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Abstract
The theory of Stark systems due to Burns, Sakamoto, and Sano is an important tool toward
main conjectures in Iwasawa theory. In this paper, we propose a new perspective of their results,
which produces more refined consequences. As a principal application, we prove one divisibil-
ity of the equivariant main conjecture for elliptic curves, under certain conditions without ¢ = 0
hypothesis.

1. Introduction

One of the main themes in Iwasawa theory is the main conjectures, which predict close re-
lations between algebraic objects (Selmer groups) and analytic objects (p-adic L-functions)
in various situations. It is known that the theory of Euler systems plays an essential role
in proofs of main conjectures. In fact, given an appropriate Euler system in general, we
can prove “one half” of the main conjecture, that is, a bound of Selmer groups. The theory
of Euler systems was developed by many works, including Rubin [21], Mazur-Rubin [15],
among others.

For example, the cyclotomic units constitute an Euler system for G,, over Q. Another
important example is the Euler systems of Beilinson-Kato zeta elements, constructed by
Kato [11], for elliptic modular forms. By applying the general results to those Euler systems,
we can prove (halves of) the main conjectures in those situations.

The theory of Euler systems was further developed by Burns, Sakamoto, and Sano [4],
[5], [22]. One of the features of their works is the notion of the exterior power biduals, which
enables us to develop higher rank theory. At the same time, they succeeded in developing
equivariant theory, which had not been achieved even in the rank one case. Using the exterior
power biduals, they defined the notion of Stark systems, proved that each Euler system yields
a Stark system (via a Kolyvagin system), and proved that each Stark system provides a bound
of Selmer groups.

The main purpose of this paper is to obtain refined consequences of the existence of a
Stark system. In order to achieve that, we introduce a novel notion of (primitive) basic
elements for perfect complexes in general. Then a key theorem (Theorem 5.12) of this
paper states that each (primitive) Stark system gives rise to a (primitive) basic element of an
arithmetic complex. See Subsection 1.2 for more details.

As a fundamental application, we prove a half of the equivariant main conjecture for ellip-
tic curves under a certain condition which is weaker than previous. Because the application
is actually the main motivation of the present work, we firstly state that result in Subsection
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1.1.

1.1. Equivariant Iwasawa theory for elliptic curves. We explain the principal applica-
tion of the key theorem of this paper to equivariant Iwasawa theory for elliptic curves, which
was developed by the author in [9] based on many preceding works (see the introduction of
[9]). We give only a minimal explanation here and refer to [9] for more details.

Fix a prime number p > 5. Let E be an elliptic curve over Q which has good reduction
at p. Let F be a finite abelian extension of Q and we denote by S, (F/Q) the set of prime
numbers which are ramified in F/Q. We suppose that S;,,(F/Q) is disjoint from Spq(E),
the set of bad primes for E. Let F, be the cyclotomic Z,-extension of F' and put Ry =
Zp[[Gal(Fw/Q)]]. Let S be a set of prime numbers # p such that S U {p} D S;.m(F/Q).

We will often assume the following non-anomalous condition ([9, Assumption 3.7]):

Assumption 1.1. The group E(Q(u,n,) ® Q,) is p-torsion-free, where m is the conductor
of F/Q.

This condition is slightly stronger than that the group E(F ® Q,) is p-torsion-free. The
author expects that the weaker condition is more appropriate, but for the sake of safety, we
suppose Assumption 1.1.

It is known that Iwasawa-theoretic analysis of elliptic curves has a different flavor de-
pending on the reduction type at p. If E has ordinary reduction at p, then set @ = (), meaning
“no symbol,” and otherwise fix e € {+,—}. We will soon formulate the main conjecture
between e-Selmer groups and e-p-adic L-functions. It should be noted here that, in Section
6, we will reformulate the main conjecture in a form that does not depend on the reduction
type.

As usual, let E[p™] be the group of p-power torsion elements of E. Then, as in [9, §2.1],
the e-Selmer group Sel§(E/F ) is defined by

(1.1) Sely(E/Fy)

H'(Fe ® Qp, E[p™])
E*(Fo ® Q) ® (Qp/Z)p)

= Ker| H' (Foo, E[p™]) = x || #'Fee.Elp))|,

1¢SU{p}

where, in the supersingular case, E*(F. ® Q,) is the submodule of E(F., ® Q,) defined by
Kobayashi [13]. It is known that Sel§(E/F ) is a finitely generated cotorsion R p-module.

On the analytic side, by Amice-Velu [1], Visik [24], or Mazur-Tate-Teitelbaum [16], with
an idea of Pollack [19] in the supersingular case, we have the e-p-adic L-function

LYE/Fx) € RF®z,Q,

with convention as in [9, §2.2].
In [9, (1,1)], we proposed the equivariant main conjecture as follows. We denote by (-)"
the Pontryagin dual and by Fittg,(—) the initial Fitting ideal.

Conjecture 1.2. Under Assumption 1.1, we have
Wp Fitte, (Selj(E/Fu)") = (LY(E/Fw)
as principal ideals of Rp.

Here, W}, is a completely explicit principal ideal of R (we do not recall the definition
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here). Since we have
deF(Selg(E/Foo)V) <1

by [9, Theorem 1.1], both sides in Conjecture 1.2 are principal. Here, pd denotes the projec-
tive dimension. Note also that Conjecture 1.2 implicitly claims the integrality of the p-adic
L-function LY(E/F ).

In order to state our main result of this paper, we have to introduce several assumptions
(Assumptions 1.3, 1.4, and 1.5 below). Those are typical assumptions in the theory of Euler
systems (see e.g. [9, Remark 1.6] for some discussion). Let T, E be the p-adic Tate module
of E.

Assumption 1.3. For any prime number | ¢ S U {p}, the Z,-module H(F., ® Q;, E[p™])
is divisible.

Assumption 1.4. The Galois representation
Gal(Q/Q) — Autz, (T,E) = GLy(Z,)
is surjective.
Assumption 1.5. Forall | € S, we have H(F, ® Q;, E[p™]) = 0.
The main application of the key theorem (Theorem 5.12) of this paper is the following.

Theorem 1.6. Suppose Assumptions 1.1, 1.3, 1.4, and 1.5. Then we have the inclusion
D in Conjecture 1.2, that is,

W;. Fittr (Sel3(E/Fx)') D (LUE/Fx)).

The proof will be given in Subsection 6.3. If we further assume the ¢ = 0 hypothesis for
the fine Selmer group, then Theorem 1.6 essentially coincides with [9, Theorem 1.5]. Thus
the progress is the removal of the i = 0 hypothesis. See Remark 6.5 for a comparison of the
proof in this paper with that in [9].

We mention here that, though the progress of the main result might sound minor, the new
perspective (explained in Subsection 1.2) proposed in this paper can be expected to be useful
for other future applications. An evidence of the strength of the idea in this paper will also
be illustrated in Section 7.

1.2. Outline and key idea of this paper. Section 2 is devoted to review of facts on
determinant modules Detg(—) and exterior power biduals (z(—).

In Section 3, we will introduce the notion of (primitive) basic elements for perfect com-
plexes. The notion plays key role in this paper (the term “basic” comes from “basic Euler
systems” in Burns-Sano [5]). More precisely, let C be a perfect complex satisfying certain
conditions, including H(C) = 0 fori # 1,2. We put r = yx(C) (the Euler characteristic) and
we shall define a natural homomorphism

I : Det;; (C) — ﬂ H'(C).
R

Then we call an element of (; H 1(C) a basic element (resp. a primitive basic element) for
C if it is the image of an element (resp. a basis) of Det,;l(C) under I1c.
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The author admits that the notion of (primitive) basic elements has already appeared in
several preceding works in quite implicit manners (e.g. Burns-Kurihara-Sano [2], Burns-
Sano [5]). For instance, as we will show in Subsection 3.3, a property of primitive basic
elements is that they compute the Fitting ideal of H?(C) (though this property is not essential
in this paper), and this kind of computations can be found in those preceding works. For
that reason, the notion of (primitive) basic elements does not seem essentially novel, but it
certainly plays a key role in the present paper to prove Theorem 1.6.

In Sections 4 and 5, we study general p-adic Galois representations as in Subsection 1.3
below. In Section 4, we introduce and examine basic properties of perfect complexes arising
from Galois cohomology complexes. Of the most importance is RI'(Q5/Q, TF), to which we
apply the notion of (primitive) basic elements (note that Tr is a representation which might
be ramified at a prime outside S so the definition of the complex is not totally obvious). In
Section 5, we define Stark systems in our setting, in the same manner as in [4], [5], [22].
We show that, under certain conditions, the module of Stark systems is free of rank one and
moreover can be identified with Det;alF (RI'(Q5/Q, TF)) (see Remark 5.7 for a relation with
a preceding work). From the isomorphism, we finally deduce the key theorem (Theorem
5.12) that each Stark system gives rise to a basic element for RI'(Q5/Q, Tr).

In Section 6, we first reformulate Conjecture 1.2 as a statement that the Beilinson-Kato
zeta element z];"; is a primitive basic element for RI'(Q5/Q, Tr). Then we deduce Theorem
1.6 from Theorem 5.12 and one of the main results of [4] that an Euler system gives rise to
a Stark system.

In Section 7, we apply the ideas of this paper to the discussion in a recent paper by Burns-
Kurihara-Sano [3] on Beilinson-Kato elements. This section can be seen as an illustration
of the strength of the idea in this paper. In particular, we deduce a result toward a conjecture
in [3] on the existence of Darmon-type derivatives. Moreover, we reformulate conjectures
in [3] (generalized Perrin-Riou conjecture and refined Mazur-Tate conjecture) and, as a con-
sequence, obtain illustrative proofs of equivalences between various conjectures.

Remark 1.7. As we repeatedly remarked, this paper gives a refinement of parts of the
works by Burns, Sakamoto, and Sano. However, we do not generalize their results in the
sense that we do not deal with the higher Fitting ideals.

1.3. Notation. Though our main objective is the Tate modules of elliptic curves, we will
deal with general p-adic representations when possible. We fix our notation in this sub-
section. Note that we will set the rational number field Q as the base field, but we can
generalize the results to general number fields by standard modifications (the author would
like to discuss this issue in a forthcoming paper).

Let p be a fixed odd prime number. Let T be a fixed free Z,-module of finite rank on
which the Galois group Gal(@/ Q) acts continuously. We denote by Sp,q(7) the set of prime
numbers at which T is ramified, and we assume that Sy,4(7") is a finite set.

For each finite abelian extension F/Q (possibly ramified at p), we denote by S;.m(F/Q)
the set of prime numbers which are ramified in F/Q. Let F/F be the cyclotomic Z,-
extension and F, its n-th layer for each n > 0. Put Rp = Z,[[Gal(F./Q)]], the Iwasawa
algebra.

We denote by Tr = T ®;z, R the Galois representation of Gal(@/ Q) over Rr, where the
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Galois group acts on the second factor R via the inverse of the natural homomorphism
Gal(Q/Q) —» Gal(F/Q) — R}.
Then Shapiro’s lemma enables us to identify

H'(Q,Tr) = {iLnHi(Fn, T), H'(Q), Tr) = {iLnHi(Fn ®Qp, 1)

n n

where the projective limit is taken with respect to the corestriction maps. Namely, the coho-
mology groups of Tr can be regarded as the Iwasawa cohomology groups.

As zero-dimensional analogues, for an integer m > 0, we put Rp,, = (Z/p"Z)[Gal(F/Q)]
and Try = T ®z, Rrn- We also put Rp = Z,[Gal(F/Q)] and Tr = T ®z, Rr. Then similarly
we have

H(Q,Tp,) = H(F,T/p"T),  H(Qp,Try) = H(F®Q,,T/p"T),

H'(Q,Tr) = H(F,T),  H(Q,,Tr)=H(F®Q,,T)

by Shapiro’s lemma.
For a finite set S of prime numbers # p, we put

S=SU{p,oo}.

By a pair (F, S), we always mean that /Q is a finite abelian extension and § is a finite set of
prime numbers # p such that SU {p} D S;am(F/Q). We do not require that SU {p} D Spaa(T).
We introduce assumptions which correspond to those in Subsection 1.1.

Assumption 1.8 (on F). We have
H(Qp, Tr(1)) = H'(Fos ® Qp, TY(1)) = 0,
namely,
H(F ® Q. (T/pT)"(1)) = 0.
Assumption 1.9 (on F). We have
HY(F,T/pT) = 0.
Assumption 1.10 (on (F, S)). For any prime number | ¢ S U {p}, the Z,-module
H'(Fs ® Qi T ®2, Qy/Z;)

is divisible.

Assumption 1.11 (on (F, S)). Foralll € S, we have H*(Fo, ® Q;, (T/pT)"(1)) = 0.

2. Preliminaries

2.1. Perfect complexes. In this subsection, we fix our conventions on perfect complexes.
Let R be a (commutative) noetherian ring. We denote by DP*(R) the derived category
of perfect complexes of R-modules. For integers a < b, let DI“?!(R) be the full subcategory
of DP™'(R) that consists of perfect complex which is quasi-isomorphic to a complex of the
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form [C* —» C**! — ... — ("] concentrated in degrees a,a + 1,...,b such that each C'
(a <i < b) is finitely generated projective over R.
For a complex C € DP(R), taking a quasi-isomorphism

C=[---»C—-C"— . ],

where each C' is finitely generated projective over R, we define the Euler characteristic of C
by

Xr(C) = ) (=) rankg(C").
i
This is a locally constant function on Spec(R). It is easy to show that the Euler characteristic

is additive with respect to distinguished triangles.
We define the determinant module for C as above by

Detz(C) = (X) Det: ' (C,

i€Z
where we put
rank(F)
Detp(F)= [\ F,  Detg!(F) = Homg(Detg(F), R)
R

for each finitely generated projective R-module F. Note that rank(F) is a locally con-
stant function of Spec(R), so the exterior power should be taken locally. We also define
Det,}l(C) = Homg(Detg(C), R). We ignore the degrees of determinant modules since they
are not essential in this paper.

2.2. Determinant modules and Fitting ideals. In this subsection, we review some re-
sults on determinant modules and Fitting ideals (one can find details in [10, Section 3]).

Let A be a finite abelian group and we treat the algebra R = Z,[A][[T]]. Let Pr be the
category of finitely generated torsion R-modules with projective dimension at most one. Let
Ko(Pr) be its Grothendieck group. Let Iz be the group of invertible (fractional) ideals of
R. Then taking the Fitting ideals yields a group homomorphism

Fittp : Ko(Pr) — Ix.
Let Q(R) be the total ring of fractions of R. Let Dperf(R) be the full subcategory of

tor
DP*T(R) whose objects are complexes with torsion cohomology groups. For each C €

Df’:rr f(R), the complex Q(R) @JITLe C is acyclic, so we have natural isomorphisms

tc : Q(R) ®r Dety (C) = Detyz (Q(R) &% C) = Q(R).

We put dz(C) = Lc(Det;al (C)) € Q(R), which is an invertible submodule of Q(R), so
dR(C) € Ip.

Let Ko(Dfoerrf(R)) be the Grothendieck group of Dfoerrf(R). Then the above construction
yields a group homomorphism

dg : Ko(D*"(R)) = Ix.

tor

Proposition 2.1 ([10, Theorem 3.1]). We have a natural homomorphism ¢r : Ko(Pr) —
Ko(D™™(R)) such that

tor
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dr opr = Fittg

(in the additive notation). Moreover, all of Fittg, dg, and ¢ are isomorphic as group
homomorphisms.

Indeed, ¢x is defined by
_pd’!
er[P] = [CT" = C]
-1
for each P € Pg, where 0 — C~! 5 CY — P — 0is an exact sequence with C~!, C? finitely
generated projective.

2.3. Exterior power biduals. We recall the definition and properties of exterior power
biduals. See [4, Section 2], [5, Sections 2.1 and A], [22, Section 2], or [23, Appendix B] for
details.

DeriniTiON 2.2. Let R be a noetherian ring and M a finitely generated R-module. We put
M* = Homg(M, R); though the coefficient ring R is implicit, there is no afraid of confusion.
Let r be a locally constant function on Spec(R) that takes values in non-negative integers.
Then we define the r-th exterior power bidual of M by

ﬂ M = ( /\(M*)] :
R R
Remark 2.3. We have a natural R-homomorphism
AM— (M
R R
given locally by
XIA - AXp [‘/71 AR AN det(go,'(xj))i,j]
for x1,...,x, € M and ¢1,...,¢, € M*. This is isomorphic if M is projective over R.

RemMARrk 2.4. Suppose R is a zero-dimensional Gorenstein ring.
(1) For each finitely generated R-module M, the natural homomorphism

|
ev:M—>ﬂM:(M*)*,
R

which sends x € M to the evaluation map ev, : M* — R, is isomorphic. This is a basic
property of zero-dimensional Gorenstein rings.
(2) Let

oM SubF

be an exact sequence of finitely generated R-modules such that F is finitely generated pro-
jective with a = rankg(F’). Then, for each r, we have a natural R-homomorphism

r+a

ﬂ M & Detz!(F) — ﬂ M,
R R
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which is constructed as follows (see [22, Section 2] or [5, Proposition A.3]).
Consider the dual sequence

S oy >o.

which is exact since R is zero-dimensional Gorenstein. This sequence induces

r+a

\M')" @ Detp(F") > \ M*
R R
given locally by

@A AE)RWI A AU (@) (@) A A@) @) ABWD) A AR W)

for ¢1,..., € (M), Y1, ..., 0, € F*. Here, (a*)"!(¢;) denotes any element of M* which
is sent to ¢; by a*. The well-definedness (i.e. the independence from the choices of lifts)
follows from /\7{' F* = 0. By taking the dual, we obtain the desired homomorphism.

We shall deal with a general commutative ring R which is of the form

(2.1) R = {iLnR s
jeJ
where J is a directed set, R; is a zero-dimensional Gorenstein ring of finite order for each
J € J, and we assume that the structure homomorphisms are all surjective. Typical examples
of R are Rr and Rp.
Firstly we observe an easy characterization of DI“?!(R) in DP*"(R).

Lemma 2.5. Let R be of the form (2.1). Let C € D" (R) be a perfect complex and
let a < b be any integers. Then C is in D'“’\(R) if and only if H'(C ®H1§ R;) = 0 for any

iaa+1,...,bandany je€ J.

Proof. The “only if” part is clear. For the “if” part, we only have to show the follow-
ing claim: For an R-homomorphism f : F — F’ between finitely generated projective
R-modules, if the induced R ;j-homomorphism f:F&g R; — F’ ®g R; is injective for any
j € J, then f is a split injection. We shall show this claim.

For each j € J, we write F; = F ® R; and F} = F’ ® R;. Since both F and F’ are
projective, we have a natural isomorphism

Homg(F',F) = 121 Homg, (F’, F).
JjeJ

For each j € J, since R; is a zero-dimensional Gorenstein ring, any injective Rj-
homomorphism is a split injection. Therefore, the subset

G;j={g; € Homg,(F/,F;)| g; o f is the identify on F ;}
is not empty. Moreover, since R; is of finite order, the set G is also finite. Therefore, the pro-
jective limit linjel G is not empty. Then any element g of linjel G;C linjgj Homg (F WF )

~ Homg(F’, F) satisfies the condition that go f is the identity on F'. This completes the proof.
O
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We also record the following, due to Sakamoto [23].

Proposition 2.6 ([23, Lemmas B.13 and B.14]). Let R be of the form (2.1). Let C be a
perfect complex in D'Y(R) and r > 0 be a locally constant function on Spec(R). Then the

system {ﬂ;}_ H'(C ®HI§ R j)}jej naturally constitutes a projective system and we have a natural
isomorphism

(H'Cex Rj)].
R,

J

ﬂHl(C) 5 lim[
R —

J

In particular, taking » = 1, we deduce that the natural map
1
(22) H'(C) = ((|H'(©) = (H'(C))'
R

is isomorphic, that is, H 1(C) is reflexive. Alternatively, we can directly show that H'(C) is
reflexive since H!(C) is the kernel of a homomorphism between finitely generated projective
modules.

3. Basic elements

In this section, we introduce the notion of basic elements, which is the key in the present
paper as discussed in Subsection 1.2.

3.1. Definition of basic elements. For the definition of basic elements, we first deal with
zero-dimensional Gorenstein rings such as Rg,, = (Z/p™Z)[Gal(F/Q)], and then by taking
limit more general rings of the form (2.1) such as Ry, Rp.

DermiTion 3.1. Let R be a zero-dimensional Gorenstein ring. Let C € DU2I(R) be a
perfect complex and put r = yg(C). Suppose that » > 0. Then we define a natural map

Mc : Detg!(C) — (| H'(©)
R

as follows (this is essentially the same as Il in [5, Proposition A.7(iv)], but our formulation
is more canonical). Let us take a quasi-isomorphism C = [C' — C?] which is concen-
trated in degrees one and two and C', C? are both finitely generated projective. By applying
Remark 2.4(2) to the exact sequence

0—- H'(C)—- C!' - 2,
we obtain a homomorphism
r+rank(C2) r

() C'erDep' () — [ H'(©).
R R

Since C! is finitely generated projective of rank r + rankz(C?), Remark 2.3 shows that

r+rank(C? rank(C")

ﬂ )clz A C' = Detg(Ch).
R R
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Therefore, we can define I1¢ as the above homomorphism.

An element of N H 1(C) is called a basic element for C if it is in l'IC(Det,;1 (0)). Also, an
element of N H'(C) is called a primitive basic element for C if it is the image of a basis of
Dety,' (C) under I.

We note that the map Il¢ is not injective in general. The extreme case where Il¢ is the
zero map can occur, and in that case the zero element is the unique basic element.

DeriniTion 3.2. Let R be of the form (2.1). Let C be a perfect complex in DU-?I(R) and
put » = xg(C). Suppose that > 0. Then we define an R-homomorphism

Tl : Detg (C) — (| H'(C)
R

as the projective limit of Hegir, in Definition 3.1, using Proposition 2.6. Via I1¢, we define
(primitive) basic elements in the same manner as in Definition 3.1.

The following proposition follows immediately from the definition.

Proposition 3.3. Let R be of the form (2.1). Let C be a perfect complex in DU (R) with
r = xr(C) > 0. Let z € Ny H'(C) be an element and we denote by Z;j the image of z in
ﬂ;ej H'(C ®% R;). Then z is a basic element (resp. primitive basic element) for C if and only
if zj is a basic element (resp. primitive basic element) for C ®% R; forany je J.

3.2. Concrete description in rank one case. We give a concrete description of a primi-
tive basic element in the rank one case. We identify H'(C) and ,le H'(C) by (2.2).

Proposition 3.4. Let R be of the form (2.1). Consider a perfect complex C = [R® i R
concentrated in degrees one and two with s > 1, where A is regarded as a matrix of size
(s —1)Xs. Let ey,...,es be the standard basis of R°. For each 1 <i < s, we denote by A;
the (s — 1) X (s — 1) matrix which is obtained by removing the i-th column of A. Then

S

Z(—l)"—' det(A;)e; € R®

i=1
is contained in H'(C) and indeed is a primitive basic element for C.

Proof. This description has already given in different expressions in the literature (e.g. [,
Lemma A.7]), but we give a complete proof here. By Proposition 3.3, we may assume that
R is a zero-dimensional Gorenstein ring. Let fi,..., f,_; be the standard basis of R*~! and
fi's---, fi_, the dual basis. We shall show that the homomorphism

K s—1
M : /\(R“‘)® /\(RS‘])* — H'(C)
R

R

satisfies

He((er A Ae)®(ff A A fL)) = Z(—l)"—1 det(A))e;.

i=1
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Let @ : H'(C) — R® be the inclusion map and 8 : R® — R*~! be the map represented by A.
Then the map

s—1 K
Hl(c)* ®R /\(RS—I)* N /\(RS)*
R R

as in Remark 2.4(2) is given by

CRWi A A1) > (@) Q) AB W) A+ AB W)
Thus the element x = Ilc((ey A -+ Ae) ® (fY A= A fI ) € H'(C) is characterized by

o) = (@Y @ ABUD A AB(fL)) (er Aeee Aey)
for any ¢ € H'(C)*. By taking ¢ = e; (the dual basis) for each 1 < i < s, we obtain
0

ef(x)=detfl A |=(=D""det(A)),
0
where, in the displayed matrix, ‘A denotes the transpose of A and the first column is 1 at the
i-th row and O at the other rows. Thus we have x = Zf:l(—l)"‘1 det(A))e;. O

In the rest of this subsection, let us consider an algebra R = Z,[A][[T]] with A a finite
abelian group as in Subsection 2.2. We will give another characterization (Proposition 3.6)
of primitive basic elements over R in the rank one case. It will play an important role when
we discuss main conjectures for elliptic curves in Section 6.

In general, if C is a complex over a noetherian ring R such that H/(C) = 0 for i < 0, then
each element z € H'(C) induces a morphism of complexes

R[-1]1 5 C

in the derived category, which, at degree one, induces the homomorphism R — H'(C) which
sends 1 to z.
We show a lemma which will be used in the proof of Proposition 3.6 below.

Lemma 3.5. Let C be a perfect complex in DY2(R) such that yz(C) = 1 and H*(C) is
torsion as an R-module. Let z € H'(C) and 7 € H'(C) be elements such that Anng(z) = 0
and Anng(z') = 0. Suppose that the cones of R[—1] L Cand R[-1] 5L c represent the

same element in KO(DF:rrf(R)). Then there exists a unit u € R> such that z’ = uz.

Proof. For a while let a € R be any non-zero-divisor. We consider a morphism between
triangles

R[-1] —= C — Cone(z) —

{1

R[-1] -2~ ¢ — Cone(az) — -
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Here, we simply write Cone(z) for the cone of R[—1] L , and similarly for Cone(az).
This diagram induces a triangle

Cone(az) — Cone(z) —» R/aR[0] — .

perf
tor

Recall the group homomorphism dz : Ko(D
2.1. Then the above triangle implies

(R)) — Iy defined just before Proposition

dzr(Cone(z)) = dr(Cone(az)) dr(R/aR[0]) = a dr(Cone(az))

in Ir, where the last equality follows from Proposition 2.1.

Now we begin the proof of the lemma. By the assumptions, the module H'(C) is gener-
ically of rank one, so there exists a unique element u € Frac(R)* such that z’ = uz. We
have to show u € R*. We write u = a/b with non-zero-divisors a, b € R. Then the above
observation implies

dz(Cone(z)) = adr(Cone(az)) = % dr (Cone (%z)) = udr(Cone(z'))

in Ix. Since we have dz(Cone(z)) = dz(Cone(z’)) by the assumption, this shows u € R*
as desired. O

Proposition 3.6. Let C be a perfect complex in D'V (R) and suppose yr(C) = 1. Then,

for each z € H'(C), the following are equivalent.
(i) z € H'(C) is a primitive basic element for C and Anng(z) = 0.
(i1) The confe of R[-1] L Cisin Dfoerrf(R) and moreover represents the zero element in
Ko(D, (R)).

Moreover, if these conditions hold, then H?*(C) is torsion as an R-module.

Proof. Let us take a quasi-isomorphism C ~ [R® i R*~17 and use the same notation as
in Proposition 3.4.

Suppose first that (i) holds. Write z = ), cje; with ¢; € R. By the assumption
Anng(z) = 0, it is not hard to show that, by changing the basis of R* if necessary, we
may assume that ¢; € R is a non-zero-divisor. Since the condition (ii) on z is stable under
multiplication by R*, by Proposition 3.4, we may also assume that ¢; = (—1)""! det(A;) for
each i. Since ¢; = det(A,) is a non-zero-divisor, we see that H>(C) is torsion.

In order to show (ii), we observe that the cone of R[—1] % Cis quasi-isomorphic to the
complex

C-RELER A R

concentrated in degrees zero, one, and two. Let pr; : R® — R denote the projection to the
first component, and incl; : R5~1 - RS denote the map which sends (x», ..., x;) € R to
(0, x2,...,x5) € R*. Let us consider the following commutative diagram
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Rs—l i> Rs—l

incly

z A

0 R RS R~ ——=0
|
R e R
1

which can be regarded as an exact sequence of complexes. Then we obtain
’ s=1 A1 51 ‘1
[C'1=[0->R"™ > R"]+[R—>R - 0]

in Ko(Dbsr '(R)), where the complexes in the right hand side are also concentrated in degrees
zero, one, and two. Using the homomorphism ¢z in Proposition 2.1, the two terms in the
right hand side are pr(Coker(A;)) and —pr(R/ciR), respectively. Then by Proposition 2.1

we have
dr(C") = Fittg (Coker(A)) FittR(R/clR)_1 =(1),

where the final equation follows from ¢; = det(A;). Since di is isomorphic, we have
[C'] = 0 in Ko(DP™(R)). Thus (ii) holds.

Suppose (ii). Since the second cohomology of the cone of R[-1] L Cis H?*(C), the
condition (ii) implies that H*(C) is torsion. Let z’ € H'(C) be a primitive basic element for
C. Then, by the description in Proposition 3.4, we have Anng(z’) = 0. Hence the above
discussion implies that z’ also satisfies the condition (ii). Then Lemma 3.5 shows that z and

Z’ coincide up to unit, so z is also a primitive basic element for C. |

3.3. Computing Fitting ideals via primitive basic elements. In this subsection, we
show that primitive basic elements have information on the initial Fitting ideals of H>(-).

The results of this subsection are not essentially novel. Historically, it was Burns-
Kurihara-Sano [2] that first obtained the same kind of results, concerning Rubin-Stark el-
ements (see [2, Theorem 7.5]). That striking observation was subsequently generalized by
Burns-Sano [5, Section A.1] to more general algebraic situations. The results of this subsec-
tion can be regarded as reinterpretations of those preceding works. However, by introducing
the notion of primitive basic elements, the formulations become much more clear.

In general, for an element z € (x M where M is a finitely generated module over a
noetherian ring R, we define Im(z) as the image of z, regarded as a homomorphism A\ M* —
R.

Proposition 3.7. Let R be a zero-dimensional Gorenstein ring. Let C € DU2?/(R) be a
complex withr = yg(C) > 1. Let z € (g H'(C) be a primitive basic element. Then we have

Fittr(H*(C)) = Im(z)
as ideals of R.

Proof. Taking a quasi-isomorphism C = [R* 4 R*"] with s > r, we can obtain an explicit
description of a primitive basic element for C as in Proposition 3.4. Then the proposition
follows from that description and the definition of (initial) Fitting ideals. We omit the detail.
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See also [5, Proposition A.2(ii)]. m]

Corollary 3.8. Let R be of the form (2.1). Let C € D"2/(R) be a complex with r =
xr(C) > 1. Let z € Ny H'(C) be a primitive basic element. For each j € J, we denote by
Zj € m;e,- H'(C ®% R;) the natural image of z. Then we have

. 2 1 .
Fittg(H*(C)) = {%ﬂm(z,)
]E

as ideals of R.

Proof. This corollary follows from Proposition 3.7 and H*(C) ® R; ~ H}(C®% R;). O

We shall deduce more explicit formulas from Corollary 3.8 when r = 1 and R is either Rg
or R for some finite abelian extension F/Q.

For a finitely generated module M over a noetherian ring R, we denote by ev : M — M**
the natural homomorphism as in Remark 2.4(1). Then we can associate an ideal Im(ev,) of
R for each element x € M.

Proposition 3.9. Let F/Q be a finite abelian extension. Let C € DU?(Rr) be a complex
with yg,(C) =1. Letz€ H Y(C) be a primitive basic element. Then we have

Fittg, (H*(C)) = Im(ev.)
as ideals of Rp.
Proof. By Corollary 3.8, it is enough to show that
Im(ev,) = lilllm(evzm)
m

as ideals of Ry, where z,, € H'(C ®%F Rp ) 1s the natural image of z.

Let us take a quasi-isomorphism C =~ [C' — C?], where both C! and C? are finitely
generated projective over Rp. By definition of the cohomology groups, the cokernel of the
injective map H'(C) < C' is a submodule of C?, so in particular is free over Z,,. Since the
Rp-linear dual is isomorphic to the Z,-linear dual, it follows that the dual map

Cl,* — Hl (C)*

is surjective.

For each m, we have C ®H1§F Rpm =~ [C' ®g, Rpm — C? ®r, Rp,u]. Note that the dual map
(C! ®r, Rpm)* — H I« ®%F Rr,,»)" 1s surjective since Rp,, is a zero-dimensional Gorenstein
ring. Now we consider the natural commutative diagram

cl* H'(C)* Rp

i | |

(Cl QR RF,m)* — HI(C ®%F RF,m)* sz> RF,m-

Note that (—)* means Rp-linear dual (resp. Rp,,-linear dual) in the upper (resp. lower)
sequence. Here, the surjectivities of the two horizontal arrows are already observed, and
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those of the left and the right vertical arrows are obvious. It follows that the middle vertical
arrow is also surjective. Therefore, the claim also follows. O

Finally, we consider Rr. The result is unfortunately not so nice as the previous proposi-
tions. For ideals 7, .J of R, we write I Cg, J if T € J and the quotient J /T is finite.

Proposition 3.10. Let F/Q be a finite abelian extension. Let C € D!2(R ) be a complex
with g, (C) = 1. Letz € H'(C) be a primitive basic element.
(1) We have

Fittr, (H*(C)) Cgin Im(ev,)

as ideals of Rp.
(2) Suppose Anng,(z) = 0. Then we have

Hl
Im(ev,) = Fittg, (Ext;zF (% RF)) .
F

Proof. This proposition can be proved in a similar manner as in [9, Theorem 7.11], but
we sketch the proof here for convenience. To each the notation, we put R = Ry and
Ry = Rp,  for each m, n.

(1) Let Z ¢ R be the annihilator ideal of H*(C)g,, the maximal finite submodule of
H*(CO). Let Tmn ¢ R = Ry, be the natural projection map. Then we shall actually show that

3.1 Ttmn (Z Im(evy)) C Im(ev,, ) C my, (Im(evy)) .
Then (3.1) together with Corollary 3.8 would imply
ZIm(ev,) C Fittr (H*(C)) C Im(ev,),

and (1) would follow.
Let J,,, be the kernel of 7, ,. Then we have an exact sequence

0 — H*(O)[Jmnl = H'(C) ®% Ry — H'(C &% R,,)

(see [22, Lemma 6.9]). Note that the last arrow sends z ® 1 to z,,,. By assuming that m, n
are enough large, we have HZ(C)[Jm,,,] = H*(C)g,. We then have

Im(ev,,,) = {®(z) | ® € Homg,,(H'(C) ®% Ry, Rnn)s Clizcy,, = 0}

mn

By C € D!'?(R), the cohomology group H'(C) is the kernel of a homomorphism between
finitely generated projective R-modules. As R is free over the subring Z,[[Gal(F/F)]],
which is a regular local ring of dimension two, it follows that H'(C) is free over
Zp[[Gal(Fw/F)]]. Then by [9, Lemma 7.15], the natural map

Homg (H'(C), R) — Homg, (H'(C) ®& Ryns Rnn)

is surjective. These observations show the claim (3.1).

(2) Since H'(C)/Rz is torsion and H'(C) is free over Zp[[Gal(F«/F)]], the linear dual

1
of the exact sequence 0 — R 5 H L) - HR—(ZC) — 0 yields an exact sequence
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v, H'(C
0 — Homz(H'(C), R) 3 R — Ext;a( R( )
VA

,R)—>O.

Thus we obtain the formula. m]

ExampLE 3.11. Fix anisomorphism R =~ Z,[A][[T]] where A is a finite abelian group and
T denotes a formal variable. Consider a perfect complex

T
c=[r*"'R],
where the map sends the basis e, e, to p, T, respectively. Then, by Proposition 3.4, z =
Te, — pe; is a primitive basic element for C. We also have

H'(C) = Rz, H*(C) = R/(p,T)R = F,[Al.

Therefore, in this case, the inclusion stated in Proposition 3.10(1) is not an equality.

Moreover, this example indicates that the ideal Fittr (H?(C)) cannot be described only
by the information on the embedding Rz c H'!(C). This is a different phenomenon from
Propositions 3.7 and 3.9.

4. Arithmetic complexes

As in Subsection 1.3, we fix a Galois representation 7" and a finite abelian extension F/Q.
In this section, we introduce local and global complexes and review their basic properties.
See, e.g., the book [17] by Nekovar as a comprehensive reference.

Throughout this paper, we use the following standard notations. For a field K, we de-
note by RI'(K,—) the complex in a derived category whose cohomology groups are the
Galois cohomology groups H'(K, —) = H'(Gal(K/K), ). More generally, for a Galois ex-
tension K’/K of fields, we denote by RI'(K’/K, —) the complex with cohomology groups
H(K'/K,-) = H(Gal(K'/K), -).

We often deal with the Galois representations Tr, Tr,,, and Tr 51multaneously In that
case, we denote by R the coeflicient ring Rr, Rgm, or Rp, and put T=T ®z, R.

4.1. Local complexes. In this subsection, we fix a prime number [ ¢ S.,(F/Q) U {p}.
We do not assume that [ ¢ Sp.q(7"). Since T is free over ﬁ, it is known that the complex
RI(Q, T) is perfect over R and actually in DI®2/(R) (see e.g. [17, Proposition 4.2.9]). The
main purpose of this subsection is to review the finite part RI'/(Qy, T) and the singular part
RIC/ +(Qy, T) which will be defined in Definition 4.2 below.

First we reformulate Assumption 1.10.

Lemma 4.1. The following are equivalent.
(1) The Z,-module HY(F.®Q,T ®z, Q,/Z)p) is divisible.
(i1) The Z,-module H'(F., ® Q;,T) is torsion-free.

Proof. Suppose (ii). Then for any m > 0, the exact sequence 0 — T 515 T/p"T =0
induces

H'(Fo®Q,T)®z, Z,/p"Z, ~ H'(Fo ® Q,, T/p"T).
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By taking the inductive limit, we obtain
H(Fo ® Qi T) ®2, Qp/Zy = H'(Fou ® Q1, T ®2, Q,/Zy),

from which (i) follows.

Suppose (i). Then for any m > 0, the exact sequence 0 — T/p"T — T &z, Q,/Z, 7
T ®z, Qy/Z, — 0 induces
H'(Fo®Q,T/p"T) =~ H' (Fu ® Q1, T ®2, Qp/Z,)[p"].

By taking the projective limit, we obtain

H'(Fo® Q. T) = lim H'(F ® Q1. T ®2, Q,/Z,)[p"].

m

Since the p-cohomological dimension of F, ® Q; is one, the Z,-module H WFo®Q,T ®z,
Qp/Z,) is divisible. Hence (ii) follows. a

We denote by Q)" and Q,°, respectively, the maximal unramified extension of Q; and the
unramified Z,-extension of Q;. Then Q}"/Q}*" is a [, Z,-extension, where ¢ runs over all
prime numbers other than p.

DeriniTiON 4.2. For each (ﬁ, 7) as above, put

RI/(Qi. T) = RI(@Q}"/Qi, H(@Q}". T)
=~ RO(Q)/Qi, H/(@Q*, T)),
where the isomorphism is induced by the inflation. We define R, /(Q, T) by a distinguished
triangle
~ Inf — —
4.1 RI'/(Q, T) = RI(@, T) = RI Qi T) - .

We denote by H;(Ql, T) and Hj (@, T) the i-th cohomology groups of R[#(Q;,T) and
RIC/ +(Qy, T), respectively. Note that H}(Q;, T) is the usual unramified cohomology group.

Lemma 4.3. Suppose the equivalent conditions in Lemma 4.1. Then the following hold.

(1) For each (ﬁ, T) as above, we have RI'(Qy, T) € D[O’z](ﬁ), RI+(Qy, f) € D[O*”(ﬁ), and
R[,/(Q;, T) € DM(R).

(2) Let 0 € {0, f, / f}, where O denotes “no symbol.” Then we have isomorphisms

RIo(Qr, Tr) ®%, Re = RT6(Q1, Tr),
RIG(Qr. Tr) ®, Rem = RTa(Qy, Trm).
(3) Again let 0 € {0, f, | f}. For a subfield F’ of F, we have
RIo(Q, Tr) ®, Rp = RIo(Q, Tr).

Proof. We first show the following claims:
(1) HO(Qin, Tr) is projective over R,
(i) H(Q;**,TF) ®r, Rr =~ H(Q;*, Tp),

(iii) H(Q", Tr) ®r, Rrm = H(Q*, Tr ).
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Note first that H(Q}**, Tr) is a direct summand of H°(F®Q}**, Tr). This is because each

I
component of F ® Q" is a finite extension of Q,”* of order prime to p. We have

(4.2) H(F @ Q) Tp) ~ H'(F ® Q°,T) &z, RF,

which is clearly free over Rr. Thus (i) follows. Similarly, we also have

H'(F® QY ,Tr) ~ H'(F ® Q°,T) ®z, Rr

~ H'(F @ Q*°, Tr) @, Rr.

Thus (ii) follows.
By Assumption 1.10 together with Lemma 4.1, we have

H'(F®Q",T/p"T) ~ H'(F ® Q. T) ®z, Z,/p"Z,.

Then we have

H(F ® Q7. Tr) ~ H'(F @ Q°, T/p"T) ®z, 2, Rim
~ H'(F®Q;",T)®z, Rrm

~ HO(F ® Q?yc’ TF) ®Ry RF,m-

Hence (iii) follows.

Now we begin the proof of the lemma.

(1) As already remarked, we have RI'(Qy, T) € D[O’zl(ﬁ) by e.g. [17, Proposition 4.2.9].
The same proposition combined with the claims (i)(ii)(iii) shows RT((Q;, T) € DI*I(R).
Since we have Hj A Qi, T) = O unless i = 1,2 for each T, Lemma 2.5 together with the
assertion (2) proved below shows that R[', (Q;, T) € DI2I(R).

(2) When 0 = 0, this follows from [6, Proposition 1.6.5(3)]. The same proposition
combined with the claims (i)(ii)(iii) shows the case where O = f. Then by the triangle (4.1),
the case where O = / f also follows.

(3) By (4.2) for F and F’, we obtain

H(F ® Q). Tr) ®g, Rp =~ HY(F ® Q°, Tp),

SO
HQ", Tp) ®r, Rp ~ H'(Q ", Tp).

Thus (3) follows again by [6, Proposition 1.6.5(3)]. m|

Proposition 4.4. We have
HYQ.Tr) = HY(Q.Tr) =0,  H)(Q.TF)=0.

Proof. The first vanishing follows from local Tate duality and the fact that the p-
cohomological dimension of F',, ®Q; is one. The second vanishing follows from [21, Propo-
sition B.3.3]. o

4.2. Global complexes. In this subsection, we fix a pair (F,S) as in Subsection 1.3, that
is, F' is a finite abelian extension of Q and S is a finite set of finite prime numbers such that
p ¢ Sand SU{p} D Sum(F/Q). Recall that we put S = S U {p, co}.
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DeriniTiON 4.5. For each (ﬁ, T), we define a complex RI'(Qg/Q, T) by a distinguished
triangle

4.3) RI(Q5/Q, T) - RI(Qs/Q, T) » (PRI, 1(@, T) —,

[eX\S

where X is a finite set of places of Q such that ¥ O SU Spad(T) and Qg denotes the maximal
algebraic extension of Q which is ramified outside £. We denote by H i(Qg/ Q,T) the i-th
cohomology group of RI'(Q5/Q, T).

As the notation implies, this definition does not depend on the choice of X, thanks to a
distinguished triangle ([17, Proposition (7.8.8)])

(4.4) R[(Qx/Q.T) - RIQx/Q.T) » () RI/(@.T) —
[eX'\X
forY D X.
We also recall the Poitou-Tate duality (cf. [17, Proposition (5.4.3)])

R[(Qs/Q.7) —» P RO@. T) - R0@s/Q, T(1))'[-2] -,

[eX\{o0}

which induces a triangle

(4.5) RI(Q5/Q. 1)~ (P RI@.T)e PRI Q. T) - RIQx/Q.T(1)[-2] —.
leSUip} [eX\S
Lemma 4.6. Suppose Assumption 1.10.
(1) For each (E, T), we have RI'(Qg/Q, T) € D[O’z](ﬁ). Moreover, under Assumption 1.9,
we have R[(Q5/Q, T) € D' 2(R).
(2) We have isomorphisms

RI'(Qs/Q. Tr) ®%, Rr ~ RI(Qg/Q, Tr),
RI(Q5/Q, Tr) ®, Rem = RO(Q5/Q, Trm).
(3) For a subfield F' of F, we have

RI(Qg/Q, Tr) ®%, Rp = RI(Qg/Q, Tr).

Proof. Taking X as in Definition 4.5, we have R['(Qz/Q, T) e D02 (ﬁ) by [17, Proposition
4.2.9]. Then RT(Qg/Q,T) is also perfect by Lemma 4.3(1), and is actually in D®?(R).
Under Assumption 1.9, we have H*(Q, Tf, ,,) = H(F,,T/p™T) = 0 for any n,m, so the
latter half of (1) follows by Lemma 2.5. The assertions (2)(3) follow from [6, Proposition
1.6.5(3)] and Lemma 4.3(2)(3). O

DEriNTION 4.7. Let T* denote the Z,-submodule of 7' on which a complex conjugation
acts as =1; since p is odd, we have T = T @ T~. Similarly, the ring R r can be decomposed
as Rr = R} X Ry with respect to the complex conjugation (R is the zero ring when F is
totally real).

Let r(T) be the locally constant function on Spec(R r) defined by
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HT) = rankz, (T~) (onSpec(R}))
~ |rankz,(T*) (on Spec(R})).

By abuse of notation, r(7T") also denotes the similar function on Spec(ﬁ) for R = R or Rp .
This r(T) is called the core rank of T, by virtue of Proposition 4.8 below.

Proposition 4.8. Under Assumption 1.10, we have

X7(RT(Q5/Q, T)) = K(T).

Proof. Let F’ be the maximal subfield of F such that the degree of F’/Q is prime to
p. By Lemma 4.6, we may assume that R = Rp1 = Fp[Gal(F’/Q)], which is a product
of finite fields. Over such a ring, the Euler characteristics of complexes are computed by
simply counting the dimension of the cohomology groups. Hence the Euler characteristics
of the second and the third complexes in (4.3) are computed by the global and local Euler-
Poincare characteristic formula [18, (7.3.1), (8.7.4)]. In this way the Euler characteristic of
RI'(Qg5/Q, TF 1) is computed and we obtain the formula. O

Let us suppose Assumptions 1.9 and 1.10. Then, thanks to Lemma 4.6(1) and Propo-
sition 4.8, the complex RI'(Q5/Q, T) satisfies the conditions in Definition 3.2. Therefore,
for elements of ﬂl%m H 1(Qg/ Q, T), we have the definition of (primitive) basic elements for

R[(Q5/Q, T).

5. Stark systems

In this section, we define Stark systems and prove a key theorem (Theorem 5.12) that each
Stark system yields a basic element for RI'(Q5/Q, T'r). The discussion in this section closely
follows the works by Burns, Sakamoto, and Sano ([4], [5], [22]), but we make more use of
the notion of determinant modules. As in Subsection 1.3, we fix a Galois representation 7
and a pair (F, S).

5.1. Stark systems over zero-dimensional rings. We fix m, n > 0 in this subsection. To
ease the notation, put

R =Rpr, m, A=Tp .

In the theory of Stark systems (also of Euler and of Kolyvagin systems), it is important to
play with primes satisfying preferable conditions as follows (see e.g. [4, §3.1]):

DeriniTioN 5.1. Let P(A) be the set of prime numbers / ¢ SuU Spad(T) (recall that S =
S U {p,o0}) such that / = 1 mod p™ and that A/(Fr;—1)A is a free R-module of rank one,
where Fr; is the /-th power Frobenius automorphism.

Note that, for/ ¢ SU Sbad(T'), we have an isomorphism

Hi(Q1,A) = A/(Fr; =DA.

It follows from standard facts on local cohomology groups that, for each [ € P(A), the
modules H°(Q;, A), H}(QI,A), H/lf(Ql,A), and H*(Qy, A) are all free of rank one over R.
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DeriniTiON 5.2. A finite subset V € P(A) is said to be large (for A) if the localization map

H'(Qs/Q, A" (1) » P H'(@,AY(1))

eV
is injective (cf. [5, Definition 3.13]). Here, we put £ = S U Spaa(T).

Trivially, for finite subsets V c V/ c P(A), if V is large, then V’ is also large.
The following is essential in the theory of Euler systems.

Assumption 5.3 (on F). For any m,n, there exists a finite subset V. C P(TF, ,,) which is
large (for TF, ;) in the sense of Definition 5.2.

It is well-known that Assumption 5.3 can be checked by Chebotarev density theorem if
we suppose that the image of the Galois representation

Gal(Q/Q) — Autz, (T) = GLeunk(r)(Zp)

is large enough in a certain sense (see [4, Lemma 3.9]). That is why we suppose Assumption
1.4 in Theorem 1.6.

Now we begin the definition of Stark systems, following [4, §4.1] and [22, Definition
4.2]. Let r = r(T') be the core rank in Definition 4.7.

DeriniTiON 5.4. For a finite subset V C P(A), define

r+#V
Xy(4) = () H'(@s,,/Q, A) & Dety! (EB H}f(Qz,A)].
R

leV

Note that X7,(A) depends on the choice of S, but we omit § from the notation since no
confusion can occur.

For example, we have

(5.1) Xj(4) = (| H'(@Q5/Q, A).
R
For finite subsets V C V' of P(A), by the triangles (4.3) and (4.4), we have a triangle
(5.2) RI(Qs,,,/Q, A) - R[(Qy,,,,/Q, A) — P RT/(Q;, A).
leV'\V

By taking the first cohomology, we get an exact sequence
(5.3) 0 — H'(Qs,,/Q,A) = H'@Qs,,/Q. A) — (P H} (@, A).
leV'\V

Since the last module is free of rank #(V’ \ V), applying Remark 2.4(2) to this sequence
induces a homomorphism

r+#V’ r+#V
() H'(Qs50,/Q. A) @ Dety! [QB H}f«@l,m] = () H'Q50,/Q. A).
R R

leV'\V

Therefore, we obtain a natural homomorphism X{,(A) — X{(A). Thus we can regard
(X{/(A))vepa) as a projective system.
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DeriniTiON 5.5. We define the module of Stark systems for A of rank r by
SS,(A) = lln Xy (A).
VCP(A)

This module depends on S, but we again omit S from the notation.

By (5.1), we have a canonical map
(5.4) ma : SS,(A) - Xy(A) = [ | H'(Qs5/Q, A).
R

The following is the key theorem of Stark systems over zero-dimensional rings. Recall
that, as remarked in the final paragraph of Section 4, we have the notion of (primitive) basic
elements under Assumptions 1.9 and 1.10.

Theorem 5.6. Suppose Assumptions 1.8, 1.9, 1.10, 1.11, and 5.3. Then the following
hold.

(1) We have a natural isomorphism
SS,(A) ~ Det,}1 RI(Q5/Q, A).

In particular, SS,(A) is free of rank one over R. A basis of SS,(A) is called a primi-
tive Stark system.

(2) Let € € SS,(A) be a (primitive) Stark system. Then ma(e) is a (primitive) basic
element for R['(Qg/Q, A).

Remark 5.7. Theorem 5.6(1) is essentially equivalent to [5, Theorem 3.12(ii)]. However,
the determinant module in the right hand side is regarded as the module of horizontal deter-
minantal systems in [5], and the proof seems quite different from ours below. According to
those differences, it is not easy to deduce Theorem 5.6(2) from their formulations. For that
reason, we will give an independent proof which is more suitable to deduce Theorem 5.6(2).

In the rest of this subsection, we prove Theorem 5.6. The following proposition is the key
observation.

Proposition 5.8. Suppose Assumptions 1.8, 1.9, 1.10, and 1.11. Let V C P(A) be a finite
subset which is large in the sense of Definition 5.2. Then H I(quv /Q,A) is a projective
module over R of rank r(T) + #V. Moreover, the triangle (5.2) (for (0, V) in the place of
(V, V") induces a quasi-isomorphism

RI(Q5/Q.A) = |H'(Q5,,/Q.4) » €D H (@, 4)|.

levV

where the right hand side is a perfect complex concentrated in degrees one and two.

Proof. We first show that the connecting homomorphism

(5.5) P H! @A) > H Q5/Q.4)

eV

is surjective. This homomorphism factors through H'(Qs/Q, AY(1))¥ with T = S U Staa(T),
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so we will prove both the two homomorphisms are surjective. The first map is surjective
since the dual map

H'(@s/Q,AY (1) - P H (@, 4)" — @ H' @, A" (1))
lev lev
is injective by the definition of V being large. On the other hand, by the triangle (4.5), we
have an exact sequence

H'(Qs/Q.A"(1)” = HX(Q5/Q.A) - HY(Q,, A) & (P H* (@, A).
leS
By Assumptions 1.8 and 1.11, the final module vanishes. This proves the surjectivity of
(5.5).
By Lemma 4.6(1), we have RI'(Qg/Q, A), RI'(Qg,,/Q,A) € D'"(R). Therefore, the
surjectivity of (5.5) implies that the induced homomorphism

H*(Qs5,,/Q. 4) > P H Q.. 4)
eV
is isomorphic. Since the right hand side is free (of rank #V) as remarked after Definition
5.1, this shows H*(Qg,,,/Q,A) is free of the same rank. Then RI(Qg/Q,A) € D"(R)
implies that H I(QEUV /Q, A) is also projective. Now the displayed isomorphism implies the
proposition. |

Now we begin the proof of Theorem 5.6.

Proof of Theorem 5.6. (1) By Assumption 5.3, in the definition of Stark systems, we may
take the limit only for large V in the sense of Definition 5.2. For each large V, Proposition
5.8 and the definition of X{,(A) imply an isomorphism

(5.6) X},(A) = Dety' R[(Q5/Q, A).

Moreover, if V Cc V' C P(A) are large, then the rank counting shows that (5.3) is a short
exact sequence of projective modules, so the transition map X{,(A) — X{,(A) is isomorphic.
Thus we obtain the assertion (1).

(2) Let us take a large finite subset V C P(A). Then we have a commutative diagram

SS,(A) —— X{,(A) —— Dety,' RI(Q5/Q, A)

l l Hrrag/o.a

Xo(4) Nk H'(Q5/Q, A)

by (5.1), (5.6), and the proof of (1). The commutativity follows from the constructions of
the maps. Moreover, the composite map coincides with 4. Now the assertion (2) follows
immediately from the definition of (primitive) basic elements. O

REMARK 5.9. By combining Theorem 5.6 with Proposition 3.7, we immediately obtain a
description of FittR(Hz(Qg/ Q, A)) using a primitive Stark system (we omit the statement).
The description is nothing but the formulations of preceding works by Burns, Sakamoto,
and Sano ([4, Theorem 4.6]) for initial Fitting ideals. The key idea of this paper is the
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intermediate statement that each primitive Stark system yields a primitive basic element.

5.2. Stark systems over Rp. In this section, we define Stark systems over Ry and de-
duce the main theorem, by applying the discussion in the previous subsection to R, ,, for
various m and n. Put R, , = Rr, , and T}, = T, 0.

Lemma 5.10. Let m’ > mand n’ > n.

(1) We have P(Ty v) C P(Tp ).

(2) Suppose Assumption 1.8. If a finite subset V.C P(T,y ) is large for T,y v, then V is
also large for Ty, .

Proof. (1) This is clear from the definition.
(2) Consider the commutative diagram

H'(Q5/Q, (Tr)" (1)) ——= D ey H' Qi (Tyn,)" (1))

| |

H'(Qg/Q, (T )" (1)) —= B,y H Q1 (T )V (1))

The lower horizontal arrow is injective by assumption. The left vertical arrow is injective by
Assumption 1.8 (in fact, HO(F,(T/pT)" (1)) = 0 suffices). Hence the upper horizontal arrow
is also injective. |

DermNiTiON 5.11. Suppose Assumptions 1.8, 1.9, 1.10, 1.11, and 5.3. Form’ > m and n’ >
n, using (the proof of) Theorem 5.6, we define SS,(T'y ») — SS,(T).,) by the commutative
diagram

SSr(Tm',n') — Ssr(Tm,n)
zl lz
Xy (Tow ) —— Xy (Ton )
where V is a finite subset of P(T,, ) which is large for 7, , (so also large for 7,,, by

Lemma 5.10), and the lower horizontal map is the natural map. This map does not depend
on the choice of V. We define the module of Stark systems for Tr by

SS(Tr) = lin SSr(Tm,n)-

m,n

By (5.4) for each A = T, ,, and Proposition 2.6, we have a canonical map
(5.7) 71, SSA(TR) — (| H'(Q5/Q, Tp).
RE

The following is the key result of this paper.

Theorem 5.12. Suppose Assumptions 1.8, 1.9, 1.10, 1.11, and 5.3. Then the following
hold.

(1) We have an isomorphism

SS,(Tr) = Det RI(Qg/Q, T).
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In particular, SS,(TF) is free of rank one over Rp. A basis of SS,(Tr) is again called
a primitive Stark system.

(2) Let € € SS.(TF) be a (primitive) Stark system. Then ny,(g) is a (primitive) basic
element for RI['(Qg/Q, Tr).

Proof. This theorem follows from Proposition 3.3 and Theorem 5.6. O

6. Application to elliptic curves

As in Subsection 1.1, let £/Q be an elliptic curve which has good reduction at p > 5. In

this section, by applying the results in the previous sections to T = T, E, we prove Theorem
1.6.

6.1. Review of relevant results. We briefly review some results in [9] and introduce
the Beilinson-Kato zeta elements. Let (F,S) be a pair as usual. Throughout we suppose
Assumption 1.1.

Recall that e = Q) if E is ordinary at p, and e € {+, —} otherwise. We put

H}(Q), Tr)* = (E°(Foo ® Q) ®(Q)/Z)))",
which is an R p-module with pdz . < 1. As the notation indicates, we have a natural surjec-
tive R p-homomorphism H'(Q,, Tr) — H/lf(Qp,TF)'. We denote by loc§, : H'(Q,Tf) —
H/1 f(Qp, Tr)® the composite of the localization map and the natural map.
On the other hand, in [9, Theorem 1.2], we constructed a e-Coleman map

Col* : H/lf(Qp’ TF). — Rp.
The kernel and the cokernel of this map is studied in [9]. In particular, for each element
u € H;(Qp, Tr)* with Anng,. (u) = 0, we have

rFu

(6.1) Wy Fittg, ( ] = (Col*(w))
as principal ideals of R, where W} is the same as in Conjecture 1.2.
By the work [11] by Kato, we have the Beilinson-Kato zeta element

22X € H'(Q5/Q,Tr) ® Q,

(we keep the convention in [9, Theorem 6.1]), and these elements Z,B,IE for various (F,S)
constitute an Euler system. The element ZE-I; is characterized by a connection with L-values,
from which the author [9, Theorem 1.3] obtained the formula

(6.2) Col® oloc} (zp5) = LYE/Fs)',

where ¢ denotes the involution on R which inverts every group element. Moreover, if E[p]
is irreducible as a Galois representation of Gal(Q/Q), then we have ZI;E eH l(Qg/ Q,Tp). It
also follows that Anng, (z%) = 0, since the right hand side of (6.2) is a non-zero-divisor by
the result by Rohrlich [20] on the non-vanishing of L-values.
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6.2. Reformulation of the main conjecture. We reformulate the main conjecture (Con-
jecture 1.2). As remarked in the final paragraph of Section 4, under Assumptions 1.1 and
1.3, we have the notion of (primitive) basic elements.

Conjecture 6.1. Suppose Assumptions 1.1 and 1.3. Then ZEE is a primitive basic element

for RI(Q5/Q, Tr).

Proposition 6.2. Suppose Assumptions 1.1, 1.3, and 1.5. Then Conjecture 1.2 is equiv-
alent to Conjecture 6.1. Moreover, the inclusion Wy, Fittg, (Sel3(E/F)") D (LUE/F)) is
equivalent to that ZE-E is a basic element for RI'(Q5/Q, Tr).

In fact, the same equivalence as in Proposition 6.2 holds without assuming Assumption
1.5. However, the proof needs more detailed computation, so we omit that in this paper.

Proof of Proposition 6.2. By Assumption 1.5, the complex RI'(Q,, Tr) is acyclic for
[ € S. Then by (4.5) we have a triangle

RI(Q5/Q, Tr) — RI(Q,, Tr) ® @ RI4(Q;, Tr) = RI(Qy/Q, Tr(1)'[-2] — .
lex\S

The cohomology groups of the middle (resp. the right) complex vanish except for degree
one, by Proposition 4.4 (resp. the validity of the weak Leopoldt conjecture H*(Qsz/Q, Tr(1))
= (). Hence (by Proposition 4.4) we have a quasi-isomorphism

(6.3) RI(Q5/Q, Tr) = |H'(Q), Tr) @ () H'(Q), Tr) —» H'(Qe/Q, TY(1)" |

lex\S

where the right hand side is a complex concentrated in degrees one and two.
As in [9, Proposition 5.6], the Selmer group Sel3(E/F) in (1.1) fits in an exact sequence

0= H{(Q), Tr)* & @ H'(Q. Tr) > H'(Qx/Q T{(1)" — Sel{(E/Fw)” = 0,
[ex\S
where we put H}.(QP, Tr)* = Ker (Hl(Qp, Tr) — H/]f(Qp, TF)'). Then, by taking the quo-
tient of the two modules in the right hand side of (6.3) by H}.(Q,,, Tr) &P e2\5 H'(Q, TF),
we obtain a quasi-isomorphism

(6.4) RI(Q5/Q. Tr) = [H} Q). Tr)* — Sely(E/Fo)"|.

Let z € Hl(Qg/Q, Tr) be any primitive basic element for RI'(Qg/Q,Tr). Since
H 1(Q§/ Q, Tr) is generically of rank one, there exists a unique element u € Frac(R)* such
that z§ = uz. By Proposition 3.6 and (6.4), the complex

lH},(Q,,,TFr

Selt(E/Fs)"
Rploc;f(z) = Sely(E/Fe)

perf

represents the zero element in Ko(D;,

equality of

(RF)). By Proposition 2.1, this implies the first

H!' (Q,,TFr)" H! JTr)®
Fittz, (Sel3(E/F)") = Fittg, (M] = u”! Fittg, (M)

R lod], 0 R loc], (%
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where the second follows from the choice of u. By Assumption 1.5 and [9, Corollary 7.7],
we have (Ls(E/F)') = (Ls(E/F)) as principal ideals of Rg. Then (6.1) and (6.2) show

H/lf(Qpa TF).

W7 Fittg .
£ r (RF loc/f(zg’%

J = (Ls(E/F)).

Therefore, the ideal Wy Fittg, (Sel§(E/F)") coincides with (resp. contains) the ideal
(Ls(E/Fy)) if and only if u € R* (resp. u € R), that is, if and only if ZEE is a primi-
tive basic element (resp. a basic element). This completes the proof. m|

6.3. Proof of Theorem 1.6. Now we can prove the main theorem of this paper.
Under Assumptions 1.1, 1.3, 1.4, and 1.5, the assumptions in Theorem 5.12 hold. There-
fore, we have an R p-module SS;(TF), which is free of rank one, and a natural map

e, + SS1(Tr) — H'(Qg/Q, Tr)

as in (5.7). Another key ingredient for the proof of Theorem 1.6 is the following result by
Burns, Sakamoto, and Sano.

Theorem 6.3. Suppose Assumptions 1.1, 1.3, 1.4, and 1.5. Then ZEIE is a component of
a Stark system, namely, is in the image of n,.

Proof. We can directly apply the results of [4] that each Euler system gives rise to a
Stark system via a Kolyvagin system. We refer to [9, §7.2] for the verifications of various
assumptions in [4]. O

Corollary 6.4. Suppose Assumptions 1.1, 1.3, 1.4, and 1.5. Then ZE}; is a basic element
for RI(Qg/Q, TF).
Proof. This corollary follows from Theorems 5.12 and 6.3. O

Proof of Theorem 1.6. Now the theorem follows immediately from Corollary 6.4 and
Proposition 6.2. |

RemMark 6.5. We compare the proof of Theorem 1.6 in this paper with that in [9] under
u = 0. The quasi-isomorphism (6.4) induces an exact sequence

loc
65)  0- H'(Q5/Q.Tr) — H} Q). Tr)" = Sel§(E/Fu)’ — HA(Q5/Q, Tr) — 0.

Suppose that Z]B,E is a basic element for RI'(Q5/Q, TF), as shown by Corollary 6.4 under the
assumptions. Let u € Ry be an element such that ZE}; is u times a primitive basic element.
Then by Proposition 3.10, we have

Li0=
(6.6) uFittr, (H*(Qg/Q, Tr)) Cpy Fittr, (Ext;ap (%%;TF) RF)] :
RFZF,S

for (not necessarily principal) ideals. On the other hand, the inclusion D in Conjecture 1.2 is
equivalent to

H/lf(Qpa TF). ]

6.7 Fittg .(Sel%(E/F)") D Fitt
(6.7) R (SElS(E/Fo)™) RF( Ry loct, (Z%
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for principal ideals.

The sequence (6.5) indicates that (6.6) and (6.7) are closely related. In fact, (6.7) implies
(6.6). However, the problem is that (6.6) does not imply (6.7) in general, unless we have
u = 0 for HZ(QE/Q, T). In [9], we first showed (6.6) by a direct application of results of
Burns-Sakamoto-Sano, and then we deduced (6.7) under ¢ = 0. In this paper, we did not
use (6.6) but instead we showed (6.7) directly.

7. Application to a work of Burns-Kurihara-Sano

We again consider the p-adic Tate module T = T,E associated to an elliptic curve £/Q
which has good reduction at p > 5. In this section, we review the conjectures by Burns-
Kurihara-Sano [3] and obtain an interpretation of them (see the diagram (7.7) below).

In this section, we fix (F,S) as in Subsection 1.3 and suppose Assumptions 1.1 and 1.3.
Actually, we may weaken Assumption 1.1 to that the group E(F ® Q,) is p-torsion-free.

In this section we always work under the following (one half of Conjecture 6.1).

Assumption 7.1 (on F). The element ZIBE.E is a basic element for RI'(Q5/Q, Tr).

Under Assumptions 1.4 and 1.5 (in addition to Assumptions 1.1 and 1.3), we have already
shown (in Corollary 6.4) that Assumption 7.1 holds. Therefore, under those assumptions,
the results in this section would be unconditional.

7.1. Further reformulation of main conjecture. We suppose Assumption 7.1. Note

that we have a commutative diagram

Dety,. RI(Qg/Q, Tr) = H'(Q5/Q, Tr)

o l

Dety, RI(Q5/Q. Tr) ——~ H(Q5/Q, Tr),

where Iz and Il are the homomorphisms in Definition 3.2, and the vertical arrows are the
natural maps. Here, [z is injective by Assumption 7.1 and AnnRF(zl;I;) =0.

DEerintTION 7.2, We define 37 s € Det,’alF RI'(Qg/Q, Tr) as the unique element such that

BK
I, Gr..s) = 2Zrg

in Hl(Qg/Q, Tr). We also define 3r5 = Nr_/r(3r..s) € Det,}; RI'(Qg/Q, Tr). It follows that

NrGrs) = 2ps

in H'(Q5/Q, Tr), where z% € H'(Qg5/Q,T) is the image of z%. However, this formula
does not characterize 3£ since I is not injective in general.

Proposition 7.3. Suppose Assumption 7.1 for F. Then the following are equivalent.
(i) Conjecture 6.1 holds for F.
(ii) The element 3 s is a basis of Det;elF RI(Q5/Q, Tk).

(iii) The element 3ps is a basis of Det,;; RI(Q5/Q, Tr).
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Proof. (i) & (ii) is clear. (ii) & (iii) follows from Nakayama’s lemma. |

Proposition 7.4. Suppose Assumption 7.1 for F. Let F’ be a subfield of F such that F|F’
is a p-extension. Then Conjecture 6.1 for F’ is equivalent to Conjecture 6.1 for F.

Proof. We use the second (or the third) formulation in Proposition 7.3. Then the proposi-
tion follows from Nakayama’s lemma again. O

In particular, we may take F’ as the subfield of F' such that F//F’ is a p-extension and
[F’ : Q] is prime to p. Then Proposition 7.4 says that equivariant main conjectures can
be deduced from non-equivariant main conjectures. This phenomenon is also observed by
Kurihara [14, Theorem 6].

7.2. Existence of Darmon-type derivative. In this and the next subsections, we apply
our discussion in this paper to the recent paper [3] by Burns-Kurihara-Sano.

Put Gr = Gal(F/Q), so Rp = Z,[GFr]. Let Ir be the augmentation ideal of Ry, which
is by definition the kernel of Rr — Z,. According to [3, Hypothesis 2.2], throughout we
suppose the following.

Assumption 7.5. The following hold.

(1) ECF)[p] = 0.

(2) The Mordell-Weil rank satisfies rankz(E(Q)) > 1.
(3) The Tate-Shafarevich group III(E/Q) is finite.

Actually in this subsection Assumption 7.5(3) may be weakened to the finiteness of
HI(E/Q)[p™], but the stronger hypothesis will be used in Subsection 7.3. We denote by
t = rankz E(Q) the Mordell-Weil rank, which is denoted by r = ry, in [3]. Note that As-
sumption 7.5(1) implies that Hl(Qg/Q, Tr) is Z,-free.

DEeriNiTION 7.6. Define a Z,-homomorphism

Nr: H'(Q5/Q,Tr) » H'(Q5/Q, Tr) ®z, Ry

by
Ne@= ) o@ec.
oeGp
It is easy to check that
(7.1) Nr@) = ) o@ear
oeGp

for each a € Rf.
We have a natural (restriction) map

H'(Q5/Q,T) —» H'(Q5/Q, Tr).

By Assumption 7.5(1), this is an injective map between Z,-free modules and its cokernel is
also Z,-free. Hence this map induces an injective map

rt H'(Qg/Q,T) &z, (I /1}) - H'(Q5/Q, Tr) ®z, (Rp/I}).
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Foreachz € H! (Qg/Q, TF), the image of Nr(2) in the target module of ¢ is again denoted
by N F(Z).

DeriniTion 7.7. The Darmon-type derivative of zl'f}; is an element kpg € H ! (Q3/Q,T)®z,
(IFI/I}) satisfying
tr(krs) = Np(zps
in H 1(Qg/ Q,Tr)®z, (Rp/I ©.). If such an element exists, then it is unique.
As discussed in [3, Sections 4.1 and 4.2], they conjecture that the Darmon-type derivative
of zl;}; actually exists. However, they could provide only partial evidences for the existence.

In this paper, we prove the conjecture under our running (mild) assumptions as in Corollary
7.9 below.

Theorem 7.8. Consider the composite

_ I N
Detz) RT(Qs/Q. Tr) = H'(Q5/Q. Tr) = H'(Q5/Q Tp) ®2, Re /7).
Then the image of N o Il is contained in the image of .

The statement of Theorem 7.8 will be complemented in Theorem 7.11. Before the proof,
we state an immediate consequence.

Corollary 7.9. Under Assumption 7.1, the predicted element kg exists. Therefore, under
the assumptions as in Corollary 6.4, the same conclusion holds.

Proof of Theorem 7.8. As in Proposition 3.4, take a quasi-isomorphism RI'(Q5/Q, Tr) =
A
R} — R;‘l]. Letey,...,esand fi,..., fi_1 be the standard bases of R} and R;‘l, respec-

tively. Then we have RI'(Q5/Q,T) = [Z‘;, i Z‘;,‘l], where A denotes A modulo /5. Since
H 1(Qg/ Q,T) is a free Z,-module of rank ¢ (see (7.6) below), by changing the basis neces-
sary, we may assume that

Ker(A) = Z, ®0 € Z.

In other words, we have Ae; = --- = A¢; = 0, where ej,. .., e, is the standard basis of Z;'
This means that every component of A in the ¢ columns from the first is in /. Therefore, we
have

(7.2) det(A)), ..., det(A,) € I'7",

det(As1), . .., det(Ay) € IL.

Now we compute Ny o ITz. By Proposition 3.4, we can compute in RS, ®z, (Rp/I}) as
follows:

Nrpollp((er A---Ae) @ (fiy A A fiy))

= Nr [Z(—l)"‘1 det(Al-)ei)

i=1

= Z(—l)i*INp(det(Ai)ei)
i=1



STARK SYSTEMS AND MAIN CONJECTURES 447

@b Z(—n’” Z oe; ® det(A;)o!
i=1

oeGp

t
72 Z(—l)"—1 Z oe; ® det(A;).
i=1

oeGp

The final formula is equal to the image under ¢y of

t

D (=D7'e @ det(A) € H'(Q5/Q, T) @z, I}
i=1

This completes the proof. |

Remark 7.10. By Assumption 7.1 and Proposition 3.9, we obtain

Fittg, (H*(Q5/Q, Tr)) 2 {®(z}%) | @ € Homg, (H'(Q5/Q, Tr), Rr)}.

The equality holds under Conjecture 6.1. Since the Z,-rank of H2(Q§/ Q,Tr) ®r, Z, =
Hz(Qg/Q, T)ist— 1, it follows that

(7.3) {O(z75) | ® € Homg, (H'(Q5/Q. Tr), Rp)} C I

An idea in [3, Section 4.1] is to use a statement like (7.3) in order to prove the existence of
krs. Our idea in Theorem 7.8 is that we should use the more refined fact that zf{é is a basic
element.

In fact, the proof of Theorem 7.8 is inspired by the computation in [3, Section 7]; more
precisely, by the proof of the commutative diagram [3, (7.4.1)]. In that paper, they deal with
only fields contained in the cyclotomic Z,-extension Q. of Q. From our perspective, we
can obtain a similar commutative diagram for general F/Q:

Theorem 7.11. We have a commutative diagram
(7.4)

Dety! RI'(Q5/Q, Tr) H'(Q5/Q.TF)

N
Nrjg l \

Deti: RI'(Qs/Q.T) “Boor H'(Q5/Q,T) &z, (I;Tl/lfv)(? H'(Q5/Q,Tr) ®z, (Rr/I},)

Mg

Here, Npq is the natural map and Bocy is the Bockstein homomorphism, which is a slight
modification of the definition in [3].

We omit the proof, but we stress that the computation in the proof of Theorem 7.8 is
essential in the proof of the commutativity.

In [3], an intensive study is done for the cyclotomic Z,-extension Q. of Q. Let Ig_ be
the augmentation ideal of Rg = Z,[[Gal(Q/Q)]]. By taking the projective limit of (7.4),
we obtain a commutative diagram
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Dety!. RI(Q5/Q. To) =~ H'(Q5/Q, To)
N
NQW/Ql

Det;) RI(Q5/Q.T) — H'(Q5/Q.T) &z, (5! /1, )——=lim H'(Qg/Q, Tq,) @z, (Rq, /1))
C oo Qoo n

It is expected that the homomorphism Bocg_ is injective. In fact, [3] shows that the
injectivity is equivalent to the non-vanishing of a certain p-adic regulator.

7.3. Various conjectures. In this subsection, we recall the conjectures in [3] and reinter-
pret them from our perspective. We keep Assumption 7.5.

7.3.1. Birch-Swinnerton-Dyer conjecture and Tamagawa number conjecture. Keep
in mind that in this subsubsection the field Q plays the role of F in the proceeding parts of
this paper.

First we recall the Birch—Swinnerton-Dyer conjecture. The (strong) BSD conjecture
states

L'(E,1) _ c(EII(E/Q)
Qp-Regy  #EQ32,

tor

(BSD)

where
e L*(E, 1) is the leading coefficient of L(E, s) at s = 1;
e Qp = Q7 is the Néron period;
e Reg is the regulator;
e ¢(E) =], c,(E) is the Tamagawa factor.

Here, we fix a Néron differential wg (up to sign) and define Qf as the image of wg under
the period map

(7.5) [(E.Qpg)—C.  we |wl.
E®R)

We shall review the definitions of elements 7", nglg in [3, Definitions 2.4 and 2.17] (de-

noted by 7852, 7¢®).

Let S be a finite set of prime numbers # p. As in [3, (2.2.1), (2.2.2)], we have a natural
isomorphism

(7.6) Q ®z, H'(Q5/Q,T) ~ Q, ®z E(Q)

and a natural exact sequence

0= (Q,®z, H'(Q5/Q,T))" = Q, ®2 E(Q) — Q&2 E(Q,) - 0.

These give rise to the second isomorphism in the following sequence of isomorphisms:

1:Q, ®z, Det;! R[(Qg5/Q, T)

t t—1
= A\ (@, &z, H'(Q5/Q, 7)) &g, /\(Q, &z, HX(Q5/Q, T)"
Qp Qp
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= A\ (@, @z EQ) &g, \(Q,®z EQ) &, (Qez EQ,))
Qp Qp

~ DetQp(QP ®Z E(Q)) ®Qp DetQp(Qp ®Z E(Q)) ®QP (Qp ®Z F(E, QIE/Q))
~Q,®; (DetZ(E(Q)) ®z Detz(E(Q)) ®z I'(E, QIIE/Q)) ;

where the third isomorphism is induced by the dual exponential map
exp” : (Q, ®2 E(Q)))" > Q, ®2T(E, Qo).

Derinirion 7.12. Let S be a finite set of prime numbers # p. We define 1" € C, ®z,
Det;' R[(Q5/Q, T) by

L) (E D
AN = 5 —— (1A AX)® (X1 A A Xp) @ W,
Qg - Regg
where x1,...,x; € E(Q) is a basis of E(Q)/E(Q), (the right hand side is independent from
the choice of x1,. .., x;). Here we fix an isomorphism C ~ C, to regard the coefficient in the

right hand side as an element of C,. Then the period map (7.5) and the Néron-Tate height
pairing
Detg(E(Q)g) ® Detg(E(Q)g) — R, Wi A Ay ® Wy A Ayp) o detyi, i)
send A(n75") to L;U{p}(E ,1).
As an algebraic counterpart, we define nglg €Q,®z, DetZ RI'(Qg/Q, T) by

Aln®) = ( [T Pa™

leSU{p}

C(EWIIE/Q)

XA AX)®(X] A+ AXp) ® WE.
HE(Q) ’ ’

Here, for each prime [ (possibly [ = p), we put
Pi(X) = det(1 = Fr; X | T,E") = 1 — a)(E)X + 1y, (DIX?,

where 1y, (l) = 1if ] ¢ Spaa(E) and 1y,(]) = 0if [ € Spaa(E), so that P,(I"") is the Euler factor
at [ of the L-function L(E, s) for s = 1.

By definition, (BSD) is equivalent to 7" = n?g, which is independent from S. On the
other hand, Tamagawa number conjecture states that

an : . -1 o
(TNC) Ng is a Z,-basis of Detz,, RI(Q5/Q,T)
(see [3, proof of Proposition 2.6]), which is again independent from S.

Proposition 7.13. For each finite set S of prime numbers # p, the element nglg isaz,-
basis ofDet%; RI(Q5/Q, T).

Proof. This proposition is well-known. See [12] as a detailed reference. O

By Proposition 7.13, the conjecture (TNC) is equivalent to (BSD) up to Z;.
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7.3.2. Generalized Perrin-Riou conjecture and refined Mazur-Tate conjecture. Let
(F,S) be as usual. Recall the diagram in Theorem 7.11. Then the generalized Perrin-Riou
conjecture [3, Conjecture 2.12] claims that

(gPRC)p Nr(zps) = tr 0 Bocr(h).
Similarly, the refined Mazur-Tate conjecture [3, Conjecture 2.19] claims that
(tMTC) - Nr(@35) = tr o Bocp (5 ®).

Keep Assumption 7.1. By Theorem 7.8, we have the Darmon-type derivative xrs and
thus (gPRC)r (resp. (rMTC)r) can be restated as kg5 = Bocp (") (resp. ks = Bocp(nglg)).

We shall obtain a further reformulation. Recall that in Definition 7.2 we defined an ele-
ment 355 € Dety! R[(Qg/Q, Tr) such that IT¢(3r5) = zp's. We propose conjectures

(gPRC) 308 =15
and
(tMTC) 305 =108

Then all of (gPRC)g, tMTC)f, (gPRC), and (rMTC) are independent from the choice of S.

Proposition 7.14. Suppose that the homomorphism Bocq,, is injective. Then the follow-
ing are equivalent.

(1) (gPRC) (resp. (rMTC)) holds.
(i1) (gPRC)r (resp. (rMTC)r) holds for any finite abelian extension F/Q.
(iii) (gPRC)f (resp. (rMTC)g) holds for any intermediate number field F of Qs /Q.

Proof. By Theorem 7.11, we have
NF(Z?:};) = tr o Bocr oNp/q(3r,s) = tr © Bocr(3q.s)-

Therefore, (gPRC)r (resp. (rtMTC)r) is equivalent to that 775" — 3,5 (resp. nglg —30,) 1s in
the kernel of Bocy. Thus (i) = (ii) holds. Trivially we have (ii) = (iii). Finally, by the
injectivity of Bocg_, we have N, Ker(Bocg,) = 0. Hence we have (iii) = (i). O

Note that, in [3, Conjecture 4.9 (resp. Conjecture 4.16)], the assertion (iii) is called the
infinite analogue of the generalized Perrin-Riou conjecture (resp. the refined Mazur-Tate
conjecture). Proposition 7.14 gives simple interpretations of those conjectures in [3].

7.3.3. Relations among conjectures. Keep Assumption 7.1. By Propositions 7.3 and
7.4, our main conjecture (Conjecture 6.1) for p-extensions F/Q is equivalent to

(MC) 30,5 18 a Z,-basis of DetZ RI(Q5/Q, T).

We can illustrate the relations between these conjectures in the following diagrams:
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: (BSD) .
(77) (77211 (n;lg) ngn ; n;lg
(TNC)
? Prop.7.13 ) )
Det;! RI(Qg/Q, T) (2PRC) (MTC)
MO)||? N
(3a.s)

The left diagram concerns Z,-submodules of C, ®z, Deti}f RI'(Qg/Q, T), and the right
concerns elements of it.

These diagrams (7.7) are so nice that we can deduce some main results of [3] at once. For
example, we can deduce [3, Theorem 7.3] (MC) implies (rMTC) up to Z;j) and [3, Theorem
7.6] (MC) and (gPRC) imply (BSD) up to Z[f).
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