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1. Introduction and main results

Let S be a countable space. In the present paper we treat a class of dif-
fusion processes taking values in a suitable subspace of RS, which are governed
by the following stochastic differential equation (SDE):

(1.1) dx(t) = 3 A, (Odt+a(x (0)dB), €S,

where {B,(t)},es is an independent system of one-dimensional standard {&;}-
Brownian motions defined on a complete probability space with filtration (Q,
g, %, P).

We here assume
(1.2) A=(4;;) is an SX S real matrix satisfying that 4,20 for i, —4,=
21 4,;<o,and sup |4;|<oo,
FEz ies
(1.3) a(u): R—R is a locally 1/2-Holder continuous function satisfying a linear
growth condition: for some C>0,

la(u)| <C(14|u|) forusR.

The diffusion models described by the SDE (1.1) arise in various fields such
as mathematical biology and statistical physics. We here list several examples.

ExampLE 1. (Stepping stone model with random drift [10])

Vu(l—u) for 0<u<l1
0 otherwise.

a(u) = {

ExampLE 2. (Stepping stone model with radom selection [8])

u(l—u) for 0<u<l1
0 otherwise.

a(u) = {
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In these two examples x=(x,(¢)) in the SDE (1.1) describes a time evolution of
gene frequencies of a specified genotype at each colony, 4;; means migration rate
from the j-th colony to the i-th one, and a(ux) comes from the effect of random
sampling drift in the example 1 and random selection in the example 2.

ExampLE 3. (Branching diffusion model)
vu foru>0

0 otherwise.

a(u) = {

ExamMPLE 4. (Scalar field in non-stationary random potential [12]) Let S=Z2¢,

u foru>0

0 otherwise.

a(u) = {

>0 if |i—j|=1,
A;;= | —2dx if i=j
0 otherwise.

ExampLE 5. (Ornstein-Uhlenbeck type process)
6, <a(u)<c, foruecR with constants 0<c¢,<c,<oo.

For the example 1 the ergodic behaviors were extensively studied in [10],
[11], whose phenomena are very similar to those of the voter model. For
the example 4 with a small #>0 it was shown in [12] exponential decay of the
sample paths, from which it follows that the extinction occurs in any dimension
in the sense of Liggett’s book [6], Chap. IX. For a class of diffusion models
including the examples 1 and 2 some ergodic behaviors were investigated in [8],
and furthermore Cox and Greven [1] recently obtained a complete description
of Z¢-translation invariant stationary distributions for the same model in the
case S=Z¢ For the example 3 we refer [2] which treats a corresponding con-
tinuum space model. The example 5 is a generalization of Ornstein-Uhlenbeck
process where a(u) is constant.

In this paper we restrict our consideration to the case S=Z¢ (d-dimensio-
nal cubic lattice space) and A=(4,;) is Z*-translation invariant, namely

(1.4) A, = Ay, = A, forijeZi,

To formulate a diffusion process associated with the SDE (1.1) we first
specify the state space as follows.
Let y=(v,), i€Z¢ be a positive summable sequence over Z¢ such that
for some C>0,
(1.5) 2 714l <Cvy; forjeZl.
d

€3
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We note that for a given A=(4,;;) with (1.4) one can easily construct a posi-
tive summable sequence y=(v,) satisfying (1.5).
Let L*(v) be the Hilbert space of all square ¢-summable sequences over
Z* with the Hilbertian norm |- |, i.e.
LX) = {x = (%), | 2 7ilx,|* = |x]3<oco}.

:EZ
Under the assumptions (1.2)-(1.5) it is known that for each x(0)eLX(y),
there exists a unique strong solution (x(t)=(x,(¢)), (B(t))) of the SDE (1.1) such
that

P(x(t) is L*-(7)-valued strongly continuous in £>0)=1. (ct. [8])

The solution defines a diffusion process (Q, &, &F,, P*, x(t)) taking values in
L*v), and its transition probability defines a Feller Markov semi-group T,
acting on C,(L*)), (the totality of bounded continous functions defined on
L¥(7y)) such that

(1.6) T.f~f = TLfds for feCKLAw),

where C3(L¥y)) stands for the totality of such C*functions f defined on L(y)
with bounded derivatives and Lf being bounded, which depend on finitely many
coordinates, and

(1.7) Lf(x) = — E a(x;)? 6f+ 2 (X 4, ,) 6f
lEZ ie‘Z jez
Let P=P(LX(y)) be the totality of probability measures on L¥y) which
is equipped with the topology of weak convergence. T, induces the dual semi-
group T¥ acting on & by

(1.8) KT¥u f> =<, T,f> for f EC(LX(y))
where <, f> = [ , _f(x)u(d)

Let & be the totality of stationary distributions for the deffusion process
Q, F, F,, P*, x(t); i.e. S={ucsP|TFu=p for t>0}.
Note that by (1.5) with (1.4) the Z-translation group acts on L¥y), and let g
be the totality of Z¢-translation invariant probability measures on L%rvy). For
a>0 we also denote by I, the totality of elements of & which have finite a-
order absolute moments, i.e.

9, = {p€d|<u, |%;,|*D><oco(icZ)}.

These sets are closed and convex, so we use the notation C,,, for a convex set C,
which denotes the totality of extremal elements of C. If C is a compact and
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covex set, the convex closure of C,,, coincides with C by Krein-Milman’s theo-
rem (cf. [5]). However notice that S, & and 4, are not compact in general.

In this paper we will first obtain a complete description of Z“-translation in-
variant stationary distributions under the following assumption: Let (Q, 3,
P, £,) be the continuous time Markov process taking values in Z¢ generated by
the infinitesimal matrix 4, and let P,=(P,(Z, j)) be its transition probability.

AssuMPTION [A]

(1.9) A=(4,;=4,-) is irreducible, and the symmetrized Markov process of
(Q, B, P, &,), which is a Markov process taking values in Z¢ generated by A=
A—}—A*:(A,-S,-:A,._j-i—Aj-,.), is transient, and

|u]->oo

(1.10) lim sup l‘l‘—("l)~l<c;5(0)-1/2
u
where G¥ is the potential matrix of the symmetrised Markov process, i.e.

(1) G%0) = (" PHO)d with Pi)="Pi(jj+i)= 3 Pii, HBi+i, k)
0 =z9
' (eZ9).
Then we obtain the following result.

Theorem 1.1. Assume the assumption [A). Then
(i) For each Q=R, lim T¥8y=v, exists and vy, x,)=0 for i€Z?, where 0=

(#;=0)€L¥y) and §, stands for the Dirac measure at 6.
(1) (SND)exe={vsl0=R}. For every vESNI,, there exists an me P(R) (the
totality of probability measures on R) such that

y = g vm(d8) .
R
(iii) If pE 9, is ergodic with respect to the Z-translation group, then
lim T¥u = vy with 0 = {p, x) .
1-p00

Moreover for every < d,, im T¥u exists in SN 4,.
t-po0

ReMARK 1. In addition to the assumption [A], suppose that a(6,)=0
for some ,=R. The state space L¥vy) of the diffusion process (Q, F, F,,
P?*, x(t)) contains two invariant subspaces

X4(60) = L¥(v) N [0, °°)zd and X_(6,) = LA(v) N (—-o0, eo]zd-

So, if one takes X,(6,) (or X_(6,)) as the state space of the diffusion process
(Q, 4, 4, P*, x(t)), Theorem 1.1 (ii) can be refined as follows.
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()" (SN D)exe={vol 0 =00} (or ve| 6 <60}).

ReMARK 2. It is obvious that if ¢(§)=0 for §R, then »,=§,. On the
other hand if a(0,)=a(6,)=0 for some 6,>86,, the diffusion process can be re-
stricted to a narrow state space [6;, 6,]? rather than L(y), then it holds (S N ).
={vy]6,<0<86,}. Thus Theorem 1 is a generalization of the result by Cox and
Greven [1].

ReMARK 3. Obviously Theorem 1.1 is applicable to the above examples
1-5 except the example 4, since these fulfill the assumption [A]. But for the
example 4 the assumption [A] is fulfilled only for a sufficiently large x>0. In
fact if >0 is sufficiently small, then a different phenomenon occurs as shown

in [12], (also see Theorem 1.2 below).

REMARK 4. In the case that the symmetrized Markov process of (Q, B,
P, t)) generated by AS=A+4A*=(A7=A4,.,+4,.,) is recurrent, assuming the
same asumption on A as in Theorem 4.5 of [6], we can prove the extinction for
finite mass system under a regularity condition on a(x) together with @(0)=0,
by modifying the proof of [6]. Furthermore we can show the extincion occurs
even for infinite mass system using a duality between finite mass sysetm and in-
finite mass system when a(#)=cu with a constant ¢. Although it is plausible that
the extinction occurs for infinite system in general, we have no proof for it due
to lack of the duality.

We emphasize that the condition (1.10) of the assumption [A4] is crucial for
for the phenomena of Theorem 1.1. In fact, as shown in [12], for the example
4 with a small x>0 the sample path x,(f) decays exponentially fast as t— co almost
surely for each i€Z?. Accordingly we would like to extend this exponential
decay result to more general case with some non-linear coefficient a(x).

AssuMPTION [B]
Let a(u): R—R be a locally 1/2 Holder continuous function satisfying that
for some 0<c<C<oo

(1.12) Mlu| <|a(w)| <CV|u| forucR,
and set
(1.13) a(u) = k~"a(u) with £>0.

According to the condition (1.12) the diffusion process associated with the
SDE (1.1) is defined in the state space X.(0)={x=(x,)EL¥y)|x;=>0 for all
i€Z%. Then we obtain the following result.

Theorem 1.2. Suppose that a(u) satisfies the asumption [B]. Assume
further that A=(A,,;=A,.,) is Z’-translation invariant and of finite range, namely,
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there is an Ry>0 such that
(1.14) A,=0 for |i| >R,.

Then there exists a c(k): (0, c0)—>(0, o) satisfying lim,.,,c(x)=0 (more precisely,
c(x) is estimated as c(x)=0((logl/x)~1**) as k—0 for every £>0) such that for
every >0, the sample path x(t)=(x(t)) with x(0)=@ satisfies

PO(—"_ZC_ < lim inf % log x,(f) <lim sup % log () < — (-£-—e())
t->o0 t-»00
for i€ Z4)=1.

We remark that it is an easy task to extend Theorem 1.2 to the case with
spatially inhomogeneous (a,(«)) and 4=(4,;) under some uniformity condition.
Furthermore as a corollary of Theorem 1.2 we obtain

Corollary 1.3. Under the situation of Theorem 1.2, if k>0 sufficiently small,
then SN 9,= {8y}, and lim T#u=3, for every pe9,.
t->oo

Although our diffusion processes associated with (1.1) are non-linear mo-
dels, the proof of Theorem 1.1 is very similar to that for linear systems treated
in Chapter IX of Liggett’s book [6], which relies mainly upon second moment
calcuations and a coupling technique. (See also [1], [7]). For the proof of The-
orem 1.2 we essentially follow the idea of [12] pp, 6162 to use Feynman-Kac’s
formula. However the arguments of [12] are so crude, and furthermore an
approximation procedure by discrete time process should be improved even in
the linear case. Therefore it would be worthy to present the details in our
setting refining the proofs of [12].

2. Proof of Theorem 1.1

Recalling the assumption (1.10) we have positive constans C and D such
that

(2.1) |a(u)|2<C+D|u|®* forucR,
(2.2) D<GS(0),

from which we obtain the following second moment estimates.

Lemma2.1. Let yc9, Then T¥uc9, for t>0, and {T¥u, |x,|%
1s bounded in t>0 for icZ*.

Proof. It is easy to see that Tfu €, for t>0, and f, (1)=E"(x(t)x,(t))=
T, xx ;) satisfies
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@3) 2140 = (A ADF0), 48, Bale )
= (A1+A2)f(t)ij+D8iifi,‘(t)+ai,h(t) ’
where (A'4+4f,, = 3 Aufit 3 Aufa,

REZ kEZ

h(t)=E*(a(x,(t))’—Dx,(t)?), and §,; stands for the Kronecker symbol.

Let (£, Py, ) be the direct product process taking values in Z¢x Z¢ of two
copies of the Markov processes (&, P;), which has the generator 4A'+A4? and the
tranition probability

P(i, j), (ks D)) = Py(i, ()P(j, 1) for (3, ), (k, ) EZ".

Noting by (2.1) and (2.2) that A(t) is locally bounded in ¢>0 and A(t)<C for
every t>0, one can apply Feynman-Kac’s formula to get

148 = B p(fe/0) exp([] DL(E)as)+ ] B, p (exe( || DIL(E9);
§,€EA) h(t—r)dr,
hence
(24) £u0=<1.(0) B, p (exp(| DL(E))+C [ B, p (exp(| DI(E)s); £, = ),
where A= {(i, j)€Z* X Z¢|i=j}.

Using Taylor’s expansion for the exponential function it is easy to estimate as
follows:

[ B exo(( DL . 8)

— é D" § dr S S P;(0)P},-, (0) - P3._,._(0) Pi_, (0)dtydt, - dt,
0 Ot <tn<?
< % D"G*(0)*< oo, (by (2.2))
and
B, p (exp([, DL(£)d9)
< ﬁ: D"G*(0)"< oo.

Hence by (2.4), <T#pu, |x;|2>=f,(t) is bounded in ¢>0 for i&Z*.

For =R, set
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I(0) = An€ L lim <p, | 3 Pyi, j)x;—01> =0 foricZ’}.

}EZ
Lemma 2.2. Let p€9,0) for 0R. Then

() T¥usIy06)for t>0,

(i) If lim tL g'” T#p ds=v for some {t,} witht, | oo, then v=I,(p).
e I, Y0 .

Proof. (i) is easy. For (ii) use (2.3) and the Z¢-translation invariance of
u to get

. . ‘ . -
(2.5)  fult) = X Ps, HP(], 1) fu(0) + SOP i-(J—9)E*(a(x(s))") ds -
Using the assumption of (ii) and (2.5) to together with u& J,(6) we see
<, I PG =01

<lim mf— S <T¥u, |SIPG,j)x,—01D ds

n>oo

= lim inf tl [ (553 PG PG, Df(9)—20 53 PG KTy 3>+ 6% ds

— lim mf—j {SIV P (i, HPrs iy Dful0) +

nr>o t”

[, P (OB @)l — 0y ds

< sup E*(a(ws))) | Pi(0)ar
>0 t
—0ast—>o0,

which concludes » € I,(0).

Following [1] let us introduce a diffusion process taking values in L*(y)X
L*(vy) which is governed by the following SDE:
dxi(t) = 2 A, xj(t) dt-a(xi(t))dB,(t)

jEZ

(2.6) dxi(t) = 2 A, %3(t) dt+a(xi())dB;(2)

jEZ

%(0) = («, )L (v)x L¥y), (i€Z%).

By using a method of one-diemnsional SDE, one can show if x'>x? then
x'(¢)>*(t) holds for every #>0 with probability one. This means that the
diffusion porcess (x(¢), P,) associated with the SDE (1.1) has monotonicity pro-
perty.

We denote by (%(t)=(xi(t), 3(t)), P¥) the diffusion process associated with (2.6).
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Clearly each component process of (%(t), P*) is equivalent to the original diffu-
sion process (x(t), P¥). Let denote by T,, T%, S, 4, G, the corresponding semi-
group, the dual smei-group, the totality of stationary distributions, the to-
tality of Z¢-translation invariant probability measures on LZ*(y)Xx L*y) and
SO on.

Lemma 2.3. Let n€8cg, Then
Meither x} > for all icZ® or xj <% for allicZ%) = 1.

Proof. Let (%(¢), P*) be a stationary Markov process with A as its marginal
distribution associated with (2.6), namely, X(¢) is a soluiton of (2.6) with X\ as the
law of %(0). Setting A (f)=xj(t)—x3(¢), and applying Ito’s formula to f(u)=|u|,
we have

@7 PUAOD—B(AOD) = || 54,8 sgn Afs)A (9)ds

1 for >0,

where sgn # = { 0 for u=0,
—1 for u<<0. (cf. [9], pp. 404.)

By the stationarity of A,

E Aij<7\» (sgn Ai)A,-”" [Ai1>=0,
Since A, |A;|D> is constant in ¢ by the translation invariance of A, we see
(2.8) [A;] = (sgnA)A; r-ae.if 4,,>0,

which implies that when A4,;>0, if A;>0, then A ;=0, and if A;<0, then
A;<0 A-as. Therefore combining this with the irreducibility of 4 we ob-
tain the desired property of .

Lemma 24. For p=9, and ved,,
E*v(|xi(t)—«%(t)|) is non-increasing in t>0.
Proof. In the same way to get (2.7), for s<Ct,
E#(1 A0 D—E*(1A(9)1)
= . 334,E(sgn (DA~ 14,69 )as<0,
since E***(| A,(s)|) is independent of i.

Lemma 2.5. Let §€R. For p€9,0) and vE9,0), lim E**¥(|x}(t)—
t->o00
(t)|)=0 for i € Z¢.
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Proof. Using Lemma 2.1 one can esaily see that {% St T*p X vds} is a tight
0

ty —
family as #—>oco. Let A be a limit point, i.e. A=Ilim 1 S T*pXvds for some
7n-» t” 0

{t,} witht, $ co. Then A&8N g, so by Lemma 2.3,
(2.9 Meither x;>x7 for all iEZ7 or x}<«? for all i€ Z%)=1.
Hence, by (2.4)

lim E*(|(5)—1(2) )

— lim< L S: T¥uxvds, |x—a3|> (by Lemma 2.4)

n-yo0 tn

Here we used Lemma 2.1 and a simple fact that if u, & P(R) converges weakly
to pEP(R) as n—>oo, and if {u,, ¥*> is bounded in #>1, then <{u,, |x|) also
converges to {u, |x|> as n—>oco. Furthermore noting that each marginal of
A is in F,(f) by Lemma 2.2, we see by (2.9) and the translation invariance of A
that

= O ISP =)D
< 0 ISP =0+, ISP, j)¥—01>

n->o0

t, ..
= <lim—t1—~ So T¥u ds, |;Pt(’»])xi_0|>
1, ..
_}_qgg%go T*v ds, IEPt(I‘J])xj—0|>

= 0, letting — oo, (by Lemma 2.2).

We are now in position to complete the proof of Theorem 1.1.
1°. We first claim that for each §ER, there exists a v,&S N I,(0) such that
vy, %;,>=0 and lim TFu=v, for every u & I,(0), which proves (i).
t-poo
Let v, be a limit point of {% g' T#8,ds} as t—>oc0, ie. vp=lim L S'” T*8,ds for
0

=3
n> ” 0

some {t,} with £,—>oco. From Lemma 2.2 it follows that »,&S N 9,0) and
v, x>=0 for icZ?, Next, let u=I,(0). For f eCs(LX7)),

I<T,tkl~l')f> - <V0:f>|

= | E**¥o( f(x*(£)) —f(=*(2)))|
< Const. 31  E*e(|xi(t)—x3(2)])

i : (finite sum)

—(0 as — oo by Lemma 2.5, which yields (i)
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2°.  Suppose vy=cv’'4-(1—c)v” with 0<<c<land »’, »" €SN Y. Since v,& Ty(6)
by Lemma 2.2, it follows »'€9,(0) and v"€9,(0) so that by the step 1°, »'=
v"=v, holds. Hence v, is extremal both in SNY and SNY,;. To prove the
converse, suppose u &9, be ergodic w.r.t. the Z%translation group. For N>0.
Let zy: L¥(v)—L*(y) be defined by

(my%); = (0, AN)V(—N) foricZ.

Denote by u, the image measure of y by zy. Then uy also is ergodic. More-
over it is easy to check uy&E9J,(0y) with 0y=<uy, %,>. (cf. Lemma 5.2 in [7]).
In the same way to use the coupling process as in the proof of Lemma 2.4.

S p(dx)E*=5" (| x}(t)—3(2) 1) <<, |%—(mn%)i >,

hence for every f € C5((L¥(v)) we have a constant C;<<0 such that

IKT%p, > —<T¥pm 21 = | S p(d) B> ( f(a}(2)) —f(#*(2))) |
< Cllps | 2= (mn®)il >
By 1°, lim T#uy=v,,. Since Oy—>0={p, x;> and {p, |2;—(zyx);|>—>0 as N—
o0, we :;tain 13’2 T¥ p=vs, from which (ii) and the first part of (iii) follow.

The latter part of (iii) is immediate since p &9, is represented as a mixture of
ergodic ones in ;.

Finally we give the proof of Remark 1, (ii)’ after Theorem 1.1.

Proof of Remark 1, (ii)’.
We may assume ,=0. Let »&(SNJ)uy With (v, x,>=-+oco. By the proof
of Theorem 2.19, pp. 439 of [6] it holds that »>uv, for every §>>0. (This part
of the proof of [6] works in the present situation without any change.) Using
Lemma 2.1 we have a C>0 satisfying

(2.10) lve, |%;]D> < CH  for 6>1.
From <v,, x,>=04 it follows
lvg, 2l (%;>0[2)>>0]2 .
So, using (2.10) and Schwarz’s inequality, we get vy(x;>0/2)>1/4C, so that
v(%,>0/2) >ve(%,>0/2) >1/4C  for 6>1,

which yields a contradiction; »(x;=00)>1/4C. Thus (SN D)exe=(S N D) ext
and the proof of (ii)’ is complete.
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3. Proof of Theorem 1.2

First note that under the assumptions (1.12) and (1.13) for the solution
x(¢) of the SDE (1.1), the rescaled process y(f)=x(xt) satisfies the following
SDE:

(3.1) dyt)=r 3 Ay Odt+y AN (EZ°),
jEZ

where {M(t)},cz¢ are continuous square-integrable martingale such that their
quadratic variation processess satisfy M;(0)=0 for ;&Z%, and

3.2) ¢8,,dt <d(M,, M(8)<C8,,dt for i,jeZ* and t>0.

Notice that we are now considering a continuous time Markov process
(&, P;) taking values in Z¢, generated by the infinitesimal martic x4, instead of
A. Asin [12], the proof is based on the following Feynman-Kac’s formula with
respect to the process (£, P;). To avoid confusion in the subsequent we will
use the notation (Q,F,F,, P2) for the probability space where {B;(t)} (or
{M(t)}) are defined.

Lemma 3.1. Let y(0)=8 with 6>0. Then
20 = 0B(exp( 2, [ 1E-=paM, = 3 | Hemi=dM> @),
IEZ jEZ

where I(4) stands for the indicator function for an event A4, ie. I(4)=1if 4
occurs and I(A4)=0 otherwise.

Proof. It is easy to see that the equation (3.1) with y(0)=@ is equivalent
to the following integral equation which is uniquely solvable:

(33) YO =0+ 2 Py aM s, iz

jEZ

Using Ito’s formula we get
G4 exp(S || Herms=y) @M (09— M) 1

= [\ exp(2 |/ K- i=) (@M~ a<M > @) 32 LEr- = R)AMD).
Taking the expectation of (3.4) with respect to P;, and using Markov property

of (&, P;) together with a stochastic Fubini’s theorem (which is easily justified),
one can see that

(0 = 0B (exp( 3 | 1E-=)M 0~ 33§ 1E-=)aMp@)),

,IEZ
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solves the equation (3.3). Therefore the proof of Lemma 3.1 is complete by
the uniquencess of the equation (3.3) with y(0)=6.

For simplicity we hereafter assume 4,;=A4,=—1, and it suffices to show
the exponential decay for y,(t). Let N, be the number of jump times of £,
between the time interval [0, £]. Clearly IV, is a Poisson process with parameter
x. In order to estimate the Feynman-Kac expression of yy(f) we approximate
(&, P,) be a discrete time process.

Lemma 3.2. There is a discrete time stochasitc process {n,}m=o taking val-
ues in Z°® such that ny=0, and
Q) | 2m—nm-1| <Ry for m>1,

@) |, 1€ +=m ds<2n,,

where [ -] stands for the Gauss symbol, namely, [s] is the integer part of s.
(il) N,=#{l<m<n|pn*Ena_i} <N, for n>1.

Proof. Let 7,=0 and let 7,, 7,, --- be successive jump times of the pro-
cess &, and set §,=E, for m>0. Clearly |§,—¢,-| <R,
Define a sequence a,,(m=>0) by

=0, and a,,=min{a,,-,+1, N,} for m>1.

Then, as easily seen, {a,} is a non-decreasing sequence of integers with «,—
a,-1<1, and

(3.5) #{i<m<n|a,*+N,} <N, forn>1.

Setting y,={,,, for m>0, we see (i) and (iii)) immediately. For (ii), from (3.5)
it sollows

([ 1) a5 < B I0Nwa— Nz )+ 5 (7 16 A1 N = N s
<2N,,
because &, %7, implies N, +a,,.
Let
1(t) = Eexp (33 | 1E-=)dM,9)

Notice that the expectation is taken with respect to (&, P,) so that I(t) is a
stochastic process on the probablilty space (Q, F, &F,, P?). We now want to get
an exponential estimate for the process I(f). Note that the probability law of
{&,—E&,-}o<s<; under P, coincides with that of ((&,)o<,<s, Fo), S0 it holds

(3.6) 1) = Eyexp (32 || 1e—&, = DaM,) .
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In particular, for a fixed n>1, we apply Lemma 3.2 to the process ({£,—
Em-sto<s<ns Po), and denote by {nn}o<m<. the resultant discrete time process.
Then we have

Lemma 3.3. For a fixed integer n>1 there is a discrete time stochastic
process {nn}osm<n taking values in Z*° such that ;=0 and
(1) | pm—gh-r| SRy for 1<m<n,

Gi) (o IE,—Entpe) ds<2N,.
(i) N,=#{l<m<n|yi—qh_1%=0} <N,.

For an integer n>1, let
(3.7) Jim) = sup Efexp 233 [/ Lot = AM (),
(38) Jim) = sup Eexp @3 | (e —& = )Ll = NAM()

Lemma 3.4.
sup I(t)<e" [\(n)"” J,(n)"*.
n-1<t<n

Proof. Let n—1<t<n. Since [N,=%N,] is independent of (£,),<,<; under
P,, we see

1)< Eyexp (32 || 1E,—&, = M)
+Efexp (3} || IE—8 = HAM); N,+N,)
<Eyexp (32 | 1.~ = NaM ) +(1—e)0),
s0 using Schwarz’s inequality, we get

1) <e Eexp (2 [ K&~ = M)
<e ()" J(m)'" .

Lemma 3.5. There is a constant C>0 independentof « such that
P2(lim sup L log J,(n)<Ci) = 1.
L o /]
Proof. Let

M) =233 | (1~ = )—Lnfaiy = AM(S)
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M(t) is a continuous martingale with respect to P? with quadratic variation
process

@) = 4 [ 3 1E~E, = )~ Lot = DI ()
<8¢ [ 1, ~t4nt-n)ds

< 16CN,, by Lemma 3.3.

Since M(t)=B({M>(t)) for some standard Brownian motion B(t), using a simpie
formula on Brownirn motion:

E(exp (ossttlgr B(t))) = 2E(exp B(T); B(T)>0)<2e"?,

we obtain

E*(Jy(n))
< E(E*(exp (sup M(2))))

<2 Eexp (8CN,))
<2exp ((e¥—1)kn),

so by Chebyshev’s inequality
P5(J(n) >exp 265 xn) <2 exp—((e*+1)«n) .
Thereofre we complete the proof of Lemma 3.5 by using Borel-Cantelli’s lemma.

To estimate the main term J,(n) we divide it into three terms. Let
Jum) = sup Bexp 233 | Lot = )AM(5); 0< By <),
Juln) = sup Efexp @33 [ Lataiy = NAM,(9); Nz,
Joln) = sup Ey(exp 233 | Iortu-a = )AML(9); K= 0),

The estimate of [ 4(n) is trivial, and for J,,(n) we obtain by the same method as
Jo(n) that

E*([1(n)) <2*" P(N,=n)<2 exp ((¢*—1)«n),
hence

P3(lim sup L long Ji,(n)<C«k) =1 for some C>0 independent of «.
n>»° N

Now we proceed to estimate J,,(n). Let () be a positive function on
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(0, 1), which is specified later. For 0<k<n, let W} be the totality of sample
pahts of the discrete time process %"=(7h)o<m<s having just k2 jumps. Then
the cardinality of W7} is trivially estimated by

i<} RY.
Then
Po(Jy) 2 32 Pyt = B) exp (3 (2 )m)

<8 5 Psup 23 | Kot-n=NaM,0)>8(Em)

k=1 e W" (R <]

2 (= 72
= ':2‘1 weWs, \/27: SCB(k/n)Vi exp ( 2 )ar (for some C>0),

< Const. 2( )R"" exp (— CS( )2n) (for some C>0),

< Const. 5 1 exp n(h( %)+ (dlog RYE—C5( 2y,
k=1 \/ /\/ i ( 1’___) n n n

where h(r)=—rlogr—(1—r)log (1—7) for 0<r<1. For the last inequality we
used Striling’s formula.
Next we choose a function §(7) such as

C3(r)* = 2(h(r)+(d1og Ry)r) ,

hence

(39) P*(Jum= EP(Ri=h) exp 35)m)

L=

exp —n(h(l;—)—i—c%) (for some ¢>0 and C>0)

= C(n).
Since it is not hard to show that (C(n)) is summable, by Borel-Cantelli’s lemma,
(3.10) P3(Ju(n)< g PO(N,,=k) exp (& (%)n) for sufficiently large n)=1.
Next we claim

(3.11) lim sup % log :2-:P0(N,,=k) exp (8 (i)nEC(lc)—>0 as £—0.
n>o = n
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Note that §(r) is non-decreasing in (0,7,) with some 0<7,<<1, and set
5,(r)=8(rAr,). Using N,<N,, by Lemma 3.3 we have

]\1’: )n))_l__elal" Po(Nﬂ 2707!)

:‘é‘_:Po(M=k) exp (8 (%)n) < Byexp (5

where |8|=sup &(r).
By a classical large deviation result on Poisson process with parameter x>0, we
know

N,
n

tim L 1og Eyfexp (184(N))) = sup {8, log £ +7— =Ci(e).
(eg. see [4]).

On the other hand by using Chebyshev’s inequality we have
el1* Py(N,, =>rm) <exp x(m— 1).
7o
Also, by elementary calcuations one can check that there exist ¢>0 and ¢,>0
for every £>0 such that
c(log 1/6) 1< Cy(x) <cq(log 1/x)-1*® as k—0,

hence from these two estimates, we obtain (3.11).

Now we can complete the proof of Theorem 1.2. Summarizing Lemma
3.4, 3.5, (3.10), and (3.11) we have

P3(lim sup —1— log I(t) <C(x))=1 with some C(k)=O0((log 1/x))x~*** as x—0

for every £>0.
Also, by (3.2)

t -
5 | K=y ) 2,
hence the sample path y,((¢) satisfies y,(£) <6 exp (—ct) I(t), and after all we
obtain
P2(lim sup - 10g y() SC()—£) = 1,

which yields the upper bound in Theorem 1.2.
The lower bound in Theorem 1.2 is not difficult. In fact, by (3.2) it is suf-

ficient to show

(3.12) lim inf—i—log I(f)>lim inf L log ( inf I())>0.
foo> > 9

n-1<i<n
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Let n—1<t<n. Using (3.2) and Jensen’s inequality we see
t .
102 Polexp (32 || 1g,—E—i)aM (5); N,=N, )

> PN, =N, exp (3 || g, —E,=) IN,=N,-)dM(s))

Note that M(t)= ZS‘ Py¢,—&,=j IN,=N,_,)dM (s) is a square integrable
J 0

continuous martingale with quadratic variation process <M (t), which satisfies
{M>(t)<Ct by the assumption (3.2), so that there is a standard Brownian motion
B, (%) such that

inf M()> inf B,(MY)(1)2 inf B,(CY).

n-1<t<n

Using this together with a Gaussian estimate and Borel-Cantelli’s lemma, it is
easy to see that

lim inf L inf M(t)>11rn — inf B,(Ct)=0, P2—a.s.

B> 1 n-1<t<n nr» 1 0t

Since Py(N,=N,_;)=e™", we obtain (3.12). Therefore the proof of Theorem
1.2 is complete.

Proof of Corollary 1.3.
Let p=4,. We want to show lim T#y=3§,. By Theorem 1.2 it holds lim
tro0

t->00
T#84=3, for #>0. Using the coupling process introduced in the section 2 and

its monotonicity:
P==No(5}(£) >x3(t) holds for all i€Z?)=1 for >0, where x A 8=(x;\6) for
6>0, we see that for K >0,

Tt 5 AKD = | (@) B0+ (50— D) AK)
< [ u@E= @@ AK)+ | pldn) B~ AK).
< B AK)+ [ (@) (B (8) BN 2)
= <T180 5, NK>+ | u(d) (5,~5,16)

Letting t—oc0 and §— oo in this order, we get

11m {T¥p,x;,AK>=0 foricZand K>0,

which implies lim T u=3§,, completng the proof of Corollary 1.3.
t>o
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RemARk. In this section we actually treated a linear model (3.1) with

martingales as its deiving random force. Accordingly we can prove exponential
decay of sample paths for more general SDE with coefficients @,(x) in place of
a(x;) of the SDE (1.1), which may depend on other coordinates variables {x},
but should be assumed some uniformity conditions.
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