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Abstract
Using Perelman’s results on Kähler-Ricci flow, we prove thatthe K -energy is

bounded from below if and only if theF-functional is bounded from below in the
canonical Kähler class.

1. Introduction

One of the central problems in Kähler geometry is to study theexistence of Kähler-
Einstein metrics, which is closely related to the behavior of several energy functionals.
During the last few decades, these energy functionals have been intensely studied and
there are many interesting results. TheK -energy, which was introduced by Mabuchi
in [10], plays an important role in Kähler geometry.

Let (M, !) be ann-dimensional compact Kähler manifold withc1(M) > 0. We
define the space of Kähler potentials by

P(M, !) = {' ∈ C∞(M, R) | ! +
√
−1 ��̄' > 0},

where! ∈ 2�c1(M). For any' ∈ P(M, !), we define theK -energy by

(1.1) �!(') = − 1

V

∫ 1

0

∫

M

�'t�t
(R't − R)!n't

∧ dt

where't (t ∈ [0, 1]) is a path inP(M, !) with '0 = 0 and'1 = ', R is the average
of scalar curvature, andV = [!]n is the volume. Bando-Mabuchi [1] showed that if
M admits a Kähler-Einstein metric, then theK -energy is bouned from below. Later,
Tian [16] [17] proved that the existence of Kähler-Einsteinmetrics is equivalent to the
properness of theK -energy in the canonical Kähler class. In fact, Tian proved that the
existence of Kähler-Einstein metrics is equivalent to the properness of theF-functional,
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254 H. L I

which was introduced by Ding-Tian [7] as follows

(1.2)

F!(') =
1

V

n−1∑

i =0

i + 1

n + 1

∫

M

√
−1 �' ∧ �̄' ∧ !i ∧ !n−1−i'

− 1

V

∫

M
'!n − log

(
1

V

∫

M
eh!−'!n

)
.

To prove the convergence of Kähler-Ricci flow, Chen-Tian [5][6] introduced a se-
ries of energy functionalsEk(k = 0, 1, : : : , n) defined by

Ek,!(') =
1

V

∫

M

(
log

!n'!n
− h!

)( k∑

i =0

Rici' ∧!k−i

)
∧ !n−k'

+
1

V

∫

M
h!
(

k∑

i =0

Rici! ∧!k−i

)
∧ !n−k

+
n− k

V

∫ 1

0

∫

M

�'t�t
(!k+1't

− !k+1) ∧ !n−k−1't
∧ dt,

whereh! is the Ricci potential defined by

(1.3) Ric(!)− ! =
√
−1 ��̄h!, and

∫

M
(eh! − 1)!n = 0,

and 't (t ∈ [0, 1]) is a path from 0 to' in P(M, !). The first energyE0 of these
series is exactly theK -energy, and the secondE1 is the Liouville energy on Riemann
surfaces.

There are many relations between these energy functionals.Pali [12] prove that
E1 is bounded from below if theK -energy is bounded from below. Recently, Chen-
Li-Wang [4] proved the converse is also true. There are also some results on the lower
bound of Ek. Following a question proposed by X.X. Chen [3], Song-Weinkove [15]
showed that the existence of Kähler-Einstein metrics is equivalent to the properness of
E1 in the canonical class, and they also showed thatEk are bounded from below under
some additional curvature conditions. Recently, following suggestion of X.X. Chen,
the author [9] found new relations between all these functionals and generalized Pali-
Song-Weinkove’s results.

In summary, the relations between the existence of Kähler-Einstein metrics and
these energy functionals can be roughly written as follows:M admits Kähler-Einstein
metrics⇐⇒ the F-functional is proper⇐⇒ the K -energy is proper⇐⇒ E1 is proper.
A natural question is what will happen if these energy functionals are just bounded
from below instead of proper. In this paper, we prove
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Theorem 1.1. The K-energy is bounded from below if and only if F is bounded
from below onP(M, !). Moreover, we have

inf!′∈[!]
F!(!′) = inf!′∈[!]

�!(!′)− 1

V

∫

M
h!!n,

where h! is the Ricci potential with respect to the metric!.

Combining this with the results in [4], we actually prove that F is bounded from
below⇐⇒ the K -energy is bounded from below⇐⇒ E1 is bounded from below. We
expect that the lower boundedness of all energy functionalsEk is equivalent, and per-
haps the lower boundedness implies the existence of singular Kähler-Einstein metrics
and certain stabilities.

The idea of the proof of Theorem 1.1 is essentially due to our joint paper [4]. The
key point is to estimate the difference ofF and �! along the Kähler-Ricci flow, and
we show that the difference of these two functionals at infinity is a uniform constant
independent of the initial metric of the flow. However, the proof needs Perelman’s
deep estimates on the Kähler-Ricci flow, while in [4] the equivalence of theK -energy
and E1 doesn’t. This is because we can compare the derivatives of these energy func-
tionals along the Kähler-Ricci flow in [4], but we don’t have similar estimates in this
paper. The readers are referred to [4] for details. We expectthat this flow method can
be used to prove the equivalence of allEk functionals in the future.

2. Kähler-Ricci flow and the K -energy

Let (M, !) be ann-dimensional compact Kähler manifold with! ∈ 2�c1(M) > 0.
The Kähler-Ricci flow with the initial metric!0 = ! +

√
−1 ��̄'0 is of the form

(2.1)
�!'�t

= !' − Ric' , '(0) = '0.

It follows that on the level of Kähler potentials, the Kähler-Ricci flow becomes

(2.2)
�'�t

= log
!n'!n

+ ' − h!,

where h! is defined by (1.3). Notice that for any solution'(t) of (2.2), the function'̃(t) = '(t) + Cet is also a solution for any constantC. Since

�'̃�t
(0) =

�'�t
(0) + C,

we have

1

V

∫

M

�'̃�t
!n'̃
∣∣∣∣
t=0

=
1

V

∫

M

�'�t
!n'
∣∣∣∣
t=0

+ C.
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Thus we can normalize the solution'(t) such that the average of (�'=�t)(0) is any
given constant.

Next we recall some basic facts on energy functionals. TheK -energy, which is
defined by (1.1), can be explicitly expressed as (cf. [2] [17])

(2.3)

�!(') =
1

V

∫

M
log

!n'!n
!n' +

1

V

∫

M
h!(!n − !n')

− 1

V

n−1∑

i =0

n− i

n + 1

∫

M

√
−1 �' ∧ �̄' ∧ !i ∧ !n−1−i' .

By direct calculation, theK -energy is decreasing along the Kähler-Ricci flow. In fact,
for the solution'(t) of (2.2) we have1

(2.4)
d

dt
�!('(t)) = − 1

V

∫

M

∣∣∣∣∇
�'�t

∣∣∣∣
2!n' ≤ 0.

The following lemma tells us that if theK -energy is bounded from below, we can
normalize the solution such that the average of�'=�t can be controlled. Since the
normalization is crucial in Section 3, we include a proof here.

Lemma 2.1 (cf. [5]). Suppose that the K-energy is bounded from below along
the Kähler-Ricci flow. Then we can normalize the solution'(t) so that

c(0) =
1

V

∫ ∞

0
e−t

∫

M

∣∣∣∣∇
�'�t

∣∣∣∣
2!n' ∧ dt <∞,

where c(t) = (1=V )
∫

M (�'=�t)!n' . Then for all time t> 0, we have

c(t) > 0,
∫ ∞

0
c(t) dt < �!(0)− �!(∞),

where�!(∞) = limt→∞ �!(t).

Proof. A simple calculation yields

c′(t) = c(t)− 1

V

∫

M
|∇'̇|2!n'.

Define

�(t) =
1

V

∫

M
|∇'̇|2!n' .

1Throughout this paper, the expressions such as|∇ f | and1 f are with respect to the metric!'(t).
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Since theK energy has a lower bound along the Kähler Ricci flow, we have

∫ ∞

0
�(t) dt =

1

V

∫ ∞

0

∫

M
|∇'̇|2!n' ∧ dt = �!(0)− �!(∞).

Now we normalize our initial value ofc(t) as

c(0) =
∫ ∞

0
�(t)e−t dt

=
1

V

∫ ∞

0
e−t

∫

M
|∇'̇|2!n' ∧ dt

≤ 1

V

∫ ∞

0

∫

M
|∇'̇|2!n' ∧ dt

= �!(0)− �!(∞).

From the equation forc(t), we have

(e−tc(t))′ = −�(t)e−t .

Thus, we have

0< c(t) =
∫ ∞

t
�(� )e−(�−t) d� ≤ �!(0)− �!(∞)

and

lim
t→∞

c(t) = lim
t→∞

∫ ∞

t
�(� )e−(�−t) d� = 0.

Since theK energy is bounded from below, we have

∫ ∞

0
c(t) dt =

1

V

∫ ∞

0

∫

M
|∇'̇|2!n' ∧ dt − c(0)≤ �!(0)− �!(∞).

Now we recall the following result, which was proved by Perelman using the
W-functional and the gradient estimates for�'=�t .

Lemma 2.2 (cf. [13] [11]). For the solution'(t) of (2.2), we choose at by the
condition ht = −(�'=�t) + at such that

(2.5)
∫

M
eht!n' = V .

Then there is a uniform constant A independent of t such that

(2.6) |ht | ≤ A, |∇ht |2(t) ≤ A, and |1ht | ≤ A.
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Finally, we state the following Poincaré inequality, whichis well-known in litera-
ture (cf. [8], [18]).

Lemma 2.3. For any Kähler metric!g and any function� ∈ C∞(M,C), we have

∫

M
|∇�|2eh!n

g ≥
∫

M
|� − �|2eh!n

g,

where h is the Ricci potential function with respect to!g and

� =
1

V

∫

M
�eh!n

g.

3. Proof of Theorem 1.1

In this section, we prove the main theorem. First, by the expression (2.3) and (1.2),
we can show the following lemma, which directly implies theK -energy is bounded
from below if F is bounded from below.

Lemma 3.1.

(3.1) �!(') ≥ F!(') +
1

V

∫

M
h!!n.

Proof. By the expression (2.3), theK -energy can be written as

(3.2)

�!(') =
1

V

∫

M
u!n' − 1

V

∫

M
'!n' +

1

V

∫

M
h!!n

− 1

V

n−1∑

i =0

n− i

n + 1

∫

M

√
−1 �' ∧ �̄' ∧ !i ∧ !n−1−i' ,

where

u = log
!n'!n

+ ' − h!.

By direct calculation, we have

(3.3)

�!(')− F!(') =
1

V

∫

M
u!n' +

1

V

∫

M
h!!n + log

(
1

V

∫

M
eh!−'!n

)

=
1

V

∫

M
u!n' +

1

V

∫

M
h!!n + log

(
1

V

∫

M
e−u!n'

)
.



THE K -ENERGY AND F -FUNCTIONAL 259

Using Jensen’s inequality, we have

log

(
1

V

∫

M
e−u!n'

)
≥ − 1

V

∫

M
u!n' .

Thus, we have

�!(') ≥ F!(') +
1

V

∫

M
h!!n.

Now we assume that theK -energy is bounded from below. For any metric!′ =!+
√
−1��̄'0, we consider the solution'(t) of Kähler-Ricci flow with the initial met-

ric !′:
�'�t

= u = log
!n'!n

+ ' − h!, '(0) = '0.

SinceF(t) = F!('(t)) is decreasing along the Kähler-Ricci flow (cf. [5]), we will prove
that �!(t)− F(t) has a uniform bound ast →∞, and the bound is independent of the
initial metric !′. Thus, F is also bounded from below.

Since F(t) is decreasing along the Kähler-Ricci flow, for anys< t by the equal-
ity (3.3) we have

(3.4)

F!(!′) = F(0)≥ F(t)− �!(t) + �!(t)

= F(t)− �!(t) + �!(s)− 1

V

∫ t

s

∫

M
|∇u|2!n'

= − f (t) + �!(s)− 1

V

∫ t

s

∫

M
|∇u|2!n' − 1

V

∫

M
h!!n.

where

(3.5) f (t) =
1

V

∫

M
u!n' + log

(
1

V

∫

M
e−u!n'

)
.

If we can find a sequence of timestm→∞ such that

(3.6) lim
m→∞

f (tm) = 0,

then we can taket = tm in (3.4), and letm→∞,

F!(!′) ≥ �!(s)− 1

V

∫ ∞

s

∫

M
|∇u|2!n' − 1

V

∫

M
h!!n.
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Since theK -energy is decreasing along Kähler-Ricci flow, takings→∞ in the above
inequality we have

(3.7) F!(!′) ≥ inf �! − 1

V

∫

M
h!!n.

Then F is bounded from below. Thus, it suffices to show that (3.6) holds.
Now we are ready to prove (3.6). Since theK -energy is bounded from below, by

Lemma 2.1 we can normalize the solution'(t) such thatc(t) > 0 for all t , and

(3.8) lim
t→∞

c(t) = lim
t→∞

1

V

∫

M
u!n' = 0.

By Lemma 2.2, we prove

Lemma 3.2. There exists a constant B independent of t such that|u| ≤ B.

Proof. We use the notations in Lemma 2.2. By the equality (2.5), we have

∫

M
e−u+at!n' = V .

It follows that

at = − log

(
1

V

∫

M
e−u!n'

)
.

Then Lemma 2.2 implies

(3.9) −A ≤ u + log

(
1

V

∫

M
e−u!n'

)
≤ A.

Since theK -energy is bounded from below, by Lemma 2.1 the integral
∫

M u!n' is uni-
formly bounded from above and below. Thus, integrating (3.9) we have

(3.10)

∣∣∣∣log

(
1

V

∫

M
e−u!n'

)∣∣∣∣ ≤ C,

for some constantC. Combining (3.9) with (3.10), the lemma is proved.

Next, we prove the following lemma

Lemma 3.3. For time t→∞, we have

u(t)→ 0,

where u(t) = (1=V)
∫

M ueht!n' . Here we choose ht as in Lemma 2.2.
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Proof. Observe that

(3.11)

(
1

V

∫

M
ueht!n'

)2

≤ 1

V

∫

M
u2eht!n' ≤ eA

V

∫

M
u2!n' .

Let

b(t) =
∫

M
u2!n' .

Then

d

dt
b(t) =

∫

M
(2u(1u + u) + u21u)!n'

=
∫

M
(−2|∇u|2 + 2u2− 2u|∇u|2)!n'

≥
∫

M
(−2|∇u|2 + 2u2 − u2 − |∇u|4)!n'

≥ b(t)− (2 + A)
∫

M
|∇u|2!n'

where we use|∇u|2 ≤ A in the last inequality. Thus, integrating the above inequality
from 0 to∞ we have

∫ ∞

0
b(t) dt ≤ lim sup

t→∞
b(t)− b(0) + (2 + A)

∫ ∞

0

∫

M
|∇u|2!n' <∞.

Here the last inequality comes from Lemma 3.2 and the fact that the K -energy is
bounded from below. By Lemma 2.2, we have|(d=dt)b(t)| ≤ C. Hence, we have
b(t)→ 0 as t →∞. Therefore, by the inequality (3.11) we haveu(t)→ 0.

Now we can prove

Lemma 3.4. There is a sequence of times tm→∞ such that

lim
m→∞

f (tm)→ 0,

where f is defined by(3.5).

Proof. By the equalities (3.5) and (3.8), it suffices to find a sequence of timestm
such that

(3.12) lim
m→∞

log

(
1

V

∫

M
e−u!n'

)∣∣∣∣
t=tm

= 0.
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Since u and u are bounded by Lemma 3.2 and Lemma 3.3, we have the Taylor
expansion

(3.13) e−(u−u) = 1 +
∞∑

k=1

(−1)k

k!
(u− u)k.

Therefore,

(3.14) log

(
1

V

∫

M
e−u!n'

)
= −u + log

(
1 +

1

V

∫

M

∞∑

k=1

(−1)k

k!
(u− u)k!n'

)
.

Now by Lemma 2.2, we have

(3.15)

∣∣∣∣∣

∫

M

∞∑

k=1

(−1)k

k!
(u− u)k!n'

∣∣∣∣∣ ≤
∫

M

∞∑

k=1

1

k!
|u− u|k!n'

≤
∞∑

k=1

eA

k!

∫

M
|u− u|keht!n' .

Then by the Poincaré inequality in Lemma 2.3, we know

(3.16)

∞∑

k=1

eA

k!

∫

M
|u− u|keht!n'

≤ eA
∫

M
|u− u|eht!n' +

∞∑

k=2

eA(2B)k−2

k!

∫

M
|u− u|2eht!n'

≤ eA
√

V

√∫

M
|u− u|2eht!n' +

eA+2B

(2B)2

∫

M
|u− u|2eht!n'

≤ eA
√

V

√∫

M
|∇u|2eht!n' +

eA+2B

(2B)2

∫

M
|∇u|2eht!n'

≤ e3=2A
√

V

√∫

M
|∇u|2!n' +

e2A+2B

(2B)2

∫

M
|∇u|2!n'.

Since theK -energy is bounded from below, by (2.4) we can find a sequence of times
tm→∞ such that

∫

M
|∇u|2!n'

∣∣∣∣
t=tm

→ 0.

Combining this with (3.14)–(3.16), we know (3.12) holds. The lemma is proved.
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By Lemma 3.4, the equality (3.6) holds. This impliesF! is bounded from below
and the inequality (3.7) holds. Combining this with Lemma 3.1, the main theorem is
proved.
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