.2.3) (o) i = (0) % sy for i=0,1, k—1.

Proof. It follows from (9.4.1), (3) of Lemma 6.2.3, Proposition 6.3.7 and
(3) of Lemma 6.3.4 of [II] that
(12.2.4) (o) =c(a; B); =12

Applying Lemma 6.3.2, (6.3.10) of [II], (12.2.1) and (12.2.4), we obtain the
equalities (12.2.2) by the induction on 7 in the similar way to the proof (b) of
Proposition 10.2.1. We have the equality (12.2.3) by (12.2.2). Q.E.D.

12.3. In the rest of this section we consider the full equivariant minimal
isometric immersion F:(S% ¢ , >)—S induced from the k-th real spherical

representation p=p, of (G,K), k=2,3,:--. Then we have by the formula of
Freudenthal and Proposition 3.2.1 of [I]
(12.3.1) c= ""_(’52351) .

We have by Proposition 9.2.1 of [II]
(123.2) (V) =V, (Ve =V_+V, (VV)°= Zﬁ V_i+V),

where V; is the i¢,-weight space of V€. Then dim V;=1. It follows from
Corollary for Proposition 9.2.1 and the argument in subsection 6.5 of [II] that
there exist complex numbers ¢;, =0, 4-1, -+, 4-&, such that

Y {dp(E:) (dp(B))" v = i 1y,

Then we have the following lemma by Proposition 6.5.1, Proposition 6.3.8 of
[I1], Proposition 12.2.1 and (12.2.1).

Lemma 12.3.1.

0 if i=0,+1,
€= —{k(k+1)—@L)2(k+_2)} if =42,
—R(k+1) i 1i]>2.

It follows from Proposition 9.2.1 of [II] and the Frobenius reciprocity that
D(G;K, p") = {[c]€D(G); V, = t¢ 122}

and that the multiplicity of the above [¢]€D(G; K, p¥) is equal to 2 Min{k—1,
t—1}. We have

Lemma 123.2. Let o: G—GL(W) be a complex irreducible representation
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with [¢]€D(G; K, p¥) and A,=t¢p,. Then there exists a basis {w'_g ***, o' _1,
o 0y e, 0"} of (W*QVO), such that {w'_gy -+, 0 _3 @'y, +++, s} 15 a basis
of (W*Q(V™)), and that

L(c*, p)oi’ — % (ki) (t—}—z)w',_l—i—izw’,-—}—% (R—i) (t—1)o' 21
fOT 1= 0) :tlx °tty :i:d)
w}lere dlen{k, t} tmd w'_d_lzw'd.,.l:().
Proof. We may choose i¢,-weight vector v; of V¢ and j¢,-weight vector
w; of W with unit lengths, /=0,41, .+, 4k, j=0,41,---, ¢, such that
{dP(X¢1)'Z’i = Ve(p) ™ v,
do(Xy Jw;= V(@)™ wjs
Put o,=w,;*®uv;,1=0,41,---,4-d. Then {w_z**,w_1,0p w1, **, w;} is a basis
of (W*QV°), and {w_4 - 0_s ey **,w,} is a basis of (W*Q(V¥)C),. Then
applying Proposition 6.3.9, Lemma 6.3.2, (3) of Lemma 6.3.4 of [II] and Pro-

position 12.2.1, we have the following equalities in the similar way to the proof
of Lemma 10.4.2:

c(a*, p)* = e(a*, p)lin =% V (k—i) (k+i+1) (t—1) (t+i+1),
e(a*, p)i =172,
c(a*, p); =0 1,j =0, +1, .-+, +d with |i—j| >1.

Put

o'; = VE=)EF) E—) 1+ o; .

Then the basis {o’'_4 0,00y, -, 0'sp of (W*QVC), has the required
property. Q.E.D.

Theorem 12.3.3. Let F: (S% <, D)= S, F(xK)=p,(x)F(0), be the full
equivariant minimal isometric immersion induced from p=p,, k=2,3,---. Then
we have

(1) Every eigenvalue of the Jacobi differential operator S is an algebraic
number.

(2) For any [¢]€D(G;K, p"), the multiplicity of every eigenspace of S in
o 1(N(S?)€) is equal to 2.

Proof. By virtue of Theorem 3 of [I], it is sufficient to show that for any
[c]€D(G; K, p") every eigenvalue of the operator S, is an algebraic number
and that every eigenspace of S, is of dimension 2. Let W be the representation
space of o. Put

a=—(k—1)(k+2).
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Let {o'_4 0 1,0, 0", 0';} be the basis of (W*®V°), in Lemma 12.3.2.
Put for 1=0,1, ---,d

b1, = —(k-Hi) (t+6),
b, = t(t+1)—27,
b+, = —(k—i) (t—i)

and
ha by 0
B, B,
p=1| *- 7 .
c . . . bd—'ld
0 b b,

Let B’ be the matrix expression of the linear mapping S, of (W*Q(V")¢), with
respect to the basis {o'_5 =+, ® _4 0’3+, ©';}. Then we have by (12.3.1),
Lemma 12.3.1, Lemma 12.3.2 and (5.2.3) of [I]

B 0)
B =
(0 B/.

Therefore all eigenvalues of S, are algebraic numbers. Since 6'*%;%0, 7=2,3,

«+-,d—1, each eigenspace of S, is of dimension 2. Q.E.D.
12.4. We have
Theorem 12.4.1. Let F: (S% ¢, D)—S, F(xK)=pu(x)F(0), be the full
equivariant minimal isometric immersion induced from p=p,, k=2,3,--. Put

I, = {[¢c]€D(G; K, p"); S, has an eigenvalue 0} .
Then we have
I, = {[c]€D(G; K, p"); Ag = 3¢, 51, -+, (2k—1)s} .
Theorefore the nullity of F is equal to 2(k—1)(2k+4-3).

Proof. Let b'*Y, b, b, and B denote the same ones as in the proof of
Theorem 12.3.3. Put for 7=2,3,---,d

oy = M2,

a(h) = — Z(k—}ll)-’_(lz—l—Zh) ,

bl (h) = — (k+2h+1—2) (t—l—.Zk—l—?'——Z) (=—1) (2h+i—2) ,
i(h+1—2)

b'i(h) = 2h—2+4-#(t+2h—1)—2i(2h+i—2),
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by = — (1) (::7 (t=1)

Vi) +a(h) Bk

o 1| PO Re 0
() L em)
0 o) b

Then we have
{c(l) =¢, a(l)=a, b (1)=>b"",
b(1) = &, b (1) = by, B(1)=B.
We have by (11.6.3)

det(c(h)B(h)) = %ﬁ T (—2i—1) 2kt 1+25—2i-2)..

Since this equality holds for infinitely many A=2, the equality is valid for A=1.

Hence

(12.4.1) det(cB) = %” 'h (t—2i—1) (2k+1—2) .

If t>2k—1, we have t—2i—1>0 for i=1,2,---,d—1. Since 2k+t—2i=t+2>0
for =1,2,-:-,d—1, we obtain the first assertion by (12.4.1). If W is an irredu-
cible G-module with the highest weight i¢,, then we have dim W=2:i+1.
Therefore we obtain the second assertion by (2) of Theorem 12.3.3. Q.E.D.

Let U be the space of Killing vector fields on the unit sphere S. Then
the Lie group G acts on U in the following manner:

(@(®))() = d(p(®)f(p(x™)p)  for x€G, feU and peS,

where d(p(x)) denotes the differential of the isometry p(x) of S. Let L(V) be
the space of linear mappings of V. Put

8o(V) = {A€L(V); A* = —A} ,

where A* denotes the adjoint linear mapping of 4. Then 8o(V) is a G-module
with the following action:

w: G— GL(30(V)), w(x)X = p(x)Xp(x"")
for x€G and X&8o(V).

Then U is canonically G-isomorphic to 8o(V). Put
Ug= {fis; feU}.
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where f|s> denotes the section of T(S) sz induced from f. Then Us is a G-
module. Since the immersion F: $?— S is full, U is G-isomorphic to U.
Put

Jo= {f¥; fe ﬁlsz} .
An element of J; is called a Killing-Jacobi field. Put
T= {fEﬁlsz; F¥=0}.

Then J, is a G-module and T is a G-submodule of Uz which is G-isomorphic
to the G-module g with the adjoint action. Therefore Us is G-isomorphic
to the direct sum J,-+g of J, and g. We denote by J.€ the complexification of
Jo. Let W; be a complex irreducible G-module with the highest weight i¢,.
Then we have

Lemma 12.4.2. The G-module J € is G-isomorphic to the direct sum i,‘ Wit
i=2
of the G-modules W,,;_,, i=2,3, -« ,k.

Proof. By the above argument the direct sum J,¢4-g¢ of J,¢ and g€ is
is G-isomorphic to 80(V)¢, the complexification of 80(V). Therefore it is

k
sufficient to show that 80(V)€ is G-isomorphic to the direct sum >} W,,_, of the
=1

G-modules W,,;_;,1=1,2,:--,k. Since Cartan subalgebras of 8o(V) are conjugate
(cf. Helgason [4] p. 211), we may choose an orthonormal basis of V' with the
following property: For H=a¢, t, the matrix expression of dp(H) with respect
to this orthonormal basis of V is given by

0
0 —a
a 0
0 —ka
0 ka O

Therefore we have by straightforward calculations

Tr(w(exp H)) = k+2 Zf] cos ia+4 > cosia cos ja.

1Si<jsk

Hence the character X,, of  is given by
Xo =kt 3 {elip)+e(—i)}
+, 2 _leE )b +e(—(EHi)d) +e((— ) +e((i—j)bn)}

ont.
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Therefore we have by straightforward calculations

Kokt = Xulely $)—e(—3 90}

k
= §E<zj—1>¢1+s@ .
This proves the lemma. Q.E.D.

Now, recalling that dim Jy=the Killing nullity of F, we have the following
theorem by the above lemma, (2) of Theorem 12.3.3 and Theorem 12.4.1.

Theorem 12.4.3. Let F be as in Theorem 12.4.1. Then the nullity of F is
equal to twice its Killing nullity.

RemARK 12.4.1. We may also compute the Killing nullity of F by applying
Proposition 3.4.2 of [I]. Note that Lemma 12.4.2 gives the G-module struc-
ture of the space J, of Killing-Jacobi fields.

ReEmMARK 12.4.2. A cross-section of f&T(N(S?)) is called a Jacobi field, if
it satisfies Sf=0. A full minimal isometric immersion of (S%¢< , D) into a
unit sphere S is rigid, and induced from some p, in the way described in Re-
mark 3.2.1 of [I] (Calabi [1] p. 123, Do Carmo-Wallach [3] p. 103). Therefore
Theorem 12.4.3 shows the followings: Let F: (S%¢< , >)—.S be a full minimal
isometric immersion. Then there exists a Jacobi field which does not arise
from any one-parameter families of minimal isometric immersions.
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