<table>
<thead>
<tr>
<th>Title</th>
<th>A characterization of QF-algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 20(1) P.1-P.4</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8764</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8764</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
A CHARACTERIZATION OF QF-ALGEBRAS

MANABU HARADA

(Received February 19, 1981)

We have defined a new class of rings in [3] which we call self mini-injective rings and we have noted that there exist artinian rings in the new class which are not quasi-Frobenius rings (briefly QF-rings).

We shall show in this note that if a ring R is an algebra over a field with finite dimension, then a self mini-injective algebra is a QF-algebra.

Throughout this note we assume a ring R contains the identity and every module is a unitary right R-module. We shall refer for the definitions of mini-injectives and the extending property, etc. to [3].

Let K be a field and R a K-algebra with finite dimension over K.

Theorem 1 (cf. [3], Theorems 13 and 14). Let R be as above. Then the following conditions are equivalent.

1) R is self mini-injective as a right R-module.
2) R is self mini-injective as a left R-module.
3) Every projective right R-module has the extending property of direct decomposition of the socle.
4) Every projective left R-module has the extending property of direct decomposition of the socle.
5) R is a QF-algebra.

Proof. R is self-injective as a left or right R-module if and only if R is a QF-algebra by [2]. In this case R is self-injective as both a right and left R-module by [1]. It is clear from [3], Theorem 3 and Proposition 8 that 1), 2) are equivalent to 3), 4), respectively. Hence, we may assume R is a basic algebra by [4] and [6].

1) \rightarrow 5). Let $R=\sum_{i=1}^{n} \oplus e_{i}R$ be the standard decomposition, namely $\{e_{i}\}$ is a set of mutually orthogonal primitive idempotents and $e_{i}R=e_{i}e_{i}R$ if $i \neq i'$. Since R is right self mini-injective, R is right QF-2 by [3], Proposition 8 and $S(e_{i}R)\neq S(e_{i}R)$ for $i \neq i'$ by [3], Theorem 5, where $S(\)$ means the socle. Now $e_{i}R$ is uniform as a right R-module and so the injective envelope $E(e_{i}R)$ of $e_{i}R$ is indecomposable. We put $M^{*}=\text{Hom}_{K}(M,K)$ for a K-module M. Then $E(e_{i}R)^{*}$
is indecomposable and projective as a left \(R \)-module. Hence, \(E(e_i|R) \cong Re_i \)\(^R\) and \(E(e_i|R) \cong (Re_i)* \). From the fact \(E(e_i|R) \cong E(e_j|R) \) for \(i \neq j \), a mapping \(\pi : i \to i' \) is a permutation on \(\{1, 2, \cdots, n\} \). Accordingly, \(\sum_{i=1}^{n} [E(e_i|R) : K] \sum_{i=1}^{n} [Re_i\pi(i) : K] = [R : K] \). Therefore, \(E(R) = \sum E(e_i|R) = R \).

The remaining part is clear.

In the above proof we have used only the facts that \(R \) is right QF-2 and \(S(e_i|R) \cong S(e_i|R) \) if \(i \neq j \). Hence, we have

Theorem 2. Let \(R \) be a \(K \)-algebra as above. If \(R \) is right QF-2 and \(S(e_i|R) \cong S(e_i'|R) \) if \(e_i \neq e_i' \) then \(R \) is QF, where \(e \) and \(e' \) are primitive idempotents, where \(J \) is the Jacobson radical of \(R \).

Corollary. Let \(R \) be the \(K \)-algebra as above. We assume \(R/J \) is a simple algebra. Then \(R \) is a QF-algebra if and only if \(R \) is a right QF-2 algebra.

We note that the above facts are not true for right and left artinian rings (see [3], Example 2).

Next we shall consider a characterization of a right artinian and self mini-injective ring.

Theorem 3. Let \(R \) be a right artinian ring. Then the following conditions are equivalent.

1) \(R \) is self mini-injective as a right \(R \)-module.
2) \(R \) satisfies
 i) if \(e_i R \cong e_i R \), any minimal right ideal in \(e_i R \) is not isomorphic to one in \(e_2 R \).
 ii) there exists a minimal right ideal \(I \) contained in \(e_i J^{i+1} = 0 \) such that \(\text{End}_R(I) = \{a \in e_i Re_i | a I \subseteq I\} \), i.e. \(\text{End}_R(I) \) is extended to \(\text{End}_R(e_i R) \) and \(S(e_i R) = e_i Re_i I \) for each \(e_i \), where the \(e_i \) is primitive idempotent and \(S(\cdot) \) is socle and \(R = R/J \).

Proof. 1) \(\to \) 2). It is clear from [3], Theorem 5. 2) \(\to \) 1). The second part of ii) implies that each minimal right ideal \(I' \) in \(e_i R \) is isomorphic to \(I \). We assume \(I \cong e_2 R \) and \(I=xR, I'=x' R \). Then we may assume \(xe_2=x \) and \(x'e_2=x' \). We obtain from ii) that \(x' = x'e_2 = \sum y_i x_r \), \(y_i \in e_i Re_i, r_i \in Re_2 \). Now \(x = x'e_2 = xe_2 e_2 - xe_2 e_2 \). Since a mapping \(xz \to xe_2 e_2 \) is an \(R \)-endomorphism of \(I \), there exists an element \(a_i \) in \(e_i Re_i \) with \(a_i x = xe_2 e_2 \). Since \(b \neq 0, x = b^{-1} x' \). Also, \(g(x') = xz, z \in R \). Let \(f \) be any element in \(\text{Hom}_R(I, I') \). Then \(gf \in \text{End}_R(I) \). Hence, there exists \(a_i \) in \(e_i Re_i \) such that \(gf(x) = ax \) by ii). Therefore, \(f(x) = g^{-1}(ax) = bax \) and \(f \) is extended to an element in \(\text{End}_R(e_i R) \). We know similarly that \(\text{End}_R(I') = b^{-1} \text{End}_R(I) b = \{\xi \in e_i Re_i | e_i I' \subseteq I'\} \).
Hence, I' satisfies ii). Let $h \in \text{Hom}_R(I', R)$ and $R = \sum_{i=1}^{\infty} e_i R$. Let $\pi_i : R \to e_i R$ be the projection. If $\pi_i h = h_i \neq 0$ for $i = 1, 2, \ldots, t$ and $h_j = 0$ for $j > t$. Since $e_i R \cong e_i R$ for $i \leq t$, there exists $c_i \in e_i R$ and $d_i \in e_i R$ such that $c_i d_i = e_i$. Using d_i and c_i, we know as above that any element in $\text{Hom}_R(I', h(I'))$ is extended to an element in $\text{Hom}_R(e_i R, e_i R)$ for $i \leq t$. Take $p_i \in R$ such that $p_i x' = h_i(x')$. Then $h(x') = \sum h_i(x') = (\sum p_i)x'$. Hence, R is right self mini-injective by [3], Theorem 2.

REMARK. The above three conditions in Theorem 3, 2) are independent.

Corollary 1. Let R be a right artinian and right self mini-injective. Then R is a right QF-2 if and only if $\text{End}_R(I) = e_i R$, in ii) of Theorem 3.

Corollary 2. Let R be a right artinian ring and e a primitive idempotent. We assume that i) R is right QF-2, ii) any monomorphism of eR into itself as a division ring is isomorphic for each e (e.g. algebraic extension of the prime field) and iii) $S(eR) \cong S(e'R)$ if $eR \cong e'R$. Then R is right self mini-injective.

Proof. We may assume R is basic. Since $S(eR) \supseteq eJ^k = 0 (eJ^{k+1} = 0)$, $S(eR) = eJ^k$ by i). Put $S(eR) = uR$. $eJ u \subseteq eJ^{k+1} = 0$ and so uR is a left eR-module. We assume $uR \cong e'R$. Since R is basic, $e'R = e'R$. Hence, $ue'R = uR$. Let x be in eR. Then $xu = uy; y \in e'R$. It is clear that the mapping $x \mapsto y$ gives us a monomorphism of the division ring eR into $e'R$ as a division ring. Repeating this procedure, we can find a chain $e, e', \ldots, e^{(t)}$ of primitive idempotents. We know from iii) that $e^{(s)} = e$ for some s (cf. [3], the proof of Proposition 8). Hence, $eReu = e'R$ by ii). Therefore, R is right self mini-injective by Theorem 3.

We do not know any example of a right QF-2 and right self mini-injective ring which is not QF.

References

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558
Japan