

Title	A characterization of QF-algebras
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1983, 20(1), p. 1- 4
Version Type	VoR
URL	https://doi.org/10.18910/8764
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Harada, M. Osaka J. Math. 20 (1983), 1-4

A CHARACTERIZATION OF QF-ALGEBRAS

MANABU HARADA

(Received February 19, 1981)

We have defined a new class of rings in [3] which we call self mini-injective rings and we have noted that there exist artinian rings in the new class which are not quasi-Frobenius rings (briefly QF-rings).

We shall show in this note that if a ring R is an algebra over a field with finite dimension, then a self mini-injective algebra is a QF-algebra.

Throughout this note we assume a ring R contains the identity and every module is a unitary right R-module. We shall refer for the definitions of mini-injectives and the extending property, etc. to [3].

Let K be a field and R a K-algebra with finite dimension over K.

Theorem 1 (cf. [3], Theorems 13 and 14). Let R be as above. Then the following conditions are equivalent.

1) R is self mini-injective as a right R-module.

2) R is self mini-injective as a left R-module.

3) Every projective right R-module has the extending property of direct decomposition of the socle.

4) Every projective left R-module has the extending property of direct decomposition of the socle.

5) R is a QF-algebra.

Proof. R is self-injective as a left or right R-module if and only if R is a QF-algebra by [2]. In this case R is self-injective as both a right and left R-module by [1]. It is clear from [3], Theorem 3 and Proposition 8 that 1), 2) are equivalent to 3), 4), respectively. Hence, we may assume R is a basic algebra by [4] and [6].

1) \rightarrow 5). Let $R = \sum_{i=1}^{n} \bigoplus e_i R$ be the standard decomposition, namely $\{e_i\}$ is a set of mutually orthogonal primitive idempotents and $e_i R \approx e_i R$ if $i \neq i'$. Since R is right self mini-injective, R is right QF-2 by [3], Proposition 8 and $S(e_i R) \approx$ $S(e_i R)$ for $i \neq i'$ by [3], Theorem 5, where S() means the socle. Now $e_i R$ is uniform as a right R-module and so the injective envelope $E(e_i R)$ of $e_i R$ is indecomposable. We put $M^* = \operatorname{Hom}_{\kappa}(M, K)$ for a K-module M. Then $E(e_i R)^*$

M. HARADA

is indecomposable and projective as a left *R*-module. Hence, $E(e_i/R)^* \approx Re_{i'}$ and $E(e_iR) \approx (Re_{i'})^*$. From the fact $E(e_iR) \approx E(e_jR)$ for $i \neq j$, a mapping $\pi: i \rightarrow i'$ is a permutation on $\{1, 2, \dots, n\}$. Accordingly, $\sum_{i=1}^{n} [E(e_iR): K] = \sum_{i=1}^{n} [Re_{\pi(i)}: K]$ = [R: K]. Therefore, $E(R) = \sum_{i=1}^{n} \bigoplus E(e_iR) = R$. The remaining part is clear.

In the above proof we have used only the facts that R is right QF-2 and $S(e_iR) \approx S(e_iR)$ if $i \neq j$. Hence, we have

Theorem 2. Let R be a K-algebra as above. If R is right QF-2 and S(eR) $\approx S(e'R)$ if $eR \approx e'R$ then R is QF, where e and e' are primitive idempotents, where J is the Jacobson radical of R.

Corollary. Let R be the K-algebra as above. We assume R|J is a simple algebra. Then R is a QF-algebra if and only if R is a right QF-2 algebra.

We note that the above facts are not true for right and left artinian rings (see [3], Example 2).

Next we shall consider a characterization of a right artinian and self miniinjective ring.

Theorem 3. Let R be a right artinian ring. Then the following conditions are equivalent.

- 1) R is self mini-injective as a right R-module.
- 2) R satisfies
- i) if $e_1R \approx e_2R$, any minimal right ideal in e_1R is not isomorphic to one in e_2R .

ii) there exists a minimal right ideal I contained in e_1J^k ($e_iJ^{k+1}=0$) such

that $\operatorname{End}_{R}(I) = \{a \in \overline{e_{1}Re_{1}} | aI \subseteq I\}$, i.e. $\operatorname{End}_{R}(I)$ is extended to $\operatorname{End}_{R}(e_{1}R)$ and $S(e_{1}R) = e_{1}Re_{1}I$ for each e_{1} , where the e_{i} is primitive idempotent and S() is socle and $\overline{R} = R/J$.

Proof. 1) \rightarrow 2). It is clear from [3], Theorem 5. 2) \rightarrow 1). The second part of ii) implies that each minimal right ideal I' in e_1R is isomorphic to I. We assume $I \approx \overline{e_2R}$ and I = xR, I' = x'R. Then we may assume $xe_2 = x$ and $x'e_2 = x'$. We obtain from ii) that $x' = x'e_2 = \sum y_i xr_i$; $y_i \in e_1Re_1$, $r_i \in Re_2$. Now $xr_ie_2 = xe_2r_ie_2 = x\overline{e_2r_ie_2}$. Since a mapping $xz \rightarrow x\overline{e_2r_ie_2z}$ is an R-endomorphism of I, there exists an element \overline{a}_i in $\overline{e_1Re_1}$ with $\overline{a}_ix = x\overline{e_2r_ie_2}$ from ii). Hence, $x' = (\sum y_i\overline{a}_i)x = \overline{b}x$, where $\overline{b} = \sum y_i\overline{a}_i$. We quote the proof of [3], Proposition 9. Since $\overline{b} \neq 0$, $x = \overline{b}^{-1}x'$. Put g(x'z) = xz; $z \in R$. Let f be any element in Hom_R (I, I'). Then $gf \in \operatorname{End}_R(I)$. Hence, there exists \overline{a} in $\overline{e_1Re_1}$ such that $gf(x) = \overline{a}x$ by ii). Therefore, $f(x) = g^{-1}(\overline{a}x) = \overline{b}\overline{a}x$ and f is extended to an elemant in End_R (e_1R) . We know similarly that $\operatorname{End}_R(I') = \overline{b}^{-1}\operatorname{End}_R(I)\overline{b} = \{\overline{c} \in \overline{e_1Re_1} | cI' \subseteq I'\}$. Hence, I' satisfies ii). Let $h \in \operatorname{Hom}_{\mathbb{R}}(I', \mathbb{R})$ and $\mathbb{R} = \sum_{i=1}^{n} \oplus e_{i}\mathbb{R}$. Let $\pi_{i} \colon \mathbb{R} \to e_{i}\mathbb{R}$ be the projection. If $\pi_{i}h \neq 0$, $e_{i}\mathbb{R} \approx e_{1}\mathbb{R}$ by i). We assume $\pi_{i}h = h_{i} \neq 0$ for $i=1, 2, \cdots, t$ and $h_{j}=0$ for j > t. Since $e_{1}\mathbb{R} \approx e_{i}\mathbb{R}$ for $i \leq t$, there exists $c_{i} \in e_{i}\mathbb{R}e_{i}$ and $d_{i} \in e_{i}\mathbb{R}e_{1}$ such that $c_{i}d_{i}=e_{1}$ and $d_{i}c_{i}=e_{i}$. Using d_{i} and c_{i} , we know as above that any element in $\operatorname{Hom}_{\mathbb{R}}(I', h_{i}(I'))$ is extended to an element in $\operatorname{Hom}_{\mathbb{R}}(e_{1}\mathbb{R}, e_{i}\mathbb{R})$ for $i \leq t$. Take $p_{i} \in \mathbb{R}$ such that $p_{i}x' = h_{i}(x')$. Then $h(x') = \sum h_{i}(x') = (\sum p_{i})x'$. Hence, \mathbb{R} is right self mini-injective by [3], Theorem 2.

REMARK. The above three conditions in Theorem 3, 2) are independent.

Corollary 1. Let R be a right artinian and right self mini-injective. Then R is a right QF-2 if and only if $\operatorname{End}_{R}(I) = \overline{e_{1}Re_{1}}$ in ii) of Theorem 3.

Corollary 2. Let R be a right artinian ring and e a primitive idempotent. We assume that i) R is right QF-2, ii) any monomorphism of eRe into itself as a division ring is isomorphic for each e (e.g. algebraic extension of the prime field) and iii) $S(eR) \approx S(e'R)$ if $eR \approx e'R$. Then R is right self mini-injective.

Proof. We may assume R is basic. Since $S(eR) \supset eJ^k \neq 0$ $(eJ^{k+1}=0)$, $S(eR) = eJ^k$ by i). Put S(eR) = uR. $eJeu \subset eJ^{k+1}=0$ and so uR is a left $e\overline{R}e$ -module. We assume $uR \approx e\overline{R}$. Since R is basic, $e\overline{R} = e\overline{R}e$. Hence, $ue\overline{R}e' = uR$. Let \overline{x} be in $e\overline{R}e$. Then $\overline{x}u = u\overline{y}$; $\overline{y} \in e\overline{R}e'$. It is clear that the mapping $\overline{x} \rightarrow \overline{y}$ gives us a monomorphism of the division ring $e\overline{R}e$ into $e\overline{R}e'$ as a division ring. Repeating this procedure, we can find a chain $e, e', \dots, e^{(t)}$ of primitive idempotents. We know from iii) that $e^{(s)} = e$ for some s (cf. [3], the proof of Proposition 8). Hence, $e\overline{R}eu = u\overline{e'Re'}$ by ii). Therefore, R is right self mini-injective by Theorem 3.

We do not know any example of a right QF-2 and right self mini-injective ring which is not QF.

References

- S. Eilenberg and T. Nakayama: On the dimension of modules and algebras II, Nagoya Math. J. 9 (1956), 1-16.
- [2] C. Faith: Rings with ascending condition on annihilators, ibid. 27 (1966), 179-191.
- [3] M. Harada: On self mini-injective rings, Osaka J. Math. 19 (1982), 587-597.
- [4] M. Oshima: Notes on basic rings, Math. J. Okayama Univ. 2 (1952-53), 103-110.
- [5] K. Morita: Duality for modules and its applications to the theory of rings with

M. HARADA

minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83-142.

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan