



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | A characterization of QF-algebras                                         |
| Author(s)    | Harada, Manabu                                                            |
| Citation     | Osaka Journal of Mathematics. 1983, 20(1), p. 1-4                         |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/8764">https://doi.org/10.18910/8764</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

## A CHARACTERIZATION OF QF-ALGEBRAS

MANABU HARADA

(Received February 19, 1981)

We have defined a new class of rings in [3] which we call self mini-injective rings and we have noted that there exist artinian rings in the new class which are not quasi-Frobenius rings (briefly QF-rings).

We shall show in this note that if a ring  $R$  is an algebra over a field with finite dimension, then a self mini-injective algebra is a QF-algebra.

Throughout this note we assume a ring  $R$  contains the identity and every module is a unitary right  $R$ -module. We shall refer for the definitions of mini-injectives and the extending property, etc. to [3].

Let  $K$  be a field and  $R$  a  $K$ -algebra with finite dimension over  $K$ .

**Theorem 1** (cf. [3], Theorems 13 and 14). *Let  $R$  be as above. Then the following conditions are equivalent.*

- 1)  *$R$  is self mini-injective as a right  $R$ -module.*
- 2)  *$R$  is self mini-injective as a left  $R$ -module.*
- 3) *Every projective right  $R$ -module has the extending property of direct decomposition of the socle.*
- 4) *Every projective left  $R$ -module has the extending property of direct decomposition of the socle.*
- 5)  *$R$  is a QF-algebra.*

**Proof.**  $R$  is self-injective as a left or right  $R$ -module if and only if  $R$  is a QF-algebra by [2]. In this case  $R$  is self-injective as both a right and left  $R$ -module by [1]. It is clear from [3], Theorem 3 and Proposition 8 that 1), 2) are equivalent to 3), 4), respectively. Hence, we may assume  $R$  is a basic algebra by [4] and [6].

1)  $\rightarrow$  5). Let  $R = \sum_{i=1}^n \oplus e_i R$  be the standard decomposition, namely  $\{e_i\}$  is a set of mutually orthogonal primitive idempotents and  $e_i R \not\approx e_{i'} R$  if  $i \neq i'$ . Since  $R$  is right self mini-injective,  $R$  is right QF-2 by [3], Proposition 8 and  $S(e_i R) \not\approx S(e_{i'} R)$  for  $i \neq i'$  by [3], Theorem 5, where  $S(\ )$  means the socle. Now  $e_i R$  is uniform as a right  $R$ -module and so the injective envelope  $E(e_i R)$  of  $e_i R$  is indecomposable. We put  $M^* = \text{Hom}_K(M, K)$  for a  $K$ -module  $M$ . Then  $E(e_i R)^*$

is indecomposable and projective as a left  $R$ -module. Hence,  $E(e_i/R)^* \approx Re_i$  and  $E(e_iR) \not\approx (Re_i)^*$ . From the fact  $E(e_iR) \approx E(e_jR)$  for  $i \neq j$ , a mapping  $\pi: i \rightarrow i'$  is a permutation on  $\{1, 2, \dots, n\}$ . Accordingly,  $\sum_{i=1}^n [E(e_iR): K] = \sum_{i=1}^n [Re_{\pi(i)}: K] = [R: K]$ . Therefore,  $E(R) = \sum_{i=1}^n \oplus E(e_iR) = R$ . The remaining part is clear.

In the above proof we have used only the facts that  $R$  is right QF-2 and  $S(e_iR) \not\approx S(e_jR)$  if  $i \neq j$ . Hence, we have

**Theorem 2.** *Let  $R$  be a  $K$ -algebra as above. If  $R$  is right QF-2 and  $S(eR) \not\approx S(e'R)$  if  $eR \not\approx e'R$  then  $R$  is QF, where  $e$  and  $e'$  are primitive idempotents, where  $J$  is the Jacobson radical of  $R$ .*

**Corollary.** *Let  $R$  be the  $K$ -algebra as above. We assume  $R/J$  is a simple algebra. Then  $R$  is a QF-algebra if and only if  $R$  is a right QF-2 algebra.*

We note that the above facts are not true for right and left artinian rings (see [3], Example 2).

Next we shall consider a characterization of a right artinian and self mini-injective ring.

**Theorem 3.** *Let  $R$  be a right artinian ring. Then the following conditions are equivalent.*

- 1)  $R$  is self mini-injective as a right  $R$ -module.
- 2)  $R$  satisfies
  - i) if  $e_1R \not\approx e_2R$ , any minimal right ideal in  $e_1R$  is not isomorphic to one in  $e_2R$ .
  - ii) there exists a minimal right ideal  $I$  contained in  $e_1J^k$  ( $e_1J^{k+1} = 0$ ) such that  $\text{End}_R(I) = \{a \in \overline{e_1Re_1} \mid aI \subseteq I\}$ , i.e.  $\text{End}_R(I)$  is extended to  $\text{End}_R(e_1R)$  and  $S(e_1R) = e_1Re_1I$  for each  $e_1$ , where the  $e_i$  is primitive idempotent and  $S(\ )$  is socle and  $\bar{R} = R/J$ .

Proof. 1)  $\rightarrow$  2). It is clear from [3], Theorem 5. 2)  $\rightarrow$  1). The second part of ii) implies that each minimal right ideal  $I'$  in  $e_1R$  is isomorphic to  $I$ . We assume  $I \approx \overline{e_2R}$  and  $I = xR$ ,  $I' = x'R$ . Then we may assume  $xe_2 = x$  and  $x'e_2 = x'$ . We obtain from ii) that  $x' = x'e_2 = \sum y_i x r_i$ ,  $y_i \in e_1Re_1$ ,  $r_i \in Re_2$ . Now  $xr_i e_2 = xe_2 r_i e_2 = \overline{xe_2 r_i e_2}$ . Since a mapping  $xz \rightarrow \overline{xe_2 r_i e_2 z}$  is an  $R$ -endomorphism of  $I$ , there exists an element  $a_i$  in  $\overline{e_1Re_1}$  with  $a_i x = \overline{xe_2 r_i e_2}$  from ii). Hence,  $x' = (\sum y_i a_i)x = \bar{b}x$ , where  $\bar{b} = \sum y_i a_i$ . We quote the proof of [3], Proposition 9. Since  $\bar{b} \neq 0$ ,  $x = \bar{b}^{-1}x'$ . Put  $g(x'z) = xz$ ;  $z \in R$ . Let  $f$  be any element in  $\text{Hom}_R(I, I')$ . Then  $gf \in \text{End}_R(I)$ . Hence, there exists  $a$  in  $\overline{e_1Re_1}$  such that  $gf(x) = ax$  by ii). Therefore,  $f(x) = g^{-1}(ax) = \bar{b}ax$  and  $f$  is extended to an element in  $\text{End}_R(e_1R)$ . We know similarly that  $\text{End}_R(I') = \bar{b}^{-1}\text{End}_R(I)\bar{b} = \{\bar{c} \in \overline{e_1Re_1} \mid cI' \subseteq I'\}$ .

Hence,  $I'$  satisfies ii). Let  $h \in \text{Hom}_R(I', R)$  and  $R = \sum_{i=1}^n \oplus e_i R$ . Let  $\pi_i: R \rightarrow e_i R$  be the projection. If  $\pi_i h \neq 0$ ,  $e_i R \approx e_i R$  by i). We assume  $\pi_i h = h_i \neq 0$  for  $i = 1, 2, \dots, t$  and  $h_j = 0$  for  $j > t$ . Since  $e_i R \approx e_i R$  for  $i \leq t$ , there exists  $c_i \in e_i R e_i$  and  $d_i \in e_i R e_i$  such that  $c_i d_i = e_i$  and  $d_i c_i = e_i$ . Using  $d_i$  and  $c_i$ , we know as above that any element in  $\text{Hom}_R(I', h_i(I'))$  is extended to an element in  $\text{Hom}_R(e_i R, e_i R)$  for  $i \leq t$ . Take  $p_i \in R$  such that  $p_i x' = h_i(x')$ . Then  $h(x') = \sum h_i(x') = (\sum p_i)x'$ . Hence,  $R$  is right self mini-injective by [3], Theorem 2.

REMARK. The above three conditions in Theorem 3, 2) are independent.

**Corollary 1.** *Let  $R$  be a right artinian and right self mini-injective. Then  $R$  is a right QF-2 if and only if  $\text{End}_R(I) = \overline{e_i R e_i}$  in ii) of Theorem 3.*

**Corollary 2.** *Let  $R$  be a right artinian ring and  $e$  a primitive idempotent. We assume that i)  $R$  is right QF-2, ii) any monomorphism of  $\overline{e R e}$  into itself as a division ring is isomorphic for each  $e$  (e.g. algebraic extension of the prime field) and iii)  $S(eR) \approx S(e'R)$  if  $eR \approx e'R$ . Then  $R$  is right self mini-injective.*

Proof. We may assume  $R$  is basic. Since  $S(eR) \supset eJ^k \neq 0$  ( $eJ^{k+1} = 0$ ),  $S(eR) = eJ^k$  by i). Put  $S(eR) = uR$ .  $eJeu \subset eJ^{k+1} = 0$  and so  $uR$  is a left  $\overline{e R e}$ -module. We assume  $uR \approx \overline{e R e}$ . Since  $R$  is basic,  $\overline{e R e} = \overline{e' R e'}$ . Hence,  $ue' R e' = uR$ . Let  $\bar{x}$  be in  $\overline{e R e}$ . Then  $\bar{x}u = u\bar{y}$ ;  $\bar{y} \in \overline{e' R e'}$ . It is clear that the mapping  $\bar{x} \rightarrow \bar{y}$  gives us a monomorphism of the division ring  $\overline{e R e}$  into  $\overline{e' R e'}$  as a division ring. Repeating this procedure, we can find a chain  $e, e', \dots, e^{(t)}$  of primitive idempotents. We know from iii) that  $e^{(s)} = e$  for some  $s$  (cf. [3], the proof of Proposition 8). Hence,  $\overline{e R e} u = ue' R e'$  by ii). Therefore,  $R$  is right self mini-injective by Theorem 3.

We do not know any example of a right QF-2 and right self mini-injective ring which is not QF.

---

### References

- [1] S. Eilenberg and T. Nakayama: *On the dimension of modules and algebras II*, Nagoya Math. J. **9** (1956), 1–16.
- [2] C. Faith: *Rings with ascending condition on annihilators*, ibid. **27** (1966), 179–191.
- [3] M. Harada: *On self mini-injective rings*, Osaka J. Math. **19** (1982), 587–597.
- [4] M. Oshima: *Notes on basic rings*, Math. J. Okayama Univ. **2** (1952–53), 103–110.
- [5] K. Morita: *Duality for modules and its applications to the theory of rings with*

*minimum condition*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A **6** (1958), 83–142.

Department of Mathematics  
Osaka City University  
Sumiyoshi-ku, Osaka 558  
Japan