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Abstract
For a symmetrizable GCM C and its symmetrizer D, Geiss-Leclerc-Schröer [Invent. Math.

209 (2017)] has introduced a generalized preprojective algebra Π associated to C and D, that
contains a class of modules, called locally free modules. We show that any basic support τ-
tilting Π-module is locally free and gives a classification theorem of torsion-free classes in
repΠ as the generalization of the work of Mizuno [Math. Z. 277 (2014)].

1. Introduction

1. Introduction
In the progress of representation theory of quivers, Gabriel [11] has shown that a con-

nected quiver has finitely many indecomposable representations if and only if the underly-
ing graphs are Dynkin diagrams of A,D,E of finite types. In particular, the isoclasses of
indecomposable representations corresponds to its positive root systems bijectively via their
dimension vectors. Later, Kac [17, 18] has extended this description from the cases of sym-
metric Dynkin types to the case containing any symmetric affine types. That is, it has given
a characterization of indecomposable representations of the quivers in terms of positive real
roots and positive imaginary roots. On the other hand, Gel’fand-Ponomarev [14] has intro-
duced preprojective algebras for acyclic quivers in order to develop Auslander-Reiten theory
for the quivers. In the works of Buan-Iyama-Reiten-Scott [7] and Mizuno [21], tilting theory
of the preprojective algebras for an acyclic quiver is studied in terms of the corresponding
Weyl group W (Iyama-Reading-Reiten-Thomas [16], Asai [2], Kimura [19]). In their study,
many notions in tilting theory of preprojective algebras are studied in terms of certain col-
lection of two-sided ideals Iw corresponding to the w ∈W. This also has some applications
to algebraic Lie theory (e.g. Baumann-Kamnitzer-Tingley [4], Geiß-Leclerc-Schröer [12]).

In search of its generalization to symmetrizable Kac-Moody algebras, Geiss-Leclerc-
Schröer [13] has introduced a class of 1-Iwanaga-Gorenstein algebras attached to a general-
ized Cartan matrix (GCM) and its symmetrizer. It has also introduced generalized prepro-
jective algebras associated to the 1-Iwanaga-Gorenstein algebra and has developed a class of
modules, that is, locally free modules. These algebras and its locally free module categories
share many features with the classical study of preprojective algebras with symmetric GCMs
replaced by symmetrizable ones. Recently, Fu-Geng [10] has described some properties of
the two-sided ideals Iw (w ∈W) of generalized preprojective algebras. The goal of this paper
is to develop the relationship between tilting theory of generalized preprojective algebras
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and locally free modules following the work of Fu-Geng [10].
Let C be a symmetrizable GCM and let D be a symmetrizer of C. We denote a generalized

preprojective algebra associated with C and D by Π = Π (C,D). Let W be the Weyl group of
Kac-Moody Lie algebra associated with C.

Theorem 1.1 (� Theorem 3.3). Let C be a symmetrizable GCM of Dynkin type and let D
be any symmetrizer of C. For each w ∈W, the two sided ideal Iw of Π (C,D) is locally free.
In particular, any basic support τ-tilting Π-modules are locally free.

Theorem 1.2 (� Theorem 3.11, Corollary 3.12). Let C be a symmetrizable GCM of
Dynkin type and let D be any symmetrizer of C. We have the following two bijections.

W −→ sτ−-tiltΠ W −→ torfΠ
w �−→ Π/Iw, w �−→ Sub(Π/Iw).

Here, sτ−-tiltΠ (resp. torfΠ) is the set of isoclasses of basic support τ−-tilting modules in
the sense of Adachi-Iyama-Reiten [1] (resp. the set of torsion-free classes).

This paper is organized as follows. In section 2, we first review the definition of algebras
Π (C,D) by Geiss-Leclerc-Schröer [13] and some basic properties. Then, we review its τ-
tilting theory and the work of Fu-Geng [10]. In section 3, we prove Theorem 1.1 and 1.2.

2. Preliminaries

2. Preliminaries
Throughout this paper, K denotes an arbitrary field, and a K-algebra always means an

associative algebra with a unit over K. For an algebra Λ, its Λ-module means a left Λ-
module. We denote the module category over Λ by RepΛ, and the full subcategory of
finite dimensional modules by repΛ. We denote the full subcategory of finitely generated
projective modules by projΛ. We refer to Assem-Simson-Skowroński [3] for basic con-
cepts and terminologies about algebras and quiver representations. For a lattice (L,≤), we
denote the set of join-irreducible (resp. meet-irreducible) elements by j-Irr L � { j ∈ L |
j covers a unique element in L} (resp. m-Irr L� {m ∈ L | m is covered by a unique element
in L}). The terminologies about lattice theory appeared in this paper can be found in Iyama-
Reading-Reiten-Thomas [16].

2.1. Preprojective algebras associated with symmetrizable Cartan matrices.
2.1. Preprojective algebras associated with symmetrizable Cartan matrices. In this

subsection, we review the representation theory of preprojective algebras with symmetriz-
able Cartan matrices introduced in Geiss-Leclerc-Schröer [13].

Definition 2.1. A matrix C = (ci j) ∈Mn(Z) is called a generalized Cartan matrix (GCM),
if it satisfies the following three conditions:
(C1) cii = 2 for any 1 ≤ i ≤ n;
(C2) If i � j, then ci j ≤ 0;
(C3) ci j � 0 if and only if c ji � 0.
In particular, if C = (ci j) satisfies the following (C4), then C is called symmetrizable:
(C4) There is a diagonal matrix D = diag(c1, . . . ,cn) (ci ∈ Z,ci ≥ 1) such that DC is a sym-

metric matrix.
In the condition (C4), the matrix D is called a symmetrizer of C.
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The following quadratic forms qC and graphs Γ(C) give a classification of GCMs:

Definition 2.2. Let C = (ci j) ∈ Mn(Z) be a symmetrizable GCM and D = diag(c1, . . . ,cn)
be a symmetrizer of C.

(1) The graph Γ(C) has vertices 1, . . . ,n. An edge between i and j exists in Γ(C) if and
only if ci j < 0. The edge has its value (|c ji|, |ci j|):

We call Γ(C) the valued graph of C. If Γ(C) is a connected graph, then C is called
connected.

(2) We define the form qC : Zn −→ Z by

qC =

n∑
i=1

ciX2
i −

∑
i< j

ci|ci j|XiX j.

Since we have ci|ci j| = c j|c ji|, the form qC is symmetric. If qC is positive definite (resp.
positive semi-definite), then C is called Dynkin type (resp. Euclidean type).

Remark 2.3. If C is a connected symmetrizable GCM, there exists a unique minimal
symmetrizer. That is, any symmetrizer D′ of C is equal to mD for the minimal symmetrizer
D and some positive integer m.

In Geiss-Leclerc-Schröer [13], a generalization of the representation theory of acyclic
quivers and their preprojective algebras is given from the data of symmetrizable GCMs and
their symmetrizers. First, we define a quiver from a symmetrizable GCM.

Definition 2.4. Let C = (ci j) ∈ Mn(Z) be a symmetrizable GCM and D = diag(c1, . . . ,cn)
be its symmetrizer.

(1) If ci j < 0, we set gi j � |gcd(ci j,c ji)| and fi j � |ci j|/gi j .
(2) If Ω ⊂ {1,2, . . . ,n} × {1,2, . . . ,n} satisfies the following two conditions, Ω is called an

orientation of C.
(i) If {(i, j), ( j, i)}∩Ω � φ holds, then ci j < 0;

(ii) Every sequence ((i1, i2), (i2, i3), . . . , (it, it+1)) (t ≥ 1) in {1,2, . . . ,n} × {1,2, . . . ,n}
such that (is, is+1) ∈Ω (1 ≤ s ≤ t) satisfies i1 � it+1.

We define the opposite orientation Ω∗ � {( j, i) | (i, j) ∈Ω} and Ω�Ω∪Ω∗.
Definition 2.5. Under the setting of Definitions 2.1, 2.4, we define:

(1) The quiver Q = Q (C,Ω) = (Q0,Q1, s, t):

Q0 = {1,2, . . . ,n},
Q1 = {α(g)

i j : j→ i | (i, j) ∈Ω,1 ≤ g ≤ gi j}∪ {εi : i→ i | 1 ≤ i ≤ n}
s(α(g)

i j ) = j, t(α(g)
i j ) = i, s(εi) = t(εi) = i.

(2) The double quiver Q = (Q0,Q1, s, t) of Q as follows:

Q0 = Q0 = {1,2, . . . ,n},
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Q1 = {α(g)
i j : j→ i | (i, j) ∈Ω,1 ≤ g ≤ gi j}∪ {εi : i→ i | 1 ≤ i ≤ n},

s(α(g)
i j ) = j, t(α(g)

i j ) = i, s(εi) = t(εi) = i.

Finally, we define K-algebras H and Π as quiver with relations.

Definition 2.6. Under the setting of Definition 2.5, we define:
(1) We define a K-algebra H = H(C,D,Ω)� KQ/I by the quiver Q with relations I gen-

erated by (H1), (H2):
(H1) εci

i = 0 (i ∈ Q0);

(H2) For each (i, j) ∈Ω, we have ε
f ji
i α

(g)
i j = α

(g)
i j ε

fi j
j (1 ≤ g ≤ gi j).

(2) We define a K-algebra Π = Π (C,D,Ω)� KQ/I by the quiver Q with relations I gen-
erated by (P1)-(P3):
(P1) εci

i = 0 (i ∈ Q0);

(P2) For each (i, j) ∈Ω, we have ε
f ji
i α

(g)
i j = α

(g)
i j ε

fi j
j (1 ≤ g ≤ gi j);

(P3) For each i ∈ Q0, we have

∑
j∈Ω (−,i)

gi j∑
g=1

f ji−1∑
f=0

sgn(i, j)ε f
i α

(g)
i j α

(g)
ji ε

f ji−1− f
i = 0,

where we define

Ω (i,−)� { j ∈ Q0 | (i, j) ∈Ω}, Ω (−, j)� {i ∈ Q0 | (i, j) ∈Ω},
and

sgn(i, j)�

⎧⎪⎪⎨⎪⎪⎩1 (i, j) ∈Ω,
−1 (i, j) ∈Ω∗.

We refer to the above Π as the generalized preprojective algebra associated with the pair
(C,D). In the definition of Π, let {ei | i ∈ Q0} be the complete set of primitive orthogonal
idempotents corresponding to the vertex set Q0. We note that Π = Π (C,D) does not depend
on a choice of orientations Ω up to isomorphism.

Example 2.7. Let C =
(

2 −1
−2 2

)
, D = diag(2d,d) (d ∈ Z>0) and Ω = {(1,2)}. We have

c1 = 2d,c2 = d,g12 = g21 = 1, f12 = 1, f21 = 2. Then, Π = Π (C,D) is isomorphic to the K-
algebra defined as the quiver

with relations (P1) ε2d
1 = 0, εd

2 = 0; (P2) ε2
1α12 = α12ε2, ε2α21 = α21ε

2
1; (P3) α12α21ε1 +

ε1α12α21 = 0,−α21α12 = 0.

As a K-algebra, preprojective algebra of Dynkin type is characterized by the following
Proposition.
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Proposition 2.8 (Geiss-Leclerc-Schröer [13, Corollary 11.3, 12.7]). Let C be a connected
GCM. Then, Π (C,D) is a finite dimensional self-injective K-algebra if and only if C is of
Dynkin type.

Definition 2.9 (Locally free modules). Under the setting of Definition 2.6, we define:

(1) Hi � eiHei � K[εi]/(ε
ci
i ) for each i ∈ Q0.

(2) A Π-module M is locally free, if eiM is a free Hi-module for each i ∈ Q0.

We denote the full subcategory consisting of locally free modules (resp. locally free
modules such that each free Hi-module eiM is of finite rank) by Repl.f.Π (resp. repl.f.Π).

Definition 2.10. For each i ∈Q0, we say that Ei ∈ repl.f.Π is a generalized simple module,
if we have the Hi-module isomorphisms,

e jEi �

⎧⎪⎪⎨⎪⎪⎩Hi ( j = i),

0 ( j � i).

By this definition, Ei is a uniserial module that has only simple modules Si as the com-
position factors. We can also define locally free Πop-modules and generalized simple Πop-
modules similarly. As Π is a finite dimensional K-algebra in case C is of Dynkin type, we
have the standard K-duality D(−)� HomK(−,K) : repΠ −→ repΠop. By definition of lo-
cally free modules, M ∈ repl.f.Π if and only if DM ∈ repl.f.Π

op. We know the following
properties about locally free modules.

Proposition 2.11 ([13, Lemma 3.8], Fu-Geng [10, Lemma 2.6]). Repl.f.Π is closed under
kernel of epimorphisms, cokernel of monomorphisms, and extensions.

Proposition 2.12 ([10, Corollary 2.7]). Let be M ∈ RepΠ. If proj.dimΠM < ∞, then
M ∈ Repl.f.Π.

Proposition 2.13 ([13, Theorem 12.6]). For M ∈ Repl.f.Π and N ∈ repl.f.Π, we have the
following functorial isomorphisms:

(1) Ext1
Π

(M,N) � DExt1
Π

(N,M).
(2) If C does not contain any components of Dynkin type, then we have Ext2−i

Π
(M,N) �

DExti
Π

(N,M) for i = 0,1,2.

We note that above three propositions hold for RepΠop and repΠop.

2.2. τ-tilting theory.
2.2. τ-tilting theory. In this subsection, we review the τ-tilting theory due to Adachi-

Iyama-Reiten [1]. The basic references are [1] and Demonet-Iyama-Jasso [9]. Let Λ be
a basic finite dimensional K-algebra. Let τ and τ− be the Auslander-Reiten translations
for repΛ, which give equivalences τ : repΛ→ repΛ and τ− : repΛ→ repΛ between the
projectively stable category repΛ and the injectively stable category repΛ. We denote the
number of non-isomorphic indecomposable direct summand of M by |M| and the two-sided
ideal generated by an element e ∈ Λ by 〈e〉.

Definition 2.14. Let M ∈ repΛ and P ∈ projΛ. We define:
(1) M is a τ-rigid Λ-module, if HomΛ(M, τM) = 0;
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(2) M is a τ-tilting Λ-module, if M is τ-rigid and |M| = |Λ|;
(3) M is an almost complete τ-tilting Λ-module, if M is τ-rigid and |M| = |Λ| −1;
(4) M is a support τ-tilting module, if there exists an idempotent e ∈ Λ such that M is

τ-tilting (Λ/〈e〉)-module;
(5) (M,P) is a τ-rigid pair, if M is τ-rigid and HomΛ(P,M) = 0;
(6) (M,P) is a support τ-tilting pair (resp. almost complete τ-tilting pair), if (M,P) is a

τ-rigid pair and |M|+ |P| = |Λ| (resp. |M|+ |P| = |Λ| −1);
(7) (M,P) is a direct summand of (M′,P′), if (M,P) and (M′,P′) are τ-rigid pair and M

(resp. P) is a direct summand of M′ (resp. a direct summand of P′);
(8) (M,P) is basic, if M and P are basic. (i.e. each direct summand of M⊕P is multiplicity

free).

We denote the full subcategory of indecomposable τ-rigid Λ-modules by iτ-rigidΛ and
the full subcategory of basic support τ-tilting Λ-modules by sτ-tiltΛ. We can think of τ-
rigid modules as a generalization of classical partial tilting modules in the sense of classical
Bongartz’s lemma by the following theorem:

Theorem 2.15 ([1, Theorem 2.10]). Any τ-rigid Λ-module is a direct summand of some
τ-tilting Λ-module.

We denote the full subcategory of finite direct summands of finite direct sums of M by
add M. A characterization of τ-rigid pairs and support τ-tilting pairs is given in the following
theorem:

Theorem 2.16 ([1, Proposition 2.3]). Let M ∈ repΛ, P ∈ projΛ and e ∈ Λ be an idem-
potent such that add P = addΛe.

(1) (M,P) is a τ-rigid pair, if and only if M is a τ-rigid (Λ/〈e〉)-module;
(2) (M,P) is a support τ-tilting pair if and only if M is a τ-tilting (Λ/〈e〉)-module;
(3) (M,P) is an almost complete support τ-tilting pair, if and only if M is an almost com-

plete τ-tilting (Λ/〈e〉) module;
(4) If (M,P) and (M,Q) are support τ-tilting pairs in repΛ, then add P = add Q.

By Theorem 2.16, we can identify basic support τ-tilting modules with basic support
τ-tilting pairs. We define dual notions of τ-rigid, τ-tilting and support τ-tilting modules.

Definition 2.17. Let M ∈ repΛ. We define:
(1) M is a τ−-rigid Λ-module, if HomΛ(τ−M,M) = 0;
(2) M is a τ−-tilting Λ-module, if M is τ−-rigid and |M| = |Λ|;
(3) M is a support τ−-tilting module, if there exists an idempotent e ∈ Λ such that M is

τ−-tilting (Λ/〈e〉)-module.

Note that M is a τ−-rigid (resp. τ−-tilting, support τ−-tilting) Λ-module if and only if DM
is a τ-rigid (resp. τ-tilting, support τ-tilting) Λop-module by definition. We denote the set of
basic support τ−-tilting modules by sτ−-tiltΛ.

Definition 2.18 (cf. [1, Proposition 1.1]). (1) A full subcategory  in repΛ (resp. 

in repΛ) is a torsion class (resp. a torsion-free class), if  (resp.  ) is closed under
extensions and taking a factor module of objects (resp. taking a submodule of objects).
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(2) A torsion class  in repΛ (resp. a torsion-free classes  in repΛ) is functorially finite,
if there exists M ∈ repΛ such that  = Fac M (resp.  = Sub M), where Fac M (resp.
Sub M) is the full subcategory of factor modules (resp. submodules) of finite direct
sums of M in repΛ.

We denote the set of torsion classes in repΛ (resp. torsion-free classes) by torsΛ (resp.
torfΛ) and the set of functorially finite torsion classes in repΛ (resp. torsion-free classes)
by f-torsΛ (resp. f-torfΛ). In the τ-tilting theory, one of the most important classes of
algebras is τ-tilting finite algebras:

Definition-Proposition 2.19 (cf. [16], [9]). An algebra Λ is called τ-tilting finite, if Λ
satisfies one of the following equivalent conditions:

(i) There are only finitely many isoclasses of basic τ-tilting modules;
(ii) sτ-tiltΛ is a finite set;

(iii) iτ-rigidΛ is a finite set;
(iv) f-torsΛ (resp. f-torfΛ) is a finite set;
(v) The poset (f-torsΛ,⊆) (resp. (f-torfΛ,⊆)) forms a complete lattice;

(vi) f-torsΛ = torsΛ;
(vii) f-torfΛ = torfΛ.

Let Λ be a finite dimensional K-algebra again.

Theorem 2.20 ([1, Theorem 2.7, 2.15]). (1) We have the bijection between sτ-tiltΛ
and f-torsΛ:

sτ-tiltΛ −→ f-torsΛ
M �−→ Fac M.

(2) We have the bijection between sτ−-tiltΛ and f-torfΛ:

sτ−-tiltΛ −→ f-torfΛ
M �−→ Sub M.

We can define a partial order of sτ-tiltΛ by Theorem 2.20 as follows:

Definition 2.21. For T,T ′ ∈ sτ-tiltΛ, we define a partial order ≤ on sτ-tiltΛ by T ≤ T ′ ⇔
FacT ⊆ FacT ′.

Finally, the above partial order is understood in the terms of mutations:

Definition-Proposition 2.22 ([1, Theorem 2.18]). Any basic almost complete τ-tilting
pair (U,Q) is a direct summand of precisely two different basic support τ-tilting pairs (T,P)
and (T ′,P′). In addition, these T,T ′ ∈ sτ-tiltΛ satisfy T ′ < T or T ′ > T. In this setting, if
T ′ < T (resp. T ′ > T), we say that (T ′,P′) is a left (resp. right) mutation of (T,P). For this
T ∈ sτ-tiltΛ and the indecomposable summand X of T such that T = X⊕U, we say that T ′
is the left (resp. right) mutation of T at X, if T ′ < T (resp. T ′ > T).

Proposition 2.23 ([1, Definition-Proposition 2.28]). Under the setting of Definition-
Proposition 2.22, T ′ is the left mutation of T at X if and only if X � FacU.
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Theorem 2.24 ([1, Theorem 2.33]). Let T,U ∈ sτ-tiltΛ. The following conditions are
equivalent:

(1) U is a left mutation of T;
(2) T is a right mutation of U;
(3) T and U satisfy T > U, and there does not exist V ∈ sτ-tiltΛ such that T > V > U.

We know that for a τ-tilting finite algebra Λ, sτ-tiltΛ forms a finite complete lattice by
Definition-Proposition 2.19 and Definition 2.21. In particular, we find that M,N ∈ sτ-tiltΛ
are related by a mutation if and only if one is next to the other in the finite complete lattice
of sτ-tiltΛ by Theorem 2.24. Finally, we review a characterization of iτ-rigidΛ in terms of
the lattice.

Theorem 2.25 ([16, Theorem 2.7 and its proof]). LetΛ be a τ-tilting finite algebra. Then,
we have the following bijection:

iτ-rigidΛ −→ j-Irr (torsΛ)

L �−→ Fac L.

The inverse map is given by  �−→ N, where N is a unique indecomposable summand of
M ∈ sτ-tiltΛ giving  = Fac M such that Fac N = Fac M. Now, M ∈ sτ-tiltΛ has a unique
indecomposable summand such that Fac N = Fac M if and only if M ∈ sτ-tiltΛ has a unique
indecomposable summand N such that N � Fac M/N, equivalently M has a unique left mu-
tation in sτ-tiltΛ.

2.3. Idempotent two-sided ideals of preprojective algebras and Weyl groups.
2.3. Idempotent two-sided ideals of preprojective algebras and Weyl groups. In this

subsection, we review the work of Fu-Geng [10] about a relationship between generalized
preprojective algebras and Weyl groups of Kac-Moody Lie algebras. In [10], K is assumed to
be an algebraically closed field, but the discussion in [10] works in the situation that K is an
arbitrary field. The basic materials about Coxeter groups appeared in this paper are found in
[5]. LetΠ=Π (C,D) be a generalized preprojective algebra associated with a symmetrizable
GCM C and its symmetrizer D. Let W(C) be the Weyl group of the Kac-Moody Lie algebra
associated with C. We define the idempotent ideal Ii to i ∈ Q0 by Ii � Π(1 − ei)Π. In
particular, the inclusion Ii ⊆ Π induces an exact sequence:

0 −→ Ii −→ Π −→ Ei −→ 0.

Theorem 2.26 ([10, Theorem 4.7]). Let C ∈ Mn(Z) be a symmetrizable GCM and D be
any symmetrizer D of C. There is a bijection ψ from W(C) to the monoid 〈I1, I2, . . . , In〉�
{Ii1 Ii2 · · · Iik | i1, i2, . . . , ik ∈ Q0,k ≥ 0} given by

ψ (w) = Iw = Ii1 Ii2 · · · Iik (w = si1 si2 · · · sik is a reduced expression of w ∈W).

Here, ψ does not depend on a choice of reduced expressions of w.

In [10], the results of Buan-Iyama-Reiten-Scott [7] and Mizuno [21] are generalized for
our situation.

Definition 2.27. (1) We call a two-sided ideal T of Π tilting ideal if T is a left tilting
Π-module and a right tilting Π-module.

(2) We call a two-sided ideal T of Π support τ-tilting ideal if T is a left support τ-tilting
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Π-module and a right support τ-tilting Π-module.

Theorem 2.28 ([10, Lemma 3.2, 3.9, Theorem 3.12, 5.14, 5.17]). Let C ∈ Mn(Z) be a
symmetrizable GCM and D be any symmetrizer D of C.

(1) If C has no components of Dynkin type, T ∈ 〈I1, I2, . . . , In〉 if and only if T is a cofinite
tilting ideal of Π, where tilting is in the sense of Miyasita [20] or Happel [15]. In
particular, any object in 〈I1, I2, . . . , In〉 ⊆ RepΠ has projective dimension at most 1.

(2) If C is of Dynkin type, T ∈ 〈I1, I2, . . . , In〉 if and only if T is a basic support τ-tilting
ideal. In particular, ψ : w �→ Iw in Theorem 2.28 gives a bijection between W and
sτ-tiltΠ.

We note that we can obtain the similar Theorem in RepΠop as Theorem 2.28. In the case
that C is of Dynkin type, we have a relationship between the right weak Bruhat order ≤R

on W(C) and the mutation in sτ-tiltΠ. From now on until the end of this subsection, let
C ∈ Mn(Z) be a symmetrizable GCM of Dynkin type and D be any symmetrizer D of C.

Theorem 2.29 ([10, Lemma 5.11, Proposition 5.13, and its proof]). Let T ∈ 〈I1, . . . , In〉.
If T Ii � T, then T has a left mutation T Ii at Tei in sτ-tiltΠ.

Theorem 2.30 ([10, Theorem 5.16]). For i ∈ Q0 and w ∈W, Iw, Iwsi ∈ sτ-tiltΠ are related
by a right or left mutation. In particular, if l(wsi) > l(w),

Iwsi =

⎧⎪⎪⎨⎪⎪⎩Iw(1− ei) (IwIi = 0),

IwIiei⊕ Iw(1− ei) (IwIi � 0).

From the above, we give the following generalization of a result of Mizuno [21]:

Theorem 2.31. Let w ∈W and i ∈ Q0. The following are equivalent:
(1) l(w) < l(wsi) = l(w)+1;
(2) IwIi � Iw;
(3) Iw has a left mutation Iwsi at Iwei.

Proof. (1)⇒(2) follows from Theorem 2.26. (2)⇒(3) follows from Theorem 2.29. We
show (3)⇒(1). We assume that l(w)> l(wsi) and put u= wsi. Since l(u)< l(usi) and (1)⇒(2),
we find that Iu has a left mutation IuIi = Iusi = Iw at Iuei by Theorem 2.29. Then, Iu is a left
and right mutation of Iw at Iwei. This yields that Iwei ∈ Fac Iw(1−ei) and Iwei � Fac Iw(1−ei)
by Proposition 2.23. This is a contradiction. Thus, (3)⇒(1) holds. �

Theorem 2.32. Let w ∈W and i ∈ Q0. The following are equivalent:
(1) l(w) > l(wsi) = l(w)−1;
(2) IwIi = Iw;
(3) Iwsi has a left mutation Iw at Iwsiei.

In particular, we find that u ≤R v in W if and only if Iu ≥ Iv in sτ-tiltΠ. That is, (W,≤R)
can be identified with (sτ-tiltΠ,≤)op as a poset. We note that we can consider the poset
structure of sτ-tiltΠop similarly, if we consider the left weak order instead of a right weak
Bruhat order.
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3. Support τ-tilting ideals and locally free modules

3. Support τ-tilting ideals and locally free modules
In this section, let C be a connected symmetrizable GCM of Dynkin type, D be any

symmetrizer of C, and Π be the generalized preprojective algebra associated with C and D.
Then, the Weyl group W �W(C) for C is a finite Coxeter groups, and Π is a τ-tilting finite
algebra.

3.1. Two-sided ideals Iw and locally freeness.
3.1. Two-sided ideals Iw and locally freeness. We have the following lemma from a

classification of GCMs of Euclidean types:

Lemma 3.1 (cf. Carter [8, Appendix]). For any connected GCM C = (ci j) ∈ Mn(Z)
of Dynkin type, there is a connected GCM of Euclidean type C̃ = (c̃i j) ∈ Mn+1(Z) (i, j ∈
{0,1, . . . ,n}) and its symmetrizer D̃= diag(c̃0, c̃1, . . . , c̃n) such that c̃i j = ci j and c̃k = ck (i, j,k =
1,2, . . . ,n). �

By Lemma 3.1, we can construct a generalized preprojective algebra Π (C̃, D̃) from C and
D.

Lemma 3.2. For the generalized preprojective algebra Π = Π (C,D) and the vertex set
Q0 = {1,2, . . . ,n}, we denote the vertex set of the generalized preprojective algebra Π̃ =
Π (C̃, D̃) by Q̃0 = {0,1,2, . . . ,n}. Then, we have an K-algebra isomorphism Π̃/〈ẽ0〉 � Π.

Proof. We denote the generators of Π̃ = Π (C̃, D̃) by the symbols with tildes as like ε̃i, in
order to distinguish from the generators of Π. Then, we have the surjective algebra homo-
morphism π : Π̃ −→ Π defined by α̃(g)

i j �→ α
(g)
i j (i � j), ε̃i �→ εi (i � 0), ẽ0 �→ 0. In particular,

Kerπ = 〈ẽ0〉. So, we obtain Π̃/〈ẽ0〉 � Π. �

Theorem 3.3. For any generalized Cartan matrix C and symmetrizer D, the two sided
ideals Iw of Π (C,D) are locally free. In particular, any object in sτ-tiltΠ is locally free.

Proof. Let Π̃ be the generalized preprojective algebra Π (C̃, D̃), where (C̃, D̃) is borrowed
from Lemma 3.1. We denote generators or subsets in Π̃ by symbols with tilde as in Lemma
3.2. Let π : Π̃ −→ Π be the surjective homomorphism in Lemma 3.2. We can regard a
Π-module as a Π̃-module via π. In particular, we have H̃i � Hi for each i � 0. Thus, any
locally free Π-module M can be seen as a locally free Π̃-modules such that ẽ0M = 0. Now,
Π is a projective Π-module, so that this is a locally free Π-module by Proposition 2.12.
Then, Π is a locally free Π̃-module by the above discussion. Similarly, Π̃ is a locally free
Π̃-module. So, we conclude that 〈ẽ0〉 is a locally free Π̃-module by the short exact sequence
0→ 〈ẽ0〉 → Π̃→ Π̃/〈ẽ0〉 → 0 in Rep Π̃ and Proposition 2.11. We put Îi � Π̃(1− ẽi)Π̃. We
define the two-sided ideals Îw = Îi1 · · · Îik for a reduced expression w = si1 · · · sik ∈W(C), by
regarding W(C) ⊂ W̃ = W(C̃) in a natural way. (This definition does not effect on reduced
expressions). On the other hand, we have 〈ẽ0〉 ⊆ Îw by 〈ẽ0〉 ⊆ Îi j ( j = 1, . . . ,k). We have the
Π̃-module isomorphism,

Îw/〈ẽ0〉 = (Îi1/〈ẽ0〉) · · · (Îik/〈ẽ0〉) � Ii1 · · · Iik = Iw.

Now, we regard the above isomorphism as a Π-module isomorphism. Since proj.dim
Π̃

Îw <
∞ by Theorem 2.28 , Îw is a locally free Π̃-module. Then, Îw/〈ẽ0〉 is a locally free Π̃-module
by Proposition 2.11. So, we find that eiIw is a free Hi-module for each i ∈ {1, . . . ,n} via
Π̃/〈ẽ0〉 � Π and H̃i � Hi (i � 0). This implies Iw ∈ repl.f.Π for any w ∈W. �
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As the corollary of Theorem 3.3, we have the following:

Corollary 3.4. Any indecomposable τ-rigid module in repΠ is locally free.

Proof. Since Π is self-injective by Proposition 2.8, all Πei are indecomposable injective
Π-modules. So, socΠei are simple modules. In particular, the submodules Iwei of Πei are
indecomposable. Since τ-rigid modules appear as a summand of some τ-tilting module by
Theorem 2.15, any indecomposable τ-rigid module is isomorphic to one of the modules Iwei

by Theorem 2.28. Since indecomposable summands of any locally free module is locally
free, any indecomposable τ-rigid Π-module is locally free. �

We can classify τ-rigid Π-modules in terms of the lattice of right weak Bruhat order on
W.

Theorem 3.5. The map

m-IrrW −→ iτ-rigidΠ
w �−→ Iwek

is bijective, where k is the unique index such that l(wsk) = l(w)+1.
The proof of this Theorem is similar as the proof in [16].

Proof. Since Π is a τ-tilting finite algebra, we have the bijective correspondence between
sτ-tiltΠ and torsΠ

sτ-tiltΠ −→ torsΠ
Iw �−→ Fac Iw.

By definition of the order in sτ-tiltΠ, the posets (W,≤R) and (torsΠ,⊆)op are isomorphic.
That is, we have the following lattice isomorphism

(W,≤R) −→ (torsΠ,⊆)op

w �−→ Fac Iw.

Thus, we have the following bijection between meet-irreducible elements of W and join-
irreducible elements of torsΠ

m-IrrW −→ j-Irr (torsΠ)

w �−→ Fac Iw.

By Theorem 2.25, we have

j-Irr (torsΠ) −→ iτ-rigidΠ
Fac Iw �−→ Iwek,

where k is the unique index satisfying Fac(Iwek) = Fac Iw. We have only to show that this
k is the unique index satisfying l(wsk) > l(w). Now, Iwsk and Iw are objects in a relation of
mutation each other in sτ-tiltΠ by Theorem 2.30. In particular, if we give the decomposi-
tion Iwsk =

⊕
p∈Q0

(Iwsk ep) and Iw =
⊕

q∈Q0
(Iweq), we have

⊕
p�k Iwsk ep =

⊕
q�k Iweq, and

denote them by U. That is, Iw = Iwek⊕U. Now, the condition that k is the unique index such
that Iwek � Fac(U) is equivalent to that k is the unique index such that Fac Iwsk = Fac Iw by
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Theorem 2.25. So, since k is the unique index such that Iwsk is a left mutation of Iw at Iwek

by Proposition 2.23, k is the unique index such that l(wsk) = l(w)+1 by Theorem 2.31. �

Example 3.6. In the type of B2, the Hasse quivers of (W,≤R) and (sτ-tiltΠ,≤)op are the
following

In above picture, we have m-IrrW = {s1, s2, s1s2, s2s1, s1s2s1, s2s1s2} and iτ-rigidΠ =
{I1e2, I2e1, I1I2e1, I2I1e2, I1I2I1e2, I2I1I2e1} = {Πe2, Πe1, I1e1, I2e2, E2, E1}.

3.2. Torsion classes and torsion-free classes of repΠ.
3.2. Torsion classes and torsion-free classes of repΠ. The following Lemma is shown

in [10] by using the minimal projective presentations of τ-rigid Π-modules:

Lemma 3.7 ([10, Lemma 5.9, 5.10]). For any i ∈ Q0, we have:
(1) For a support τ-tilting Π-module T and a generalized simple module E′i in repl.f.Π

op,
we have:

(i) Either E′i⊗ΠT = 0 or TorΠ1 (E′i ,T ) = 0;
(ii) E′i⊗ΠT = 0 if and only if IiT = T ;

(2) For a support τ-tilting Πop-module T and a generalized simple module Ei in repl.f.Π,
we have:

(i) Either T⊗ΠEi = 0 or TorΠ1 (T,Ei) = 0;
(ii) T⊗ΠEi = 0 if and only if T Ii = T. �

We have:

Proposition 3.8. For any i ∈ Q0 and w ∈W, we have the following statement:
(1) Let Iw ∈ sτ-tiltΠ. If l(siw) > l(w), then Ext1

Π
(Iw,Ei) = 0 = Ext1

Π
(Ei, Iw).

(2) Let Iw ∈ sτ-tiltΠop. If l(wsi) > l(w), then Ext1
Πop(Iw,E′i ) = 0 = Ext1

Πop(E′i , Iw).

Proof. Since the proofs of the both cases are similar, we only prove (1). We have a short
exact sequence:

0→ Ii
ι−→ Π→ E′i → 0

in repl.f.Π
op, where ι : Ii −→ Π is the inclusion. Apply the functor (−)⊗ΠIw to this exact

sequence to obtain the exact sequence:

TorΠ1 (E′i , Iw) −→ Ii⊗ΠIw
ι⊗ΠIw−−−−→ Π⊗ΠIw −→ E′i⊗ΠIw −→ 0.
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If l(siw) > l(w), IiIw � Iw by Theorem 2.26. So, Im(ι⊗ΠIw) = IiIw � Iw via the natural isomor-
phism Π⊗ΠIw � Iw, which implies E′i⊗ΠIw � 0. We obtain the following linear isomorphism,

DExt1Π(Ei, Iw) � Ext1Π(Iw,Ei) (Iw ∈ repl.f.Π and Proposition 2.13)

� Ext1Π(Iw,DE′i ) (DE′i � Ei ∈ repl.f.Π)

� DTorΠ1 (E′i , Iw) (cf. [3, Appendix. Proposition 4.11])

= 0 (Lemma 3.7).

This proves the assertion. �

From the proof of Proposition 3.8, we also deduce the following Proposition:

Proposition 3.9. For any i ∈ Q0 and w ∈W, we have:
(1) Let Iw ∈ sτ-tiltΠop. If l(wsi) > l(w), then TorΠ1 (Iw,Ei) = 0;
(2) Let Iw ∈ sτ-tiltΠ. If l(siw) > l(w), then TorΠ1 (E′i , Iw) = 0. �

Lemma 3.10. Let i ∈ Q0.
(1) If M,N ∈ repl.f.Π such that M ⊆ N, then IiM = IiN if and only if there exists some

non-negative integer n such that N/M � Ei
⊕n.

(2) If M,N ∈ repl.f.Π
op and M ⊆ N, then MIi = NIi if and only if there exists some non-

negative integer n such that N/M � E′i
⊕n.

Proof. The proof of both assertions are similar. So, we only prove (1). If IiM = IiN,
then Ii(N/M) = 0. Now, since M,N ∈ repl.f.Π, we have N/M ∈ repl.f.Π by Proposition 2.11.
Now, since Ii =Π(1−ei)Π, we have (1−ei)(N/M)= 0 and so N/M = ei(N/M). Thus, N/M is
isomorphic to a direct sum of some copies of the generalized simple module Ei by definition
of locally free modules.

Conversely, if N/M � E⊕n
i , then we have Ii⊗Π(N/M) � Ii⊗Π(Ei

⊕n) � (Ii⊗ΠEi)⊕n = 0, be-
cause of Lemma 3.7 (2)-(ii) and the fact that IiIi = Ii. On the other hand, we have a short
exact sequence:

0 −→ M −→ N −→ N/M −→ 0,

and apply the functor Ii⊗Π(−) to obtain the exact sequence:

Ii⊗ΠM −→ Ii⊗ΠN −→ 0.

So, the inclusion IiM ↪→ IiN is surjective. That is, IiM = IiN in M ⊆ N. �

Finally, we obtain the following dualities. The proof is along the line of [22], but we need
a little device for it.

Theorem 3.11. Let w0 ∈ W be the longest element in W. Then, we have the following
isomorphisms:

(1) DIw � Π/Iw0w−1 in repl.f.Π
op.

(2) DIw � Π/Iw−1w0
in repl.f.Π.

Proof. We can prove (2) similarly as (1). So, we only prove (1). Since Π is a self-injective
algebra, we have Π � DΠ in repl.f.Π

op. Applying D(−) to the inclusion Iw −→ Π in repΠ,
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we obtain an epimorphism DΠ −→ DIw in repl.f.Π
op. Thus, we obtain an epimorphism

ψ : Π −→ DIw in repl.f.Π
op. We put Ĩw � Kerψ. Since Ĩw is a kernel of an epimorphism in

repl.f.Π
op, we have Ĩw ∈ repl.f.Π

op by the right version of Proposition 2.11. It remains to
show that Ĩw = Iw0w−1 .

Since w0 ∈W is the longest element, we obtain Iw0w−1 Iw = Iw0 = 0, and so Iw0w−1 is con-
tained in the right annihilator of DIw. That is, Ĩw ⊇ Iw0w−1 .

We show the converse inclusion Ĩw ⊆ Iw0w−1 by induction on l(w). When w is an identity,
Ĩw = 0 = Iw0w−1 because Iw = Π and Iw0 = 0. So, we assume that l(siw) > l(w). Now, Iw/Isiw

is the cokernel of the inclusion Isiw = IiIw � Iw in repl.f.Π. Since IiIi = Ii and so IiIsiw = IiIw,
there exists some non-negative integer n such that Iw/Isiw � E⊕n

i by Lemma 3.10 (1). Thus,
we have an exact sequence:

0 −→ Isiw −→ Iw −→ E⊕n
i −→ 0

in repl.f.Π. Applying D(−) yields an exact sequence:

0 −→ E′i
⊕n −→ DIw −→ DIsiw −→ 0

in repl.f.Π
op. On the other hands, the inclusion Ĩw ↪→ Ĩsiw gives the short exact sequence:

0 −→ Ĩw −→ Ĩsiw −→ Ĩsiw/Ĩw −→ 0.

in repl.f.Π
op. So, we obtain the following commutative diagram with exact rows in

repl.f.Π
op:

We have Ĩsiw/Ĩw � E′i
⊕n by the snake lemma. It follows that ĨsiwIi = ĨwIi by Lemma 3.10, and

hence ĨsiwIi = ĨwIi ⊆ Ĩw = Iw0w−1 by induction hypothesis. Now, the inequality l(w0w
−1si) =

l(w0)− l(w−1si) = l(w0)− l(siw) < l(w0)− l(w) = l(w0w
−1) gives Iw0w−1 = Iw0w−1si

Ii for Iw0w−1 ∈
sτ-tiltΠop. So, we have ĨsiwIi ⊆ Iw0w−1si

Ii. On the other hand, we have Iw0w−1si
⊆ Ĩsiw in the

first part of this proof, and so Iw0w−1si
Ii ⊆ ĨsiwIi. Thus, we obtain ĨsiwIi = Iw0w−1si

Ii.
By the right version of Theorem 3.3 and Lemma 3.10, there exists non-positive inte-

ger m such that Ĩsiw/Iw0w−1si
� E′i

⊕m. So, we only have to show that m = 0. Now, since
l(w0w

−1sisi) = l(w0w
−1) > l(w0w

−1si), we have Ext1
Πop(E′i , Iw0w−1si

) = 0 by Proposition 3.8.
Thus, we obtain the following splitting exact sequence

0 −→ Iw0w−1si
−→ Ĩsiw −→ E′i

⊕m −→ 0.

So, there exists a right ideal L of Π isomorphic to E′i
⊕m such that Ĩsiw = L⊕ Iw0w−1si

. Now,
we assume that L � 0. Since Π is a basic self-injective algebra, Π decomposes into non-
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isomorphic indecomposable injective modules. That is, Π =
⊕

j∈Q0
e jΠ is the direct sum

of injective envelopes of simple Πop-modules S′k (k ∈ Q0). In particular, socΠ �
⊕

k∈Q0
S′k

and S′k (k ∈ Q0) are non-isomorphic to each other. Since E′i is a uniserial module that has
only S′i as the composition factors, we have soc E′i � S′i . Thus, we obtain soc L � S′i

⊕m.
Since socΠ �

⊕
k∈Q0

S′k and L is a right ideal of Π, we find m = 1 and so L � E′i . Now,
we have L = Iw0si by Lemma 3.10 and the general fact that for a basic finite dimensional
self-injective K-algebra Λ and a two-sided ideal I of Λ, any right ideal L of Λ isomorphic to
I in rep Λop satisfies L = I as sets (cf. [21, proof of Lemma 2.20]). In particular, we find that
Ĩsiw = Iw0si ⊕ Iw0w−1si

and so Iw0si ∩ Iw0w−1si
= 0. Now, since w0si = w0ww0w0w

−1si, we obtain
the equality l(w0ww0)+ l(w0w

−1si) = l(w)+ l(w0)− l(w−1si) = l(w)+ l(w0)− l(siw) = l(w)+
l(w0)−(1+ l(w))= l(w0)−1= l(w0si). This equality gives Iw0si = Iw0ww0 Iw0w−1si

. However, this
means that Iw0si ⊂ Iw0w−1si

, and so we obtain a contradiction. Thus, L = 0 and Ĩsiw = Iw0w−1si
.

So, we conclude that Ĩw ⊆ Iw0w−1 for any w ∈W by induction on l(w) as required. �

As a corollary of Theorem 3.11, we obtain a classification theorem of torsion-free classes
in repΠ. Note that the former statement follows as a combination of [10, Theorem 5.17],
[1, Theorem 2.7] and [9, Theorem 3.8].

Corollary 3.12. We have the following two bijections:

W −→ torsΠ W −→ torfΠ
w �−→ Fac Iw, w �−→ Sub(Π/Iw).

Proof. The classification of torsion classes is a direct result of Theorem 2.20 and
Definition-Proposition 2.19. Since sτ-tiltΠop corresponds to sτ−-tiltΠ bijectively via Iw �→
DIw, we have a bijection W → sτ−-tiltΠ defined by w �→ Π/Iw by Theorem 3.11. Thus, we
obtain the second bijection by Theorem 2.20 and Definition-Proposition 2.19. �

Corollary 3.13. For w ∈W, we have ann Iw = Iw0w−1 . In particular, the tilting objects in
sτ-tiltΠ are nothing but Π up to isomorphism.

Proof. Since the left annihilator of Iw coincides with the right annihilator of DIw, the
first assertion follows from Theorem 3.11. Since w �→ Iw is a bijection from W to sτ-tiltΠ
by Theorem 2.28, the object Iw ∈ sτ-tiltΠ satisfying ann Iw = Iw0w−1 = 0 are nothing but
Ie = Π for the identity e ∈ W. Then, the second assertion follows from the general fact [1,
Proposition 2.2] of τ-tilting theory that faithful support τ-tilting modules are precisely tilting
modules in the sense of Brenner-Butler [6]. �

Acknowledgements. The author thanks his supervisor Syu Kato for hopeful encourage-
ment and pointing out of many typographical errors of a draft of this paper. The author also
thanks Bernard Leclerc for telling him an easy proof of Theorem 3.4 and giving him many
interesting lectures about this topic during his stay in Kyoto. Finally, the author thanks the
referee for carefully reading the manuscript and for giving constructive comments.



402 K. Murakami

References

[1] T. Adachi, O. Iyama and I. Reiten: τ-tilting theory, Compos. Math. 150 (2014), 415–452.
[2] S. Asai: Bricks over preprojective algebras and join-irreducible elements in coxeter groups, 2017,

arXiv:1712.08311.
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