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Abstract
We show that the entropy of the @-continued fraction map w.r.t the absolutely continuous
invariant probability measure is strictly less than that of the nearest integer continued fraction

map when 0 < @ < # This answers a question by C. Kraaikamp, T. A. Schmidt, and
W. Steiner (2012). To prove this result we make use of the notion of the geodesic continued
fractions introduced by A. F. Beardon, M. Hockman, and I. Short (2012).

1. Introduction

In this paper, we consider the entropy problem of a-continued fraction maps which is a
1-parameter family of continued fraction maps. The main point of this paper is to apply
the idea of the geodesic continued fractions, defined by A. F. Beardon, M. Hockman, and
I. Short [3], to the metric theory of the a-continued fractions. With this idea, we give the
answer to the question by C. Kraaikamp, T. A. Schmidt, and W. Steiner [12] concerning the
maximum value of the entropy of the a-continued fraction maps. We can apply this idea to
other 1-parameter families of continued fraction maps.

In 1981, the author [16] introduced the notion of @-continued fraction map for a, 1/2 <
a < 1, which is defined as follows:

Ta(x)={ H‘Uﬂ"'l_aj %f xelae-1,a)\{0}
0 if x=0.

It was shown in [16] that there exists an absolutely continuous ergodic invariant probability
measure y, for each T, and the entropy A(T,) W.r.t. i, is given by

1 2 e 1
% h(T(,)z{@'g if j<a<yg
Ve .
ogarn 6 i g<ac<l
where g = _‘/52‘1 . Itis easy to see that the definition of 7\, can be extended to 0 < @ < 1/2 and

a number of papers have been working for the behavior of i(T,) for 0 < @ < 1/2. Here we
note that, in the case of @ = 0, T,, has an absolutely continuous ergodic invariant measure of
infinite volume. In 1999, P. Moussa, A. Cassa, and S. Marmi [15] extended the above result
to [V2 - 1,1/2), ie. for V2 =1 < @ < 1/2, i(T,) = h(T),) also holds. Then, in 2008,
L. Luzzi and S. Marmi [14] showed the existence of the absolutely continuous invariant
probability measure, which is ergodic, for 0 < a < V2 -1 and lim,_o W(T,) = 0. They
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also observed by computer simulation that A4(7,) is not monotone on (0, 1/2) as a function
of a. After this observation, the author and R. Natsui [18] proved the following : there
exist three sequences of sub-intervals {/; ¢}, {lo¢}, {134}, 1 < € < oo, in (0, g*) such that
for each £ > 1 h(T,) is strictly increasing on /¢, constant on /,,, and decreasing on /3.
After this result, there are several papers concerning the details of the behavior of h(T,), e.g.
[6, 7, 12, 22]. The methods used in these papers were mostly based on the construction of
the natural extension of 7, as a planer map and the property which is called the “matching”.
These ideas were appeared in [23, 16] at first.

Since h(Ty) = KT )2) for g* < « < g (see [12]), it is quite natural to ask whether i(T,),
g* < a < g takes the maximum value (the question in [12, p. 2242]). Because of (1), the
question was h(T,) < h(T,;) holds for 0 < a < g* or not. This is intuitively obvious by
the computer simulation in [14]. In this paper, we show that this is certainly true. Our result
(Theorem 2 in §3) implies the following:
Main Result (in §3) The maximum value of the entropy of a-continued fraction maps is
m”é and h(T,) = log(lmé holds if and only if g* < a < g.

To prove this result, we do not use neither the natural extension nor the matching property,
but use the idea of the geodesic continued fractions introduced in [3]. In this point, the fact
“WT,) = log(ﬁ %2 holds for g*> < @ < ¢g” can be proved simpler than that of [12].

To define the geodesic continued fractions, we start with the definition of the Farey graph
on QU {co}. Suppose two rational numbers r; = % J=12,5;t€Z,(s;t;) = 1, satisfy the
condition s1#, — t; 52 = =1. Then we call r; and rJz are adjacent and consider that there is an
edge which connects | and r,. In this way we have a graph on the set of rational numbers
with co = 1/0. We call this graph the Farey graph. We see that this is a connected graph
defined on Q U {co}. For any pair of rational numbers r; and r, the minimum path which
connects them is said to be a geodesic path. For A € GL(2, 2), if rational numbers r; and

b
ry are adjacent then A(r) and A(r,) are also adjacent. Here A = (Ccl d) € GL(2,Z) acts on
Q U {oco} as a linear fractional transformation : x +— %. Thus the image of the Farey graph

by any A € GL(2, Z) is also the Farey graph. If a rational number r has a continued fraction
expansion

&1 ‘ & ‘ &3 ‘ Ek ‘ .

r=ay+ —+—+—+--+—, @GN, g==xlforl <i<k, a)eZ

ap ‘ ay ‘ as ’ ay
and there is no continued fraction expansion of r of this form such that its expansion length
is less than k, we see that the length of the geodesic path from oo to r is equal to k + 1.
We explain this fact in the next section more precisely. In general, there are a number of
geodesic paths from oo to a fixed rational number r, see [3]. We combine the notion of the
geodesic path and a-continued fraction expansion of a generic point (irrational number) x to
prove our main result, which is given in §3. It should be noted that in our method we use the
existence of the Legndre constant of the nearest integer continued fractions in addition to
the condition for continued fraction maps being geodesic type. Finally, in §4, we give some
examples of a 1-parameter family of continued fraction maps for which the same method
works.
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2. Some definitions and notations
We start with some basic definitions. We fix « € (0, 1). We define
Ean(X) = sgn Ty (x)

and

— 1 n—1
aa/n(X) = |~T<’; '(x) +1 J if T(t (X) #0
’ 0 it T (x) =

for n > 1. Then we have

S @] 2| Eaan(®)]

a1 w20 | dan(%)

for x € [@ — 1, @) \ {0} and the right side terminates at some positive integer n if and only if
x is a rational number. We call this expansion the @-continued fraction expansion of x. We
put

(2) (pw,nl(x) pa,n(x)) _ (0 Sa,l(x)) (0 8(1!2()6)) L (0 8w,il(x))
qa,n—l(x) Q(l,n(x) 1 aa,l(x) 1 aar,Z(x) 1 aa,n(x)
forn > 1 and @, ,(x) # 0 and
(pa,—l(x) pa,O(x)) — (1 0)
qrr,—l(x) CIQ,O(X) 0 1)

From (2), we have

Pan(®)  Eai(®]  £an(®)] Ean(X) |
Gan(¥) | ag1(x) | ag2(x) |@an(®)
and call 2 83 the n-th convergent (of the a-continued fraction expansion) of x. Also from
(2), we see |Pan-1(X)qgan(*) = Gan-1(X)pan(x)| = 1, which means ’7(“:—8 and ;—:Eg are
adjacent. Thus the a-continued fraction expansion of x gives a path from co to 2= 83 on the
Farey graph for every n > 1:
pa,l(x) p<x,2(x) pa,n(x)
00 —0—- — " .
a1 ()C) Q(l,2(x) Gan (x)
: Pan-1 Pan
In general we consider by (2) when &4, ..., €ap and aqg 1, ..., Agp are
dan-1  Yan
given without x. For given sequences of +1 and positive integers, &1, ..., £qu, and by 1,
a2, ..., ban, respectively, we denote by { ~*', %2 . %" ) the associated cylin-
’ ’ ba/,l ba,Z ba,n
der set, i.e.
< éa,l éa,2 éa,n >
boz,l ’ b(x,Z ’ ’ ba,n
:{x € [a' -1, CL/) : 8(1,’1()6) = éa,b ey 8a,n(x) = éa/,na arx,l(x) = b(l/,lv cee 7aa/,n(x) = ba/,n}

A sequence
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( éa,l éa/,Z éa,n )

ba/,l ’ ba/,2 ’ ’ ba/,n

is said to be admissible if the associated cylinder set has an inner point, here we note that
any cylinder set is an interval (or the empty set). The transpose of (2) shows that

Gan-1(X) 1 ‘ Ean(X) ‘ £a2(X) ‘
qa’s"(x) ’ aa,n(x) ‘ aa/,n—l(x) ‘ aa/,l(x)
. . . Ea,l ‘ Ea2 ‘ Ean ‘
For a given rational number r with r = + + 4+ —,
‘ g1 ’ ag2 ‘ Agn
Ea,1 a2 Eaq, . . ..
( S, T, Y |is said to be geodesic if the path
Ayl Ao Ao
Pa,1 Pa2 Paj3 Pan
020D — b5 —X 55— 5 ... 55— =
qa,1 da2 qa3 dan

is a geodesic path from oo to r.

DeriniTioN 1. The a-continued fraction expansion of x € [@ — 1,@) \ {0} is said to be
geodesic if for any n > 1,

A 1(X) 7 aa2(x) 77 agu(x)

( Ea1(X)  Eq2(X) Ean(X) )

is geodesic. Moreover, T, is said to be geodesic type if any a-continued fraction expansion
of x e [a—1,a) )\ {0} is geodesic.

For any €, = +1 and positive integers aq,x, | < k < n, we see

Eat| Ea2(®|  Ean(0)]
|01 (x) | aga(x) | G n(x)
L ! | I |

= =+ + .. 4+ - .
| €01 (D)a0,1(X) | E0.1(DE2(X)da(x) | T £ k() - dan(x)
Thus the a-continued fraction expansion can be rewritten to the ICF expansion in [3]. In
this way, we have a simple version of [3, Theorem 1.3].

Lemma 1. A continued fraction

Ea,1 ‘ Ea2 ‘ Ea,n ‘
e+

‘ g1 ‘ [25%) ‘ Agn

(g(l,k ==+l1, Aok > 0, 1 <k< n)

is geodesic if and only if the following two conditions hold :

1. Forany 1 <k <n, ag; # 1.
2. Forany1 <k<{<n,

Eak Eak+1 Ea,t
, g e
Aok Ag k+1 Aol
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is not equal to

-1 -1 -1 -1
5 (2 )

if € =k + 1, then this means( _21 , _21 )]

If a,,, = 1 appears, then it is easy to see that T, can not be geodesic type since
oo v
— + —
la |17 |6 [a+1 [b+1
holds, (see [11, 16] for the related discussions). We never have (g4 4(x), g (X)) = (=1,1)
forxela—-1l,a)and k > 1 (0 < a < 1). If (3) appears for some ¢ > 1, then we can also

shorten it, (see Lemma 3 in §3).
The following theorem is a direct consequence of Lemma 1.

Theorem 1. The a-continued fraction map T, is geodesic type if and only if g> < @ < g

with g = ﬁ

Proof. It is easy to see that a, ,(x) = 1 is only possible for @ > g, otherwise (0 < @ < g)
Aon(x) > 2 forany x € [@ — 1,@) \ {0} and n > 1. This implies that 7, is not geodesic type
if @ > g. It is also easy to see that for @ = ¢*

-1 -] -1 -1
a—-l=—+—+—+ -+ —+ .
2 3 |3 3

This shows that for & > ¢?, the sequence of the form
-1 -1 -1 -1 -1
27 37 3777 37 2

never appear in any a-continued fractions. This means that T, is geodesic type for > < a <
g. On the other hand, if 0 < a < ¢, then there exists £ > 0 such that
-1 -1 -1 -1 ~1|  seeal@- D] enpsl@=-1)|

-l=—+—+—+4+ -+ —+- -+ —+ +
2 |3 |3 3 |2 agen(@=1)  Jagus@=-1)

Hence we see from Lemma 1 that 7, is not geodesic type. This completes the proof of this
theorem. =

3. Main Result

First we show the following basic lemma, which is proved in [16] for 1/2 < @ < 1 and
can be easily extended to 0 < a < 1.

Lemma 2. Fora.e. x € [a — 1, @), we have

1
im 1oz ,,00 =~ [ log idu.
n—oo n

[a—1,a)
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Proof. Since the proof is exactly the same as in [16, Proposition 2] in the case of 1/2 <
a < 1, we only give a sketch of the proof for 0 < @ < 1/2. It is easy to see that
1 1
242 () (1 - a)g2 ,(x)

forany x € [ —1,@)\ {0} and n > 1. For each «, 0 < @ < 1/2, there exists a positive integer
m such that if

Pan(X)

4 _
“ 5 )

1s admissible, then ¢ < m. This shows that there exist D > 1 and C; > 0 such that
qan(x) > Cy - D" and |py,| > C; - D"
forany n > 1 and x € [@ — 1, @). Thus, from (4), we can find a constant C, > 0 such that

Pan(X)

log |x| — log < C,D™"
a,n x)
for n > 1. Thus we have
Ea (X)) | Eaer1(X) Ean(X)
log |74 (x)| ~ log | —= @] e e
| G0 e(x) | o (%) | ()
for 1 < ¢ < n. From (2), we see
1 Ea,0(X) | Eaer1(X) Ea.n(X)
- - ngzlga,k(x)n';zl( @ @] e :
Gan(X) | @) | a1 (x) | (%)

Hence we see
1Y (-1 .1
— lim — E log |Ta (x)| = lim —log g,.(x)
n—oo N = n—oo n

when one of the limits exists. By the ergodic theorem, the limit of the left side exists for a.e.
x € [a — 1, @). Thus we get the assertion of the theorem. |

Remark. Here we recall that i(T,) = -2 [
we have

log |x|du,, see [14] for example. Thus

a—1,a)

(5) W(T,) = 2 lim log gon(x)  a.e.

Now we use the following, which concerns the second condition of Lemma 1.

Lemma 3. We have

e [ R S AR

which is equivalent to
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I L I T L=
PE ENPE N ER
k k

Proof. Proof.It is easy to see that

0 -1}(0 -1\(0} (1 -1\(0 1)\(0
1 2/t 2)\1) o 1)\1 3/l1
holds. Then we get the assertion by induction. O

This lemma shows that when
-1 -1 -1 -1
27 37777 372
appears, we can shorten the length of the continued fraction expansion one size. Then we
can apply the ergodic theorem to get the following:

Theorem 2. 1. For g* < a < 1/2, we have i(T,) = h(T| 2).
2. Forany 0 < a < g%, we have h(T,) < WTyp) = 2

1
log(g+1) 6 °

Proof. In this proof, we compare the increasing rate of g, ,(x) and that of g/2,(x).
1
Because of (5), i(T,) < h(T;2) or (T,) = h(Ty,2) is equivalent to lim —log g, .(x) <
n—oop
1 1 1
lim — log q1/2,,(x) or lim — log g, ,(x) = lim — log g2 ,(x) for a “typical” irrational number
n—oon n—oopn n—oon

x, respectively. First we show the second assertion of the theorem. Then we see that the first
assertion follows by the similar way. Since @ < g2, there exists a nonnegative integer k such

that
-1 -1 -1 -1
27 3777 37 2

2 _1’ _1‘ _1‘ 2
- =+ — + ot — -, g_1:_+—+_+...+_+...
3]s 3
Then, for @ < g*, we can find k since T, is order preserving and expanding on [« — 1, %)
and on [5=, —g*]. Suppose that

( 8a,n+](x) 8a,n+2(x) 8a,n+k+1(x) ga,n+k+2(x) )
aa,n+1(x) ’ aa,n+2(x) Y aa,n+k+1(x) ’ aoz,n+k+2(x)
(-1 -1 -1 -1
_(2’ 30 30 2)

N

for x € [ — 1, @). Then



460

| —

H. Nakapa
" -1 ‘ -1 ‘ -1 ‘ -1 ‘ 8a,n+k+3(~x) ‘
Tx)=—+—+-+—+—+ —— +---
‘ 2 ‘ 3 ‘ 3 ‘ 2 ‘aa,n+k+3(x)
k
and the path
pa,n—l(x) N pa,n(x) pa/,n+1(x) N pa,n+k+2(x)
qan-1 (x) CIa,n(x) qan+1 (x) 4o n+k+2 (x)
is mapped to
-1 -3 p
(6) 0 - 05— -5 — = - =
5 q
with
-1 -1 - -1
p_-tl ), ]
g |2 |3 13 |2

by the linear fractional transformation associated with A :

_ 0 {-,‘a,’l(x) 0 8a,n(x)
(N A_(l aa,l(X)) (1 aa,n(x))‘

The path (6) is of length k + 3. From Lemma 3, there is a path from oo to 5 of length k + 2

oo—>—1—>_—2—>_—5—>---—>£_
3 8 q
We map this path by the linear fractional transformation defined by (7) and get a path from
Pan-1 ()C) Pan+k+2 ()C)
Gan-1 (.X) Gan+k+2 (.X)

of length k+2, which reduces by one length. Now we consider a “typical”
x as follows. We choose x € [-1/2,a) = [a—1,a) N [-1/2,1/2) so that
1.

1
lim —f#i1<n<N : Thix) e

-1 -1 -1 -1
N—)(X)N 2 ’ 3 5t 3 ’

.1 _ W(T,)
1313; NIOg%,N(X)— 5
3.

| (T 2)
131330 NlogQI/z,N(x)— 5

4. There are infinitely many n > 1 such that a,, > 10 .
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Choosing x with the above four requirements is possible since (7, o) and (112, 112) are
ergodic. Here we recall the fact that the right side of the condition 1 is positive, e.g. see
[14]. For the validation of the requirements 1 and 4, we use the individual ergodic theorem
and for 2 and 3, we use the Shannon-McMillan-Breiman-Chung theorem of entropy. | We
put

From the choice of x, there exists a subsequence of natural numbers (Vy; k > 1) such that
ag N+1(x) > 10. For those Ny

1
T 82 ()

‘ Pa.N; (x)
x —
Qar,Nk (-x)

Now we use the existence of the Legendre constant of the nearest integer continued fractions

([11):

forsome n>0

3—-vV51 .
if ‘x— 3‘ < —‘/_—2 then 2 = PU2
q 2 ¢q q9 qi2a
and see that
Pan,(X)  p1j2m(X)

8 =
®) qaN(X)  q12.m, (%)

for some M; > 1. Since T, is geodesic type, M + 1 is the length of a geodesic path from
Pa. Nk(x)
qa,Nk ()C) !
ko such that

o to Then the discussion in the above shows that for any €, > ¢ > 0, there exists

9) My < N (1 —(n—¢))

holds for any k > ky. Now
hWTo) . 1 M; 1 . My W(Tp)
T = kh_}l’g ﬁk logqa’Nk(x) = hIIl Vk ﬁ lqul/z’Mk(x) = kll,n; V: . Tl/

From (9), we see limy_,«, %k < 1. Consequently we have h(T,) < h(T1)2).
If g < & < 1/2, then (8) implies Ny = M, which shows the first assertion of the theorem.
In this case, we only need the requirements 2, 3, and 4. |

4. Some other examples

Here are some other examples of 1-parameter family of continued fraction maps.

1. In 1981, S. Tanaka and S. Ito introduced another type of a-continued fraction map
Sefor1/2 <a < 1([23]):

'We note that Shannon and McMillan discussed the convergence in probability, then L. Breiman [2] proved
a.e. convergence in the case of finitely many states, and K. L. Chung [8] extended it to the infinitely many states
concerning this theorem.
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500 = %‘H+1‘@ if xela—1,a)\{0}
a\r) = 0 if x=0.

The definition of S, can be extended to 0 < @ < 1. However S, and S;_, can be
identified by x +— 1 — x and thus it is enough to consider the case 1/2 < @ < 1.
S. Tanaka and S. Ito constructed the natural extension map for each S,, 1/2 <@ < g
and showed that the entropy value w.r.t. the absolutely continuous invariant measure
is constant on [1/2, g]. It is easy to see that 1 appears in the partial coefficients of
this type of a-continued fractions if and only if @ > ¢g. Thus by [3, Theorem 3.1],
we have the following

Theorem 3. Tanaka-Ito’s a-continued fraction map S, is geodesic type if and
onlyifg> <a <g.

To prove this theorem, we use the fact that the digit 1 appears if and only if @ > g.
More about the detail of the behavior of this class of continued fraction maps, we
refer to C. Carminati, N. D. S. Langeveld, and W. Steiner [5] and H. Nakada and
W. Steiner [19].

The same holds for the map V,,, 0 < @ < 1:

Vo(x) = E +a

where 0 # x € [ — 1, @) and V,(0) = 0. gz < a < g. We see that V,, and V|_, can
be identified. In this case, 2, 3, £3, ¥3,..., £3, F2 appears if and only if @ > g if
1/2 < @ < 1. Then, again, by [3, Theorem 3.1], we have the following

Theorem 4. The continued fraction map V,, is geodesic type if and only if g> <
a<g.

The same discussion is also possible for Katok-Ugarcovici’s (a, b) continued frac-
tions (see [10]).

. In F. P. Boca and C. Merriman [1], they introduced a 1-parameter family of contin-

= 2 -

ued fractions with odd partial coefficients, with the parameter
In this case, the coefficients +1 appear for any parameter value «. The corre-
sponding graph is not the Farey graph but its subgraph and each map associated

Q <a< \/_“ is geodesic on this subgraph. We can extend the notion of ge-
odesw to this subgraph As [1] says, one can extend this type of contlnued fractlon
maps to the parameter value below ‘/— L to 0. Then it turns out that for & < T the
Lt Nl Rl N O
associated map it is not geodesic type anymore since ‘ k + ‘ 1 + ’ 3 + ‘ T =52

k-2
or
S N N N -1 |1 -1 1]
— R - R e —— e —— = + — 4+ — 4+ -+ —
k1 |3 |3 E |1 Jk-2 [3 |3 |3
————
P p-2

for some k > 2 can appear.

3. For the set of cusps of Hecke group of index k(> 3), we can define a graph similar
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to the Farey graph, see [21]. Then we can get the geodesic and entropy results
for @-Rosen continued fraction maps introduced by K. Dajani, C. Kraaikamp, and
W. Steiner [9] and C. Kraaikamp, T. A. Schmidt, and I. Smeets [13]. However to
discuss the metric theory of @-Rosen continued fraction maps, we have to show the
existence of invariant measures with their ergodicity etc for all possible values of a.
We will discuss the detail on another occasion.
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