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Abstract
For a symmetrizable GCM C and its symmetrizer D, Geiss-Leclerc-Schroer [Invent. Math.
209 (2017)] has introduced a generalized preprojective algebra IT associated to C and D, that
contains a class of modules, called locally free modules. We show that any basic support 7-
tilting I1-module is locally free and gives a classification theorem of torsion-free classes in
rep Il as the generalization of the work of Mizuno [Math. Z. 277 (2014)].

1. Introduction

In the progress of representation theory of quivers, Gabriel [11] has shown that a con-
nected quiver has finitely many indecomposable representations if and only if the underly-
ing graphs are Dynkin diagrams of A, D, E of finite types. In particular, the isoclasses of
indecomposable representations corresponds to its positive root systems bijectively via their
dimension vectors. Later, Kac [17, 18] has extended this description from the cases of sym-
metric Dynkin types to the case containing any symmetric affine types. That is, it has given
a characterization of indecomposable representations of the quivers in terms of positive real
roots and positive imaginary roots. On the other hand, Gel’ fand-Ponomarev [14] has intro-
duced preprojective algebras for acyclic quivers in order to develop Auslander-Reiten theory
for the quivers. In the works of Buan-Iyama-Reiten-Scott [7] and Mizuno [21], tilting theory
of the preprojective algebras for an acyclic quiver is studied in terms of the corresponding
Weyl group W (Iyama-Reading-Reiten-Thomas [16], Asai [2], Kimura [19]). In their study,
many notions in tilting theory of preprojective algebras are studied in terms of certain col-
lection of two-sided ideals 7, corresponding to the w € W. This also has some applications
to algebraic Lie theory (e.g. Baumann-Kamnitzer-Tingley [4], Gei-Leclerc-Schroer [12]).

In search of its generalization to symmetrizable Kac-Moody algebras, Geiss-Leclerc-
Schréer [13] has introduced a class of 1-Iwanaga-Gorenstein algebras attached to a general-
ized Cartan matrix (GCM) and its symmetrizer. It has also introduced generalized prepro-
jective algebras associated to the 1-Iwanaga-Gorenstein algebra and has developed a class of
modules, that is, locally free modules. These algebras and its locally free module categories
share many features with the classical study of preprojective algebras with symmetric GCMs
replaced by symmetrizable ones. Recently, Fu-Geng [10] has described some properties of
the two-sided ideals 7, (w € W) of generalized preprojective algebras. The goal of this paper
is to develop the relationship between tilting theory of generalized preprojective algebras
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388 K. MuURAKAMI

and locally free modules following the work of Fu-Geng [10].

Let C be a symmetrizable GCM and let D be a symmetrizer of C. We denote a generalized
preprojective algebra associated with C and D by I1 =I1(C, D). Let W be the Weyl group of
Kac-Moody Lie algebra associated with C.

Theorem 1.1 (= Theorem 3.3). Let C be a symmetrizable GCM of Dynkin type and let D
be any symmetrizer of C. For each w € W, the two sided ideal 1,, of I1(C, D) is locally free.
In particular, any basic support t-tilting TI-modules are locally free.

Theorem 1.2 (= Theorem 3.11, Corollary 3.12). Let C be a symmetrizable GCM of
Dynkin type and let D be any symmetrizer of C. We have the following two bijections.

W — st -tiltI1 W — torf Il
w— I1/1,, w +—> Sub(I1/1,).

Here, st™-tiltIl (resp. torf1l) is the set of isoclasses of basic support T~ -tilting modules in
the sense of Adachi-Iyama-Reiten [1] (resp. the set of torsion-free classes).

This paper is organized as follows. In section 2, we first review the definition of algebras
I1(C, D) by Geiss-Leclerc-Schroer [13] and some basic properties. Then, we review its 7-
tilting theory and the work of Fu-Geng [10]. In section 3, we prove Theorem 1.1 and 1.2.

2. Preliminaries

Throughout this paper, K denotes an arbitrary field, and a K-algebra always means an
associative algebra with a unit over K. For an algebra A, its A-module means a left A-
module. We denote the module category over A by RepA, and the full subcategory of
finite dimensional modules by rep A. We denote the full subcategory of finitely generated
projective modules by projA. We refer to Assem-Simson-Skowronski [3] for basic con-
cepts and terminologies about algebras and quiver representations. For a lattice (L, <), we
denote the set of join-irreducible (resp. meet-irreducible) elements by j-IrrL :={j € L |
Jj covers a unique element in L} (resp. m-Irr L := {m € L | m is covered by a unique element
in L}). The terminologies about lattice theory appeared in this paper can be found in Iyama-
Reading-Reiten-Thomas [16].

2.1. Preprojective algebras associated with symmetrizable Cartan matrices. In this
subsection, we review the representation theory of preprojective algebras with symmetriz-
able Cartan matrices introduced in Geiss-Leclerc-Schroer [13].

DEeriNiTION 2.1, A matrix C = (¢;;) € My(Z) is called a generalized Cartan matrix (GCM),
if it satisfies the following three conditions:
(Cl) ¢cjj=2forany 1 <i<n;
(C2) If i # j, then Cij < 0;
(C3) ¢;j # 0if and only if cj; # 0.
In particular, if C = (c¢;;) satisfies the following (C4), then C is called symmetrizable:
(C4) There is a diagonal matrix D = diag(cy,...,c,)(c;i € Z,c; > 1) such that DC is a sym-
metric matrix.
In the condition (C4), the matrix D is called a symmetrizer of C.
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The following quadratic forms g¢ and graphs I'(C) give a classification of GCMs:

DEeriNiTiON 2.2, Let C = (¢;5) € My(Z) be a symmetrizable GCM and D = diag(cy,...,c,)
be a symmetrizer of C.
(1) The graph I'(C) has vertices 1,...,n. An edge between i and j exists in ['(C) if and
only if ¢;; < 0. The edge has its value (|cjil,|c;;]):
(lejilsleis))
l .
We call I'(C) the valued graph of C. If I'(C) is a connected graph, then C is called
connected.
(2) We define the form g¢: Z" — Z by

n
qc = Z ciX? - Z cileijlXiX;.
i=1 i<j
Since we have c;c;j| = cjlc;i|, the form g¢ is symmetric. If gc is positive definite (resp.
positive semi-definite), then C is called Dynkin type (resp. Euclidean type).

Remark 2.3. If C is a connected symmetrizable GCM, there exists a unique minimal
symmetrizer. That is, any symmetrizer D’ of C is equal to mD for the minimal symmetrizer
D and some positive integer .

In Geiss-Leclerc-Schroer [13], a generalization of the representation theory of acyclic
quivers and their preprojective algebras is given from the data of symmetrizable GCMs and
their symmetrizers. First, we define a quiver from a symmetrizable GCM.

DEeriniTiON 2.4. Let C = (¢;5) € My(Z) be a symmetrizable GCM and D = diag(cy,...,c,)
be its symmetrizer.
() If Cij < 0, we set gij = |ng(C,'j,le')| and fij = |cl-j|/g,-j.
) If Qc{l1,2,...,n} x{1,2,...,n} satisfies the following two conditions, € is called an
orientation of C.
() If {(G, ), (J, D)} N Q # ¢ holds, then ¢;; < 0;
(i1) Every sequence ((i1,i2),(i2,i3),...,(is,ir+1)) (t = 1) in {1,2,...,n} X {1,2,...,n}
such that (i5,i,.1) € Q(1 < s <) satisfies i1 # i;41.
We define the opposite orientation Q* := {(j,i) | (i, j) € Q} and Q:=QuUQ*.

DeriniTioN 2.5. Under the setting of Definitions 2.1, 2.4, we define:
(1) The quiver Q = Q(C,Q) = (Qo, 01, s,1):

Qo =1{1,2,...,n},
01=10: j> il )eRl<g<g)Ule: imill<i<n)
s(ag)) = t(ag)) =1, s(&) = &) = 0.

(2) The double quiver Q = (Qy, 0y, s,1) of O as follows:
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0 =laf: joilG)eQl<g<gyUlei—ill<i<n),
s@) = jay)) = i s(en) = e = .
Finally, we define K-algebras H and II as quiver with relations.

DeriniTioN 2.6. Under the setting of Definition 2.5, we define:
(1) We define a K-algebra H = H(C,D,Q) := KQ/I by the quiver Q with relations / gen-
erated by (H1), (H2):
(H1) s.cf =0(i€ Qp);
(H2) For each (i, j) € Q, we have & f” fj}) a/fjg) f” (1<g<gij).
(2) We define a K-algebra IT=TII(C, D, Q) =KQ/I by the quiver O with relations 1 gen-
erated by (P1)-(P3):
PD) eci =0 € Qp);
(P2) For each (i, j) € Q, we have & fﬂ fj’) = a/f;’) 5” (1<g<g));
(P3) For each i € Qp, we have

gdij f/t

Z Z Z sgn(i, J)gfa(g)a(g)gfﬂ I=f _ 0.

jeQ(=,iy9=1 /=0

where we define

Q@i,-)=1{j€ Q|G j)eq}, Q- j)={ieQl,j)eQl
and
ot dpeq,
sentt. )= {—1 (i, )) € Q.

We refer to the above I as the generalized preprojective algebra associated with the pair
(C,D). In the definition of 11, let {e; | i € Qp} be the complete set of primitive orthogonal
idempotents corresponding to the vertex set Qp. We note that II = I1(C, D) does not depend
on a choice of orientations € up to isomorphism.
2 -1 .

ExampLE 2.7. Let C = I D = diag(2d,d)(d € Z~p) and Q = {(1,2)}. We have
c1=2d,¢co =d,g12 =901 =1, f12 =1, fo1 =2. Then, Il = I1(C, D) is isomorphic to the K-
algebra defined as the quiver

€] &
O ] O
1 2
12

with relations (P1) &3¢ = 0,&4 = 0; (P2) &la1s = @262, &2001 = a2167; (P3) @ppazie) +
grapaz =0,—azap =0.

As a K-algebra, preprojective algebra of Dynkin type is characterized by the following
Proposition.
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Proposition 2.8 (Geiss-Leclerc-Schroer [13, Corollary 11.3, 12.7]). Let C be a connected
GCM. Then, I1(C, D) is a finite dimensional self-injective K-algebra if and only if C is of
Dynkin type.

DermniTion 2.9 (LocaLry FREE MODULES). Under the setting of Definition 2.6, we define:

(1) H; = e;He; = K[g;]/(&;") for each i € Qy.
(2) A II-module M is locally free, if e;M is a free H;-module for each i € Qy.

We denote the full subcategory consisting of locally free modules (resp. locally free
modules such that each free H;-module e; M is of finite rank) by Rep, ¢ II (resp. rep, ¢ IT).

DeriniTion 2.10. For each i € Qyp, we say that E; e rep, ; I1is a generalized simple module,
if we have the H;-module isomorphisms,

e E; = H; (J:=l:),
0 (J#0).

By this definition, E; is a uniserial module that has only simple modules S; as the com-
position factors. We can also define locally free I1°P-modules and generalized simple I1°P-
modules similarly. As II is a finite dimensional K-algebra in case C is of Dynkin type, we
have the standard K-duality D(-) := Homg(—,K): repIl — repII°P. By definition of lo-
cally free modules, M € rep;; I1 if and only if DM € rep,; [1°°. We know the following
properties about locally free modules.

Proposition 2.11 ([13, Lemma 3.8], Fu-Geng [10, Lemma 2.6]). Rep ¢ I1is closed under
kernel of epimorphisms, cokernel of monomorphisms, and extensions.

Proposition 2.12 ([10, Corollary 2.7]). Let be M € Repll. If proj.dimgM < oo, then
Me Repl_f' IL

Proposition 2.13 ([13, Theorem 12.6]). For M € Rep,; Il and N € rep, ¢ I1, we have the
following functorial isomorphisms:
(1) Ext};(M,N) = DExt} (N, M).
QIfC q’oes not contain any components of Dynkin type, then we have EXt%"(M, N) =
DExth(N,M)for i=0,1,2.

We note that above three propositions hold for RepIT°? and rep I1°P.

2.2. r-tilting theory. In this subsection, we review the 7-tilting theory due to Adachi-
Iyama-Reiten [1]. The basic references are [1] and Demonet-lyama-Jasso [9]. Let A be
a basic finite dimensional K-algebra. Let 7 and 7~ be the Auslander-Reiten translations
for rep A, which give equivalences 7: repA — repA and 7 : repA — repA between the
projectively stable category rep A and the injectively stable category ﬁr We denote the
number of non-isomorphic indecomposable direct summand of M by [M| and the two-sided
ideal generated by an element e € A by (e).

DermiTion 2.14. Let M e rep A and P € proj A. We define:
(1) M is a T-rigid A-module, if Homa (M, 7M) = 0;
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(2) M is a t-tilting A-module, if M is 7-rigid and |M| = |A|;

(3) M is an almost complete t-tilting A-module, if M is r-rigid and |M| =|A| - 1;

(4) M 1is a support t-tilting module, if there exists an idempotent ¢ € A such that M is
7-tilting (A /({e))-module;

(5) (M, P) is a T-rigid pair, if M is 7-rigid and Homp (P, M) = 0;

(6) (M, P) is a support T-tilting pair (resp. almost complete t-tilting pair), if (M, P) is a
7-rigid pair and |M| +|P| = |A| (resp. |M|+|P| = |A| - 1);

(7) (M, P) is a direct summand of (M',P"), it (M, P) and (M’,P") are t-rigid pair and M
(resp. P) is a direct summand of M’ (resp. a direct summand of P’);

(8) (M, P) is basic, if M and P are basic. (i.e. each direct summand of M & P is multiplicity
free).

We denote the full subcategory of indecomposable 7-rigid A-modules by ir-rigid A and
the full subcategory of basic support 7-tilting A-modules by s7-tilt A. We can think of 7-
rigid modules as a generalization of classical partial tilting modules in the sense of classical
Bongartz’s lemma by the following theorem:

Theorem 2.15 ([1, Theorem 2.10]). Any t-rigid A-module is a direct summand of some
T-tilting A-module.

We denote the full subcategory of finite direct summands of finite direct sums of M by
add M. A characterization of 7-rigid pairs and support 7-tilting pairs is given in the following
theorem:

Theorem 2.16 ([ 1, Proposition 2.3]). Let M e repA, P € projA and e € A be an idem-
potent such that add P = add Ae.
(1) (M, P) is a t-rigid pair, if and only if M is a T-rigid (A/{e))-module;
(2) (M, P) is a support t-tilting pair if and only if M is a t-tilting (A/{e))-module;
(3) (M, P) is an almost complete support t-tilting pair, if and only if M is an almost com-
plete T-tilting (A/{e)) module;
@) If (M, P) and (M, Q) are support T-tilting pairs in rep A, then add P = add Q.

By Theorem 2.16, we can identify basic support 7-tilting modules with basic support
7-tilting pairs. We define dual notions of 7-rigid, 7-tilting and support 7-tilting modules.

DeriniTiON 2.17. Let M € rep A. We define:

(1) M is a 7™ -rigid A-module, if Homp (v~ M, M) = 0;

(2) M is a 7™ -tilting A-module, if M is 7~ -rigid and |M| = |A|;

(3) M is a support T -tilting module, if there exists an idempotent e € A such that M is
7~ -tilting (A/{e))-module.

Note that M is a 7~ -rigid (resp. 7~ -tilting, support 7~ -tilting) A-module if and only if DM
is a 7-rigid (resp. 7-tilting, support 7-tilting) A°’-module by definition. We denote the set of
basic support 7~ -tilting modules by st~ -tilt A.

DeriNiTioN 2.18 (cF. [1, Proposition 1.1]). (1) A full subcategory 7 in repA (resp. F
in repA) is a torsion class (resp. a torsion-free class), if T (resp. F) is closed under
extensions and taking a factor module of objects (resp. taking a submodule of objects).
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(2) Atorsion class T in rep A (resp. a torsion-free classes F in rep A) is functorially finite,
if there exists M € rep A such that 7 = Fac M (resp. F = Sub M), where Fac M (resp.
Sub M) is the full subcategory of factor modules (resp. submodules) of finite direct
sums of M in repA.

We denote the set of torsion classes in rep A (resp. torsion-free classes) by tors A (resp.
torf A) and the set of functorially finite torsion classes in rep A (resp. torsion-free classes)
by f-torsA (resp. f-torfA). In the 7-tilting theory, one of the most important classes of
algebras is 7-tilting finite algebras:

Definition-Proposition 2.19 (cf. [16], [9]). An algebra A is called t-tilting finite, if A
satisfies one of the following equivalent conditions:
(1) There are only finitely many isoclasses of basic t-tilting modules;
(ii) st-tilt A is a finite set;
(iii) ir-rigid A is a finite set;
(iv) f-tors A (resp. f-torf A) is a finite set;
(v) The poset (f-tors A, Q) (resp. (f-torf A, C)) forms a complete lattice;
(vi) f-tors A = tors A;
(vii) f-torf A = torf A.

Let A be a finite dimensional K-algebra again.

Theorem 2.20 ([1, Theorem 2.7, 2.15]). (1) We have the bijection between st-tilt A
and f-tors A:
st-tilt A — f-tors A
M +— FacM.

(2) We have the bijection between st~ -tilt A and f-torf A:

st -tilt A — f-torf A
M — Sub M.

We can define a partial order of s7-tilt A by Theorem 2.20 as follows:

DermNiTioN 2.21. For T, T’ € st-tilt A, we define a partial order < on st-tilt Aby T < T’ &
FacT C FacT’.

Finally, the above partial order is understood in the terms of mutations:

Definition-Proposition 2.22 ([1, Theorem 2.18]). Any basic almost complete t-tilting
pair (U, Q) is a direct summand of precisely two different basic support t-tilting pairs (T, P)
and (T',P"). In addition, these T,T’ € st-tilt A satisfy T <T or T’ > T. In this setting, if
T <T (resp. T > T), we say that (T', P’) is a left (vesp. right) mutation of (T, P). For this
T e st-tilt A and the indecomposable summand X of T such that T = X® U, we say that T’
is the left (resp. right) mutation of T at X, if T < T (resp. T' > T).

Proposition 2.23 ([1, Definition-Proposition 2.28]). Under the setting of Definition-
Proposition 2.22, T’ is the left mutation of T at X if and only if X ¢ Fac U.
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Theorem 2.24 ([1, Theorem 2.33]). Let T,U € st-tilt A. The following conditions are
equivalent:
(1) U is a left mutation of T';
(2) T is a right mutation of U;
(3) T and U satisfy T > U, and there does not exist V € st-tilt A such that T >V > U.

We know that for a 7-tilting finite algebra A, s7-tilt A forms a finite complete lattice by
Definition-Proposition 2.19 and Definition 2.21. In particular, we find that M,N € st-tilt A
are related by a mutation if and only if one is next to the other in the finite complete lattice
of st-tilt A by Theorem 2.24. Finally, we review a characterization of ir-rigid A in terms of
the lattice.

Theorem 2.25 ([16, Theorem 2.7 and its proof]). Let A be a t-tilting finite algebra. Then,
we have the following bijection:

ir-rigid A — j-Irr(torsA)
L+— FaclL.

The inverse map is given by T —> N, where N is a unique indecomposable summand of
M e st-tilt A giving T = Fac M such that Fac N = FacM. Now, M € st-tilt A has a unique
indecomposable summand such that Fac N = Fac M if and only if M € st-tilt A has a unique
indecomposable summand N such that N ¢ Fac M/N, equivalently M has a unique left mu-
tation in st-tilt A.

2.3. Idempotent two-sided ideals of preprojective algebras and Weyl groups. In this
subsection, we review the work of Fu-Geng [10] about a relationship between generalized
preprojective algebras and Weyl groups of Kac-Moody Lie algebras. In [10], K is assumed to
be an algebraically closed field, but the discussion in [10] works in the situation that K is an
arbitrary field. The basic materials about Coxeter groups appeared in this paper are found in
[5]. Let IT=TI(C, D) be a generalized preprojective algebra associated with a symmetrizable
GCM C and its symmetrizer D. Let W(C) be the Weyl group of the Kac-Moody Lie algebra
associated with C. We define the idempotent ideal I; to i € Qg by I; := II(1 —¢;)Il. In
particular, the inclusion /; C Il induces an exact sequence:

0—I,—II—E —0.

Theorem 2.26 ([10, Theorem 4.7]). Let C € M,(Z) be a symmetrizable GCM and D be
any symmetrizer D of C. There is a bijection  from W(C) to the monoid {I1,D>,...,I,) =
Ui Liy - I, |11, 02,...,ix € Qo,k > 0} given by

yw)y=1,=1IL1,-I;, (W= s;si- s isareduced expression of w e W).

Here, Y does not depend on a choice of reduced expressions of w.

In [10], the results of Buan-Iyama-Reiten-Scott [7] and Mizuno [21] are generalized for
our situation.

DeriniTion 2.27. (1) We call a two-sided ideal T of II tilting ideal if T is a left tilting
IT-module and a right tilting [I-module.
(2) We call a two-sided ideal T of I1 support t-tilting ideal if T is a left support 7-tilting
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[T-module and a right support 7-tilting [1-module.

Theorem 2.28 ([10, Lemma 3.2, 3.9, Theorem 3.12, 5.14, 5.17]). Let C € M,,(Z) be a
symmetrizable GCM and D be any symmetrizer D of C.

(1) If C has no components of Dynkin type, T € (I1,1,...,1,) if and only if T is a cofinite
tilting ideal of 11, where tilting is in the sense of Miyasita [20] or Happel [15]. In
particular, any object in (I1,1»,...,1,) C Repll has projective dimension at most 1.

(2) If C is of Dynkin type, T € {I1,1>,...,1,) if and only if T is a basic support T-tilting
ideal. In particular, : ww— I, in Theorem 2.28 gives a bijection between W and
st-tiltI1.

We note that we can obtain the similar Theorem in RepII°P as Theorem 2.28. In the case
that C is of Dynkin type, we have a relationship between the right weak Bruhat order <g
on W(C) and the mutation in st-tiltII. From now on until the end of this subsection, let
C € M, (Z) be a symmetrizable GCM of Dynkin type and D be any symmetrizer D of C.

Theorem 2.29 ([10, Lemma 5.11, Proposition 5.13, and its proof]). Let T € (I,...,1I,).
IfT1; # T, then T has a left mutation T1; at Te; in st-tiltI1.

Theorem 2.30 ([10, Theorem 5.16]). Forie Qo andw € W, 1,1, € st-tiltIl are related
by a right or left mutation. In particular, if (ws;) > l(w),

_ Iw(l _ei) (lei = 0)’
P LLei @Iy (1—e;) (Il  0).

From the above, we give the following generalization of a result of Mizuno [21]:

Theorem 2.31. Let w e W and i € Qg. The following are equivalent:
(1) l(w) < lws;) =lw)+1;
(2) Ipl; # Ly;
(3) 1, has a left mutation 1, at I,e;.

Proof. (1)=(2) follows from Theorem 2.26. (2)=(3) follows from Theorem 2.29. We
show (3)=(1). We assume that /(w) > [(ws;) and put u = ws;. Since (1) < l(us;) and (1)=(2),
we find that /,, has a left mutation /,,I; = I, = 1, at I,e; by Theorem 2.29. Then, I, is a left
and right mutation of [, at I,e;. This yields that /,,e; € Facl,(1 —e¢;) and I,¢; ¢ Facl,(1 —e¢;)
by Proposition 2.23. This is a contradiction. Thus, (3)=(1) holds. O

Theorem 2.32. Let we W and i € Qg. The following are equivalent:
(D) lw) > lws;) = l(w)—1;
(2) Ipl; = 1y;
(3) 1wy, has a left mutation I, at I,,e;.

In particular, we find that u <g v in W if and only if [, > I, in s7-tiltI1. That is, (W, <g)
can be identified with (s7-tiltI1,<)°P as a poset. We note that we can consider the poset
structure of s7-tilt[1°P similarly, if we consider the left weak order instead of a right weak
Bruhat order.
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3. Support 7-tilting ideals and locally free modules

In this section, let C be a connected symmetrizable GCM of Dynkin type, D be any
symmetrizer of C, and II be the generalized preprojective algebra associated with C and D.
Then, the Weyl group W := W(C) for C is a finite Coxeter groups, and I1 is a 7-tilting finite
algebra.

3.1. Two-sided ideals /,, and locally freeness. We have the following lemma from a
classification of GCMs of Euclidean types:

Lemma 3.1 (cf. Carter [8, Appendix]). For any connected GCM C = (c;;) € M,(Z)
of Dynkin type, there is a connected GCM of Euclidean type C = (Cij) € My1((Z) (i, €
{0,1,...,n}) and its symmetrizer D = diag(co,C1,...,Cy) such that ¢;j = c¢;j and &y = i (i, j,k =
1,2,...,n). O

By Lemma 3.1, we can construct a generalized preprojective algebra I1 (C,D) from C and
D.

Lemma 3.2. For the generalized preprojective algebra 11 = 11(C, D) and the vertex set
Qo ={1,2,...,n}, we denote the vertex set of the generalized preprojective algebra 11 =
I[1(C,D) by Qo =1{0,1,2,...,n}. Then, we have an K-algebra isomorphism I1/{&gp) = IL

Proof. We denote the generators of I =I1(C,D) by the symbols with tildes as like &;, in
order to distinguish from the generators of II. Then, we have the surjective algebra homo-
morphism 7: TT — TI defined by c”xg;’.) — a??) (i#)), & e(i+0), e 0. In particular,
Kerm = {ep). So, we obtain ﬁ/(EO) =I. m|

Theorem 3.3. For any generalized Cartan matrix C and symmetrizer D, the two sided
ideals 1, of T1(C, D) are locally free. In particular, any object in st-tiltI1 is locally free.

Proof. Let II be the generalized preprojective algebra I1(C, D), where (C, D) is borrowed
from Lemma 3.1. We denote generators or subsets in I by symbols with tilde as in Lemma
3.2. Let n: I1 —> II be the surjective homomorphism in Lemma 3.2. We can regard a
[I-module as a [T-module via 7. In particular, we have ﬁi =~ H; for each i # 0. Thus, any
locally free I1-module M can be seen as a locally free II-modules such that oM = 0. Now,
ITis a projective II-module, so that this is a locally free II-module by Proposition 2.12.
Then, I1 is a locally free I1-module by the above discussion. Similarly, Misa locally free
II-module. So, we conclude that (Zy) is a locally free I-module by the short exact sequence
0— (&) — - H/(eo) — 0in RepH and Proposition 2.11. We put I = H(l - e,)H We
define the two-sided ideals Iw = I,] I;, for a reduced expression w = s;, ---5;, € W(C), by
regarding W(C) C W = W(C) in a natural way. (This definition does not effect on reduced
expressions). On the other hand, we have (&) C ZU by (ép) C 7:/ (j=1,...,k). We have the
II-module isomorphism,

L/ @0) = (I, [{20)) -+~ (I, [{@0)) = I, -+ I, = L.

Now, we regard the above isomorphism as a [I-module isomorphism. Since proj.dimg /,, <
oo by Theorem 2.28 , ZU is a locally free T-module. Then, ZH /{€o) is a locally free [-module
by Proposition 2.11. So, we find that ¢;I,, is a free H;-module for each i € {1,...,n} via
I1/(2) =1 and H; = H; (i # 0). This implies 1, € rep; ¢ I1 for any w e W. O
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As the corollary of Theorem 3.3, we have the following:
Corollary 3.4. Any indecomposable t-rigid module in repll is locally free.

Proof. Since II is self-injective by Proposition 2.8, all [le; are indecomposable injective
I1-modules. So, soclle; are simple modules. In particular, the submodules /,e; of Ile; are
indecomposable. Since 7-rigid modules appear as a summand of some 7-tilting module by
Theorem 2.15, any indecomposable 7-rigid module is isomorphic to one of the modules /,¢;
by Theorem 2.28. Since indecomposable summands of any locally free module is locally
free, any indecomposable 7-rigid [I-module is locally free. |

We can classify 7-rigid II-modules in terms of the lattice of right weak Bruhat order on
w.

Theorem 3.5. The map
m-Irr W — ir-rigid I[1
w+— I,ep
is bijective, where k is the unique index such that l(wsy) = [(w) + 1.
The proof of this Theorem is similar as the proof in [16].

Proof. Since I is a 7-tilting finite algebra, we have the bijective correspondence between
st-tiltIT and torsII
st-tilt [T — torsII
I, — Facl,.
By definition of the order in s7-tiltII, the posets (W,<g) and (torsIl, C)°? are isomorphic.
That is, we have the following lattice isomorphism
(W, <g) — (torsII,C)°P
w +— Facl,,.
Thus, we have the following bijection between meet-irreducible elements of W and join-
irreducible elements of torsII
m-Irr W — j-Irr (torsII)

w+— Facl,,.
By Theorem 2.25, we have
j-Irr (torsIl) — ir-rigid 1

Facl, — I,e;,

where k is the unique index satisfying Fac(/,ex) = Facl,. We have only to show that this
k is the unique index satisfying l(wsy) > l(w). Now, I, and I, are objects in a relation of
mutation each other in s7-tiltI1 by Theorem 2.30. In particular, if we give the decomposi-
tion 15, = @peQO(stkep) and I, = @quo(Iweq), we have @p;&klwskep = @q;tklweq, and
denote them by U. That is, I, = I,,e; ® U. Now, the condition that k is the unique index such
that I e ¢ Fac(U) is equivalent to that & is the unique index such that Fac/,s; = Facl, by



398 K. MuURAKAMI

Theorem 2.25. So, since k is the unique index such that /sy is a left mutation of 7, at I,ex
by Proposition 2.23, k is the unique index such that l[(ws) = [(w) + 1 by Theorem 2.31. O

ExampLE 3.6. In the type of B,, the Hasse quivers of (W, <g) and (s7-tiltI1, <)°P are the

following
e

VN N

S1 52 Liey DIley Ile; ® Les
S2J Jsl IzJ Jll
5152 $251 Liei DE, E D bher
S1J Jsz IlJ JIZ
515251 $285152 E> E
N AN
wo 0 .

In above picture, we have m-Irr W = {s1, 52, s152, $251, S15251, s25152} and ir-rigidI1 =
{lez, hey, I11hey, ley, I1h11e, b1 e} = {lley, lley, I1ey, ey, Er, E}.

3.2. Torsion classes and torsion-free classes of repl. The following Lemma is shown
in [10] by using the minimal projective presentations of 7-rigid I1-modules:

Lemma 3.7 ([10, Lemma 5.9, 5.10]). For any i € Qy, we have:
(1) For a support -tilting Tl-module T and a generalized simple module E; in rep, ¢ T1°P,
we have:
(i) Either E}@nT =0 or Tor}'(E/,T) = 0;
(i) E/®nT =0 if and only if ;T =T;
(2) For a support t-tilting 11°P-module T and a generalized simple module E; in rep ¢ I1,

we have:
(i) Either T®nE; = 0 or Tor|(T, E;) = 0;
(1) TenE;=0ifand only if T1; =T. O
We have:

Proposition 3.8. For anyic Qg and w € W, we have the following statement:
(1) Let I, € st-tiltTL. If I(s;w) > l(w), then Ext},(1,, E;) = 0 = Ext}(E;, I,,).
(2) Let I, € sT-iltTIP. If l(ws;) > U(w), then Ext}iop (I, E}) = 0 = Extf1op (E7, Ly).

Proof. Since the proofs of the both cases are similar, we only prove (1). We have a short
exact sequence:

O—>I,~—L>H—>Elf—>0

in rep; ¢ [1°°, where ¢: I; — II is the inclusion. Apply the functor (-)®m/,, to this exact
sequence to obtain the exact sequence:

®mlw
Torl(E[. 1,,) — I®nl, —— Nl — E/nl, — 0.
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If i(s;w) > ((w), I;1, C I, by Theorem 2.26. So, Im(t®r 1) = I;1,, C I, via the natural isomor-
phism I1®/,, = I,,, which implies E/®p1,, # 0. We obtain the following linear isomorphism,

DExt(E;, Iy) = Ext}; (L, E;) (1, € rep, ; IT and Proposition 2.13)
= Ext};(1,,, DE}) (DE; = E; € rep, ; IT)
= DTor?(E;,Iw) (cf. [3, Appendix. Proposition 4.11])
=0 (Lemma 3.7).
This proves the assertion. O

From the proof of Proposition 3.8, we also deduce the following Proposition:

Proposition 3.9. For anyic Qg and w e W, we have:
(1) Let I, € st-tiltII°P. If [(ws;) > l(w), then Tor?(lw,E,-) =0;
(2) Let 1, € st-tiltIL. If I(s;w) > l(w), then Tor{[(Elf,Iw) =0. m|

Lemma 3.10. Leti € Q.

(1) If M,N € rep, ¢ I1 such that M C N, then ;M = I;N if and only if there exists some
non-negative integer n such that N/M = E;®".

(2) If M,N e rep;; I1°° and M C N, then MI; = NI; if and only if there exists some non-
negative integer n such that N/M = E; on,

Proof. The proof of both assertions are similar. So, we only prove (1). If ;M = I;N,
then I;(N/M) = 0. Now, since M, N < rep, ; I1, we have N/M < rep, ; II by Proposition 2.11.
Now, since I; = TI(1 —e;)I1, we have (1 —¢;)(N/M)=0 and so N/M = ¢;(N/M). Thus, N/M is
isomorphic to a direct sum of some copies of the generalized simple module E; by definition
of locally free modules.

Conversely, if N/M = E?", then we have [;@n(N/M) = I;@n(E®") = (;@nE)®" = 0, be-
cause of Lemma 3.7 (2)-(i1) and the fact that I;/; = I;. On the other hand, we have a short
exact sequence:

0—M-—N-—N/M—0,
and apply the functor /;®1(—) to obtain the exact sequence:
LienM — L®nN — 0.
So, the inclusion I;M — I;N is surjective. That is, ;M = ;N in M C N. O
Finally, we obtain the following dualities. The proof is along the line of [22], but we need
a little device for it.

Theorem 3.11. Let wg € W be the longest element in W. Then, we have the following
isomorphisms:
(1) DI, = I1/1,, -1 in rep; g II°P.

(2) DI, = 10/1,-1,,, in vep; ¢ 1.

Proof. We can prove (2) similarly as (1). So, we only prove (1). Since II is a self-injective
algebra, we have II = DII in rep, ; II°’. Applying D(-) to the inclusion /,, — II in repIl,
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we obtain an epimorphism DII — DI, in rep,; [1°’. Thus, we obtain an epimorphism
Y: I1 — DI, in rep;; I1°°. We put 1, == Kery. Since I, is a kernel of an epimorphism in
rep; ¢ I1°°, we have I, € rep;; II°° by the right version of Proposition 2.11. It remains to
show that I,, = Lyt

Since wo € W is the longest element, we obtain 1, -1l = Iy, = 0, and so0 1, -1 is con-

tained in the right annihilator of D/,,. That is, 1,21

w = wow
We show the converse inclusion /,, € 1, ,-1 by induction on /(w). When w is an identity,

I =0=1, ,-1 because I, = Il and I,,, = 0. So, we assume that I(s;w) > l[(w). Now, 1,/ I,

wow

is the cokernel of the inclusion Iy, = I;1,, C I,, in rep, ¢ I1. Since [;I; = I; and so I;1,, = I;1,,
there exists some non-negative integer n such that 1,/ I, = E;e” by Lemma 3.10 (1). Thus,
we have an exact sequence:

0— Iy — 1, — EM"—0
in rep; ; I1. Applying ID(-) yields an exact sequence:
0 — E/*" — DI, — DI, — 0
in rep, ; [1°P. On the other hands, the inclusion Iy — Ziw gives the short exact sequence:
0— Iy — Iy — /Ty — 0.

in rep;; II°°.  So, we obtain the following commutative diagram with exact rows in
rep, ¢ [1°P:
P1t. :

Ei/On
0 I, I D1, 0
[ |
0 L I DI, 0
fI;,‘W/fI;V

We have };iw /Zy = E;@" by the snake lemma. It follows that Ziwli = ZUI,- by Lemma 3.10, and
hence Ziwli = E,I,- c Z,, = Iwow—l by induction hypothesis. Now, the inequality lwow™'s;) =
l(wo) — lw™Ls;) = l(wo) — I(s;w) < lwo) — l(w) = Kwow™ ") gives I, 1 =1, 1 Lforl i€

wow™ wow™"'s; wow
sT-tiltII°P. So, we have I3 wli € Iy ,-15,1i- On the other hand, we have [, -1, C Ib «w in the
first part of this proof, and so 7, ,-1,,1; I,.01;. Thus, we obtain I, I; = Lyou1s. i

By the right version of Theorem 3.3 and Lemma 3.10, there exists non-positive inte-

ger m such that 1, swl I, = E'GB”’. So, we only have to show that m = 0. Now, since

wow™Ls;
wow™ ' sis;) = lwow™ 1) > l(wow™ s,), we have Ext! op(El, wow-Ls; ) = 0 by Proposition 3.8.
Thus, we obtain the following splitting exact sequence
0— Lyyyry, — Isw — E/®" — 0.
So, there exists a right ideal L of IT isomorphic to E’ ®™M such that };iw =L®l . Now,

wow™ s;
we assume that L # 0. Since II is a basic self-injective algebra, II decomposes into non-
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isomorphic indecomposable injective modules. That is, IT = EBJ.EQO e;I1 is the direct sum
of injective envelopes of simple I1°°-modules S (k € Q). In particular, socIT = P k<o S
and S,’< (k € Qgp) are non-isomorphic to each other. Since El’ is a uniserial module that has
only S/ as the composition factors, we have socE; = §/. Thus, we obtain soc L = Slf@m.
Since socII = @keQO S]’( and L is a right ideal of II, we find m = 1 and so L = El’ Now,
we have L = I,,;; by Lemma 3.10 and the general fact that for a basic finite dimensional
self-injective K-algebra A and a two-sided ideal I of A, any right ideal L of A isomorphic to
I in rep AP satisfies L = I as sets (cf. [21, proof of Lemma 2.20]). In particular, we find that
Ts,w = lyys; @Iwow’lsi and so I, n]wow—lsi =0. Now, since wos; = wowwowow ™' s;, we obtain
the equality l(wowwo) + Lwow™'s;) = lw) + wo) — l(w™'s;) = lw) + Lwp) — I(siw) = Lw) +
l(wo) —(1+1(w)) = l(wo)— 1 = l(wos;). This equality gives L5, = Luguwuw, | Ly However, this

wow~
means that /ys; C 1, ,-1,,, and so we obtain a contradiction. Thus, L =0 and Iy, = 1, -1,
So, we conclude that I, € I, . i for any w € W by induction on /(w) as required. |

= fwow

As a corollary of Theorem 3.11, we obtain a classification theorem of torsion-free classes
in repIl. Note that the former statement follows as a combination of [10, Theorem 5.17],
[1, Theorem 2.7] and [9, Theorem 3.8].

Corollary 3.12. We have the following two bijections:
W — torsIl W — torfI1
w +— Facl,, w +— Sub(I1/1,).

Proof. The classification of torsion classes is a direct result of Theorem 2.20 and
Definition-Proposition 2.19. Since st-tilt [1°P corresponds to st~ -tiltI1 bijectively via I, —
DI, we have a bijection W — st -tiltII defined by w + I1/1,, by Theorem 3.11. Thus, we

obtain the second bijection by Theorem 2.20 and Definition-Proposition 2.19. O
Corollary 3.13. For we W, we have annly, = 1, 1. In particular, the tilting objects in

st-tiltI1 are nothing but 11 up to isomorphism.

Proof. Since the left annihilator of [, coincides with the right annihilator of DI, the
first assertion follows from Theorem 3.11. Since w + I, is a bijection from W to st-tiltI1
by Theorem 2.28, the object I, € st-tiltIl satisfying annl, = I, ,-1 = 0 are nothing but
I, = II for the identity e € W. Then, the second assertion follows from the general fact [1,
Proposition 2.2] of 7-tilting theory that faithful support 7-tilting modules are precisely tilting

modules in the sense of Brenner-Butler [6]. O
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