

Title	On the hypersurfaces of Hermitian symmetric spaces of compact type. II
Author(s)	Kimura, Yoshio
Citation	Osaka Journal of Mathematics. 1980, 17(2), p. 455-469
Version Type	VoR
URL	https://doi.org/10.18910/8739
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kimura, Y.
Osaka J. Math.
17 (1980), 455-469

ON THE HYPERSURFACES OF HERMITIAN SYMMETRIC SPACES OF COMPACT TYPE II

YOSHIO KIMURA

(Received November 20, 1978)

1. Introduction.

Let M be an irreducible Hermitian symmetric space of compact type and let L be a holomorphic line bundle over M . Denote by $\Omega^p(L)$ the sheaf of germs of L -valued holomorphic p -forms on M . In the previous paper [1] we have studied the cohomology groups $H^q(M, \Omega^p(L))$ of M if M is of type *BDI*, *EIII* or *EVII*. This note is the continuation of [1], and we retain the notations introduced in [1]. In this note we study the cohomology groups $H^q(M, \Omega^p(L))$ of M of type *AIII*, *CI* or *EIII* and show the following theorem.

Theorem. *Let M be an irreducible Hermitian symmetric space of compact type but not a complex projective space nor a complex quadric of even dimension. Let V be a hypersurface of M whose degree ≥ 2 . Then*

$$H^0(V, \Theta) = (0)$$

where Θ is the sheaf of germs of holomorphic vector fields on V .

The author would like to express his gratitude to Professor S. Murakami, Professor M. Takeuchi and Doctor M. Numata for their useful suggestions and encouragements.

2. Proof of the Theorem.

Theorem 8 and Lemma 3 in the previous paper [1] is incorrect. The followings are true.

Theorem 8. *Let M be an irreducible Hermitian symmetric space of type *EIII*, *EVII* or a complex quadric of odd dimension (resp. a complex quadric of even dimension ≥ 4), and let V be a hypersurface of M whose degree is d . Then*

$$H^0(V, \Theta) = (0) \quad \text{if } d \geq 2 \text{ (resp. } d \geq 3\text{)}$$

Lemma 3. *Let M be an n -dimensional irreducible Hermitian symmetric space of compact type *EIII*, *EVII* or a complex quadric of odd dimension (resp. a*

complex quadric of even dimension ≥ 4). Then

$$H^q(M, \Omega^p(E_{-k\omega_j})) = (0), \quad H^{q+1}(M, \Omega^p(E_{-(k-d)\omega_j})) = (0)$$

for $p+q=n+1$, $k=pd-\lambda$ if $2 \leq p \leq n-1$ and $d \geq 2$ (resp. $d \geq 3$).

In the proof of Theorem 8 in [1], we have to replace n by $n-1$ since $\dim V=n-1$. Thus we need the above Lemma 3, which is verified by the computations in [1].

From the above theorem we may assume that M is of type *AIII*, *CI* or *DIII* but not a complex projective space nor a complex quadric. If we prove the following proposition for such a space M we get the Theorem the same way as in the proof of Theorem 8 in [1].

Proposition 1. If $d \geq 2$

$$H^q(M, \Omega^p(E_{-k\omega_j})) = (0), \quad H^{q+1}(M, \Omega^p(E_{-(k-d)\omega_j})) = (0),$$

for $p+q \geq n+1$, $k=pd-\lambda$.

By Theorems 1 and 2 in [1], we get Proposition 1 if we prove the following inequalities:

$$\begin{aligned} \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta + (dn(\sigma) - \lambda)\omega_j, \beta) < 0\} &< n+1-n(\sigma), \\ \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta + (dn(\sigma) - d - \lambda)\omega_j, \beta) < 0\} &< n+2-n(\sigma), \end{aligned}$$

for $\sigma \in W^1$ and $d \geq 2$.

Since $(\omega_j, \beta) > 0$ for $\beta \in \Delta(\mathfrak{n}^+)$, we only have to prove the inequalities in the case of $d=2$. Recall that $\#\Delta(\mathfrak{n}^+) = n$. We can restate the inequalities, in the case of $d=2$, as follows:

Proposition 2. For $\sigma \in W^1$

$$\begin{aligned} \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq ((\lambda - 2n(\sigma))\omega_j, \beta)\} &> n(\sigma) - 1, \\ \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq ((\lambda + 2 - 2n(\sigma))\omega_j, \beta)\} &> n(\sigma) - 2. \end{aligned}$$

In the following we shall prove Proposition 2 in each case.

2.1. The case that M is of type *AIII* but not a complex projective space, that is $M = SU(l+1)/S(U(j) \times U(l+1-j))$, $l \geq 3$ and $2 \leq j \leq l-1$. We immediately see that $n=j(l+1-j)$ and $\lambda=l+1$. The Dynkin diagram of Π is as follows:

$$\begin{array}{ccccccccccccc} \circ & \text{---} & \circ & \text{---} & \cdots & \text{---} & \circ & \text{---} & \cdots & \text{---} & \circ & \text{---} & \circ \\ \alpha_1 & & \alpha_2 & & & & \alpha_j & & & & \alpha_{l-1} & & \alpha_l \end{array}$$

Let $\{\varepsilon_i; 1 \leq i \leq l+1\}$ be a usual basis of R^{l+1} . Then we have:

$$\begin{aligned}
\mathfrak{h}_0 &= \left\{ \sum_{i=1}^{l+1} a_i \varepsilon_i \in R^{l+1}; \sum_{i=1}^{l+1} a_i = 0 \right\}, \\
\Delta &= \{ \varepsilon_i - \varepsilon_k; 1 \leq i, k \leq l+1, i \neq k \}, \\
\Pi &= \{ \alpha_1 = \varepsilon_1 - \varepsilon_2, \alpha_2 = \varepsilon_2 - \varepsilon_3, \dots, \alpha_l = \varepsilon_l - \varepsilon_{l+1} \}, \\
\Delta(\mathfrak{n}^+) &= \{ \varepsilon_i - \varepsilon_k; 1 \leq i \leq j < k \leq l+1 \}, \\
2\delta &= l\varepsilon_1 + (l-2)\varepsilon_2 + (l-4)\varepsilon_3 + \dots + (l+2)\varepsilon_l - l\varepsilon_{l+1}, \\
\omega_j &= \varepsilon_1 + \dots + \varepsilon_j - \frac{j}{l+1} \sum_{i=1}^{l+1} \varepsilon_i.
\end{aligned}$$

An element $\sigma \in W$ acts on R^{l+1} by $\sigma \varepsilon_i = \varepsilon_{\sigma(i)}$ for $1 \leq i \leq l+1$, where σ in the index is a permutation of $\{1, 2, \dots, l+1\}$. We represent σ by

$$\begin{pmatrix} 1 & 2 & \dots & l+1 \\ \sigma(1) & \sigma(2) & \dots & \sigma(l+1) \end{pmatrix}.$$

Then

$$W^1 = \left\{ \sigma \in W; \sigma^{-1} = \begin{pmatrix} 1 & \dots & l+1 \\ \sigma^{-1}(1) & \dots & \sigma^{-1}(l+1) \end{pmatrix}, \sigma^{-1}(1) < \dots < \sigma^{-1}(j), \sigma^{-1}(j+1) < \dots < \sigma^{-1}(l+1) \right\}.$$

The index $n(\sigma)$ of $\sigma \in W^1$ is given by

$$n(\sigma) = \sum_{i=1}^j (\sigma^{-1}(i) - i)$$

(Takeuchi [2]). We see easily that

$$\begin{aligned}
(\omega_j, \beta) &= 1 \quad \text{for any } \beta \in \Delta(\mathfrak{n}^+), \\
(\sigma\delta, \varepsilon_i - \varepsilon_k) &= \sigma^{-1}(k) - \sigma^{-1}(i) \quad \text{for } 1 \leq i, k \leq l+1.
\end{aligned}$$

Therefore we have to prove that the following two inequalities are true for any $\sigma \in W^1$

$$(1.1) \quad \#\{(i, k); 1 \leq i \leq j < k \leq l+1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l+1 - 2n(\sigma)\} > n(\sigma) - 1,$$

$$(1.2) \quad \#\{(i, k); 1 \leq i \leq j < k < l+1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l+3 - 2n(\sigma)\} > n(\sigma) - 2.$$

First we prove the inequality (1.1).

Lemma 1.1. *Let $\sigma \in W^1$. If $n(\sigma) \geq l+1$, the inequality (1.1) is true.*

Proof. Since $n(\sigma) \geq l+1$, $l+1 - 2n(\sigma) \leq -(l+1)$. There exist no pair (i, k) , $i \neq k$, which satisfies

$$\sigma^{-1}(k) - \sigma^{-1}(i) < -(l+1).$$

Therefore

$$\#\{(i, k); 1 \leq i \leq j < k \leq l+1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l+1 - 2n(\sigma)\} = n.$$

From the definition of the index $n(\sigma) \leq n$, it follows that $n > n(\sigma) - 1$. Q.E.D.

Lemma 1.2. *Let $\sigma \in W^1$. Assume that $\sigma(1) \neq 1$ and $\sigma(l+1) \neq l+1$. Then $n(\sigma) \geq l$.*

Proof. By the assumption $\sigma^{-1}(j) = l+1$ and $\sigma^{-1}(i) - i \geq 1$, $1 \leq i \leq j$. Therefore

$$\begin{aligned} n(\sigma) &= \sum_{i=1}^j (\sigma^{-1}(i) - i) \\ &= \sigma^{-1}(j) - j + \sum_{i=1}^{j-1} (\sigma^{-1}(i) - i) \\ &\geq (l+1-j) + (j-1) \\ &= l. \end{aligned} \quad \text{Q.E.D.}$$

Lemma 1.3. *Let $\sigma \in W^1$. Assume that $\sigma(1) \neq 1$ and $\sigma(l+1) \neq l+1$. Then the inequality (1.1) is true.*

Proof. By Lemmas 1.1 and 1.2 we may assume that $n(\sigma) = l$. Then such an element σ is unique and given by

$$\sigma^{-1} = \begin{pmatrix} 1 & \cdots & j-1 & j & j+1 & j+2 & \cdots & l+1 \\ 2 & \cdots & j & l+1 & 1 & j+1 & \cdots & l \end{pmatrix}.$$

The pair (i, k) , $1 \leq i \leq j < k \leq l+1$, which satisfies

$$\sigma^{-1}(k) - \sigma^{-1}(i) < l+1 - 2n(\sigma) = 1-l$$

is $(j, j+1)$. Hence

$$\#\{(i, k); 1 \leq i \leq j < k \leq l+1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq 1-l\} = n-1 > n(\sigma)-1. \quad \text{Q.E.D.}$$

Lemma 1.4. *If $j=2$, the inequality (1.1) is true for any $\sigma \in W^1$.*

Proof. From the definition of $n(\sigma)$

$$(1.3) \quad n(\sigma) = \sigma^{-1}(1) + \sigma^{-1}(2) - 3.$$

If $n(\sigma) = 0$, the inequality (1.1) is clearly true. Let $n(\sigma) = 1$. Then $\sigma^{-1}(1) = 1$, $\sigma^{-1}(2) = 3$ and

$$\sigma^{-1}(l+1) - \sigma^{-1}(1) = l > l+1 - 2n(\sigma).$$

It follows that the inequality (1.1) is true. Let $n(\sigma) = 2$. It is easy to see that the inequality (1.1) is true.

By Lemma 1.1 we have already seen that if $n(\sigma) \geq l+1$ the inequality is

true. Hence we only have to show that (1.1) is true under the following condition:

$$(1.4) \quad 5 < \sigma^{-1}(1) + \sigma^{-1}(2) < l + 4.$$

By (1.3)

$$l + 1 - 2n(\sigma) = l + 7 - 2(\sigma^{-1}(1) + \sigma^{-1}(2)).$$

Since $\sigma^{-1}(k) \geq k - 2$ for $2 < k \leq l + 1$,

$$\begin{aligned} & \#\{k; 2 < k \leq l + 1, \sigma^{-1}(k) - \sigma^{-1}(1) \geq l + 7 - 2(\sigma^{-1}(1) + \sigma^{-1}(2))\} \\ & \geq \min \{\sigma^{-1}(1) + 2\sigma^{-1}(2) - 7, l - 1\}. \end{aligned}$$

Similarly

$$\begin{aligned} & \#\{k; 2 < k \leq l + 1, \sigma^{-1}(k) - \sigma^{-1}(2) \geq l + 7 - 2(\sigma^{-1}(1) + \sigma^{-1}(2))\} \\ & \geq \min \{2\sigma^{-1}(1) + \sigma^{-1}(2) - 7, l - 1\}. \end{aligned}$$

Therefore

$$\begin{aligned} & \#\{(i, k); 1 \leq i \leq 2 < k \leq l + 1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l + 1 - 2n(\sigma)\} \\ & \geq \min \{3(\sigma^{-1}(1) + \sigma^{-1}(2)) - 14, l + 2\sigma^{-1}(1) + \sigma^{-1}(2) - 8, 2l - 2\}. \end{aligned}$$

It is easy to see that $3(\sigma^{-1}(1) + \sigma^{-1}(2)) - 14$, $l + 2\sigma^{-1}(1) + \sigma^{-1}(2) - 8$ and $2l - 2$ are both larger than $n(\sigma) - 1 = \sigma^{-1}(1) + \sigma^{-1}(2) - 4$ under the condition (1.4).

Q.E.D.

We get the following lemma in the similar way as above.

Lemma 1.5. *If $j = l - 1$, the inequality (1.1) is true for any $\sigma \in W^1$.*

We shall prove that the inequality (1.1) is true for any $\sigma \in W^1$ by using induction on l . If $l = 3$ so that $j = 2$, it follows, by Lemma 1.4, our assertion is true.

Let $l = l_0 \geq 4$. We can assume that $3 \leq j = j_0 \leq l_0 - 2$ and either $\sigma(1) = 1$ or $\sigma(l_0 + 1) = l_0 + 1$ by Lemmas 1.3, 1.4 and 1.5.

Case 1: $\sigma(1) = 1$. Define the element τ of W^1 , which is considered as an element of W^1 for $l = l_0 - 1$ and $j = j_0 - 1$, by

$$\tau^{-1} = \begin{pmatrix} 1 & 2 & \cdots & l_0 \\ \sigma^{-1}(2) - 1 & \sigma^{-1}(3) - 1 & \cdots & \sigma^{-1}(l_0 + 1) - 1 \end{pmatrix}.$$

We immediately see that $2 \leq j \leq l - 2$ and $n(\tau) = n(\sigma)$. By the assumption of the induction,

$$\#\{(i, k); 1 \leq i \leq j_0 - 1 < k \leq l_0, \tau^{-1}(k) - \tau^{-1}(i) \geq l_0 - 2n(\tau)\} > n(\tau) - 1.$$

Hence

$$(1.5) \quad \#\{(i, k); 2 \leq i \leq j_0 < k \leq l_0 + 1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l_0 - 2n(\sigma)\} > n(\sigma) - 1.$$

For any $k, j_0 \leq k \leq l_0 + 1$, if there exists $i, 2 \leq i \leq j_0$, which satisfies the following:

$$\sigma^{-1}(k) - \sigma^{-1}(i) = l_0 - 2n(\sigma),$$

such an integer i is unique and

$$\sigma^{-1}(k) - \sigma^{-1}(1) \geq l_0 + 1 - 2n(\sigma).$$

Hence (1.5) leads to (1.1).

Case 2: $\sigma(l_0 + 1) = l_0 + 1$. Define the element $\tau \in W^1$, which is considered as an element of W^1 for $l = l_0 - 1$ and $j = j_0$, by

$$\tau^{-1} = \begin{pmatrix} 1 & \cdots & l_0 \\ \sigma^{-1}(1) & \cdots & \sigma^{-1}(l_0) \end{pmatrix}.$$

Then $3 \leq j \leq l - 1$ and $n(\tau) = n(\sigma)$. By the assumption of the induction,

$$(1.6) \quad \#\{(i, k); 1 \leq i \leq j_0 < k \leq l_0, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l_0 - 2n(\sigma)\} > n(\sigma) - 1.$$

For any $i, 1 \leq i \leq j_0$, if there exists $k, j_0 < k \leq l_0$, which satisfies the following:

$$\sigma^{-1}(k) - \sigma^{-1}(i) = l_0 - 2n(\sigma),$$

such an integer k is unique and

$$\sigma^{-1}(l_0 + 1) - \sigma^{-1}(i) \geq l_0 + 1 - 2n(\sigma).$$

Hence (1.5) leads to (1.1).

Thus we have proved that the inequality (1.1) is true for any $\sigma \in W^1$.

In the following we shall prove that the inequality (1.2) is true for any $\sigma \in W^1$.

Lemma 1.6. *Let $\sigma \in W^1$. If $n(\sigma) \geq l + 1$, the inequality (1.2) is true.*

Proof. Since $n(\sigma) \geq l + 1$

$$l + 3 - 2n(\sigma) \leq 1 - l.$$

If there exists a pair $(i, k), i \neq k$, which satisfies

$$\sigma^{-1}(k) - \sigma^{-1}(i) < 1 - l,$$

such a pair is unique. Therefore

$$\#\{(i, k); 1 \leq i \leq j \leq k \leq l + 1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l + 1 - 2n(\sigma)\} \geq n - 1 > n(\sigma) - 2.$$

Q.E.D.

Lemma 1.7. *Let $\sigma \in W^1$. Assume that $\sigma(1) \neq 1$ and $\sigma(l+1) \neq l+1$. Then the inequality (1.2) is true.*

Proof. By Lemma 1.2 and 1.6 we may assume that $n(\sigma) = l$. Such an element σ is unique and represented by

$$\sigma^{-1} = \begin{pmatrix} 1 & \cdots & j-1 & j & j+1 & j+2 & \cdots & l+1 \\ 2 & \cdots & j & l+1 & 1 & j+1 & \cdots & l \end{pmatrix}.$$

The number of the pairs (i, k) , $l \leq i \leq j < k \leq l+1$, which satisfies

$$\sigma^{-1}(k) - \sigma^{-1}(i) < l+3 - 2n(\sigma) = 3-l$$

is at most 2. Therefore

$$\#\{(i, k); 1 \leq i \leq j < k \leq l+1, \sigma^{-1}(k) - \sigma^{-1}(i) \geq l+3 - 2n(\sigma)\} \geq n-2.$$

Since $n(\sigma) = l$, $n(\sigma) < n$. It follows that (1.2) is true. Q.E.D.

Lemma 1.8. *If $j=2$, the inequality (1.2) is true for any $\sigma \in W^1$.*

Proof. It is easy to see that (1.2) is true if $n(\sigma) \leq 3$. By Lemma 1.6 and (1.3), we only have to show that (1.2) is true under the condition:

$$(1.7) \quad 6 < \sigma^{-1}(1) + \sigma^{-1}(2) < l+4.$$

We get the following inequality in the same way as in the proof of Lemma 1.4.

$$\begin{aligned} & \#\{(i, k); 1 \leq i \leq 2 < k \leq l+1, \sigma^{-1}(k) - \sigma^{-1}(i) \leq l+3 - 2n(\sigma)\} \\ & \geq \min \{3(\sigma^{-1}(1) + \sigma^{-1}(2)) - 18, l+2\sigma^{-1}(1) + \sigma^{-1}(2) - 10, 2l-2\}. \end{aligned}$$

It is easy to see that $3(\sigma^{-1}(1) + \sigma^{-1}(2)) - 18$, $l+2\sigma^{-1}(1) + \sigma^{-1}(2) - 10$ and $2l-2$ are both larger than $n(\sigma) - 2 = \sigma^{-1}(1) + \sigma^{-1}(2) - 5$ under the condition (1.7). Q.E.D.

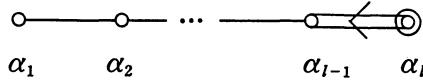
We get the following lemma in the similar way as above.

Lemma 1.9. *If $j=l-1$, the inequality (1.2) is true for any $\sigma \in W^1$.*

From Lemmas 1.7, 1.8 and 1.9, we can prove that the inequality (1.2) is true for any $\sigma \in W^1$ in the same way as in the proof of the inequality (1.1).

2.2. The case that M is of type CI , that is $M = Sp(l)/U(l)$. If $l=1$, $M = P_1(C)$. If $l=2$, M is a complex quadroic of dimension 3. Hence we assume that $l \geq 3$.

In this case $n = \frac{1}{2}l(l+1)$ and $\lambda = l+1$. The Dynkin diagram of Π is as follows:



where $\alpha_i \odot$ shows $\alpha_i = \alpha_l$. Let $\{\varepsilon_i; 1 \leq i \leq l\}$ be the basis of \mathfrak{h}_0 which satisfies $(\varepsilon_i, \varepsilon_j) = \delta_{ij}$. Then we have:

$$\begin{aligned}\Delta &= \{\pm 2\varepsilon_i; 1 \leq i \leq l, \pm \varepsilon_i \pm \varepsilon_j; 1 \leq i < j \leq l\}, \\ \Pi &= \{\alpha_1 = \varepsilon_1 - \varepsilon_2, \dots, \alpha_{l-1} = \varepsilon_{l-1} - \varepsilon_l, \alpha_l = 2\varepsilon_l\}, \\ \Delta(\mathfrak{n}^+) &= \{2\varepsilon_i; 1 \leq i \leq l, \varepsilon_i + \varepsilon_j; 1 \leq i < j \leq l\}, \\ \delta &= l\varepsilon_1 + (l-1)\varepsilon_2 + \dots + \varepsilon_l, \\ \omega_l &= \varepsilon_1 + \dots + \varepsilon_l.\end{aligned}$$

An element $\sigma \in W$ acts on \mathfrak{h}_0 by $\sigma \varepsilon_i = \pm \varepsilon_{\bar{\sigma}(i)}$ for $1 \leq i \leq l$, where $\bar{\sigma}$ is a permutation of $\{1, 2, \dots, l\}$. We denote the element $\sigma \in W$ by the symbol

$$\begin{pmatrix} 1 & 2 & \dots & l \\ \pm \bar{\sigma}(1) & \pm \bar{\sigma}(2) & \dots & \pm \bar{\sigma}(l) \end{pmatrix}$$

Then

$$\begin{aligned}W^1 = \left\{ \sigma \in W; \bar{\sigma}^{-1} = \begin{pmatrix} 1 & \dots & r & r+1 & \dots & l \\ \bar{\sigma}^{-1}(1) & \dots & \bar{\sigma}^{-1}(r) & -\bar{\sigma}^{-1}(r+1) & \dots & -\bar{\sigma}^{-1}(l) \end{pmatrix} \right. \\ \left. \text{for } 0 \leq r \leq l, \bar{\sigma}^{-1}(1) < \dots < \bar{\sigma}^{-1}(r), \bar{\sigma}^{-1}(r+1) > \dots > \bar{\sigma}^{-1}(l) \right\}.\end{aligned}$$

The index $n(\sigma)$ of $\sigma \in W^1$ is given by

$$n(\sigma) = \sum_{i=1}^r (\bar{\sigma}^{-1}(i) - i) +_{l+1-r} C_2$$

(Takeuchi [2]). We see easily that

$$\begin{aligned}(\omega_l, \beta) &= 2 \quad \text{for any } \beta \in \Delta(\mathfrak{n}^+), \\ (\sigma \delta, \varepsilon_i) &= \begin{cases} (l+1-\bar{\sigma}^{-1}(i)) & \text{if } 1 \leq i \leq r \\ -(l+1-\bar{\sigma}^{-1}(i)) & \text{if } r < i \leq l. \end{cases}\end{aligned}$$

Therefore we have to prove that the following inequalities are true for any $\sigma \in W^1$

$$(2.1) \quad \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma \delta, \beta) \geq 2(l+1) - 4n(\sigma)\} > n(\sigma) - 1,$$

$$(2.2) \quad \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma \delta, \beta) \geq 2(l+3) - 4n(\sigma)\} > n(\sigma) - 2.$$

Since $(\sigma \delta, \beta) \geq -2l$, $\beta \in \Delta(\mathfrak{n}^+)$, we immediately see that if $n(\sigma) \geq l+1$ (resp. $l+2$), the inequality (2.1) (resp. (2.2)) is true for any $\sigma \in W^1$.

Lemma 2.1. *Let $\sigma \in W^1$. If $n(\sigma) \geq l$, the inequality (2.1) is true.*

Proof. From the above notice we can assume that $n(\sigma)=l$. In this case

$$2(l+1)-4n(\sigma) = 2-2l.$$

It is easy to see that

$$\#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) < 2-2l\} \leq 2.$$

Hence

$$\#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq 2-2l\} \geq l+1 - C_2 - 2 > l-1 = n(\sigma)-1.$$

Q.E.D.

Lemma 2.2. *Let $\sigma \in W^1$. If $n(\sigma) \geq l$, the inequality (2.2) is true.*

Proof. If $n(\sigma) \geq l+1$, the inequality is true in the same way as above. Therefore we may assume that $n(\sigma)=l$.

Case 1: $l=3$. If $r=0$, $n(\sigma)=6 \neq 3$. Hence $r>0$, and σ is one of the following elements:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -3 & -2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -1 \end{pmatrix}.$$

In each case (2.2) is true.

Case 2: $l=4$. If $r \leq 1$, $n(\sigma) \geq 6 > 4$. Hence $r \geq 2$. It follows that $(\sigma\delta, 2\epsilon_1)$, $(\sigma\delta, \epsilon_1+\epsilon_2)$ and $(\sigma\delta, 2\epsilon_2)$ are larger than $2(l+3)-4n(\sigma)=-2$. On the other hand $n(\sigma)-2=2$. Therefore (2.2) is true.

Case 3: $l \geq 5$. If $\beta \in \Delta(\mathfrak{n}^+)$ satisfies

$$(\sigma\delta, \beta) < 2(l+3)-4n(\sigma) = 6-2l,$$

β is one of the following 12 elements:

$$\begin{aligned} & 2\epsilon_l, \epsilon_l+\epsilon_{l-1}, \epsilon_l+\epsilon_{l-2}, \epsilon_l+\epsilon_{l-3}, \epsilon_l+\epsilon_{l-4}, \epsilon_l+\epsilon_{l-5}, \\ & 2\epsilon_{l-1}, \epsilon_{l-1}+\epsilon_{l-2}, \epsilon_{l-1}+\epsilon_{l-3}, \epsilon_{l-1}+\epsilon_{l-4}, 2\epsilon_{l-2}, \epsilon_{l-2}+\epsilon_{l-3}. \end{aligned}$$

On the other hand

$$\begin{aligned} & l+1 - C_2 - 12 - (l-2) \\ & = \frac{1}{2}\{(l(l+1)-20-2l\} \\ & = \frac{1}{2}(l^2+l-20) \\ & = \frac{1}{2}(l+4)(l-5) \geq 0. \end{aligned}$$

The equality holds only in the case $l=5$. But if $l=5$, $\epsilon_l+\epsilon_{l-5} \notin \Delta(\mathfrak{n}^+)$. Therefore the inequality is true. Q.E.D.

Lemma 2.3. *Let $\sigma \in W$. If $\sigma(1) \neq 1$, $n(\sigma) \geq l$.*

Proof. By the assumption,

$$\sum_{i=1}^r (\sigma(i) - i) \geq r.$$

Hence

$$\begin{aligned} n(\sigma) - l &\geq r + l_{+1} - C_2 - l \\ &= \frac{1}{2}(l - r - 1)(l - r) \geq 0. \end{aligned} \quad \text{Q.E.D.}$$

We shall prove that the inequality (2.1) is true for any $\sigma \in W^1$ by using induction on l . Let $l=3$. If $n(\sigma) \geq 3$, the inequality is true by Lemma 2.1. If $n(\sigma)=0$, the inequality is also true for $n(\sigma)-1 < 0$. If $n(\sigma)=1$ (resp. 2),

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & -3 \end{pmatrix} \left(\text{resp. } \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & -2 \end{pmatrix} \right),$$

and (2.1) is true.

Let $l=l_0 > 3$. By Lemmas 2.1 and 2.3, we may assume that $\sigma(1)=1$. Define the element $\tau \in W^1$, which is considered as an element of W^1 for $l=l_0-1$, by

$$\tau^{-1} = \begin{pmatrix} 1 & \cdots & r-1 & r & \cdots & l_0-1 \\ \bar{\sigma}^{-1}(2)-1 & \cdots & \bar{\sigma}^{-1}(r)-1 & -(\bar{\sigma}^{-1}(r+1)-1) & \cdots & -\bar{\sigma}^{-1}(l_0)-1 \end{pmatrix}.$$

We easily see that $n(\tau)=n(\sigma)$. By the assumption of the induction,

$$\#\{\varepsilon_i + \varepsilon_j; 1 \leq i, j \leq l_0-1, (\tau\delta', \varepsilon_i + \varepsilon_j) \geq 2l_0 - 4n(\tau)\} > n(\tau) - 1,$$

where $\delta' = (l_0-1)\varepsilon_1 + (l_0+2)\varepsilon_2 + \cdots + \varepsilon_{l_0-1}$. It follows, by the fact that $(\tau\delta', \varepsilon_{i-1}) = (\sigma\delta, \varepsilon_i)$ for $2 \leq i \leq l_0$, that

$$(2.3) \quad \#\{\varepsilon_i + \varepsilon_j; 2 \leq i, j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) \geq 2l_0 - 4n(\sigma)\} > n(\sigma) - 1.$$

Lemma 2.4. *Let*

$$\begin{aligned} s &= \#\{\varepsilon_i; 2 \leq i \leq l_0, \exists \varepsilon_j, 2 \leq j \leq l_0, j \neq i, \text{ such that} \\ &(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4n(\sigma) \text{ or } 2l_0 + 1 - 4n(\sigma)\}. \end{aligned}$$

Then

$$\begin{aligned} \#\{\varepsilon_i + \varepsilon_j; 2 \leq i < j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4n(\sigma) \text{ or} \\ 2l_0 + 1 - 4n(\sigma)\} \leq s - 1. \end{aligned}$$

Proof. Let $\varepsilon_i, 2 \leq i \leq l_0$, satisfy the condition that there exists $\varepsilon_j, 2 \leq j \leq l_0, j \neq i$, such that $(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - n(\sigma)$ or $2l_0 + 1 - n(\sigma)$. For the element ε_i

$$(2.4) \quad \begin{aligned} \#\{\varepsilon_i + \varepsilon_j; 2 \leq j \leq l_0, j \neq i, (\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4n(\sigma) \\ \text{or } 2l_0 + 1 - 4n(\sigma)\} \leq 2. \end{aligned}$$

In this way we find at most $2s$ ordered pairs (i, j) , $2 \leq i, j \leq l_0, j \neq i$, which satisfies $(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4n(\sigma)$ or $2l_0 + 1 - 4n(\sigma)$. On the other hand the distinct pairs (i, j) and (j, i) induce the same element $\varepsilon_i + \varepsilon_j$. Therefore

$$(2.5) \quad \#\{\varepsilon_i + \varepsilon_j; 2 \leq i < j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l - 4n(\sigma) \text{ or } 2l + 1 - 4n(\sigma)\} \leq s,$$

and the equality holds if and only if the equality in (2.4) holds for any $\varepsilon_i, 2 \leq i \leq l_0$, such that $(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l - n(\sigma)$ or $2l + 1 - n(\sigma)$.

Define the integer i_0 (resp. i_m) by

$$\begin{aligned} & \min(\text{resp. max}) \{i; 2 \leq i \leq l_0, \exists j, 2 \leq j \leq l_0, j \neq i \text{ such that} \\ & (\sigma\delta, \varepsilon_i + \varepsilon_j) = l - 2n(\sigma) \text{ or } l + 1 - 2n(\sigma)\}. \end{aligned}$$

If the equalities in (2.4) for ε_{i_0} and ε_{i_m} hold, there exist the integers i and j such that

$$\begin{aligned} & (\sigma\delta, \varepsilon_{i_0} + \varepsilon_j) = l - 2n(\sigma) \text{ or } l + 1 - 2n(\sigma), \\ & (\sigma\delta, \varepsilon_i + \varepsilon_{i_m}) = l - 2n(\sigma) \text{ or } l + 1 - 2n(\sigma), \\ & i_0 < i \text{ and } j < i_m. \end{aligned}$$

Hence

$$(\sigma\delta, \varepsilon_i + \varepsilon_{i_m}) \leq (\sigma\delta, \varepsilon_{i_0} + \varepsilon_j) - 2.$$

This is impossible, and therefore, the equality in (2.5) does not hold. Q.E.D.

Let $\varepsilon_i, 2 \leq i \leq l_0$, satisfy that there exists $\varepsilon_j, 2 \leq j \leq l_0, j \neq i$, such that

$$(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l - 4n(\sigma) \text{ or } 2l + 1 - 4n(\sigma).$$

For this element ε_i ,

$$(\sigma\delta, \varepsilon_i + \varepsilon_1) \geq 2l + 2 - 4n(\sigma),$$

in all but the following case:

$$(\sigma\delta, \varepsilon_i + \varepsilon_2) = 2l - 4n(\sigma).$$

Therefore, by Lemma 2.4,

$$\begin{aligned} & \#\{\varepsilon_i + \varepsilon_j; 1 \leq i < j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) \geq 2l_0 + 2 - 4n(\sigma)\} \\ & \geq \#\{\varepsilon_i + \varepsilon_j; 2 \leq i < j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) \geq 2l_0 - 4n(\sigma)\}. \end{aligned}$$

There exist at most one element $\varepsilon_i, 2 \leq i \leq l_0$, such that

$$(\sigma\delta, 2\varepsilon_i) = 2l - 4n(\sigma) \text{ or } 2l + 1 - 4n(\sigma).$$

If such ε_i exists,

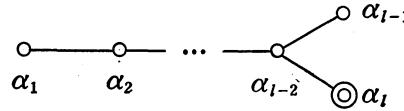
$$(\sigma\delta, 2\varepsilon_i) \geq 2l + 2 - 4n(\sigma).$$

Therefore the inequality (2.1) is true.

Thus we have proved that the inequality (2.1) is true for any $\sigma \in W^1$.

From Lemmas 2.2 and 2.3, we can prove that the inequality (2.2) is true for any $\sigma \in W^1$ in the same way as above.

2.3. The case that M is of type DIII, that is $M = SO(2l)/U(l)$. If $l=3$, $M = P_3(C)$. If $l \geq 4$, M is a complex quadric of dimension 6. Hence we assume that $l \geq 5$. In this case $n = \frac{1}{2}l(l-1)$ and $\lambda = 2l-2$. The Dinkin diagram of Π is as follows:



where $\alpha_l \odot$ shows $\alpha_j = \alpha_l$. Let $\{\varepsilon_i; 1 \leq i \leq l\}$ be the basis of \mathfrak{h}_0 which satisfies $(\varepsilon_i, \varepsilon_j) = \delta_{ij}$. Then we have:

$$\begin{aligned}\Delta &= \{\pm \varepsilon_i \pm \varepsilon_j; 1 \leq i < j \leq l\}, \\ \Pi &= \{\alpha_1 = \varepsilon_1 - \varepsilon_2, \dots, \alpha_{l-1} = \varepsilon_{l-1} - \varepsilon_l, \alpha_l = \varepsilon_{l-1} + \varepsilon_l\}, \\ \Delta(\mathfrak{n}^+) &= \{\varepsilon_i + \varepsilon_j; 1 \leq i < j \leq l\}, \\ \delta &= (l-1)\varepsilon_1 + (l-2)\varepsilon_2 + \dots + \varepsilon_{l-1}, \\ \omega &= \frac{1}{2}(\varepsilon_1 + \dots + \varepsilon_l).\end{aligned}$$

An element $\sigma \in W$ acts on \mathfrak{h}_0 by $\sigma \varepsilon_i = \pm \varepsilon_{\bar{\sigma}(i)}$ for $1 \leq i \leq l$, where $\bar{\sigma}$ is a permutation of $\{1, 2, \dots, l\}$. We denote the element $\sigma \in W$ by the symbol

$$\begin{pmatrix} 1 & 2 & \dots & l \\ \pm \bar{\sigma}(1) & \pm \bar{\sigma}(2) & \dots & \pm \bar{\sigma}(l) \end{pmatrix}.$$

Then

$$\begin{aligned}W^1 &= \left\{ \sigma \in W; \sigma^{-1} = \begin{pmatrix} 1 & \dots & r & r+1 & \dots & l \\ \bar{\sigma}^{-1}(1) & \dots & \bar{\sigma}^{-1}(r) & -\bar{\sigma}^{-1}(r+1) & \dots & -\bar{\sigma}^{-1}(l) \end{pmatrix}, \right. \\ &\quad \left. l-r \text{ is even, } \bar{\sigma}^{-1}(1) < \dots < \bar{\sigma}^{-1}(r), \bar{\sigma}^{-1}(r+1) > \dots > \bar{\sigma}^{-1}(l) \right\}.\end{aligned}$$

The index $n(\sigma)$ of $\sigma \in W^1$ is given by

$$n(\sigma) = \sum_{i=1}^r (\bar{\sigma}^{-1}(i) - i) +_{l-r} C_2$$

(Takeuchi [2]). We see easily that

$$\begin{aligned}(\omega_l, \beta) &= 1 \quad \text{for any } \beta \in \Delta(\mathfrak{n}^+), \\ (\sigma \delta, \varepsilon_i) &= \begin{cases} l - \bar{\sigma}^{-1}(i) & \text{if } 1 \leq i \leq r \\ -(l - \bar{\sigma}^{-1}(i)) & \text{if } r < i \leq l. \end{cases}\end{aligned}$$

Therefore we have to prove that the following inequalities are true for any $\sigma \in W^1$.

$$(3.1) \quad \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq 2l-2-2n(\sigma)\} > n(\sigma)-1,$$

$$(3.2) \quad \#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq 2l-2n(\sigma)\} > n(\sigma)-2.$$

Lemma 3.1. *Let $\sigma \in W^1$. If $n(\sigma) \geq 2l-3$, the inequality (3.1) is true.*

Proof. By the assumption $2l-2-2n(\sigma) \leq 4-2l$. Let β be an element of $\Delta(\mathfrak{n}^+)$ which satisfies that

$$(\sigma\delta, \beta) < 4-2l,$$

then $\beta = \varepsilon_{l-1} + \varepsilon_l$. Therefore

$$\#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq 2l-2-2n(\sigma)\} \geq n-1.$$

If the equality holds, $n(\sigma) = 2l-3$ and $n-n(\sigma) = \frac{1}{2}(l-2)(l-3) > 0$. Q.E.D.

Lemma 3.2. *Let $\sigma \in W^1$. If $n(\sigma) \geq 2l-3$, the inequality (3.2) is true.*

Proof. If $n(\sigma) \geq 2l-3$, the inequality is true in the same way as above. Therefore we assume that $n(\sigma) = 2l-3$. The number of the elements $\beta \in \Delta(\mathfrak{n}^+)$ such that

$$(\sigma\delta, \beta) < 2l-2n(\sigma) = 6-2l$$

is at most 4. Since $l \geq 5$,

$$(n-4)-(n(\sigma)-2) = \frac{1}{2}l(l-1)-4-2l+5 = \frac{1}{2}l(l-5)+1 > 0.$$

Q.E.D.

Lemma 3.3. *If $\bar{\sigma}^{-1}(1) \geq 3$, then $n(\sigma) \geq 2l-3$.*

Proof. By the assumption

$$\sum_{i=1}^r (\bar{\sigma}^{-1}(i) - i) \geq 2r.$$

It follows that

$$\begin{aligned} & n(\sigma) - (2l-3) \\ & \geq 2r + l-rC_2 - (2l-3) \\ & = \frac{1}{2}(l-r-2)(l-r-3) \geq 0. \end{aligned}$$

Q.E.D.

We prove that the inequality (3.1) is true for all $\sigma \in W^1$ by using induction on l . If $l=5$, we easily see that the inequality is true.

Let $l=l_0 > 5$. By Lemmas 3.1 and 3.3, we can assume that $\bar{\sigma}^{-1}(1)=1$ or 2.

Case 1: $\bar{\sigma}^{-1}(1)=1$. Define the element $\tau \in W^1$, which is considered as an element of W^1 for $l=l_0-1$, by

$$\tau^{-1} = \begin{pmatrix} 1 & \cdots & r-1 & r & \cdots & l_0-1 \\ \bar{\sigma}^{-1}(2)-1 & \cdots & \bar{\sigma}^{-1}(r)-1 & -(\bar{\sigma}^{-1}(r+1)-1) & \cdots & \bar{\sigma}^{-1}((l_0)-1) \end{pmatrix}.$$

Then $n(\tau)=n(\sigma)$. By the assumption of the induction,

$$\#\{\varepsilon_i + \varepsilon_j; 2 \leq i < j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) \geq 2l_0 - 4 - 2n(\sigma)\} > n(\sigma) - 1.$$

Let

$$\begin{aligned} s &= \#\{\varepsilon_i; 2 \leq i \leq l_0, \exists \varepsilon_j, 2 \leq j \neq i \leq l_0, \text{ such that} \\ &(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4 - 2n(\sigma) \text{ or } 2l_0 - 3 - 2n(\sigma)\}. \end{aligned}$$

Then, in the same way as in Lemma 2.4, we see that

$$\#\{\varepsilon_i + \varepsilon_j; 2 \leq i < j \leq l_0, (\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4 - 2n(\sigma) \text{ or } 2l_0 - 3 - 2n(\sigma)\} \leq s - 1.$$

Let ε_i satisfy that there exists $\varepsilon_j, 2 \leq j \leq l_0, j \neq i$, such that

$$(\sigma\delta, \varepsilon_i + \varepsilon_j) = 2l_0 - 4 - 2n(\sigma) \text{ or } 2l_0 - 3 - 2n(\sigma).$$

Then

$$(\sigma\delta, \varepsilon_i + \varepsilon_1) \geq 2l_0 - 2 - 2n(\sigma)$$

in all but the following case:

$$(\sigma\delta, \varepsilon_i + \varepsilon_2) = 2l_0 - 4 - 2n(\tau) \text{ and } \bar{\sigma}^{-1}(2) = 2.$$

Therefore the inequality is true.

Case 2: $\bar{\sigma}^{-1}(1)=2$. By the definition of W^1

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & r & r+1 & \cdots & l_0 \\ 2 & \bar{\sigma}^{-1}(2) & \cdots & \bar{\sigma}^{-1}(r) & -\bar{\sigma}^{-1}(r+1) & \cdots & -1 \end{pmatrix}.$$

Define the element $\sigma' \in W^1$ by

$$(\sigma')^{-1} = \begin{pmatrix} 1 & 2 & \cdots & r & r+1 & \cdots & l_0-1 & l_0 \\ 1 & \bar{\sigma}^{-1}(2) & \cdots & \bar{\sigma}^{-1}(r) & -\bar{\sigma}^{-1}(r+1) & \cdots & -\bar{\sigma}^{-1}(l_0-1) & -2 \end{pmatrix}.$$

Then $n(\sigma')=n(\sigma)-1$. Define another element $\tau \in W^1$, which is considered for $l=l_0-1$, by

$$\tau^{-1} = \begin{pmatrix} 1 & \cdots & r & r+1 & \cdots & l_0-1 \\ \bar{\sigma}^{-1}(2)-1 & \cdots & \bar{\sigma}^{-1}(r)-1 & -(\bar{\sigma}^{-1}(r+1)-1) & \cdots & -1 \end{pmatrix}.$$

Then $n(\tau)=n(\sigma')$.

Assume that the inequality (3.2) is true for τ . If we notice that $(\overline{\sigma'})^{-1}(2) > 2$, we get the following inequality in the same way as in case 1.

$$\#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma'\delta, \beta) \geq 2l_0 - 2 - 2n(\sigma')\} > n(\sigma') .$$

Clearly

$$(\sigma\delta, \beta) \geq (\sigma'\delta, \beta) - 2 \quad \text{for any } \beta \in \Delta(\mathfrak{n}^+) .$$

Hence if $\beta \in \Delta(\mathfrak{n}^+)$ satisfies that

$$(\sigma'\delta, \beta) \geq 2l_0 - 2 - 2n(\sigma') ,$$

then

$$(\sigma\delta, \beta) \geq 2l_0 - 2 - 2n(\sigma) .$$

Therefore

$$\#\{\beta \in \Delta(\mathfrak{n}^+); (\sigma\delta, \beta) \geq 2l_0 - 2 - 2n(\sigma)\} > n(\sigma) - 1 .$$

Thus we have proved that the inequality (3.1) is true for any $\sigma \in W^1$. We can prove that the inequality (3.2) is true in the same way as above.

References

- [1] Y. Kimura: *On the hypersurfaces of Hermitian symmetric spaces of compact type*, Osaka J. Math. **16** (1979), 97–119.
- [2] M. Takeuchi: *Cell decompositions and Morse equalities on certain symmetric spaces*, J. Fac. Sci. Univ. Tokyo **12** (1965), 81–192.

Kobe University of Commerce
Tarumi, Kobe 655, Japan

