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Abstract
In this paper, we consider the Cauchy problem of a class of higher order Schrodinger type
equations with constant coefficients. By employing the energy inequality, we show the L>
well-posedness, the parabolic smoothing and a breakdown of the persistence of regularity. We
classify this class of equations into three types on the basis of their smoothing property.

1. Introduction

In this paper, we consider the Cauchy problem of the following:

2m
(1.1) Dyu(t, x) = D2"u(t, ) + ) (a; D" u(t, x) + b;DY" Va(t, x)),
=1

(1.2) u(0, x) = ¢(x),

where 1 <m e N, M = R(orT), (¢, x) € (—o0,00) X M, D, = —i0;, D, = —i0, and i is the
imaginary unit. The constants {a;},{b;} C C and the initial data ¢(x) : M — C are given
and u(t, x) : (—o0,00) X M — C is unknown. We are interested in the Cauchy problem of
the following higher order nonlinear Schrodinger type equations:

(1.3) idu(t, x) — 8" u(t, x) = F(0*" 'u, 8" 'u, 8> 2u, 0°"u, .. . u, u),

with (1.2), where F' is a polynomial. As important examples, this class of equations in-
cludes the nonlinear Schrédinger hierarchy and the derivative nonlinear Schrédinger hier-
archy, which are integrable systems appearing in the soliton theory. It is known that the
Cauchy problem of (1.3) with (1.2) is locally well-posed on R in weighted Sobolev spaces
(of which functions are also sufficiently smooth). Its proof is based on the Kato type smooth-
ing estimate and the gauge transform [5, 6]. See Section 3 in [11] for this argument. On the
one hand, the well-posedness for (1.3) with (1.2) on R without any weight or on T remains
open. We also refer to [4, 10, 11, 16] for well-posedness results to higher order dispersive
equations including the KdV hierarchy. In [2], Chihara studied the well-posedness and the
ill-posedness of (1.3) for m = 1 with (1.2) on T. Recently, in [20], the second author has
studied a similar problem and shown a non-existence result of solutions of (1.3) for some
nonlinearity and m = 1 with (1.2) on T by employing a smoothing for elliptic equations.
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In other words, even when we restrict (1.3) to m = 1, the well-posedness for (1.3) with
(1.2) on T is remarkably different from that on R. Therefore, the nonlinearity F must have
special structures (expected to include the case where (1.3) is a integrable system) when the
Cauchy problem of (1.3) with (1.2) is (locally) well-posed on T. In proofs of [2, 20], the so
called “energy inequality” of (1.1) with variable coeflicients {a;(z, x)} and {b;(z, x)} plays an
important role. Our plan is to extend this result to m > 2. However, the energy inequality
for higher m is much complicated. Therefore, we assume {a;} and {b,} are constants to make
the problem simple in the present paper and will study the variable coefficients case in the
forthcoming paper. A defined below is used to classify (1.1) into three types.

2m—1

DEerNiTION 1. We write 22:1 cx = 0 for any sequence {c;}. y = {)/J-};”:‘l1 and A = {4} P

are defined as
-1

~.

Yi=by— ) @iy, 1<j<m-—1,
k=1
-1
Ly =2Imar -2 Imbyj gy, 1<j<m-1,
k=1
j-1
/12]‘_1 = 2Ima2j_1 + 22 Imbg(j_k)_l’)/k, 1<j<m.
k=1

Our main result is the following. We write P* f(x) := F~'(y(¢ > DF f)(x) and P~ f(x) :=
F~'(x(€ < =1)Ff)(x), where F is the Fourier transform and y is the definition function.

Theorem 1.1.
(Dispersive type, L* well-posedness) Assume that Aj =0for1 < j < 2m~—1. Then,
for any ¢ € L*(M), there exists a unique solution u(t, x) of (1.1)—(1.2) such that u(t, x) €
C((—00, 00); LA(M)).
(Parabolic type) Assume that there exists j* € N such that 1; = 0 for 1 < j < 2j* and
Ayjo > 0 (resp. Ay <0). (i) Forany ¢ € L*(M), there exist a unique solution u(t, x) of (1.1)—
(1.2) on [0, 00) (resp. (—o0,0]) such that u(t, x) € C([0, 00); L*(M)) N C=((0, c0) X M) (resp.
C((=0,0]; L*(M)) N C®((—=00,0) x M)). (ii) For any ¢ € L> (M) \ C®(M) and & > 0, no
solution u of (1.1)—(1.2) exists on (=6, 0] (resp. [0,6)) such that u(t, x) € C((=6,0]; L*(M))
(resp. C([0,6); L*(M))).
(Elliptic type) Assume that there exists j* € N such that A; = 0 for 1 < j < 2j* -1 and
Aojooi > 0 (resp. p_1 < 0). (1) Let ¢ € L*(M) satisfy Pto ¢ H'Y>(M). Then, for
any 6 > 0, there exist no solution u(t, x) of (1.1)—(1.2) on [-6,0] (resp. [0,0d]) satisfying
u € C([-6,0]; L2 (M) (resp. u € C([0,5]; L*(M))). Moreover, the same result as above
holds even if we replace P*, [-6,0] and [0, 8] with P~, [0, 6] and [-6, 0], respectively. (ii)
Let ¢ € L2 (M) \ C®(M). Then, for any § > 0, there exist no solution u(t, x) of (1.1)—(1.2)
on [=8, 8] satisfying u € C([=6,6]; L*(M))

Remark 1.1. Put v(r) = (0,) *u(r). Then v satisfies (1.1) if u is the solution of (1.1) and
u(t) € L*(M) & u(t) € H*(M). Therefore, Theorem 1.1 holds even if we replace LA*(M)
with H*(M) and H'/?(M) with H**'/2(M) for any s € R.
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Remark 1.2. In “Dispersive type,” the persistence of regularity holds on both (—co, 0]
and [0, c0). In “Parabolic type,” the equations have the parabolic smoothing effect on either
(=00, 0] or [0, o), which means the persistence of regularity breaks down on either [0, o) or
(—o0, 0]. Non-existence results in “Parabolic type” and “Elliptic type” is by the breakdown
of the persistence of regularity.

Remark 1.3. We give some examples of {a;} and {b,}.

e When m = 1, “Parabolic type” does not occur. In fact, the equation Dju = Du +
aiDu+ ayu + by D, it + byt is “Dispersive type” if Ima; = 0 and it is “Elliptic type”
otherwise.

e Let H(u) be a quadratic form defined by

2m
1 . . .
Hu) := 5 f|6§”u|2 + E (c,-uai’” Tu +dju8,25m i+ ejaai’" Tiwydx
=

for given {c;}, {d;},{e;} C C. Then, itis easy to check that H(u) is the Hamiltonian of
the equation (1.1) if and only if Ima; = by,-1 = Reds,—1 = Imd,, = 0 and 2, = &y,
for1 < j<2m—-1and1 <n < m. In particular, we can write ¢;; = (—1)’"‘/132j/2,
drj1 = i(=1)Y""Ja, j—1and dy; = (-1 a, jfor 1 < j < m (without loss of generality
we can assume c3j-; = esj-; = 0 since ¢3;-1- and e»;_;-terms always vanish by the
integration by parts). In this case, we see from Definition 1 and Remark 2.2 that
Aj =0for1 < j <2m-1, which implies that Hamiltonian equations are “Dispersive

type.”
e By using the equation (1.1), we have

d .
Euua)nz = 2Re i(D,u, u)

2m m

=-2 Z(Im a)}{D¥" u, uy -2 Z Tm bo, (D2 it ).

j=1 n=1
Therefore, when Ima; = by, =0 for 1 < j <2m—1and 1 <n < m, the solution of
the equation (1.1) conserves the mass, i.e., ||[u(¢)||. We see from the scaling argument
that this condition is also necessary. In this case, the equation (1.1) is “Dispersive
type.” Indeed, it is easy to see y; = O for 1 < j < m — 1 by Definition 1. It then
follows that A, = 2Ima; =0for 1 <k <2m-—1.

e When m = 2, we have

/11=21ma1, /12:21ma2, /13:21ma3+21m131b2.
So, equations D,u = D*u + iDu and D,u = Diu + D3t — iD2ii are “Elliptic type.”

On the other hand, D,u = D*u + iD,u + D3t — iD2i1 is “Dispersive type” although
this equation does not have the Hamiltonian.

We recall several results for equations related to (1.1). There is a large literature on the
well-posedness for the Cauchy problem of Schrodinger type equations, especially m = 1. In
[13], Mizohata showed that if the Cauchy problem



468 T. Tanaka AnD K. TsuGawa

Ot = Z(i@? +ci(0)0)u+ f(t,x), (t,x) € RxR",
j=1
u(0, x) = ¢(x)

is L? well-posed, then the condition

sup < o0

(t,w,x)ERXS" I XR"

;n
Imf ch(x+sw)a)jds

0 4

j=1

holds. In particular, this condition is also sufficient for the L?> well-posedness when n = 1.
See [1,2,3,8,9, 14, 17, 18] (and references therein) for related results. For m = 2, in [15],
Mizuhara studied L?> well-posedness for the Cauchy problem:

(1.4) (D, = D} = c1(x)D} — c2(x)D3 = c3(x)Dy — ca(x)u = f(t, %)
(1.5) u(0, x) = ¢(x),

where (7, x) € RxM. To be precise, he also studied another equation of the KdV type. When
M = T, he deduced the necessary and sufficient conditions for the L? well-posedness for
(1.4)—~(1.5). On the other hand, when M = R, he showed some conditions for the L? well-
posedness. Indeed, his sufficient condition for the L? well-posedness is also necessary under
the additional assumption. In [19], Tarama removed Mizuhara’s additional assumption, so
he obtained the necessary and sufficient conditions for the L? well-posedness for (1.4)—(1.5)
on R.

Since the coefficients are constants, by the Fourier transform, (1.1) can be rewritten into
the following:

2m
(1.6) Diii(t, €) = E™u(t,€) + ) ("I, €) + bie™" Tt -¢)).
J=1

Here, we fix £ € R (or Z) and put

B I Y R T B
Uf<t>-(i<t,—f>)’ XO‘(o -1 ) X"((—l)!’“b_j <—1>’“a7)’

for 1 < j < 2m. Then, by (1.6) with (1.2), it follows that
2m

(1.7) DU = ) £"IX;Ux),  U(0) =" @&), p(-£)),
j=0

which is a system of linear ordinary differential equations. We can easily obtain the unique
solution

2m
(1.8) Uelt) = UpO) expit Y £"7IX;

j=0
ont € (—oo,00) for each & € R (or Z). Therefore, our interest in Theorem 1.1 is essentially
on the regularity of the solution. Here, note that X;X; = X;X; holds for any 0 < j,k < 2m
if and only if b; = 0 holds for any 1 < j < 2m. If we assume this assumption, (1.7) is not a
system but a single ordinary differential equation and
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2m
(1.9) U, €) = PE) expit(£ + Y € a)
=1
for each & € R (or Z). Since y; = 0 and A4; = 2Ima;, it follows that
2m j/l
(e, )l = &)l ]_[ exp ———,

j=1

by which we obtain Theorem 1.1 easily. On the other hand, it seems difficult to obtain Theo-
rem 1.1 by (1.8) for general {b;} since X; Xy # X;X; for some j, k. To avoid this difficulty, we
employ the energy estimate. In particular, we modify the energy, adding correction terms
so as to cancel out derivative losses. See e.g. [7, 12] for this argument. However, some of
derivative losses cannot be eliminated by correction terms, and they may essentially affect
the well-posedness of the Cauchy problem of (1.1)—(1.2) as stated in Theorem 1.1. Propo-
sitions 2.1 and 2.2 are main estimates in this paper. The first term of the left-hand side of
(2.1) is the main part of the energy. The second term is the correction term. For “Dispersive
type.” the third and the fourth terms vanish. Thus, we easily obtain the L? a priori estimate.
For “Parabolic type,” the third term includes ,12.,~*|||ax|m—f*u||2. The parabolic smoothing is
caused by the term. For “Elliptic type,” the fourth term includes A, _ 1(Di(m_j Oy, uy. We
want to show the parabolic smoothing by making use of the term. However, the sign of the
term is not definite. That is unfavorable in our argument. Therefore, we compute the energy
inequalities of P*u and P~u instead of u and obtain Lemma 2.3. Note that the sign of all
terms except the correction terms in (2.4) and (2.5) are definite. Though (2.4) is the energy
inequality for ||P*u||, it includes /l]‘.lll(')xl’"‘j/ 2P~u|*. This is because (1.1) is essentially cou-
pled system of P*u and P~u as (1.6). The term A]-.|||ax|m-f/ 2P~ ul*> cannot be estimated by
|lu||. This is the main difficulty in the proof of “Elliptic type” in Theorem 1.1. The key idea
is to eliminate these terms in two steps where 1 < j <27+ 1and 2(j* +1) < j < 2m — 1.

First we analyse a property of {4 } so that Ay = 0 for 1 < k < j* — 1 implies that the
first 2 + 1 of {/l } vanish (see Lemma 2.5). In order to cancel out the rest of unfavorable
terms /l]‘.lll(?xl’"‘j/ 2P‘ull2 for 2(j* + 1) < j < 2m — 1, we use an additional correction term
F, and obtain (2.2) (see also (2.3)). Here, F, originates from the energy inequality for
10,]~**2/2P~y||, and F . does not yield a bad effect thanks to the first step.

The rest of this paper is organized as follows. In Section 2, we state main estimates which
are energy estimates for u and P*u, and give proofs of them. In Section 3, we show Theorem
1.1. In particular, we show a smoothing for “Elliptic type” (Proposition 3.2) from the energy
estimate for P*u.

Here, we set some notation. Let (-,-) := (-,-);2 and || - || := || - ||;2. We also use the same
symbol for (-) := (1+]-[*)/2. Py and P are defined by Py f(x) := F~'(x(I€] < F f)(x) and
Piof(x) :== F~1(x(¢] = DF f)(x). We define the Riesz and Bessel potentials by |0,|°f :=
FLEPF f)(x) and (3,0)° f := F (EF ().

2. the energy estimates

Our purpose in this section is to show Propositions 2.1 and 2.2. Proposition 2.1 below is
used to show “Dispersive type” and “Parabolic type” in Theorem 1.1.
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Proposition 2.1. Let u satisfy (1.1). Then, there exists C = C({a;},{b;}) > 0 such that

2.1) ’— |u|| +ZRey,<D P, P¢0u>)

* Z o101 Tul? + Z Lo (DY

J=1 J=

2
< Cllull”.

DEFINITION 2. @ = {aj}ifl‘ LAt = {/l+ }5’"] LA = {/lj }5’" I are defined as

1 & .
aj=bj~3 Z(l + (1) Majpar, 1<j<2m—1,
k=1

j—-1
At =2Ima; + Z(—nf-k“ Imb; wa, 1<j<2m—1,
k=1
j-1
—ZImEj_ka/k, 1<j<2m-1.
k=1

Let 1 < j* < m—2. Assume that 47, | # 0. B* = {5/}, 2(m 7D and g =
inductively defined as

Y —Z( DA By 1<k <2m—j = 1),

jl
bjaknr = Z( DBy 1<k <20m=j =D,

+
Note that /12 ke

2 -1
{ k}(mj )

= /1;].*_1 # 0 when j = k. So, 8 and 3, are well-defined.

RemARK 2.1. It is easy to see that y; = apj for 1 < j <m — 1. Thus, we have

Aj = ﬂZj + Ay A1 = Dy = Ay
forl<j<m-1land1<k<m.

Proposition 2.2 below is used to show “Elliptic type” in Theorem 1.1.

are

Proposition 2.2. Let u satisfy (1.1). Assume that there exists j* € N such that 1; = 0 for

1< /<20 - 1) and dypy # 0. Put

2m—1

Fr@) = 10,7 “2PPulP + > Rea (D10, Pu, Pu,

J=1
2m—1

Ff@) = 1022 PPl + 3" Rea kD10, Pu, Pu).

=1
Then, there exists C = C({a;},{b;}) > O such that
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J -1 _ 2m—j'=1)
(2.2) 'E(nzﬁuuz + > ReayD/Pu,Puy+ ) ,B,jF,;(u))
j=1 k=1

- +1/2 2 2 —Jj* 2
+ 5 0T 2P| < Cllud? + ClIGL™ Prull,

and
d 2m—1 . 2(m—j*—1)
(2.3) 'E(HP_MHZ + > ReayD/Pru,Puy+ ) ,B;F;(u))
j=1 k=1

—+1/2 p— 112 2 —J p=112
= 55 0" 2P ulP| < Cllull® + ClIB™ Pull.

To prove Propositions 2.1 and 2.2, we use the following lemma.

Lemma 2.3. Let u satisfy (1.1). Then, there exists C = C({a;},{b;}) > 0 such that

2m—1

d P
(2.4) ’E(upmnz + Z Rea (D P-u, P+u))
j=1
2m—1 ‘
+ NPl + A5 1" P ulP)] < Clull?
j=1
and
d 2m—1 L
(2.5) ‘E(HP_MHZ + ; Rea(D; Pu, P-u>)
2m—1
+ T DI NP ul + A5 10" ulP)| < CludP.
j=1
Proof of Lemma 2.3.  First, we show (2.4). For simplicity, we set v* := P*u and

v~ := P~u. Note that P*it = P-u = v~ and P~it = P*u = v*. Then, v* and v~ satisfy

2m
(2.6) D" = D"+ > (@D 0" + bDY o)
k=1
and
— — 2m —
(2.7) Dy~ = -D*v~ — Z(—l)k(akDim—kv— + b D> Ry,
k=1

By (2.6), we have
d

dt||v+||2 =2Re (9", 0"y = —2Im (D", v")

2m
-2 Z(Im a{(DY" v, vy + Imb (DY om, 0t))
j=1

2m
= =2 % (Amall|d. " Pull® + Im b (DY 0=, v*)).
j=1
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Here, we consider the time derivative of correction terms to cancel out the second term. Fix
1 <j<2m—1. We see from (2.6) and (2.7) that
d P - o
o Rea (D, P~u,v") = —=Ima (D' Do, v*) + Ima (D,’v-, D,v")
= Im a (D’ (D¥"v7),v*) + Im a (D, /v=, D"v*)
2m
+ > (=D Ima;ag DY o7 vty + (=D Imabi (DYt ")
k=1
_ 2m—k—j= + 7 2m—k—j = T
+ Im a jai Dy v, v ) + Ima ;b (DY vT,U7))
2m

Ad J J J J J
L AJ+ Bl + Z(Azyk +Al, + B, +B).

Observe that
Al + B = 2Ima(DY" v, v*),
AL+ Bik = (1 + (=) Imaa (DY 0=, 0"y,
Aé L= (_l)k Im a,j[;kl||ax|m—(k+j)/2P+u”2’
B, = Ima,byllla /"2 p~ul.

We collect coefficients of derivative losses with rearranging the summation order. Note that
for any sequence {c}, it holds that

P p-j p=1p-1-j p-l J
(2.8) Z Cik = Cjk ch, ftl -
j=1 k=1 j=1 k=0 j=1 k=1
It is easy to see that
2m 2m
J J J J 2
D> (AL + AL+ B+ B[ < .
j=1 k=2m—j
Then, by (2.8), we have
2m—12m—-1-j 2(m-1) j
J J oy — k
Z Z Ay + By = Z Z(A2] ket B i ger)
=1 k=1 j=1
2Am-1) j '
= >0 >+ Y Imaga e (DY 07,0,
=1 k=1
Similarly, we obtain
2m—12m—-1-j 2(m-1) j
Z Z Aly= > 2D Imand o™ UV P P,
j= k=1 j=1 k=1
2m—12m— 2(m-1) j

Z Z 33 a0 2Pl

=1 j=1 k=1

This concludes the proof of (2.4). For the proof of (2.5), we set v* := P u and v~ := P*u.
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Then, they satisfy (2.6) and (2.7). Therefore, the exactly same proof works. |

Now we are ready to prove Proposition 2.1. Though we can prove it directly without
using Lemma 2.3, we give the proof of it by the lemma.

Proof of Proposition 2.1. Note that (P* f, P~g) = (P~ f, P*¢g) = 0 for any functions f, g.
This implies that (P f, Pzog) = (P~ f,P*g) + (P* f, P~g). So, collecting (2.4) and (2.5),
we obtain

m—1
d 2 Y
'E(Hl”;toull + ;Reazj'(Dx I Poit, P¢0u>)
m—1
m— 2(m—
+ > 0" Paoull® + Zaz, (D" PP g, Py
J=1 Jj=1

2
< Cllull”

We also note that y;, = ay. Finally, it is easy to see that

d m—1 B m e el
‘EHPOMHZ + D 0" TPl + " o (DR Py, Pou)| < ClulP.
j=1 J=1
Therefore, we have (2.1). m]

The terms A 19"/ P~ull® (resp. A;[10:1"~/>P*ull?) in (2.4) (resp. (2.5)) with 1 < j <
2j* — 1 in Lemma 2.3 are unfavorable in our argument to prove Proposition 2.2. Indeed,
Proposition 2.2 is used to show “Elliptic type” in Theorem 1.1 when A;j-_; # O under the
assumption A; = 0 for 1 < j < 2(j*—1). So, we analyse the coefficients A~ below in order to
ensure the condition 4; = 0 for 1 < j < 2(;* — 1) implies /l;f =4, =0forl <j<2(j"-1)
and 1 <n <25 - 1.

Lemma 2.4. It holds that
j-1 j-1

(1 +(=D)HAma)Rebj 11
=1 k=1

1 J-
X, = _52(1 +(-D)Read;,,_, +
=1

N —

for1 < j<2(m-—1).
Proof. By the definitions of /l; and «a;, we have

-1

J Jjo1
_ Z - 1 Z Z _ =
/lj+l = - Im blbj—l+1 + 5 (1 + (—1)1 k) Im bj_l+1al_kak =:A+B.
=1 =1 k=1

It is easy to see that A = 0. Observe that

I-1 p-1 p-1

(2.9 Zp: cirdiey = Z Z cidpsrex

=1 k=1 =1 k=1
for any sequences {c;},{d;} and {e;}. This implies that
1 j-1 j-1

(1 + (D) Imbj @i
=1 k=1
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1 J-1 j= ~ _
52, 2+ CO)(Rea) Im bty — (Imay) Re bjeiona).
=1 k=1
Here we used the fact that Im cd = (Re ¢) Imd + (Im c¢) Re d for any ¢, d € C. This completes
the proof. O

Lemma 2.5. Assume that there exists j* € N such that A,; = 0 for 1 < j < j*. Then, it
holds that Im a,; = /l;rj =0forl<j<jandA; =0forl1 <j<2j +3.

Proof. First note that 17 = A, = 45 = 0 even without the hypothesis. Indeed, it is clear
that A7 = 0. We also have 7 = —Imbja; = 0 and A = —Imbra; — Imbyas = 0 since
a1 = by and @, = by. Assume that there exists j* € N such that A,; = 0 for 1 < j < j*. The
rest of proof proceeds by the induction on j. We prove the following claim: it holds that

-1
Imazj = /13—]- = /lin = /15]-+3 = Z Iml_?z(j_k)a’zk =0
k=1
for 1 < j < j*. Itis easy to see that the claim above with j = 1 follows. Indeed, by the
definition of a/j, we obtain a3 = b3 — axb; and a4 = by — Gyb,, which implies that

A, = —Imbzb; — Im |by* — Im by b3 + Im|by[*a, = 0,
/lg = —Im134b1 —Im [_?3[?2 —Im Bz(b:), - C_lzbl) —Im B](b4 - Elzbz) =0

since 1, = 2Ima, = 0. We also have /13r =Imbyay = 0 easily. Next, we assume that the
claim above holds for j(< j* — 1). By the hypothesis, it holds that 4, , = 4;,,; = 0. Thus,
by Remark 2.1, we have /lgj ., = 0. We claim that M := Z{zl Im 1_72( j—1+1Y1 = 0. Indeed, we
see from the definition of y; that
J JjoI-1
M= Z Im by j_1+1)b2r — Z Im by(j—r41y@-ky Yk =: A + B.
I=1 =1 k=1

It is easy to see that A = 0. We have

Jj-1 j-l
B=- Im bojo -k 1y@2ryi
=1 k=1
j-1 -l j-1 j-l
=- ) (Reay) Z Im by grrnyye + Z(Im asy) Z Re bygj-1-k+1yyxk =0

=1 k=1 =1 k=1
by (2.9) and the hypothesis. This shows that Ima,;,, = 0 by the definiton of A5;,>. By
Lemma 2.4, we obtain Ayja = Ayjs = 0, which completes the proof. O

RemMArk 2.2. From the proof of the above lemma, we also see that
Aojryr =2Imasj i,  Apjisa =2Imayj g

when A,; =0for 1 < j < j*.

Now, we prove Proposition 2.2.
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Proof of Proposition 2.2.  We give only the proof of (2.2) since we can show (2.3) in
the same manner. When j* = 1, we see from the definition that 4, = 0 forn = 1,2,3.
When j* > 2, Lemma 2.5 implies that /I;T =4; = Oforl < j<2(—-1)and Ay =
A=A, =0. This together with Remark 2.1 implies /l;j*_l # 0. By (2.4), interpolation
inequalities and the Young inequality, we have

2m—1 2m—1
d ) S I
‘a(”” Ul + ) Reay(DIP P+u>) D D [ X

j=1 j=2j7+2

—-j+1/2 2 2 —J" 2
+ 4 AT 2P P Sl + 110" P ul

Thus, we only need to show

2(m—j*—1) 2m—1
— BiF () - 0" Pul?
(2.10) dt ;‘ j:;+2 -

2 - 2
S ull™ + {110 PTull”.

Putov = Iaxl‘(k+2)/2P¢0u. Since v satisfies (1.1), by (2.5), we have

2m—1 2m—1
d B L . . _
‘Z(”P o + ) Reay(D,/P7, P v>)+ D DAl Pol

J=1

j=2j -1
T 9.1m=J" prol2
< loll” + 1110 ull”.

Thus, we obtain

2(m—j*=1) d 2m—k-3 ) )
D, B Fw+ Y Aol Ity )
k=1 j=2j-1

2 —-Jj 2
S ull™ + (10" Prull.

By (2.8), we have

2(m—j*—=1) 2m—k-3

j —(j+k+2)/2 p— 112
DD GBI R Py
k=1 j=2j"-1
2(m—j-1) k

= > D EDTIBA e DR Py,
k=1  j=I

Therefore, by the definition of ,B,j, we conclude (2.10). ]

3. Proof of main theorem
In this section, we show Theorem 1.1.

DeriNiTioN 3. For f € L*(M) and N > 0, we define

m—1

E(f:N) = IfIP + NI9;"PaofIP + 3 Rey Dy Paof. Pao ).

J=1
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We choose N sufficiently large so that Lemma 3.1 holds. If there is no confusion, we write

E(f) == E(f;N).

Lemma 3.1. Let N > 0 be sufficiently large. Then, for any f € L>(M) it holds that

1
SED < AP + NG PeofIIP < 2E(f).

Proof. The Gagliardo-Nirenberg inequality and the Young inequality show that

-1
YN 1 .
(3.1 |Rey (D> Pyof, Paof)l < Ellfll2 + CllO" Po f1.

J

3

1l
—_

So, it suffices to choose N = 2C. m]

We prove the first part of Theorem 1.1.

Proof of “Dispersive type” in Theorem 1.1. We consider our problem only on [0, o) since
the result on (—oo, 0] follows from the same argument. Let 7 > 0, which can be arbitrary
large. We first show the a priori estimate sup,.(o 71 lu(?)l| < Cllgll. We assume that u satisfies
(1.1) and (1.2). Then, it is easy to see that 4|3, P4oull® < 2KD;0;>" Psou, Prou)| < Cllull*.
This together with (2.1), Lemma 3.1 and 4; = 0 for 1 < j < 2m — 1 implies that %E(u(t)) <
CE(u(t)) on [0, T]. Thus, by the Gronwall inequality and Lemma 3.1, we obtain the a priori
estimate. Next, we show the existence. Let ¢, = F~'y(|£] < n)F¢ for n € N. Then, we have
the solution u, of (1.1) with u,(0) = ¢, by (1.8). Moreover, u, € C([O0, T1; L*>(M)) since
|Z§TO fzm_ijI < C({a;}, {bj}, n) for |€] < n. Since {¢,} is a Cauchy sequence in L*(M), by
the a priori estimate, we conclude {u,} is also a Cauchy sequence in C([0, T]; L>(M)). Thus,
we obtain the solution u € C([0, T]; L*(M)) of (1.1)—(1.2) as the limit of u,. Finally, the
uniqueness easily follows from the a priori estimate. O

Proof of “Parabolic type” in Theorem 1.1.  We use the argument from the proof of
Theorem 1.2 in [21]. We consider only the case A5;- > 0 since the other case follows from
the same argument. Let 7 > 0, which can be arbitrary large. By the Gagliardo-Nirenberg
inequality and the Young inequality, we have

m—1 m
- 2(m—j)+1
D Al Tl + Y e (DX )

1 -7 2 2
< E/lzj*lllaxlm T ull” + Cllull”
j:j*"'l j:j*"'l

Recall that 4; = 0 for 1 < j < 2j° — 1. Therefore, in the same manner as the proof of
“Dispersive type,” we obtain the a priori estimate:

!
sup (||u<r>||2 $ [ |||ax|'"—f*u(r>||2dr) < Clel.
1€[0,T] 0

It then follows that we have the unique existence of the solution u € C([0, T]; L>(M)) N
L*([0, T]; H"/ (M), which implies that u(f) € H" /(M) fora.e. t € [0,T]. Let0 < & < T.
Then there exists 7y € (0,&/2) such that u(fy) € H™ 7/ (M). Since (9,)"/ u satisfies
(1.1)—(1.2) with initial data ¢ := (Bx)’"_j*u(to) e L*(M), applying the same argument
as above, we conclude (9,)" 7/ u € C([to, T]: L*(M)) N L*([ty, T1; H" 7 (M)). That is,
u € C([ty, T1; H™ 7 (M)) N L*([to, T1; H*™7)(M)). We can choose #; so that £/2 < 1; <
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g/2 + &/4 and u(t;) € H*"™7)(M). Again, applying the same argument as above with
the initial data ¢ := (9,)>™ 7 u(ty) € LA(M), we conclude u € C([t;, T1; H2" (M) N
L*([t1, T1; H*™7)(M)). By repeating this process, we conclude u € C([&, T1; HX"=7)(M))
for any k € N, which implies u € C/([&, T]; HX"=/)72m( M) for any k,£ € N by (1.1).
By the Sobolev embedding, we obtain u € C%([g,T] X M). Since we can take € > 0
arbitrary small and 7 > 0 arbitrary large, we conclude u € C*((0,c0) x M). Finally,
we show the nonexistence result by contradiction. Assume that there exists a solution
u € C((—6,0]; L>(M)) of (1.1)~(1.2) with ¢ € L*(M) \ C®(M). We take 1y such that
—0 <ty < 0. Then, as we proved above, we have u € C*((ty, 0] X M), which contradicts to
the assumption ¢ = u(0) ¢ C*(M). O

The following proposition is the main tool to show the result for “Elliptic type” in Theo-
rem 1.1.

Proposition 3.2 (A smoothing for “Elliptic type”). Let u € C([to,t;]; L*(M)) satisfy
(1.1). Assume that there exists j* € N such that A; = 0 for 1 < j <2j*—1and A2;-_1 >0
(resp. < 0). Then, it follows that

(3.2) P u (resp. Pu) € C((to, t;1; H/*(M))  (forward smoothing),
(3.3) P u (resp. Ptu) € C([to, t1); H/*(M))  (backward smoothing).
In particular, it holds that u € C*((ty, t;) X M).

Proof. We consider only the case /lgj*_ > 0 since the same proof works for the case

< 0. For simplicity, set

1
/lJr

257 -1
2m—1 . 2(m—j*—1)
G*'(w):= ) ReadD/Pu,Pruy+ >  BIFw),
j=1 k=1

where F_ is defined in Proposition 2.2 and {a} and {8;} are defined in Definiton 2. Set M :=
SUP,egs,.r,1 1(DIl. Note that sup,e, . ((IG* )] + | G*(10x"2u(0)]) < CM and G*(18,/"*u(?))
is continuous on [#y, #;] by the presence of D;j in the definition of G*(u) above. By the
Gagliardo-Nirenberg inequality and the Young inequality, we have

110"~ Qull* < SlIIoL™ 12 Qul* + C~|ul®

for6 > 0, Q = P* or P~. Take 6 > O sufficiently small. Then, this together with (2.2) and
(2.3) yields

A1 .
By [T Queodr < 1+ i - o),
fo

for Q = P* or P~. By the interpolation, we also have
1]
(34) | opuopar
fo

il
= f O P~u@)|* + 1041 Pou(OI + 1041 P u(0)|))dr
1y

<C(M, /lzj*—l)(l + |t — 1))
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for 0 < s < m+ j*—1/2. It then follows that |||,/ *1/2u(t)|| < oo for a.e. t € [, #;]. Then,
for any £ > 0 there exists z, € (fo, fo + €) such that [||8," 7 *1/2u(z,)|| < co. Note that (2.2)
holds even if we replace u with |0,|'/?u since |0,|'/?u satisfies (1.1). Thus,

(3.5) %anaxﬂ/zmnz + G100 7w) + 5 0" PP
< ClIOA Pull® + CllaL" 2P ull?,

By the Gagliardo-Nirenberg inequality and the Young inequality, we have
O™+ 2P ull? < Sll0. "+ Prul® + C5™ 102 ull?

for 6 > 0. Taking 6 > O sufficiently small and integrating (3.5) on [z., ](C [t, 1]) with (3.4),
we obtain

(3.6) 16,12 P* (o) + % f 8" P* u(o)lPde
Iy
< CM, A3y, It = t0l) + 110 Pruce)IP < oo
since u(t,) € H™ /" *1/2(M). Therefore, by (3.5) again, it follows that forany 7, < ¢ <t < 1

0.0 2P u()I = 0. 2P u(e)IP|

!
T=t o
<102 Pr P + G0 )] + 455 f 0.1 P u(o)lPdr

t/

!
=t '
+[l6r o]+ agyy [ o pucepar

t/

! !
<C f 10,1 2u(@)Pdr + C f 10"+ Pru(o)lPde

t t

!

5, f "+ PruolPdr + || G* (o )] |
(3.4), (3.6) and the dominated convergence theorem imply that the right-hand side goes to 0
as |t — | = 0, which shows that [||0,]'/>P*u(?)|| is continuous on [t,,#;]. The fact P*u e
C([to, t1]; L*(M)) with Ptu € L¥([t.,t;]; H'>(M)) yields P*u € C,([t.,t]; H'>(M)).
Combining the continuity of |||0,|'/?P*u(t)|| and the weak continuity of P*u(t) in H'/?(M),
we obtain P*u € C([t,,t;]; H/>(M)). Since we can take £ > 0 arbitrary small, we get
Ptu € C((ty, 1;1; H*(M)). We also obtain P-u € C([ty, 1;); H'/*>(M)) in the same manner.
Therefore, u = P u + Pou + P*u € C((to, t,); H'/*>(M)). By repeating this process, we also
obtain u € C((to, t;); H*'*(M)) for any k € N, which yields u € C*((#, ;) X M)) since u
satisfies (1.1). ]

Proof of “Elliptic type” in Theorem 1.1. We use the argument from the proof of The-
orem 1.2 in [20]. We consider only the case A>-_; > 0 since the case A>;--; < 0 follows
from the same argument. Let ¢ € L*(M) satisfy P*p ¢ H'/>(M). We prove Theorem
1.1 by contradiction. We assume that there exists u € C([—6,0]; L>(M)) satisfying (1.1)—
(1.2) on [-6,0]. Then, we have P*u € C((-6,0]; H'/>(M)) by Proposition 3.2. However,
it contradicts to P*o ¢ H'/>(M). This proof works even if we replace P* and [—6, 0] with
P~ and [0, 6], respectively. Similarly, we can show that for any ¢ > 0 there exist no so-
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lution u(t, x) of (1.1)—=(1.2) with u(0,x) = @(x) € L*(M) \ C*(M) on [-6,d] satisfying
u € C([-6,6]; LX(M)). o
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