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Abstract
We describe all the trees with the property that the corresponding edge ideal of the square of

the tree has a linear resolution. As a consequence, we give a complete characterization of those
trees T for which the square is co-chordal, that is the complement of the square, (T 2)c, is a
chordal graph. For particular classes of trees such as paths and double brooms, we determine
the Krull dimension and the projective dimension.

1. Introduction

1. Introduction
In 1960, Harary and Ross defined the squares of trees [10], and their definition has been

extended to squares of graphs. For a finite simple graph G, its square, denoted by G2, is the
graph with the same vertex set as G and two vertices are adjacent in G2 if they are adjacent
in G or their distance in G is 2. Properties of squares of graphs have been intensively studied
in combinatorics [1, 2, 5, 6, 19, 20, 21, 24, 25, 26]. Classes of graphs which are closed to
taking squares, and more general, taking powers, have been determined. Strongly chordal
graphs [21, 25], interval graphs [24], proper interval graphs are known to have this property
[24]. Moreover, many researchers paid attention to recognition of squares of graphs and they
developed algorithms for their recognition. The complexity of the problem of recognition
of squares of graphs or of square roots of graphs has been determined for several classes of
graphs.

Given a finite simple graph G on the vertex set V(G) = {1, . . . , n} and with the set of
edges E(G), one may consider the edge ideal of G, denoted by I(G), which is defined to be
the squarefree monomial ideal in the polynomial ring S = k[x1, . . . , xn] which is generated
by the squarefree monomials which correspond to the edges of G, that is I(G) = 〈xix j :
{i, j} ∈ E(G)〉. During the past decades, researchers described combinatorial properties of
the graph G in terms of algebraic and homological invariants of the graph G and vice-versa
[7, 8, 9, 11, 12, 13, 15, 17, 18, 23, 27, 28]. A well-known example is the one of Fröberg
who proved that the edge ideal of a graph has a linear resolution if and only if the graph
is co-chordal, that is its complement is a chordal graph [7]. Moreover, Woodroofe gave an
upper-bound of the Castelnuovo–Mumford regularity in terms of the co-chordal number of
a graph [28]. The projective dimension, the Betti numbers and the Krull dimension of the
edge ideal have also been related to combinatorial invariants of the graph (see for instance
[8, 9, 18, 23, 28]).

We aim at studying the behaviour of algebraic and homological invariants of the corre-
sponding edge ideal of the square of a tree. We give a complete characterization of the trees
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for which the edge ideal of their square has a linear resolution.
An overview of the paper is as follows: the first section contains all the concepts that

will be used through the paper. We distinguish here between combinatorial concepts arising
from graph theory and notions from commutative algebra and we describe the connections
between them. The second section is devoted to recalling the characterization of squares of
trees given by Harary and Ross [10]. We also prove a result which allows us to extend all
the results obtained in this paper to larger classes of graphs, (Proposition 3.3).

In the third section, we characterize all trees for which the edge ideal of their square has
a linear resolution. As a consequence, we give a complete characterization of those trees T
for which the square is co-chordal.

The fourth section is devoted to particular classes of trees such as paths and double
brooms. Since their square are chordal graphs, we may use the results developed by Kimura
[18]. By using combinatorial techniques, we compute invariants such as the Krull dimen-
sion, the projective dimension and the Castelnuovo–Mumford regularity of edge ideals of
squares of the path graph and of the double brooms.

In the end of the paper, we consider several problems that arise naturally.

2. Preliminaries

2. Preliminaries
We review some standard facts on graph theory and edge ideals and we setup the nota-

tion and terminology that will be used through the paper. A more complete theory can be
obtained by [7, 8, 11, 23, 27].

2.1. Notions from graph theory.
2.1. Notions from graph theory. Let G be a finite simple graph with the vertex set V(G)

and the set of edges E(G). Two vertices x, y ∈ V(G) are called adjacent (or neighbours) if
{x, y} ∈ E(G). For a vertex x of G, we denote by  (x) the set of all the neighbours of x,
also called the neighbourhood of x. More precisely,  (x) = {y ∈ V(G) : {x, y} ∈ E(G)}.
Moreover, let  [x] = (x)∪{x} be the closed neighbourhood of x. The degree of the vertex
x, denoted by deg(x), is defined to be deg(x) = | (x)|. By a free vertex we mean a vertex
of degree 1. A vertex which is adjacent to a free vertex will be called a next-point. A graph
is called complete if it has the property that any two vertices are adjacent. The complete
graph with n vertices is usually denoted by n. By a subgraph H of G we mean a graph
with the property that V(H) ⊆ V(G) and E(H) ⊆ E(G). One says that a subgraph H of G
is induced if whenever x, y ∈ V(H) so that {x, y} ∈ E(G) then {x, y} ∈ E(H). If W ⊆ V , we
will denote by GW the induced subgraph of G with the set of vertices W. A clique in G is
an induced subgraph which is a complete graph. For a vertex x, we denote by C(x) the set
of maximal clique containing x. Taking into account the number of cliques which contain a
vertex, one says that a vertex is unicliqual if there is in exactly one maximal clique and it is
multicliqual if it is in more than one maximal cliques. Two vertices are cocliqual if there is
a maximal clique containing both of them. A vertex is called neighbourly if it is cocliqual
with every vertex from its neighbourhood. A cut-point is a vertex with the property that,
after its removal, the number of connected components increases.

A path of length t ≥ 2 in G is, by definition, a set of distinct vertices x0, x1, . . . , xt such
that {xi, xi+1} are edges in G for all i ∈ {0, . . . , t−1}. The distance between two vertices x and
y, denoted by dG(x, y), is defined to be the length of a shortest path joining x and y. If there
is no path joining x and y, then dG(x, y) = ∞. We will drop the subscript when the confusion
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is unlikely. One can define similarly the distance between two edges. If e and e′ are two
distinct edges, then the distance between the edges e and e′ is denoted by d(e, e′) and is
defined as the minimum integer � such that there is a set of distinct edges e = e0, . . . , e� = e′

such that ei ∩ e j � ∅, for all i � j, 1 ≤ i, j ≤ �. The diameter of the graph G, denoted by
diam(G), is the maximum of all the distances between any two vertices in G, namely

diam(G) = max{d(x, y) : x, y ∈ V(G)}.
A cycle of length n ≥ 3, usually denoted by Cn, is a graph with the vertex set [n] =

{1, . . . , n} and the set of edges {i, i+ 1}, where n+ 1 = 1 by convention. A graph is chordal if
it does not have any induced cycles of length strictly greater than 3. A graph is called a tree
if it is connected and it does not have cycles. Note that any tree is a chordal graph. Moreover
the vertices of a tree are either free or cut-points.

For a graph G, let Gc be the complement of the graph G that is the graph with the same
vertex set as G and {x, y} is an edge of Gc if it is not an edge of G. A graph G is called
co-chordal if Gc is a chordal graph. One says that the edges {x, y} and {u, v} of G form an
induced gap in G if x, y, u, v are the vertices of an induced cycle of length 4 in Gc. A graph
G is called gap-free if it does not contain any induced gap.

The square of the graph G, denoted by G2, is defined to be the graph with the same set of
vertices as G and with the edges

E(G2) = E(G) ∪ {{x, y} : dG(x, y) = 2}.
Harary and Ross [10] proved that the squares of trees are chordal graphs, a property which
will be essential through the rest of the paper.

2.2. Edge ideals.
2.2. Edge ideals. Given a finite simple graph G with the vertex set V(G) = {1, . . . , n} =

[n] and the set of edges E(G), one may consider its edge ideal which is the squarefree mono-
mial ideal denoted by I(G) ⊆ S = k[x1, . . . , xn], where k is a field, defined by I(G) = 〈xix j :
{i, j} ∈ E(G)〉. Whenever it will be clear from the context, we will use the same notation for
both variables and vertices. For a squarefree monomial m = xi1 · · · xid , the support of the
monomial m, denoted by supp(m), is defined to be the set of all the variables dividing m,
that is supp(m) = {x j : x j | m} = {xi1 , . . . , xid }. Conversely, if F = {i1, . . . , id} ⊆ [n], then the
corresponding squarefree monomial is xF =

∏
j∈F

x j = xi1 · · · xid , therefore supp (xF) = F.

Edge ideals have been intensively studied and properties of invariants such that Betti
numbers, projective dimension, Castelnuovo–Mumford regularity, or Krull dimension have
been established for several classes of graphs (see [11, 23, 27] for more details). We recall
that, if I ⊆ S = k[x1, . . . , xn] is an ideal and  is the minimal graded free resolution of S/I
as an S-module:

 : 0→
⊕

j

S(− j)βp j → · · · →
⊕

j

S(− j)β1 j → S→ S/I → 0,

then the numbers βi j are the graded Betti numbers of S/I, the projective dimension of S/I is

proj dim S/I = max{i : βi j � 0}
and the Castelnuovo–Mumford regularity is
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reg S/I = max{ j − i : βi j � 0}.
Let d > 0 be an integer. An ideal I of S has a d–linear resolution if the minimal graded free
resolution of I is of the form

. . . −→ S(−d − 2)β2 −→ S(−d − 1)β2 −→ S(−d)β1 −→ S −→ S/I −→ 0.

Equivalently, an ideal I has a d-linear resolution if and only if it is minimally generated in
degree d and reg S/I = d − 1.

In the sequel we recall connections between Krull dimension, regularity and projective
dimension of the edge ideal and combinatorial invariants of the graph. We start with the
Krull dimension. A subset W of V(G) is called an independent set of G if, for all u, v ∈ W
such that u � v, one has {u, v} � E(G). One may compute the Krull dimension of S/I(G) by
using independent sets (see [23, Section 2] or [14, Lemma 1] for more details):

Proposition 2.1 ([14]). dim S/I(G) = max{|W | : W is an independent set of G}.
A subset M = {e1, . . . , es} of E(G) is called a matching of G if for all i � j, one has

ei ∩ e j = ∅. An induced matching in G is a matching which forms an induced subgraph of
G. The induced matching number of G, denoted by indmat(G), is defined to be the number
of edges in a largest induced matching, that is

indmat(G) = max{|M| : M is an induced matching in G}.
The co-chordal cover number of G, denoted cochord(G), is the minimum number of co-
chordal subgraphs required to cover the edges of G that is

cochord(G) = min{n ∈ N : there are G1, . . . ,Gn co-chordal subgraphs of G

such that E(G) = E(G1) ∪ · · · ∪ E(Gn)}
In between the induced matching number, the co-chordal cover number, and the

Castelnuovo–Mumford regularity there are the following connections:

Proposition 2.2. Let G be a finite simple graph. Then

a) reg S/I(G) ≥ indmat(G), [17, Lemma 2.2].
b) If G is a chordal graph, then reg S/I(G) = indmat(G), [9, Corollary 6.9].
c) Over any field k, reg S/I(G) ≤ cochord(G) [28, Theorem 1] .

The following result describes the behaviour of the Castelnuovo–Mumford regularity
with respect to induced subgraphs.

Proposition 2.3 ([23, Proposition 3.8]). If H is an induced subgraph of G, then reg S/I(H)
≤ reg S/I(G).

3. Properties of squares of graphs

3. Properties of squares of graphs
In this section we recall several properties of squares of trees which will be used in the

next section and we will prove a result which allows us to extend the results obtained in this
paper to larger classes of graphs which are no longer trees.

Harary and Ross gave a complete characterization of the square of a tree, [10]. We recall
here their characterization and we will emphasize those properties that will be used in the
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rest of the paper.
We start with some properties of squares of trees.

Proposition 3.1 ([10]). Let T be a tree and T 2 its square. The following statements hold:

a) The graph T 2 is a complete graph if and only if T has exactly one next-point that is
T is a star graph.

b) Every maximal clique of T 2 is the closed neighborhood of a cut-point of T , and
conversely.

c) Assume that T 2 is not a complete graph. A vertex is a multicliqual point in T 2 if and
only if it is a cut-point in T .

d) Two cut-points of T are adjacent in T if and only if their neighbourhoods are cliques
in T 2 that intersect in exactly two vertices.

e) The graph T 2 has no cut-points.

The following theorem provides a characterization of graphs which are squares of trees.

Theorem 3.2 ([10]). Let T be a tree which is not a star graph. Then G = T 2 if and only
if the following conditions are fulfilled:

a) Every vertex of G is neighbourly and G is connected.
b) If two maximal cliques meet at only one vertex x, then there is a third maximal clique

with which they share x and exactly one other vertex.
c) There is a one-to-one correspondence between the maximal cliques and the multi-

cliqual vertices x of G such that the clique C(x) corresponding to x contains exactly
as many multicliqual vertices as the number of maximal cliques which include x.

d) No two maximal cliques intersect in more than two vertices.
e) The number of pairs of maximal cliques that meet in two vertices is one less than

the number of maximal cliques.

The following result evidences that all the results obtained in this paper are valid for larger
classes of graphs, even if we will discuss mainly about squares of trees.

Proposition 3.3. Let G be a graph with the vertex set V(G) and E(G) its set of edges.
Let x ∈ V(G) and y1, y2 ∈  (x) be free vertices. Let G1 be the graph obtained from G by
adding the edge {y1, y2}. Then G2

1 = G2.

Proof. One may first note that the inclusion E(G2) ⊆ E(G2
1) always holds. Moreover,

{y1, y2} ∈ E(G2) since dG(y1, y2) = 2. Since in G1 we added an edge between two free
vertices, we have that dG1 (y1, z) = dG(y1, z) and dG1 (y2, z) = dG(y2, z) for every z ∈ V(G) \
{y1, y2}. Therefore E(G2

1) \ E(G2) = ∅. �

4. Edge ideals of square of trees

4. Edge ideals of square of trees
Through this section we characterize all trees with the property that the edge ideal of

their square has a linear resolution. In [13], the authors defined the notion of ideals with
linear quotients and proved that they have a linear resolution if they are generated in one de-
gree. In general, there are ideals with a linear resolution which do not have linear quotients.
However, for monomial ideals generated in degree 2, these two notions are equivalent [12,
Theorem 3.2]. Therefore, in order to prove that the corresponding edge ideals have a linear
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resolution, we will prove that they have linear quotients.
We recall that a monomial ideal I ⊆ S = k[x1, . . . , xn], with the minimal system of gener-

ators (I) = {u1, . . . , ur} has linear quotients if there is a monomial order of the generators
u1 ≺ u2 ≺ · · · ≺ ur such that for all 2 ≤ j ≤ r, the colon ideal (u1, . . . , u j−1) : (u j) is gener-
ated by a set of variables. We consider defined on S the reverse lexicographical order, revlex
for short, with respect to the order of the variables x1 > x2 > · · · > xn. We recall that, given
two monomials u = xa1

1 · · · xan
n and v = xb1

1 · · · xbn
n , one says that u >revlex v if deg(u) > deg(v)

or deg(u) = deg(v) and there is an integer 1 ≤ s ≤ n such that an = bn, . . . , as+1 = bs+1 and
as < bs.

Remark 4.1. According to the first statement of Proposition 3.1, if T is a star graph, then
T 2 is a complete graph, therefore it is co-chordal, hence its edge ideal has a linear resolution
according to Theorem 4.6.

In the sequel, we consider the class of (partially) whiskered stars, that are graphs obtained
from the star graph by adding an edge (together with a new vertex) to some of the free
vertices. These new edges are often called whiskers. If we add a whisker to every free
vertex we obtain a whiskered star. Let T be the (partially) whiskered star with the vertex set

V(T ) = {x0, x1, . . . , xn, y1, . . . , ym},
where 1 ≤ m ≤ n. We assume that the set of edges of T is

E(T ) = {{x0, xi} : 1 ≤ i ≤ n} ∪ {{xi, yi} : 1 ≤ i ≤ m}.
Therefore

E
(
T 2

)
= E(C(x0)) ∪ {{x0, yi} : 1 ≤ i ≤ m} ∪ {{xi, yi} : 1 ≤ i ≤ m},

where E(C(x0)) is the set of all edges from the set of maximal clique containing x0. Let
S = k[x0, x1, . . . , xn, y1, . . . , ym] endowed with the revlex order with respect to x0 > x1 >

· · · > xn > y1 > · · · > ym and I(T 2) ⊆ S. Note that we used the same notation for both
vertices and variables. Assume that the minimal set of monomial generators of I(T 2) is
(I(T 2)) = {u1, . . . , uN}, and u1 >revlex · · · >revlex uN .

Proposition 4.2. Under the above assumptions, the following is true:

〈u1, . . . , ui−1〉 : 〈ui〉 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈x0, . . . , x̂a, . . . , xb−1〉, if ui = xaxb, 0 ≤ a < b ≤ n
〈x1, . . . , xn, y1, . . . , yb−1〉, if ui = x0yb, 1 ≤ b ≤ m
〈x0, . . . , x̂a, . . . , xn〉, if ui = xaya, 1 ≤ a ≤ m

for all 2 ≤ i ≤ N.

Proof. Let ui ∈ (I(T 2)) for some 2 ≤ i ≤ N. We split the proof in three cases induced by
the form of the monomial ui.

Case 1: Assume that ui = xaxb with 0 ≤ a < b ≤ n. In order to prove that

〈x0, . . . , x̂a, . . . , xb−1〉 ⊆ 〈u1, . . . , ui−1〉 : 〈ui〉,
let 0 ≤ j ≤ b − 1, j � a. Since x jxa >revlex ui and x jxa is a squarefree monomial, one
has x jui ∈ 〈u1, . . . , ui−1〉, that is x j ∈ 〈u1, . . . , ui−1〉 : 〈ui〉. For the reverse inclusion, let
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w ∈ 〈u1, . . . , ui−1〉 : 〈ui〉 and we have to prove that w ∈ 〈x0, . . . , x̂a, . . . , xb−1〉. Since we
are dealing with monomial ideals, it is enough to consider that w is a monomial. Note that
ui = xaxb implies that supp(u j) ⊆ {x0, . . . , xn}, for all 1 ≤ j ≤ i−1. Then wui ∈ 〈u1, . . . , ui−1〉
implies that there is j ∈ {0, . . . , i − 1} so that u j | wui. Hence there is xα | u j and xα � ui

so that xα | w. If we denote by max(u) = max{k : xk | u}, then α ≤ max(u j) < b since
u j >revlex ui. Therefore α ∈ {0, . . . , b − 1}. The statement follows.

Case 2: We assume now that ui = x0yb, 1 ≤ b ≤ m and we use the same strategy as
before. Our first goal is to prove that

〈x1, . . . , xn, y1, . . . , yb−1〉 ⊆ 〈u1, . . . , ui−1〉 : 〈ui〉.
Note that if 1 ≤ j ≤ b − 1 then the monomial x0y j = y jui/yb >revlex ui and is squarefree,
hence x jui ∈ 〈u1, . . . , ui−1〉, that is y j ∈ 〈u1, . . . , ui−1〉 : 〈ui〉. Also, if 1 ≤ j ≤ n then the
monomial x0x j = x jui/yb >revlex ui and is squarefree, hence x jui ∈ 〈u1, . . . , ui−1〉, that is
x j ∈ 〈u1, . . . , ui−1〉 : 〈ui〉. The second goal is to prove the converse inclusion. Let w ∈
〈u1, . . . , ui−1〉 : 〈ui〉. We have to prove that w ∈ 〈x1, . . . , xn, y1, . . . , yb−1〉. As before, it is
enough to consider that w is a monomial. Since wui ∈ 〈u1, . . . , ui−1〉, there is a monomial
u j | wui. Since j ≤ i − 1, u j has one of the following cases: u j = xαxβ or u j = x0yl, with
1 ≤ l ≤ b − 1. In the first case, 0 ≤ α < β and xβ | u j | wui, but xβ � ui = x0yb, therefore
xβ | w. In the second case yl | u j | wui and yl � ui = x0yb, hence yl | w. In both cases one has
that w ∈ 〈x1, . . . , xn, y1, . . . , yb−1〉.

Case 3: Assume now that ui = xaya with 1 ≤ a ≤ m. Note that for 0 ≤ j ≤ n,
j � a one has x jui = x jxaya, x jxa >revlex ui and x jxa is a squarefree monomial. Therefore
x jui ∈ 〈u1, . . . , ui−1〉. For the other inclusion, let w ∈ 〈u1, . . . , ui−1〉 : 〈ui〉 and we have
to prove that w ∈ 〈x0, . . . , x̂a, . . . , xn〉. Since w ∈ 〈u1, . . . , ui−1〉 : 〈ui〉, there is some j,
1 ≤ j ≤ i − 1 such that u j | wui. Since u j >revlex ui and ui = xaya, there is some � � a such
that x� | u j and x� � ui. As u j | wui, one must have x� | w. Therefore, w ∈ 〈x0, . . . , x̂a, . . . , xn〉.

�
The next result follows directly from Proposition 4.2 and [12, Theorem 3.2].

Theorem 4.3. If T is a (partially) whiskered star, then I(T 2) has a linear resolution.

For a monomial ideal with linear quotients I with respect to the order of the generators
u1 � · · · � uN , one denotes

set(ui) = {x j : x j ∈ 〈u1, . . . , ui−1〉 : 〈ui〉},
and ri = |set(ui)| for all i, 1 ≤ i ≤ N.

One may compute the Betti numbers of a monomial ideal with linear quotients by using
the above notions, as the following result states.

Proposition 4.4 ([13]). Let I ⊆ S be a monomial ideal with linear quotients. Then

βi(I) =
N∑

k=1

(
rk

i

)
.

In particular, it follows that

proj dim(I) = max{r1, . . . , rN}.
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The following result is now straightforward:

Corollary 4.5. Let T be a (partially) whiskered star graph and I
(
T 2

)
the edge ideal of

its square. Then proj dim(I
(
T 2

)
) = M − 2, where M is the number of vertices of T .

Proof. Taking into account Proposition 4.2, the maximum of the set {r1, . . . , rN} is
achieved for the monomial uN = xmym for which rN = n + m − 1. Note that T is a graph on
M = n + m + 1 vertices. �

In order to characterize all the trees such that the edge ideal of their square has a linear
resolution, we will use the combinatorial characterization of an edge ideal with a linear
resolution given by Fröberg in [7].

Theorem 4.6 ([7]). Let G be a finite simple graph. The edge ideal I(G) has a linear
resolution if and only if G is a co-chordal graph.

The following remark is a direct consequence of Theorem 4.6 and it will be intensively
used through the paper:

Remark 4.7. If G is a graph such that its edge ideal has a linear resolution, then G is
gap-free.

Even if one would expect that the property of having a linear resolution is preserved by
the squares, the following example shows that this is not true:

Example 4.8. Let T be the tree from the figure below and T 2 its square.

Let S = k[x1, . . . , x6] be the polynomial over a field k. The edge ideals of T and T 2 are

I(T ) = 〈x1x3, x2x3, x3x4, x4x5, x4x6〉
and

I
(
T 2

)
= 〈x1x3, x2x3, x3x4, x4x5, x4x6, x1x2, x1x4, x2x4, x5x6, x3x5, x3x6〉.

It is a simple matter to check that I(T ) has a linear resolution (it is easy to see that it has
linear quotients), but I(T 2) does not have a linear resolution. Combinatorially, this can be
justified by the fact that the edges {1, 2} and {5, 6} form a gap in T 2, therefore in (T 2)c one
can find the induced cycle {1, 6, 2, 5} with the vertices in this order. Therefore (T 2)c is not
chordal and the result follows by Fröberg’s criterion.

In order to get the characterization, we start with several conditions that have to be ful-
filled by trees such that the edge ideal of their square has a linear resolution. The first result
determines the maximal diameter that the tree can have.
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Lemma 4.9. Let T be a tree and G = T 2. If I(G) has a linear resolution, then diam(T ) ≤
4.

Proof. Assume by contradiction that diam(T ) ≥ 5. Hence there exists an induced path of
length 5 in T , say x, y, z, u, v, w. Since T is a tree, we may assume that x is a free vertex. One
may note that in G, the set of edges {x, y} and {v, w} forms an induced gap. Indeed, this can
be easily seen from the next figure and using the fact that T is a tree, therefore between any
two vertices there is a unique path.

Also note that any neighbour of z in T , excepting u, is at distance at least 3 by both v and
w and any neighbour of u, excepting z, is at distance at least 3 by both x and y. So {x, y}
and {v, w} form an induced gap in G. This and Theorem 4.6 imply that I(G) does not have a
linear resolution, a contradiction. �

We determine now some restrictions on the degrees of the vertices.

Lemma 4.10. Let T be a tree with diam(T ) = 3 such that I(T 2) has a linear resolution.
Then T can contain at most one vertex of degree at least 3.

Proof. Since I(T 2) has a linear resolution, by Theorem 4.6, (T 2)c is a chordal graph,
in particular T is gap-free. Since diam(T ) = 3, any two cut-points are adjacent in Γ. By
Proposition 3.1(d) the neighbourhoods of any two cut-points form cliques in T 2 that are
intersecting in exactly two vertices.

Let v be a vertex of T , with degT (v) ≥ 3. Assume by contradiction that there exists a vertex
u � v such that degT (u) ≥ 3. Hence there are {v, u1, u2} ⊆T (u) and {u, v1, v2} ⊆T (v) and,
in T 2, V(C(u)) ∩ V(C(v)) = {u, v}. Then {u1, u2} and {v1, v2} form an induced gap in T 2 (we
are in the same situation as the one from Example 4.8), a contradiction. �

We may now state the characterization.

Theorem 4.11. Let T be a tree with n vertices and G = T 2 its square. The following are
equivalent:

a) I(G) has a linear resolution.
b) T is one of the following graphs:

i) T is Ln with 2 ≤ n ≤ 5, where Ln denotes a path of length n − 1;
ii) T is a star graph;

iii) T is a (partially) whiskered star.
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Proof. It is clear that, for every graph from b), I(G) has a linear resolution. We assume
that I(G) has a linear resolution, therefore, by Lemma 4.9, one has that diam(T ) ≤ 4. If
n = 2, then T is L2. Therefore, we may assume that n ≥ 3.

According to Remark 4.7, G is gap-free.
If G is a complete graph, then taking into account that G = T 2 and using Proposi-

tion 3.1(a), one obtains that T has to be a star graph. Note that, if n = 3, we get T = L3.
Let’s assume now that G is not a complete graph. Therefore, there exist at least two

maximal cliques which implies that there are at least two cut-points in T . Moreover, one
should note that diam(T ) ≥ 3. By Lemma 4.9, one has diam(T ) = 3 or diam(T ) = 4. We
split the proof in two cases.

Case 1: Assume that diam(T ) = 3, therefore any two cut-points are adjacent. By Propo-
sition 3.1(d) every pair of maximal cliques are intersecting in exactly two vertices. If all
the vertices of T have degree at most 2, then T is the graph L4. If there is a vertex v with
degT (v) ≥ 3, by Lemma 4.10 this vertex is unique. Such a tree is a whiskered star.

Case 2: Assume that diam(T ) = 4, in particular there is an induced path in T with vertices
u, v, w, x, y such that u and y are free vertices in T . If degT (v) = degT (w) = degT (x) = 2,
then T is L5. Assume that one of the vertices v, w, x has degree at least 3. One may verify
that it can be only one (the proof is similar to the one for Lemma 4.10). If we assume that
degT (v) ≥ 3, then there is a vertex v1 ∈T (v) \ {u, w}. But {u, v1} and {x, y} form an induced
gap in G, a contradiction. By using similar arguments, one also gets that degT (x) = 2
Therefore, the only vertex that can have degree at least 3 is w. Hence, T is a whiskered star.

�

As a consequence, we get a complete characterization of trees T with the property that
the complement of their square is chordal, (that is T 2 is co-chordal):

Corollary 4.12. Let T be a tree and G = T 2 its square. Then G is a co-chordal graph if
and only if T is one of the following graphs:

i) T is Ln with 2 ≤ n ≤ 5;
ii) T is a star graph;

iii) T is a (partially) whiskered star.

Proof. It follows easily by Theorem 4.6 and Theorem 4.11. �

The above results also lead to the following statement:

Corollary 4.13. If T is a (partially) whiskered star graph, a star graph or Ln, with 2 ≤
n ≤ 5 and G = T 2, then:

a) indmat(G) = indmat(Gc) = 1
b) cochordG = cochordGc = 1.

Proof. The proof is straightforward since G and Gc are both co-chordal. �

We close this section with the following remark.

Remark 4.14. In the view of Proposition 3.3, the results obtained in this section are valid
for larger classes of graphs which are not trees, but their square are isomorphic with the
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square of a tree.

5. Edge ideals of squares of classes of trees

5. Edge ideals of squares of classes of trees
In this section we will consider classes of trees such as paths and double brooms and

we will determine some of their invariants such as the Krull dimension, the depth and the
Castelnuovo–Mumford regularity. We recall some notions that will be intensively used in
the sequel. We follow [18] in order to fix the notations.

A graph B is called a bouquet if B is a star graph with the vertex set V(B) = {w, z1, . . . , zt},
t ≥ 1, and E(B) = {{w, zi} : 1 ≤ i ≤ t} the set of edges. The vertex w is called the root of
B, the vertices z1, . . . , zt are called the flowers of B and the edges of the graph B are called
stems. We denote by F(B) the set of flowers of B. Let G be a graph with the vertex set V(G),
E(G) its set of edges, and  = {B1, . . . , Br} a set of bouquets of G. Then one may consider
the following sets:

 () = {z ∈ V(G) : z is a flower in some bouquet from },

() = {w ∈ V(G) : is a root in some bouquet from }.
A set  of bouquets of G is called semi-strongly disjoint if V(Bi)∩V(Bj) = ∅ for all i � j

and any two vertices belonging to () are not adjacent in G.
Let d′G := max{| ()| :  is a semi-strongly disjoint set of bouquets of G}.
For the case of chordal graphs, the projective dimension can be computed in terms of

semi-strongly disjoint sets. More precisely:

Theorem 5.1 ([18, Theorem 5.1]). Let G be a chordal graph. Then

proj dimS/I(G) = d′G.

Firstly we consider the case of path graphs. Note that squares of paths have also been
studied in [15], where an homological approach is used to determine the depth.

Proposition 5.2. Let n be an integer, n ≥ 3. Then dim S/I(L2
n) =

⌈
n
3

⌉
.

Proof. According to Proposition 2.1, there is a maximal independent set W such that
dim S/I

(
L2

n

)
= |W |. Let’s assume that W is such a maximal independent set and |W | = d. We

have to prove that d = � n
3�.

Since E
(
L2

n

)
= {{i, i+1} : 1 ≤ i ≤ n−1}∪{{i, i+2} : 1 ≤ i ≤ n−2}, one has that | j− i| ≥ 3,

for all i, j ∈ W. Therefore, d ≤ � n
3�.

For the other inequality, let’s assume first that n = 3k, that is � n
3� =

[
n
3

]
= k. Then the set

{1, 4, 7, . . . , 3k − 2} = {1, 1 + 3, . . . , 1 + 3(k − 1)}
is also a maximal independent set of cardinality k. Hence d ≥ k = � n

3�.
If n = 3k + 1 or n = 3k + 2, then the set

{1, 4, 7, . . . , 3k − 2, 3k + 1} = {1, 1 + 3, . . . , 1 + 3(k − 1), 1 + 3k}
is also a maximal independent set of cardinality k + 1 = � n

3�. Therefore we get d ≥ � n
3�. The

equality follows. �
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Taking into account Theorem 5.1, in order to determine the depth, we have to compute
d′

L2
n
.

Proposition 5.3. Let n ≥ 3 be an integer. Then d′
L2

n
= n −

⌈
n
5

⌉
.

Proof. We split the proof in two cases.
Case 1: n ≡ k mod 5, 1 ≤ k ≤ 4.
We denote m =

[
n
5

]
and we consider the set of bouquets  = {B0, B1, . . . , Bm} where

() = {1, 6, 11 . . . , 5m + 1}
and

F(B0) = {2, 3} =L2
n
(1),

F(Bi) =L2
n
(5i + 1) = {5i − 1, 5i, 5i + 2, 5i + 3}, 1 ≤ i ≤ m − 1

and

F(Bm) =L2
n
(5m + 1).

Therefore,  () = V \() and | ()| = n −
⌈

n
5

⌉
.

Moreover, one may note that  is a semi-strongly disjoint set of bouquets in L2
n. Indeed, it

is obvious that V(Bi)∩V(Bj) = ∅, for all i � j, 0 ≤ i, j ≤ m. Since j−i ≥ 5 for all i, j ∈ ()
with i � j, the set () does not contain adjacent vertices in L2

n. So both conditions are
fulfilled.

By the definition of d′
L2

n
, one must have d′

L2
n
≥ n −

⌈
n
5

⌉
.

In order to prove that we have equality, we remark that F() = V \ R() implies that
by increasing the number of roots, the number of flowers will decrease. Moreover, if one
decreases the number of roots, even if one would consider the set of flowers as given by
all the neighbours, the number of flowers will be strictly lower than the one we obtained.
Therefore d′

L2
n
= n −

⌈
n
5

⌉
.

Case 2: n ≡ 0 mod 5. We proceed as in the above case. We denote m =
[

n
5

]
and we

consider the set of bouquets  = {B0, B1, . . . , Bm} where

() = {1, 6, 11 . . . , 5m + 1}
and

F(B0) = {2, 3} =L2
n
(1),

F(Bi) =L2
n
(5i + 1) = {5i − 1, 5i, 5i + 2, 5i + 3}, 1 ≤ i ≤ m − 1

and

F(Bm) = {5m − 1}.
Therefore,  () = V \() and | ()| = n −

⌈
n
5

⌉
. One may note that  is a semi-strongly

disjoint set of bouquets in L2
n. Arguing as before, one obtains d′

L2
n
= n −

⌈
n
5

⌉
. �

By using the above result we can easily determine the depth of S/I
(
L2

n

)
and the big height
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of I
(
L2

n

)
(that is the maximal height of its minimal primes). Note that the next result was

also obtained in [15, Theorem 3.8] in a more general case.

Corollary 5.4. Let n ≥ 3 be an integer. Then depth S/I(Ln2) =
⌈

n
5

⌉
.

Proof. Since L2
n is a chordal graph, proj dim S/I(L2

n) = d′
L2

n
, by Theorem 5.1. According to

Proposition 5.3, we have that proj dim S/I(L2
n) = n−

⌈
n
5

⌉
, therefore depth S/I(L2

n) =
⌈

n
5

⌉
. �

Corollary 5.5. Let n ≥ 3 be an integer. Then bight(S/I(L2
n)) = n −

⌈
n
5

⌉
.

Proof. By [18, Corollary 5.6], bight(S/I(L2
n)) = proj dim(S/I(L2

n)). The statement follows.
�

In order to compute the Castelnuovo–Mumford regularity, we have to determine the in-
duced matching number of L2

n.

Proposition 5.6. Let n ≥ 3 be an integer. Then indmat(L2
n) =

⌈
n−1

4

⌉
.

Proof. Let k =
⌈

n−1
4

⌉
, that is n − 1 = 4k − r, where 0 ≤ r ≤ 3. We consider the set

F = {{1, 2}, {5, 6}, . . . , {4k − 3, 4k − 2}},
where 4k − 3 = 4(k − 1) + 1. It is easily seen that F is an induced matching, not necessarily
maximal. Therefore

indmat(L2
n) ≥ |F| =

⌈
n − 1

4

⌉
.

For the other inequality, we consider an arbitrary maximal induced matching F = {{i1, j1},
{i2, j2}, . . . , {id, jd}}. Since F is an induced matching, the inequalities ik − jk−1 ≥ 3 and
jk ≥ ik + 1 should hold, for any 2 ≤ k ≤ n. Therefore jk − jk−1 ≥ 4 for any 2 ≤ k ≤ n, that is
|F| ≤

⌈
n−1

4

⌉
. �

Theorem 5.7. Let n ≥ 3 be an integer. Then reg(S/I(L2
n)) =

⌈
n−1

4

⌉
.

Proof. According to Proposition 2.2b), one has that

reg(S/I(L2
n)) = indmat(L2

n).

The statement follows by Proposition 5.6. �

In particular, we recover Theorem 4.11 case b(i) where we characterized all the squares
of path graph whose edge ideal has a linear resolution:

Corollary 5.8. Let n ≥ 3 be an integer. Then S/I(L2
n) has a linear resolution if and only

if n ≤ 5.

Proof. Note that S/I(L2
n) has a linear resolution if and only if reg(S/I(L2

n)) = 1, that is⌈
n−1

4

⌉
= 1 which is equivalent to n ≤ 5. �

We consider now another particular class of trees called double brooms. In graph theory, a



382 A. Olteanu

double broom is a graph on n1+n+n2 vertices obtained from the path graph Ln by appending
to the first and the last vertex a set of n1 and n2 edges, respectively. One also denotes this
double broom by P(n1, n, n2). If n = 2 the graph is called a double star.

Fig.1. A double broom

We determine the projective dimension of S/I(T 2), where T is a double broom. In order
to do this, we will consider first several particular cases determined by the length of Ln. We
begin with the case of double stars.

Proposition 5.9. Let n1, n2 ≥ 2 be two integers and T the double star on the set of vertices
V = {x1, . . . , xn1−1, y1, . . . , yn2−1, x, y} and with the set of edges

E = {{x, y}} ∪ {{x, xi} : 1 ≤ i ≤ n1 − 1} ∪ {{y, yi} : 1 ≤ i ≤ n2 − 1}.
Then

proj dimS/I
(
T 2

)
= n1 + n2 − 1.

Proof. It is easy to see that we may consider a bouquet B in T 2 as follows: let x be the
root and x1, . . . , xn1−1, y, y1, . . . yn2−1 the flowers. The stems of the bouquet are the edges
which connect the root with each flower. Note that there are also edges of the form {x, yi}
since dT (x, yi) = 2 for all 1 ≤ i ≤ n2 − 1. Since this is the maximal number of flowers
that we can get, we have that d′T = n1 + n2 − 1. Since T 2 is chordal, we also get that
proj dimS/I(T 2) = n1 + n2 − 1. �

Similarly, we can prove the following result:

Proposition 5.10. Let T be the double broom P(n1 − 1, 3, n2 − 1) with the set of vertices
V = {x1, . . . , xn1−1, y1, . . . , yn2−1, x, y, z} and with the set of edges

E = {{x, z}, {z, y}} ∪ {{x, xi} : 1 ≤ i ≤ n1 − 1} ∪ {{y, yi} : 1 ≤ i ≤ n2 − 1}.
Then proj dimS/I

(
T 2

)
= n1 + n2.

Proof. We prove as before. We consider the bouquet B in T 2 as follows: let z be the root
and x1, . . . , xn1−1, x, y, y1, . . . yn2−1 the flowers. The stems of the bouquet are the edges which
connect the root with each flower (all these edges exist since the corresponding vertices are
at distance at most 2 in T ). Since this is the maximal number of flowers that we can get, we
have that d′T = n1 + n2. Since T 2 is chordal, we also get that proj dimS/I(T 2) = n1 + n2. �



Edge Ideals of Squares of Trees 383

Proposition 5.11. Let T be the double broom P(n1−1, k, n2−1), 3 < k ≤ 8 with the set of
vertices V = {x1, . . . , xn1−1, y1, . . . , yn2−1, x, y, z1, . . . , zk−2}, |V | = n, and with the set of edges

E = {{zi, zi+1} : 1 ≤ i ≤ k − 3} ∪ {{x, z1}, {zk−2, y}} ∪
∪ {{x, xi} : 1 ≤ i ≤ n1 − 1} ∪ {{y, yi} : 1 ≤ i ≤ n2 − 1}.

Then proj dimS/I
(
T 2

)
= n − 2.

Proof. We will consider two bouquets B1 and B2 in T 2 and their construction depends on
k.

Case 1: If k = 4, let x and y be the roots, The flower set of B1 is {x1, . . . , xn1−1, z1} and the
flower set of B2 is {y1, . . . , yn2−1, z2}.

Case 2: If k = 5, let x and y be the roots. The flower sets of B1 and B2 are {x1, . . . , xn1−1,

z1, z2} and {y1, . . . , yn2−1, z3} respectively.
Case 3: If 6 ≤ k ≤ 8, let z1 and zk−2 be roots and let i =

[
k−2

2

]
. Note that i ≤ 3. We

consider the flower set of B1 to be {x1, . . . , xn1−1, x, z2, . . . zi}, and the flower set of B2 to be
{y1, . . . , yn2−1, y, zi+1, . . . , zk−3}.

Note that in each of the above cases the stems of the bouquet are the edges which connect
the root with each flower from the corresponding bouquet (all these edges exist since the
corresponding vertices are at distance at most 2 in T ). It is clear that the roots are not
adjacent. Moreover, V(G) =  () ∪() where  = {B1, B2}. Since this is the maximal
number of flowers that we can get, we have that d′T 2 = n − 2. Since T 2 is chordal, we also
get that proj dimS/I(T 2) = n − 2. �

We assume now that k > 8 and we get the following result:

Proposition 5.12. Let T be the double broom P(n1 − 1, k, n2 − 1), 8 < k with the set of
vertices V = {x1, . . . , xn1−1, y1, . . . , yn2−1, x, y, z1, . . . , zk−2, }, |V | = n, and with the set of edges

E = {{zi, zi+1} : 1 ≤ i ≤ k − 3} ∪ {{x, z1}, {zk−2, y}} ∪
∪ {{x, xi} : 1 ≤ i ≤ n1 − 1} ∪ {{y, yi} : 1 ≤ i ≤ n2 − 1}.

Then proj dimS/I
(
T 2

)
= n − 2 −

⌈
k−8

5

⌉
.

Proof. We consider the following induced subgraphs of T 2: G1 and G2 are the induced
subgraphs on the vertex set {x1, . . . , xn1−1, x, z1, z2, z3} and {y1, . . . , yn2−1, y, zk−2, zk−3, zk−4},
respectively, and L2

k−8 the square of the path on the vertex set {z4, . . . , zk−5}. It is a simple
matter to check that G1 = (T [z1])2 and G2 = (T [zk−2])2. We will show that

d′T 2 = n1 + n2 + k − 4 −
⌈
k − 8

5

⌉
.

Since n = n1 + n2 + k − 2, the statement will follow.
We define a set of semi-strongly set of bouquets of T 2 as follows:
− B1 is the bouquet with the root z1 and the flowers {x1, . . . , xn1−1, x, z2, z3}. Note that

the stems are {z1, xi}, 1 ≤ i ≤ n1 − 1, {z1, x}, {z1, z2}, {z1, z3}.
− B2 is the bouquet with the root zk−2 and the flowers {y1, . . . , yn2−1, y, zk−3, zk−4}. In

this case, the stems are {zk−2, yi}, 1 ≤ i ≤ n2 − 1, {zk−2, y}, {zk−2, zk−3}, {zk−2, zk−4}.
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− ′ is the strongly disjoint set of bouquets of the graph L2
k−8 defined in Proposition

5.3.
Defined like this,  = {B1, B2}∪′ is a strongly disjoint set of bouquets of T 2. In particular,
d′T 2 ≥ n1 + 2 + n2 + 2 + d′

L2
k−8
= n1 + n2 + k − 4 −

⌈
k−8

5

⌉
.

We see at once that degT 2 (z1) = n1 + 2, degT 2 (zk−2) = n2 + 2 and the degree of every root
of ′ is at most 4. Therefore, we obtained the maximal number of flowers. This implies that

d′T 2 = n1 + 2 + n2 + 2 + d′L2
k−8
= n − 2 −

⌈
k − 8

5

⌉
.

Since T 2 is chordal, the statement follows. �

We can summarize the above results as follows:

Theorem 5.13. Let T be the double broom P(n1 − 1, k, n2 − 1), with n1, n2, k ≥ 2 and
n = n1 + n2 + k − 2. Then

proj dim(S/I(T 2)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n − 1, if k ∈ {2, 3}
n − 2, if 3 < k ≤ 8

n − 2 −
⌈

k−8
5

⌉
, if k > 8

.

As a consequence, we get

Corollary 5.14. Let T be the double broom P(n1 − 1, k, n2 − 1), with n1, n2, k ≥ 2 and
n = n1 + n2 + k − 2. Then

depth(S/I(T 2)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if k ∈ {2, 3}
2, if 3 < k ≤ 8

2 +
⌈

k−8
5

⌉
, if k > 8

.

Next, we determine the Krull dimension for edge ideals of squares of double brooms.

Proposition 5.15. Let T = P(n1 − 1, k, n2 − 1) where n1, n2 ≥ 2 and k ≥ 4. Then

dim S/I(T 2) =
⌈
k − 4

3

⌉
+ 2.

Proof. In order to fix the notations, let’s assume that the set of vertices of T is V =
{x1, . . . , xn1−1, y1, . . . , yn2−1, x, y, z1, . . . , zk−2, }, |V | = n, and with the set of edges

E = {{zi, zi+1} : 1 ≤ i ≤ k − 3} ∪ {{x, z1}, {zk−2, y}} ∪
∪ {{x, xi} : 1 ≤ i ≤ n1 − 1} ∪ {{y, yi} : 1 ≤ i ≤ n2 − 1}.

According to Proposition 2.1, there is a maximal independent set W such that dim S/I
(
T 2

)
= |W |. Let’s assume that W is such a maximal independent set and |W | = d. We have to
prove that d = � k−4

3 � + 2.
If k = 4, we consider the induced subgraphs G1 = C(x) = n1+1 and G2 = C(y) = n2+1.

Then any maximal independent set can have at most two vertices. Since W = {x, y} is a
maximal independent set, d = 2.

If k = 5, then diam(T 2) = 4. We consider as before the induced subgraphs G1 = C(x) =
n1+1 and G2 = C(y) = n2+1. Note that {xi, z2} � E(T 2) and {y j, z2} � E(T 2) since the
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distance in T between these vertices is 3 for all 1 ≤ i ≤ n1 − 1 and 1 ≤ j ≤ n2 − 1. Then
W = {x1, z2, y1} is a maximal independent set and, taking into account the shape of the graph,
it has maximal cardinality, so d = 3.

If k > 5, then we consider the induced subgraphs G1 = C(x) = n1+1, G2 = C(y) =
n2+1 and L2

k−4 which is the path on the vertices z2, . . . , zk−3. In order to obtain a maximal
independent set of maximal cardinality, one has to take a vertex from G1, a vertex from G2

and a maximal independent set of maximal cardinality for L2
k−4. Since the largest maximal

independent set of L2
k−4 has

⌈
k−4

3

⌉
(by Proposition 5.2), the statement follows. �

6. Open questions and remarks

6. Open questions and remarks
We end this paper with several remarks and open questions. The starting point of this

paper was to consider the behaviour of the invariants of the edge ideal when one takes the
square of the graph. This was suggested by the fact that in Combinatorics, many researchers
paid attention to combinatorial properties that are preserved by the square [3, 19, 20, 21,
24, 25]. From the commutative algebra point of view, examples show that, there are large
classes of trees for which the Castelnuovo–Mumford regularity of the edge ideal of the
square decreases. In fact, the tree from Example 4.8 is the smallest one that we could find
for which the regularity increases. Therefore, the following problem naturally appears:

Problem 6.1. Characterize all trees T for which reg I(T ) ≥ reg I(T 2).

One can also consider the behaviour of the projective dimension. Note that for path
graphs, Morey proved that depth S/I(Ln) =

⌈
n
3

⌉
([22, Lemma 2.8]) and we showed that

depth S/I(L2
n) =

⌈
n
5

⌉
. Therefore

proj dim I(Ln) ≤ proj dim I(L2
n).

Examples suggest that this is true in general. Therefore we assume that the next question
has a positive answer:

Question 6.2. Is it true that if T is a tree then proj dim I(T ) ≤ proj dim I(T 2)?

If the above question has a negative answer, then one can consider the following problem:

Problem 6.3. Characterize all trees T for which

proj dim I(T ) ≤ proj dim I(T 2).

Note that same questions can be considered for different classes of graphs.
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