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Hyper-Labeled Transition System and its
Application to Planning under Linear Temporal

Logic Constraints
Takuma Kinugawa, Toshimitsu Ushio, Member, IEEE

Abstract— Recently, formal methods have been paid much
attention to in planning. We often leverage a labeled transition
system (LTS) with a set of atomic propositions as a model of an
environment. However, for example, in a flexible manufacturing
system where an assembling machine has several functions
that are performed exclusively, we need several states labeled
by different sets of atomic propositions to discriminate the
functions explicitly. This paper aims to reduce the number of
the states. We introduce an extension of the LTS, called a hy-
perLTS, the labeling function of which assigns a set of sets of
atomic propositions to each state. Then, we propose linear en-
codings for the hyperLTS to represent a sequence of pairs of a
state and a selected set of atomic propositions. The hyperLTS-
based modeling is consequently applied to a planning problem
with one hard constraint and several soft constraints, thereby
converting it into an integer linear programming problem. The
effectiveness of the proposed modeling is illustrated through
an example of a path planning problem of a mobile robot in a
manufacturing system.

Index Terms— Formal method, optimal control, modeling,
linear temporal logic.

I. INTRODUCTION

IN formal methods, wherein mathematically rigorous tech-
niques are used for the verification of software and hard-

ware systems so as to make the system reliable and robust,
software systems are often modeled by a labeled transition
system (LTS) where a labeling function assigns a set of
atomic propositions to each state [1]–[3]. Moreover, in model
checking, a linear temporal logic (LTL) formula is often used
for specifying a desired complex behavior of the system since
it is familiar with natural languages and the verification of the
software system is done using the LTS and the LTL formula
[4].

Recently, formal methods have been applied to control and
planning, where the LTS is leveraged as a model of an environ-
ment and a specification is described by an LTL formula [5].
There are primarily two approaches to synthesize controllers
and planners. One is a game-theoretic approach using automata
[6], and the other is an optimization-based approach using
linear encodings [7]. The game-theoretic approach is useful for
the synthesis of feedback controllers while the optimization-
based approach is for that of open-loop controllers and applied
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to model predictive control. Furthermore, the optimization-
based method is often used for planning problems that are
converted into integer linear programming (ILP) or mixed-
integer linear programming (MILP) problems [8]–[12].

In a planning problem with specified initial and final loca-
tions, a desired path is not an infinite sequence of locations
but a finite one. To describe a specification for a finite path,
LTL over finite traces, named LTL f , was proposed [13] and
synthesis methods based on LTL f formulas have been studied
[14], [15]. Since LTL f is defined over a finite trace with
the same expressiveness of LTL, LTL f formulas have been
recently used as specifications for planning problems [16].

In a planning problem with a specification given by an
LTL/LTL f formula, the satisfaction of the LTL/LTL f formula
by a trace is based on the set of atomic propositions at
each state in the trace, that is, each atomic proposition is
analyzed to determine whether it belongs to the set. For
example, we consider the planning problem of a mobile robot
in a manufacturing system where assembling machines have
several functions that are performed exclusively, that is, several
functions that can not be performed simultaneously. Then, we
have to determine not only the movement of the robot to the
machine but also the function the robot performs. For this
purpose, a set of states in an LTS modeling the system is
defined, in which some state in the model is represented by
a pair of machine’s location and function. Thus, when the
number of functions that are performed exclusively increases,
the number of states increases because a labeling function is
defined to assign a set of atomic propositions to each state
uniquely.

In this paper, to reduce the number of states of the LTS,
we propose a novel labeling function, called a hyper-labeling
function, and the encoding for the behaviors of an LTS with
its hyper-labeling function, called a hyper-labeled transition
system or a hyperLTS for short. Then, we consider planning
problems for hyperLTSs with specifications described by LTL f

formulas and we convert the problems into ILP problems.
Finally, we show that the ILP problems can be efficiently
solved using the hyperLTSs.

The rest of this paper is organized as follows. In Section II,
we review the definition of LTSs and LTL f . In Section III,
we introduce a hyper-labeling function and a hyperLTS. In
Section IV, we consider a planning problem with a hyperLTS.
Then, we propose novel linear encoding for behaviors of
a hyperLTS and convert the problem into ILP problems.



We discuss efficiency of the hyperLTS-based modeling by
comparing it with the conventional LTS-based modeling for
the number of binary variables and the time for encodings. In
Section V, as an example, we consider a path planning problem
of a mobile robot in a manufacturing system. In Section VI, we
provide a summary of the paper and future research directions.

II. PRELIMINARY

Notation : For integers m and n with m ≤ n, [m, n] denotes
a set of integers between m and n, that is, [m, n] = {m,m +

1, . . . , n}. For a set A, denoted by |A| is its cardinality. Let N≥0
be the set of non-negative integers.

First, we review an LTS and LTL f .
Definition 1: A labeled transition system (LTS) is defined

by a tuple T = (S , δ, sinit, AP, L) where S is a set of states,
δ ⊆ S × S is a transition relation, sinit ∈ S is the initial state,
AP is a set of atomic propositions, and L : S → 2AP is a
labeling function. 2

A finite execution π with the length L + 1 of an LTS is a
finite sequence of states π = s(0)s(1) . . . s(L) ∈ S L+1 where
L ∈ N≥0, s(k) ∈ S with s(0) = sinit for all k ∈ [0, L], and
(s(k′), s(k′ + 1)) ∈ δ for all k′ ∈ [0, L − 1]. For given π and
k ∈ [0, L], π(k...) = s(k)s(k + 1) . . . s(L) denotes the k-th suffix
of π. A finite sequence of sets of atomic propositions µ =

p(0)p(1) . . . p(L) ∈ (2AP)L+1 is called a trace. For µ, µ(k . . .) =

p(k)p(k + 1) . . . p(L) denotes the k-th suffix of µ. We call a
trace µπ = L(s(0))L(s(1)) . . . L(s(L)) a trace of an execution
π = s(0) . . . s(L) of T .

Next, we review the syntax and the semantics of LTL f .
Definition 2 (Syntax of LTL f ): A linear temporal logic over

finite traces (LTL f ) formula is recursively defined by the
following grammar.

ϕ BTrue | ap | ¬ϕ1 | ϕ1 ∧ ϕ2 | © ϕ | ϕ1Uϕ2 ,

where ϕ, ϕ1, and ϕ2 are LTL f formulas and ap is an atomic
proposition. 2

U is the temporal operator called the until operator. Addition-
ally, the eventually operator, denoted by F , and the globally
operator, denoted by G, are given by F ϕ = TrueUϕ and
Gϕ = ¬(F¬ϕ), respectively.

The semantics of LTL f is defined over a finite trace as
follows.

Definition 3 (Semantics of LTL f ): Given a finite trace µ =

p(0)p(1) . . . p(L), the satisfaction of an LTL f formula ϕ for the
k-th suffix of µ (k ∈ [0, L]), denoted by µ(k...) |= ϕ, is defined
recursively as follows.

µ(k...) |= True,

µ(k...) |= ap if and only if ap ∈ p(k),
µ(k...) |= ¬ϕ if and only if µ(k...) 6|= ϕ,

µ(k...) |= ϕ1 ∧ ϕ2 if and only if µ(k...) |= ϕ1 ∧ µ(k...) |= ϕ2,

µ(k...) |= ©ϕ if and only if k + 1 ≤ L ∧ µ(k + 1...) |= ϕ,

µ(k...) |= ϕ1Uϕ2 if and only if ∃k′ ∈ [k, L] s.t.,
µ(k′...) |= ϕ2 ∧ (µ(k′′...) |= ϕ1, ∀k′′ ∈ [k, k′ − 1]).

2

A trace µ satisfies ϕ, denoted by µ |= ϕ, if and only if µ(0...) |=
ϕ.
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Fig. 1. Grid model of the area where the robot moves. The left-top location
is s+

0
, the right-top location is s+

14
, the left-bottom location is s+

135
, and the

right-bottom location is s+
149

. There are machines for assembling products at
orange states. In conditions favorable to hyperLTSs (resp. LTSs), there are
parts for products at blue states (resp. blue and green states).

III. HYPER-LABELED TRANSITION SYSTEM

The labeling function L assigns uniquely a set of atomic
propositions to each state in the LTS T = (S , δ, sinit, AP, L).
However, it is practically preferred to be able to select the
assignment of atomic propositions to each state at every time.
For example, we consider a mobile robot that can move to the
place of the machine that can assemble two kinds of products
exclusively. We model the working space by a grid and assign
the cell with the machine to two situations: “the robot stays and
can assemble Product1” and “the robot stays and can assemble
Product2”. Then, we select one of the assignments exclusively
depending on the mission of the robot. See Example 1 below
for its detail. We call such an extension of assignments hyper-
labeling for assignments of atomic propositions or simply
hyper-labeling. To represent hyper-labeling, we introduce a
hyper-labeling function L+ : S + → 22AP

where S + is a set of
states and a transition system with hyper-labeling functions,
called a hyper-labeled transition system (hyperLTS), which is
a generalization of the LTS. A set of atomic propositions that
are true at each state is not determined uniquely but selected
from the assignments given by the hyper-labeling function. We
give the formal definition of a hyperLTS, denoted by T +, as
follows.

Definition 4: A hyper-labeled transition system (hyperLTS)
is defined by a tuple T + = (S +, δ+, s+

init,AP, L+) where S + is
a set of states, δ+ ⊆ S + × S + is a transition relation, s+

init ∈ S +

is the initial state, AP is a set of atomic propositions, and
L+ : S + → 22AP

is a hyper-labeling function. 2

We consider an example with a hyperLTS.
Example 1: We consider a mobile robot in a manufacturing

system with assembling machines. The area where the robot
moves is represented by a 10 × 15 grid, as shown in Fig. 1.
The hyperLTS is given by T + = (S +, δ+, s+

init,AP, L+) where
S + = {s+

0 , s
+
1 , . . . , s

+
149} and (s+

i , s
+
j ) ∈ δ+ if and only if s+

i
and s+

j are adjacent states horizontally or vertically. At each
orange state, there is a machine which can assemble products.
Denoted by S A

1 is a set of four states in Fig. 1. At each state
in S A

1 , there is the machine which can assemble two products:
Product1 and Product2. Let Assemble1 and Assemble2 be



atomic propositions which indicate “assembling Product1” and
“assembling Product2”, respectively. It is considered that the
machine assembles them exclusively. Thus, both Assemble1
and Assemble2 are not true at the same time. To represent this
assignment for s ∈ S A

1 , L+(s) is given by

L+(s) = {∅, {Assemble1}, {Assemble2}}.

Whenever the robot stays at s ∈ S A
1 , we select one set from

L+(s). 2

A finite execution π and trace µ of a hyperLTS T + are
defined as the same way as those of an LTS. We call a
trace µ+

π = pπ(0)pπ(1) . . . pπ(L) a trace of an execution π =

s(0) . . . s(L) of T + if and only if pπ(k) ∈ L+(s(k)) for each
k ∈ [0, L]. Note that, even if s( j) = s(k) in an execution π of
a hyperLTS for j, k ∈ [0, L], j , k, the atomic propositions
that hold at s( j) and s(k) may be different, i.e., pπ( j) , pπ(k)
in a trace of π. Then, we say that π has a trace satisfying an
LTL f formula ϕ if and only if there exists a trace µ+

π of π such
that µ+

π |= ϕ.

IV. PLANNING USING A HYPERLTS

In this section, we formulate a planning problem where an
environment is modeled by a hyperLTS and a specification is
described by LTL f formulas. Then, we solve the problem by
converting it into ILP problems.

A. Problem formulation

We consider a planning problem for a hyperLTS with a
specification consisting of one hard constraint and several
soft constraints, where the hard constraint is a mandatory
requirement and each soft constraint is an optional requirement
preferable to be satisfied. The hard constraint is denoted by
φ and the soft constraints are denoted by ψ1, ..., ψNS where
NS denotes the number of soft constraints. We assume that
there is a preference for each soft constraint, that is, if there
is no trace that satisfies both ψi and ψ j but there are traces
that satisfy one of them, then, we select a trace that satisfies
the more preferable constraint. To represent the preference,
we introduce a positive integer Wn, called a weight, for each
soft constraint ψn(n ∈ [1, NS ]) and interpret that ψn is more
preferable than ψm if Wn > Wm. Thus, a trace for which the
sum of the weights of the satisfied soft constraints is larger
is a more preferable one. We denote a set of pairs of a soft
constraint and its weight by Ψ = {(ψn,Wn)| n ∈ [1, NS ]}. Then,
the problem considered in this paper is formulated as follows.

Problem 1: Given a hyperLTS T +, a hard constraint φ, a
set of pairs of a soft constraint and its weight Ψ, and a positive
integer L, find a trace µ+

π of an execution π with the length
L + 1 of T + such that

maximize: the sum of the weights of soft constraints
that µ+

π satisfies.
subject to: µ+

π |= φ,

µπ is a trace of an execution π of T +.

2

There are two approaches to solve Problem 1. One is that the
hyperLTS is used directly. The other is that the LTS induced
by the given hyperLTS is used instead of the hyperLTS. When
the hyperLTS T + is given by T + = (S +, δ+, s+

init,AP, L+) with
|S +| ≥ 1, its induced LTS is given by T = (S , δ, sinit,AP, L),
where S =

⋃
s+∈S + {s+} × L+(s+), (s1, s2) ∈ δ for s1 = (s+

1 , P1)
and s2 = (s+

2 , P2) with (s+
1 , s

+
2 ) ∈ δ+, P1 ∈ L+(s+

1 ), and P2 ∈

L+(s+
2 ), sinit = (s+

init, P) with P ∈ L+(s+
init), L(s) = P for s =

(s+, P) ∈ S and P ∈ L+(s+).
In each approach, we solve Problem 1 by converting it into

an ILP problem. For this purpose, we introduce a method to
encode a finite execution and its trace, and the satisfaction of
an LTL f formula into sets of equations that are constraints in
the ILP problem.

B. Encoding an execution and its trace

First, we consider the encoding of a finite execution of a
hyperLTS T +, where s+

init ∈ S + =
{
s+

1 , s
+
2 . . . , s

+
|S |

}
. Let π =

s(0)s(1) . . . s(L) be a finite execution with the length L + 1
of T + and s(0) = s+

init. We introduce L + 1 binary vectors
w(k) = [w1(k),w2(k), . . . ,w|S + |(k)]T ∈ {0, 1}|S

+ | for k ∈ [0, L]
to represent the k-th state s(k) of π as follows.

wi(k) =

{
1 if s+

i = s(k),
0 otherwise.

Since s(0) = s+
init, we have wi(0) = 1 if and only if s+

i = s+
init.

Denoted by A ∈ {0, 1}|S
+ |×|S + | is the transition matrix of T +,

where the (i, j)-th element Ai, j of A is defined by

Ai, j =

{
1 if (s+

i , s
+
j ) ∈ δ+,

0 otherwise.

This provides the following encoding.

w(k + 1) ≤ ATw(k), 1T
|S + |w(k) = 1, (1)

where 1M is the M-dimensional vector, all the elements of
which are 1. Similarly, a finite execution of an LTS T is
encoded by (1) with w′ ∈ {0, 1}|S | and A′ ∈ {0, 1}|S |×|S |.

Next, we consider the encoding of a finite trace of the
execution π. Since the hyper-labeling function assigns a set of
sets of atomic propositions to each state, we introduce P ⊆ 2AP

as follows.

P = {P1, P2, . . . , P|P|} =
⋃

s+∈S +

L+(s+).

Let µ+
π = pπ(0)pπ(1) . . . pπ(L) be a trace of the execu-

tion π of T +. We introduce L + 1 binary vectors t(k) =

[t1(k), t2(k), . . . , t|P|(k)]T ∈ {0, 1}|P| for k ∈ [0, L] to represent
the k-th set of atomic propositions pπ(k) of µ+

π as follows.

ti(k) =

{
1 if Pi = pπ(k),
0 otherwise.

We introduce the labeling matrix of T +, denoted by V ∈

{0, 1}|P|×|S
+ |, where the (i, j)-th element Vi, j of V is defined

by

Vi, j =

{
1 if Pi ∈ L+(s+

j ),
0 otherwise.



This provides the following encoding.

t(k) ≤ V w(k), 1T
|P|t(k) = 1. (2)

Note that, in LTSs, we do not need the encoding of a finite
trace of the execution since the assignment of a subset of
atomic propositions for each state is unique.

C. Encoding the satisfaction of an LTLf formula

For an LTL f formula ϕ, we introduce the following binary
variables zϕ(k) and yϕ(k) (k ∈ [0, L]) to encode the satisfaction
of ϕ into a set of equations for µ+

π and µπ, where µπ is a trace
of an execution of T , respectively.

zϕ(k) =

 1 if µ+
π (k...) |= ϕ,

0 otherwise,
yϕ(k) =

 1 if µπ(k...) |= ϕ,

0 otherwise.

Then, we encode atomic propositions for these traces.
Atomic proposition for hyperLTS: Let ϕ = ap ∈ AP and

vap ∈ {0, 1}|P| be a binary vector such that vap
i = 1 (the i-

th element of vap is 1) if and only if ap ∈ Pi where P =

{P1, P2, . . . , P|P|}. Then, the satisfaction of ϕ is encoded as
follows.

(vap)Tt(k) = zϕ(k). (3)

Atomic proposition for LTS: Let ϕ = ap ∈ AP and uap ∈

{0, 1}|S | be a binary vector such that uap = 1 (the i-th element
of uap is 1) if and only if ap ∈ L(si) where S = {s1, s2, . . . , s|S |}.
Then, the satisfaction of ϕ is encoded as follows.

(uap)Tw′(k) = yϕ(k). (4)

References [7] and [11] provide details for the encodings of
Boolean operators and temporal operators. Denoted by ILP1(ϕ)
and ILP2(ϕ) are the sets of constraints obtained by encoding
ϕ with (3) and (4), respectively.

D. ILP problems

Based on the encodings for Problem 1, we convert this
problem into the following ILP problem ILP1 (resp. ILP2)
for the approach using the hyperLTS (resp. the approach using
the LTS).

ILP1 :

maximize
w(0),...,w(L), t(0),...,t(L)

:
NS∑
n=1

Wn · zψn (0)

subject to : (1), (2), ILP1(φ),
ILP1(ψ1), . . . , ILP1(ψNS ), and
zφ(0) = 1.

ILP2 :

maximize
w′(0),...,w′(L)

:
NS∑
n=1

Wn · yψn (0)

subject to : (1), ILP2(φ),
ILP2(ψ1), . . . , ILP2(ψNS ), and
yφ(0) = 1.

Note that both w(i), t(i), and w′(i) are decision variables of
the aforementioned problems.

E. Comparison of two approaches

We consider the effectiveness of the approaches using the
hyperLTS and the LTS for the number of binary variables and
the computation time for encodings.

First, we compare the number of binary variables for both
approaches. For T +, the number of variables needed to encode
an execution and a trace of the execution is |S +| · (L + 1) and
|P| · (L + 1), respectively. The sum of the number of variables
needed to encode an execution and its trace for the hyperLTS
is as follows.

|S +| · (L + 1) + |P| · (L + 1). (5)

For T , the number of states is
∑

s+∈S + |L+(s+)|, and the number
of variables needed to encode an execution with the length L+1
is as follows.  ∑

s+∈S +

|L+(s+)|

 · (L + 1). (6)

Then, we have the following remark from (5) and (6).
Remark 1: If we have

|S +| + |P| <
∑

s+∈S +

|L+(s+)|, (7)

the number of variables for encoding of the approach using
the hyperLTS is smaller than that using the LTS. 2

Second, we consider the computation time for encodings.
From (1) and (2), the order of the computation time to encode
an execution and its trace of T + is as follows.

O
(
|S +| · |S +| + |S +| + |P| · |S +| + |P|

)
= O

(
|S +| · (|S +| + |P|)

)
. (8)

On the other hand, the order of the computation time to encode
an execution of T is as follows.

O (|S | · |S | + |S |) = O (|S | · |S |) . (9)

Since |S +| ≤ |S |, the computation time to encode an execution
and its trace by the approach using the hyperLTS is faster
than that using the LTS when (7) holds. Moreover, we discuss
the computation time to encode a specification. To encode the
atomic propositions, we use the binary variables t and w for
the approaches using the hyperLTS and the LTS, respectively.
Therefore, the orders of the computation time to encode (3)
and (4) are O(|P|) and O(|S |), respectively. Note that we have

|P| =

∣∣∣∣∣∣∣ ⋃s+∈S +

L+(s+)

∣∣∣∣∣∣∣ ≤ ∑
s+∈S +

|L+(s+)| = |S |. (10)

Thus, the computation time for the encoding of (3) is faster
than that of (4). Since the encoding of all LTL f formulas ex-
cept atomic propositions are the same for both approaches, the
computation time to encode the hard and the soft constraints
using the hyperLTS is also faster than that using the LTS.



V. ILLUSTRATIVE EXAMPLE

In this section, we consider a path planning problem of
a mobile robot with a finite horizon such that we assemble
twelve products, denoted by Producti for i ∈ [1, 12], while
the robot collects parts to be needed for the assembling of
these products. Shown in Fig. 1 is a grid model of the area
that is modeled by the hyperLTS T + = (S +, δ+, s+

init,AP, L+)
with s+

init = s+
0 . We consider two cases where the first case

is given such that (7) holds while the second case does not
satisfy (7). In the first case, we assume that parts used for
Product(2i − 1) and Product(2i) are at the states in S P

i for
i ∈ [1, 6] where

S P
1 = {s+

0 , s
+
1 , . . . , s

+
6 }, S P

2 = {s+
30, s

+
45, . . . , s

+
105},

S P
3 = {s+

135, s
+
136, . . . , s

+
141}, S P

4 = {s+
143, s

+
144, . . . , s

+
149},

S P
5 = {s+

44, s
+
59, . . . , s

+
104, s

+
119}, S P

6 = {s+
8 , s

+
9 , . . . , s

+
14}.

The robot collects them and assembles the products by using
the machines. The machines at the states in S A

i can assemble
Product(2i − 1) and Product(2i) where

S A
1 = {s+

32, s
+
33, s

+
47, s

+
48}, S A

2 = {s+
92, s

+
93, s

+
107, s

+
108},

S A
3 = {s+

35, s
+
36, s

+
50, s

+
51}, S A

4 = {s+
98, s

+
99, s

+
113, s

+
114},

S A
5 = {s+

101, s
+
102, s

+
116, s

+
117}, S A

6 = {s+
41, s

+
42, s

+
56, s

+
57}.

For each i ∈ [1, 12], let Partsi and Assemblei be atomic
propositions indicating that the robot collects parts for Producti
and that it assembles Producti, respectively. Then, AP is given
by

AP = {Partsi, Assemblei| i ∈ [1, 12]} .

We consider the case where the machine assembles them
exclusively. Then, every pair of Assemblei and Assemble j for
i, j ∈ [1, 12] with i , j is not true at the same time. Then, for
s+ ∈ S + and i ∈ [1, 6], the hyper-labeling function L+(s+) is
given by

L+(s+)

=


{{Parts2i−1}, {Parts2i}, {Parts2i−1,Parts2i}} if s+ ∈ S P

i ,

{∅, {Assemble2i−1}, {Assemble2i}} if s+ ∈ S A
i ,

{∅} otherwise.

Based on the above setting, we have

|S +| + |P| = 181,
∑

s+∈S +

|L+(s+)| = 276.

In the second case, we have

|S +| + |P| = 208,
∑

s+∈S +

|L+(s+)| = 172.

Due to space limitations, we omit detailed assignment of
hyper-labeling function.

In the following, we describe the hard constraint and the
soft constraints. The hard constraint is given by

φ =
∧

i∈[1, 12]

φi
a ∧

∧
i∈[1, 12]

φi
p, (11)

where φi
a = F (Assemblei), φi

p = (¬Assemblei)U(Partsi). The
first term of (11) describes the robot has to assemble all

products. For each i ∈ [1, 12], φi
p describes that the robot

can assemble Producti after collecting its parts. The set of
pairs of a soft constraint and its weight is given by

Ψ =
{
(ψ1

10, 3), (ψ1
11, 2), (ψ1

12, 1), (ψ7
1, 1), (ψ7

2, 2), (ψ7
3, 3)

}
,

where, for (i, j) ∈ {(1, 10), (1, 11), (1, 12), (7, 1), (7, 2), (7, 3)},

ψi
j = (¬Assemble j)U(Assemblei).

ψi
j describes that assembling Producti is more important than

assembling Product j. Additionally, from the weights of these
soft constraints, it is most important to assemble Product1
(resp. Product7) before assembling Product10 (resp. Prod-
uct3). For each approach, we formulate the path planing
problems with L=30, 35, 40, 50, and 60 into Problem 1 and
convert them into ILP1 and ILP2.

The simulation was run by a machine with AMD Ryzen9
5950X and 128GB memory, and the solver Gurobi [17] was
used to find optimal solutions of these ILP problems.

For the approaches using the hyperLTS (Hyper) and that
using the LTS (LTS), the number of binary variables (# of
variables), the time to encode an execution and its trace, or
an execution (Encoding time (behavior)), the time to encode
the hard constraint and the soft constraints (Encoding time
(specification)), the time to solve the ILP problems (Solving
time), and the sum of weights of satisfied soft constraints (Sum
of weights) are shown in Table I and II. Note that Table I and
II are for the first and second case, respectively. For L=30,
35 and 40 (resp. L = 30) in the first case (resp. second case),
both approaches conclude that there is no feasible solution.
For L = 50 in the first case, the approach using the hyperLTS
obtains the optimal solution while that using the LTS can not
after one hour computation. Shown in Fig. 2 is the optimal
execution π for L = 50 in the first case. From π, we have the
following trace.

tπ(0) = {Parts1,Parts2}, tπ(2) = {Parts3,Parts4},

tπ(4) = {Assemble1}, tπ(8) = {Assemble4},

tπ(14) = {Parts5,Parts6}, tπ(15) = {Parts6},

tπ(17) = {Parts7,Parts8}, tπ(19) = {Assemble7},

tπ(20) = {Assemble8}, tπ(26) = {Parts9,Parts10},

tπ(28) = {Assemble9}, tπ(29) = {Assemble10},

tπ(35) = {Parts11,Parts12}, tπ(37) = {Assemble12},

tπ(38) = {Assemble11}, tπ(43) = {Assemble5},

tπ(44) = {Assemble6}, tπ(46) = {Assemble2},

tπ(50) = {Assemble3},

and ∅ are assigned to the other states in π. The trace of π
satisfies the hard constraint φ and the soft constraints other
than ψ7

1. To assemble all products with L = 50, the robot
assembles Product1 before it assembles Product7. Thus, ψ7

1 are
not satisfied. To satisfy ψ7

3, the robot selects not to assemble
Product3 on the first stay at the states in S A

2 . In the first case
(resp. second case), the time to encode an execution and its
trace with the approach using the hyperLTS is shorter (resp.
longer) than that with the approach using the LTS for each L.
Additionally, for both cases and all L, the time to encode hard



TABLE I
COMPARISON OF THE APPROACHES USING THE HYPERLTS AND AN LTS IN THE FIRST CASE.

L # of variables Encoding time (behavior)[s] Encoding time (specification)[s] Solving time[s] Sum of weights
Hyper LTS Hyper LTS Hyper LTS Hyper LTS Hyper LTS

30 10230 13175 199.34 546.34 18.50 104.91 0.24 34.42 – –
35 11880 15300 217.25 601.48 19.83 115.69 35.55 75.05 – –
40 13530 17425 252.04 687.58 22.83 131.39 2532.30 3042.81 – –
50 16830 21675 310.70 868.46 28.14 165.47 570.14 – 11 11
60 20130 25925 376.56 1030.90 33.77 195.10 51.79 371.33 12 12

TABLE II
COMPARISON OF THE APPROACHES USING THE HYPERLTS AND AN LTS IN THE SECOND CASE.

L # of variables Encoding time (behavior)[s] Encoding time (specification)[s] Solving time[s] Sum of weights
Hyper LTS Hyper LTS Hyper LTS Hyper LTS Hyper LTS

30 11067 9951 240.15 211.47 29.42 67.76 1.50 27.77 – –
35 12852 11556 259.84 239.72 31.15 76.04 66.65 93.25 6 6
40 14637 13161 296.66 276.80 35.38 87.43 10.02 14.30 12 12
50 18207 16371 360.22 347.56 43.16 108.60 24.80 6.09 12 12
60 21777 19581 434.70 406.28 52.18 127.52 16.70 7.45 12 12

Fig. 2. Result of execution in Section V. The initial state is the left-top state.

and soft constraints with the approach using the hyperLTS is
shorter than that for the approach using the LTS. Moreover,
in the first case, the solving time of the approach using the
hyperLTS is faster than that using the LTS. However, in the
second case, the approach using the LTS is more efficient than
that using the hyperLTS as L is larger. This result is due to
the number of the variables used in the encoding. Thus, (7) is
a guideline to leverage the approach using the hyperLTS.

VI. CONCLUSION

We introduced a hyper-labeling function that assigns a set
of sets of atomic propositions to each state and defined a
novel LTS with the hyper-labeling function, which is called a
hyperLTS. We propose linear encodings for both an execution
and its trace of a hyperLTS. Then, we formulated a planning
problem where an environment is modeled by a hyperLTS and
a specification is described by LTL f formulas. We convert it
into ILP problems. As an example, we considered a planning
problem of a mobile robot in a manufacturing system where
assembling machines have several functions that are performed
exclusively.

It is future work to apply the proposed approaches to a
hierarchical controller synthesis problem and apply hyperLTSs
to a game-theoretic approach.
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