



|              |                                                                                                    |
|--------------|----------------------------------------------------------------------------------------------------|
| Title        | Vanishing theorems for cohomology groups associated to discrete subgroups of semisimple Lie groups |
| Author(s)    | Raghunathan, M. S.                                                                                 |
| Citation     | Osaka Journal of Mathematics. 1966, 3(2), p. 243-256                                               |
| Version Type | VoR                                                                                                |
| URL          | <a href="https://doi.org/10.18910/8766">https://doi.org/10.18910/8766</a>                          |
| rights       |                                                                                                    |
| Note         |                                                                                                    |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Raghunathan, M. S.  
Osaka J. Math.  
3 (1966), 243-256

## **VANISHING THEOREMS FOR COHOMOLOGY GROUPS ASSOCIATED TO DISCRETE SUBGROUPS OF SEMISIMPLE LIE GROUPS**

M. S. RAGHUNATHAN

(Received May 20, 1966)

**Introduction.** The aim of this paper is to prove two vanishing theorems for cohomology groups related to discrete uniform subgroups of semisimple Lie groups.

Let  $\rho$  be a representation of a real linear semisimple Lie group  $G$  and  $\Gamma$  a discrete subgroup of  $G$  such that  $\Gamma \backslash G$  is compact. Assume that  $\Gamma$  contains no elements of finite order. In §1 we give a criterion in terms of the highest weight of  $\rho$  for the vanishing of  $H^p(\Gamma, \rho)$ , the  $p^{\text{th}}$  cohomology group of  $\Gamma$  with coefficient in  $\rho$ . This criterion is a generalisation of a theorem of Matsushima and Murakami [3].

In §2 we prove the following theorem (Corollary to Theorem 3). Let  $G$  be a complex semisimple Lie group without any simple component of rank 1. Then for any discrete subgroup  $\Gamma$  such that  $\Gamma \backslash G$  is compact, the canonical complex structure on the space  $\Gamma \backslash G$  is rigid. (This question whether these complex structures are rigid was raised by Professor Matsushima).

### **1. A vanishing theorem for the cohomology of discrete uniform subgroups**

Let  $G$  be a connected real linear semisimple Lie group and  $\Gamma$  a discrete subgroup such that the quotient  $\Gamma \backslash G$  is compact. Let  $\mathfrak{g}_0$  be the Lie algebra of left-invariant vector-fields of  $G$  and  $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$  a Cartan-decomposition of  $\mathfrak{g}_0$ ,  $\mathfrak{k}_0$  being the algebra. Let  $K$  be the (compact) Lie subgroup corresponding to  $\mathfrak{k}_0$  and  $X = G/K$  the corresponding symmetric space. To every representation of  $G$  in a finite dimensional real (or complex) vector space  $F$ , Matsushima and Murakami [2] have associated certain cohomology groups: we follow their notation and denote these groups by  $H^p(\Gamma, X, \rho)$ . (In the case when  $\Gamma$  has no elements of finite order  $\Gamma$  acts freely on  $X$  and  $H^p(\Gamma, X, \rho)$  is isomorphic to the  $p^{\text{th}}$  cohomology group of  $\Gamma$  with coefficients in the restriction  $\rho_\Gamma$  of  $\rho$  to  $\Gamma$ ). In the same article, they prove moreover the following result (see in particular §6, §7). (Proposition 1 below).

The vectorfields in  $\mathfrak{g}_0$  project under the natural map  $G \rightarrow \Gamma \backslash G$  into vectorfields on  $\Gamma \backslash G$ . We will from now on identify  $\mathfrak{g}_0$  with this algebra of vectorfields on  $\Gamma \backslash G$ . Let  $\varphi$  be the Killing form on  $\mathfrak{g}_0$  and  $\{X_i\}_{1 \leq i \leq N}$  and  $\{X_\alpha\}_{N+1 \leq \alpha \leq n}$  be bases of  $\mathfrak{p}_0$  and  $\mathfrak{k}_0$  such that  $\varphi(X_i, X_j) = \delta_{ij}$  and  $\varphi(X_\alpha, X_\beta) = -\delta_{\alpha\beta}$ . Let  $A_0(\Gamma, X, \rho)$  be the vector space of  $C^\infty$ - $p$ -forms  $\eta$  on  $\Gamma \backslash G$  satisfying i)  $i_X \eta = 0$  and ii)  $\theta_X \eta = \rho(X) \eta$  for every  $X \in \mathfrak{k}_0$  where  $i_X$  (resp  $\theta_X$ ) denotes interior derivation (resp. Lie derivation) of  $\eta$  with respect to the vectorfield  $X$ . Because of i) and ii)  $\eta$  is determined by its values  $i_1 \cdots i_p = \eta(X_{i_1} \cdots X_{i_p})$ . Finally, let  $\Delta^p$  be the operator

$$\Delta^p: A_0^p(\Gamma, X, \rho) \rightarrow A_0^p(\Gamma, X, \rho)$$

defined by

$$\begin{aligned} \Delta^p \eta(X_{i_1} \cdots X_{i_p}) &= \sum_{k=1}^N (-X_k^2 + \rho(X_k)^2) \eta_{i_1 \cdots i_p} \\ &+ \sum_{k=1}^N \sum_{u=1}^p (-1)^{u-1} \{(-[X_{i_u}, X_k] + \rho([X_{i_u}, X_k]))\} \eta_{k i_1 \cdots \hat{i}_u \cdots i_p} \end{aligned}$$

With this notation, we have

**Proposition 1.**  $H^p(\Gamma, X, \rho)$  is canonically isomorphic to the vector space  $\{\eta \mid \eta \in A_0^p(\Gamma, X, \rho); \Delta^p \eta = 0\}$ .

Again, following [2], we define two operators  $\Delta_D^p$  and  $\Delta_\rho^p$  as follows:

$$\begin{aligned} \Delta_D^p \eta(X_{i_1} \cdots X_{i_p}) &= -\sum_{k=1}^N X_k^2 \eta_{i_1 \cdots i_p} + \sum_{k=1}^N \sum_{u=1}^p (-1)^u [X_{i_u}, X_k] \eta_{k i_1 \cdots \hat{i}_u \cdots i_p} \\ \Delta_\rho^p \eta(X_{i_1} \cdots X_{i_p}) &= +\sum_{k=1}^N \rho(X_k)^2 \eta_{i_1 \cdots i_p} - \sum_{k=1}^N \sum_{u=1}^p (-1)^u \rho([X_{i_u}, X_k]) \eta_{k k i_1 \cdots \hat{i}_u \cdots i_p} \end{aligned}$$

Then  $\Delta^p = \Delta_D^p + \Delta_\rho^p$ . In §7 [2], it is moreover proved that

$$\sum_{i_1 < \cdots < i_p} \int_{\Gamma/G} \langle (\Delta_D^p \eta)_{i_1 \cdots i_p}, \eta_{i_1 \cdots i_p} \rangle_F \geq 0$$

where  $\langle \cdot, \cdot \rangle_F$  is a positive definite scalar product on  $F$  for which  $\rho(X)$  is (hermitian) symmetric (resp. skew-symmetric (hermitian)) for  $X \in \mathfrak{p}_0$  (resp.  $\mathfrak{k}_0$ ). It follows therefore that if  $\Delta^p \eta = 0$ ,

$$\sum_{i_1 < \cdots < i_p} \int_{\Gamma/G} \langle (\Delta_\rho^p \eta)_{i_1 \cdots i_p}, \eta_{i_1 \cdots i_p} \rangle_F \geq 0$$

We obtain therefore

**Proposition 2.** If the quadratic form on the space of exterior  $p$ -forms on  $\mathfrak{p}_0$  with values in  $F$  defined by

$$\eta \rightarrow \sum_{i_1 < \cdots < i_p} \langle (\Delta_\rho^p \eta)_{i_1 \cdots i_p}, \eta_{i_1 \cdots i_p} \rangle_F$$

is positive definite, then  $H^p(\Gamma, X, \rho) = 0$ .

In the main result of this section we give a sufficient criterion in terms of the “highest weight” of  $\rho$  with respect to a suitable Cartan-subalgebra of  $\mathfrak{g}_0$  in order that  $\Delta_\rho^p$  define a positive definite quadratic form.

Let  $\mathfrak{g}$  denote the complexification of  $\mathfrak{g}_0$  and  $\mathfrak{k}$  and  $\mathfrak{p}$  those of  $\mathfrak{k}_0$  and  $\mathfrak{p}_0$ . We identify  $\mathfrak{k}$  and  $\mathfrak{p}$  with subspaces of  $\mathfrak{g}$ . Let  $\mathfrak{h}_{\mathfrak{k}_0}$  be a Cartan-subalgebra of  $\mathfrak{k}_0$  and  $\mathfrak{h}_0$  a Cartan-subalgebra of  $\mathfrak{g}_0$  such that  $\mathfrak{h}_0 \supset \mathfrak{h}_{\mathfrak{k}_0}$ . Let  $\mathfrak{h}_{\mathfrak{p}_0} = \mathfrak{h}_0 \cap \mathfrak{p}_0$ . Let  $\mathfrak{h}$  and  $\mathfrak{h}_{\mathfrak{p}}$  denote respectively the complexifications of  $\mathfrak{h}_{\mathfrak{k}_0}$ ,  $\mathfrak{h}_0$  and  $\mathfrak{h}_{\mathfrak{p}_0}$ . Then  $\mathfrak{h}$  is a Cartan-subalgebra of  $\mathfrak{g}$ . Let  $\Delta$  be the system of roots of  $\mathfrak{g}$  with respect to  $\mathfrak{h}$ . For  $\alpha \in \Delta$  let  $H_\alpha \in \mathfrak{h}$  be the unique element such that  $\varphi(H_\alpha, H) = \alpha(H)$  for all  $H \in \mathfrak{h}$ . Then, it is well known that the real subspace  $\mathfrak{h}^* = \sum_{\alpha \in \Delta} R H_\alpha$  of  $\mathfrak{g}$  spanned by the  $\{H_\alpha\}_{\alpha \in \Delta}$  is the same as  $i\mathfrak{h}_{\mathfrak{k}_0} \oplus \mathfrak{p}_0$ . Moreover if  $\theta$  is the extension to  $\mathfrak{g}$  to the Cartan involution  $\theta_0$  denoted by the Cartan-decomposition  $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ , then  $\theta$  is an automorphism of  $\mathfrak{g}$  leaving  $\mathfrak{h}$  invariant. Hence  $\theta$  acts on the dual of  $\mathfrak{h}$  and permutes the elements of  $\Delta$ . The set  $\Delta$  may then be decomposed as the disjoint union  $A \cup B \cup C$  of three subsets  $A$ ,  $B$  and  $C$

where

$$A = \{\alpha \mid \alpha \in \Delta; \theta(\alpha) = \alpha; \theta(E_\alpha) = E_\alpha\}$$

$$B = \{\alpha \mid \alpha \in \Delta; \theta(\alpha) \neq \alpha\}$$

$$C = \{\alpha \mid \alpha \in \Delta; \theta(\alpha) = \alpha; \theta(E_\alpha) = -E_\alpha\}.$$

(In the sequel we sometimes write  $\alpha^\theta$  for  $\theta(\alpha)$ ).

We introduce next a lexicographic order on the (real) dual of  $\mathfrak{h}^*$  as follows: let  $H_1, \dots, H_r$  be an orthonormal basis of  $\mathfrak{h}^*$  with respect to  $\varphi$  ( $\varphi|_{\mathfrak{h}^*}$  is positive definite) chosen so that  $H_1, \dots, H_r$  form a basis of  $i\mathfrak{h}_{\mathfrak{k}_0}$  and if the centre  $\mathfrak{c}_0$  of  $\mathfrak{k}_0$  is non-zero, of dimension  $r$ , then  $H_1, \dots, H_r$  belong to  $i\mathfrak{c}_0$ ; for  $\alpha, \beta$  in the (real) dual of  $\mathfrak{h}^*$ ,  $\alpha > \beta$  if the first non-vanishing difference  $\alpha(H_i) - \beta(H_i)$  is greater than zero. Let  $\Delta^+$  be the system of positive roots with respect to this order and let  $A^+ = A \cap \Delta^+$ ,  $B^+ = B \cap \Delta^+$ ,  $C^+ = C \cap \Delta^+$ . Then  $\theta$  leaves  $A^+$ ,  $B^+$  and  $C^+$  invariant. Let  $\sum_1 = A^+ U \{\alpha \mid \alpha \in B^+; \theta(\alpha) > \alpha\}$  and  $\sum_2 = C^+ U \{\alpha \mid \alpha \in B^+; \theta(\alpha) > \alpha\}$ .

**Theorem 1.** *Let  $\rho$  denote a finite dimensional representation of  $G$  in a complex vector-space  $F$ , as also the induced representation of  $\mathfrak{g}$ . Let  $\Lambda_\rho$  be the highest weight of  $\rho$  with respect to the above defined Cartan-subalgebra and the order on the dual of  $\mathfrak{h}^*$ . Then if  $\sum_\rho = \{\alpha \mid \alpha \in \sum_2, \varphi(\Lambda_\rho, \alpha) \neq 0\}$  contains more than  $q$  elements, then the Hermitian quadratic form  $Q_\rho$  defined by*

$$\eta \rightarrow \sum_{i_1 < \dots < i_p} \langle (\Delta_\rho^p \eta)_{i_1 \dots i_p}, \eta_{i_1 \dots i_p} \rangle_F$$

*is positive definite for  $p \leq q$ . Hence  $H^p(\Gamma, X, \rho) = 0$  for  $1 \leq p \leq q$ .*

Before we proceed to the proof of the theorem, we will make a few preliminary simplifications:

**Lemma 1.** *Let  $E$  be the  $q^{\text{th}}$  exterior power of  $p$  and let  $\alpha$  be the isomorphism onto  $F \otimes E$  of the space of exterior  $q$ -forms on  $p$  with values in  $F$  defined by*

$$\eta \rightarrow \sum_{i_1 < \dots < i_q} \eta_{i_1 \dots i_q} \otimes (X_{i_1} \wedge \dots \wedge X_{i_q})$$

Then

$$T_p^q = 2\alpha \circ \Delta_p^q \circ \alpha^{-1} = 2(\rho \otimes 1)(c) + (1 \otimes \sigma)(c') - (\rho \otimes 1)(c') - (\rho \otimes \sigma)(c')$$

where

$$c = \sum_{i=1}^N X_i^2 - \sum_{\alpha=N+1}^n X_{\alpha}^2$$

and  $c' = -\sum_{\alpha=N+1}^n X_{\alpha}^2$  are elements of the enveloping algebras of  $\mathfrak{g}$  and  $\mathfrak{k}$  and  $\sigma$  denotes the adjoint representation of  $\mathfrak{k}$  in  $E$ . Hence  $T_p^q$  is a symmetric endomorphism of  $F \otimes E$  with respect to the scalar product

$$\begin{aligned} & \left\langle \sum_{i_1 < \dots < i_p} \eta_{i_1 \dots i_p} \otimes X_{i_1} \wedge \dots \wedge X_{i_p}, \sum_{j_1 < \dots < j_p} \eta_{j_1 \dots j_p} \otimes X_{j_1} \wedge \dots \wedge X_{j_p} \right\rangle \\ &= \sum_{i_1 < \dots < i_p} \langle \eta_{i_1 \dots i_p}, \eta_{i_1 \dots i_p} \rangle_F \end{aligned}$$

Proof. We have

$$(\Delta_p^q)_{i_1 \dots i_q} = \sum_{k=1}^N \rho(X_k)^2 \eta_{i_1 \dots i_q} + \sum_{k=1}^N \sum_{u=1}^q (-1)^{u-1} \rho([X_{i_u}, X_k]) \eta_{k i_1 \dots \hat{i}_u \dots i_q}$$

For every  $q$ -tuple  $I_q = (i_1 < \dots < i_q)$ , we write  $X_{I_q}$  for  $X_{i_1} \wedge \dots \wedge X_{i_q}$ . In this notation,

$$\alpha(\eta) = \sum_{I_q} \eta_{I_q} \otimes X_{I_q}$$

$$\begin{aligned} \frac{1}{2} T_p^q \alpha(\eta) &= \sum_{I_q} \left\{ \sum_{k=1}^N \rho(X_k)^2 \eta_{I_q} + \sum_{k=1}^N \sum_{u=1}^q (-1)^{u-1} \rho([X_{i_u}, X_k]) \eta_{k i_1 \dots \hat{i}_u \dots i_q} \right\} \otimes X_{I_q} \\ &= \sum_{I_q} \left\{ \sum_{k=1}^N \rho(X_k)^2 \eta_{I_q} + \sum_{J_q \Delta I_q = i_u j_v} (-1)^{u+v} \rho([X_{i_u}, X_{j_v}]) \eta_{J_q} \right\} \otimes X_{I_q} \\ &= \sum_{I_q} \left\{ \sum_{k=1}^N \rho(X_k)^2 \eta_{I_q} + \sum_{J_q \Delta I_q = i_u j_v} (-1)^{u+v} c_{i_u j_v}^{\alpha} \rho(X_{\alpha}) \eta_{J_q} \right\} \otimes X_{I_q} . \end{aligned}$$

On the other hand,

$$\begin{aligned} \sigma(X_{\alpha}) X_{J_q} &= \sum_{k=1}^n \sum_{u=1}^q (-1)^{v-1} c_{i_u j_v}^{\alpha} (X_k \wedge X_{j_1} \dots X_{j_v} \dots \wedge X_{j_q}) \\ &= \sum_{I_q \Delta J_q = j_v i_u} (-1)^{u+v} c_{j_v}^{i_u} X_{I_q} \end{aligned}$$

It follows that

$$\begin{aligned} \frac{1}{2} T_p^q \alpha(\eta) &= \sum_{I_q} \sum_{k=1}^N \rho(X_k)^2 \eta_{I_q} \otimes X_{I_q} + \sum_{I_q} \rho(X_{\alpha}) \eta_{J_q} \otimes \sigma(X_{\alpha}) X_{J_q} \\ &= \left\{ \sum_{k=1}^N \rho(X_k)^2 \otimes 1 + \sum_{\alpha} \rho(X_{\alpha}) \otimes \sigma(X_{\alpha}) \right\} \alpha(\eta) \end{aligned}$$

Now the required result follows from the fact

$$\begin{aligned} 2\rho(X_\alpha) \otimes \sigma(X_\alpha) &= \{\rho(X_\alpha) \otimes 1 + 1 \otimes \sigma(X_\alpha)\}^2 - \rho(X_\alpha)^2 \otimes 1 - 1 \otimes \sigma(X_\alpha)^2 \\ &= (\rho \otimes \sigma)(X_\alpha)^2 - \rho(X_\alpha)^2 \otimes 1 - 1 \otimes \sigma(X_\alpha)^2 \end{aligned}$$

That  $T_\rho^q$  is a hermitian symmetric endomorphism follows from the facts that  $\rho(X_i)$  and  $\sigma(X_i)$  are hermitian symmetric while  $\rho(X_\alpha)$  and  $\sigma(X_\alpha)$  are skew-hermitian with respect to  $\langle \cdot, \cdot \rangle_F$  and the extension to  $E$  of the Killing form on  $\mathfrak{p}_0$ .

**Lemma 2.** a) *If  $\Lambda$  is the highest weight of an irreducible representation  $\rho$  of  $\mathfrak{g}$  induced by a representation  $\rho$  of  $G$ , then*

$$\rho(c) = \{\varphi(\Lambda, \Lambda) + \sum \varphi(\Lambda, \alpha)\}. \quad \text{Identity}$$

b) *when restricted to the (irreducible)  $K$ -subspace generated by the eigen-space corresponding to the highest weight  $\Lambda$ ,*

$$\rho(c') = \left\{ \frac{1}{4} \varphi(\Lambda + \Lambda^\theta, \Lambda + \Lambda^\theta) + \sum_{\alpha \in \Sigma_1} \varphi\left(\Lambda, \frac{\alpha + \alpha^\theta}{2}\right) \right\}. \quad \text{Identity.}$$

For a proof see [4]: Lemmas 4 and 16(c).

**Lemma 3.** *If  $\Lambda_1$  and  $\Lambda_2$  are the highest weights of two irreducible representations  $\rho_1$ ,  $\rho_2$  of  $\mathfrak{g}$ , such that  $\Lambda_1 - \Lambda_2$  is a non-negative linear combination of simple roots of  $\mathfrak{g}$ , then  $\lambda_1 \geq \lambda_2$  where  $\rho_k(c) = (\lambda_k. \text{ Identity})$  ( $k=1, 2$ ). Equality can occur only if  $\Lambda_1 = \Lambda_2$ .*

*The same conclusions hold for  $\mathfrak{k}$  and  $c'$  instead of  $\mathfrak{g}$  and  $c$  provided that  $\Lambda_1$  and  $\Lambda_2$  coincide on the center of  $\mathfrak{k}$ .*

For the proof see Lemma 5 [4].

**Proof of Theorem 1.** We obtain the eigen-values of  $T_\rho^q$  as follows: Let

$$E = \sum_{\mu \in \mathfrak{M}} E_\mu \quad \text{and} \quad F = \sum_{\lambda \in L} F_\lambda \quad \text{and} \quad F_\lambda \otimes E_\mu = \sum_{\nu \in \mathfrak{M}_{\lambda\mu}} V_{\lambda\mu}^\nu$$

be the decomposition of  $E$ ,  $F$  and  $F_\lambda \otimes E_\mu$  into irreducible  $\mathfrak{k}$ -modules indexed by the highest weights (for the order defined by  $H_1, \dots, H_p$  on  $i\mathfrak{h}_k$ ). Since  $\rho$  is an irreducible representation of  $\mathfrak{g}$  and  $c$  is a central element of  $U(\mathfrak{g})$ ,  $\rho(c)$  is a scalar operator. Similarly, since  $c'$  is central in  $U(\mathfrak{k})$ ,  $\rho(c') \otimes 1$ ,  $1 \otimes \sigma(c')$  and  $(\rho \otimes \sigma)(c')$  are scalars on  $F_\lambda$ ,  $E$ ,  $F \otimes E_\lambda$  and  $V_{\lambda\mu}^\nu$ . Hence  $T_\rho^q$  acts as a scalar on each  $V_{\lambda\mu}^\nu$ . We denote the corresponding eigen-value by  $a(\lambda, \mu, \nu)$ . Among  $V_{\lambda\mu}^\nu$  there is a unique irreducible component with highest weight  $\nu = \lambda + \mu$  we denote the corresponding scalar  $a(\lambda, \mu, \nu)$  by  $a(\lambda, \mu)$  with this notation, we have

**Assertion I.**  $a(\lambda, \mu, \nu) \geq a(\lambda, \mu)$ ; equality occurs only if  $\nu = \lambda + \mu$ .

Proof. We denote the representation in  $V_{\lambda\mu}^\nu$  by  $\rho_{\lambda\mu}^\nu$ . Then since  $(\rho \otimes 1)(c)$ ,  $(\rho \otimes 1)(c')$  and  $(1 \otimes \sigma)(c')$  all define the same scalar operator in  $F_\lambda \otimes E_\mu$ ,

$$a(\lambda, \mu) + a(\lambda, \mu, \nu) = \rho_{\lambda\mu}^{\lambda+\mu}(c') - \rho_{\lambda\mu}^{\nu}(c')$$

(Here we have let  $\rho_{\lambda\mu}^{\nu}(c')$  stand for the scalar). Now any weight in  $F_{\lambda} \otimes E_{\mu}$  has the form  $\lambda_1 + \mu_1$  where  $\lambda_1$  and  $\mu_1$  are weights of  $F_{\lambda}$  and  $E_{\mu}$ ; on the other hand  $\lambda - \lambda_1$  and  $\mu - \mu_1$  are non-negative linear combination of simple roots of  $k$ ; hence so is  $(\lambda + \mu) - (\lambda_1 + \mu_1)$ . It follows then from Lemma 3 that

$$a(\lambda, \mu) \geq a(\lambda, \mu, \nu)$$

Equality can occur only if  $\lambda + \mu = \lambda_1 + \mu_1$  and there is only one component of  $F_{\lambda} \otimes E_{\mu}$  with  $\lambda + \mu$  as the highest weight. (Note that if  $\mathfrak{k}$  has a centre, then the central elements act as scalars on  $F_{\lambda}$  and  $E$  hence in all of  $F_{\lambda} \otimes E_{\mu}$ ).

**Assertion II.** *Let  $f_{\lambda}$  be a highest weight vector of  $F$  such that  $\|f_{\lambda}\|_F^2 = 1$ . For  $\alpha \in \Delta$ , let  $E_{\alpha}$  be a root vector of  $\alpha$ . Suppose that  $E_{\alpha_0}f_{\lambda} = 0$  for  $\alpha \in A^+$ . If there is an  $\alpha_0 \in B^+$  with  $E_{\alpha_0}f_{\lambda} \neq 0$ , then  $E_{\alpha_0}f_{\lambda} \in F_{\lambda_1}$  for some  $\lambda_1$  and  $a(\lambda, \mu) < a(\lambda_1, \mu_1)$*

Proof. Using the fact that  $\theta$  is an involution, we have

$$\mathfrak{k} = \mathfrak{h}_{\mathfrak{k}} \oplus \sum_{\alpha \in A^+} \{CE_{\alpha} \oplus CE_{\alpha}\} \oplus \sum_{\substack{\alpha \in B^+ \\ \alpha > \alpha_0}} \{C(E_{\alpha} + E_{\alpha}\theta) \oplus C(E_{-\alpha} + E_{-\alpha}\theta)\}$$

and the order chosen on  $\mathfrak{h}_{\mathfrak{k}}^* = i\mathfrak{h}_{\mathfrak{k}_0}$  has precisely  $\{\alpha | \alpha \in A^+\}$  and  $\left\{ \frac{\alpha + \alpha^{\theta}}{2} \mid \alpha \in B^+ \right\}$

as the positive roots. The roots of  $\mathfrak{k}$  are necessarily zero on the centre of  $\mathfrak{k}$ . It follows that the weights  $\lambda$  and  $\lambda + \alpha_0$  (which is the weight corresponding to  $E_{\alpha_0}f_{\lambda}$ ) have the same values on the centre. On the other hand, since  $\lambda + \alpha_0$  and  $\lambda_1$  are weights of the same irreducible representation of  $\mathfrak{k}$ ,  $\lambda_1$  and  $\lambda + \alpha_0$  have the same values on the centre of  $\mathfrak{k}$ . It follows that  $\lambda_1 = \lambda$  on the centre of  $\mathfrak{k}$ . Now  $\lambda_1 - \lambda = \lambda_1 - (\lambda + \alpha_0) + \alpha_0$  and  $\lambda_1 - (\lambda + \alpha_0)$  is a non-negative linear combination of simple roots. Hence  $\lambda_1 - \lambda$  is a non-negative linear combination of simple roots and  $\lambda_1 \neq \lambda$ . A similar remark holds for  $\lambda_1 + \mu$  and  $\lambda + \mu$ . It follows then from Lemma 3 above that

$$\rho_{\lambda}(c') < \rho_{\lambda_1}(c')$$

and

$$\rho_{\lambda\mu}^{\lambda+\mu}(c') < \rho_{\lambda_1\mu}^{\lambda_1+\mu}(c')$$

The operators  $(\rho \otimes 1)(c)$  and  $(1 \otimes \sigma)(c')$  on the other hand are scalars on the whole of  $F \otimes E$ . Hence from the expression for  $T_{\rho}^q$ , the Assertion follows.

**Assertion III.** *Suppose that  $E_{\alpha}F_{\lambda} = 0$  for  $\alpha \in A^+ \cup B^+$  but that there is an  $\alpha_0 \in C^+$  such that  $E_{\alpha_0}f_{\lambda} \neq 0$ . Then  $a(\lambda, \mu) > 0$ .*

Proof. If  $\{E_{\alpha}\}_{\alpha \in \Delta}$  are root vectors so chosen that  $\varphi(E_{\alpha}, E_{-\alpha}) = 1$ , then, it is well known that

$$c = \sum_{\alpha \in \Delta^+} E_\alpha E_{-\alpha} + \sum_{\alpha \in \Delta^+} E_{-\alpha} E_\alpha + \sum_{i=1}^1 H_i^2$$

It follows that

$$\rho(c)f_\lambda = \sum_{\alpha \in \Delta^+} \rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda + \sum_{i=1}^1 \rho(H_i)^2 f_\lambda$$

Using the facts,  $E_\alpha f_\lambda = 0$  for  $\alpha \in A^+ \cup B^+$  and that  $[E_\alpha, E_{-\alpha}] = H_\alpha$ , we have

$$\rho(c)f_\lambda = \sum_{\alpha \in A^+ \cup B^+} \lambda(H_\alpha)f_\lambda + \sum_{i=1}^p \lambda(H_i)^2 f_\lambda + \sum_{\alpha \in C^+} \rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda + \sum_{i=p+1}^1 \rho(H_i)^2 f_\lambda$$

Hence

$$\begin{aligned} \langle \rho(c)f_\lambda, f_\lambda \rangle_F &= \sum_{\alpha \in A^+ \cup B^+} \lambda(H_\alpha) + \sum_{i=1}^p \lambda(H_i)^2 + \sum_{\alpha \in C^+} \langle \rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda, f_\lambda \rangle \\ &\quad + \sum_{i=p+1}^1 \langle \rho(H_i)^2 f_\lambda, f_\lambda \rangle_F \end{aligned}$$

Now it is well known that  $F$  admits an orthogonal decomposition with respect to  $\langle \cdot, \cdot \rangle_F$  into irreducible representations of the algebra  $\mathfrak{g}' = CE_\alpha \oplus CE_{-\alpha} \oplus CH_\alpha$  for  $\alpha \in C^+$  so that to prove that  $\langle \rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda, f_\lambda \rangle \geq |\lambda(H_\alpha)|$  equality occurring only if  $E_\alpha f_\lambda = 0$ , we may assume that the  $\mathfrak{g}'$ -invariant subspace  $W$  spanned by  $f_\lambda$  is *irreducible* with respect to the three dimensional algebra. Now by Lemma 2,

$$\rho \left\{ E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha + \frac{H_\alpha^2}{\varphi(H_\alpha, H_\alpha)} \right\} f_\lambda = \left\{ \frac{(\lambda + k\alpha)(H_\alpha)^2}{\varphi(H_\alpha, H_\alpha)} + (\lambda + k\alpha)(H_\alpha) \right\} f_\lambda$$

where  $\lambda + k\alpha$ ,  $k \geq 0$  is the highest weight in  $W$  (of  $\mathfrak{g}'$ ). Hence

$$\rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda = \frac{k\alpha(H_\alpha)^2}{\varphi(H_\alpha, H_\alpha)} + (\lambda + k\alpha)(H_\alpha)f_\lambda$$

so that

$$\langle \rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda, f_\lambda \rangle_F = (\lambda + k\alpha)(H_\alpha) + \frac{\alpha(H_\alpha)}{\varphi(H_\alpha, H_\alpha)} \geq |\lambda(H_\alpha)|$$

(It is well known that  $(\lambda + k\alpha)(H_\alpha) \geq |\lambda(H_\alpha)|$  since  $\lambda + k\alpha$  is the highest weight). Moreover equality occurs only if  $k=0$ ; if  $k=0$ , however,  $\lambda$  is the highest weight so that  $E_\alpha f_\lambda = 0$ . We have thus shown that

$$\langle \rho(E_\alpha E_{-\alpha} + E_{-\alpha} E_\alpha)f_\lambda, f_\lambda \rangle \geq |\lambda(H_\alpha)|$$

equality occurring only if  $E_\alpha f_\lambda = 0$ . We have therefore,

$$\langle \rho(c)f_\lambda, f_\lambda \rangle \geq \sum_{\alpha \in A^+ \cup B^+} \lambda(H_\alpha) + \sum_{i=1}^p \lambda(H_i)^2 + \sum_{\alpha \in C^+} |\lambda(H_\alpha)| + \sum_{i=p+1}^1 \langle \rho(H_i)^2 f_\lambda, f_\lambda \rangle_F$$

equality occurring only if  $E_\alpha f_\lambda = 0$  for all  $\alpha \in C^+$ . Moreover  $S = \sum_{i=p+1}^1 \rho(H_i)^2$  is

a non-negative symmetric operator so that

$$\rho(c)f_\lambda, f_\lambda \geq \sum_{\alpha \in A^+ \cup B^+} |\lambda(H_\alpha)| + \sum \lambda(H_i)^2 + \langle Sf_\lambda, f_\lambda \rangle + \sum_{\alpha \in C^+} |\lambda(H_\alpha)|$$

with  $S \geq 0$  (Note that for  $\alpha \in A^+ \cup B^+$ ,  $E_\alpha f_\lambda = 0$  so that  $\lambda(H_\alpha) \geq 0$ ).

Using b) of Lemma 2, we have also

$$\begin{aligned} \rho(c') \otimes 1 \Big|_{F_\lambda \otimes E} &= \left\{ \sum_{i=1}^p \lambda(H_i)^2 + \sum_{\alpha \in \Sigma_1} \lambda(H_\alpha + H_{\alpha^\theta})/2 \right\}. \quad \text{Identity} \\ (\rho \otimes \sigma)(c') \Big|_{V_{\lambda, \mu}^{\lambda + \mu}} &= \sum_{i=1}^p (\lambda + \mu)(H_i)^2 + \sum_{\alpha \in \Sigma_1} (\lambda + \mu)(H_\alpha + H_{\alpha^\theta})/2. \quad \text{Identity} \end{aligned}$$

and

$$(1 \otimes \sigma)(c') \Big|_{F \otimes E_\mu} = \sum_{i=1}^p \mu(H_i)^2 + \sum_{\alpha \in \Sigma_1} \mu(H_\alpha + H_{\alpha^\theta})/2. \quad \text{Identity}$$

so that if  $e_\mu \otimes E_\mu$  is a unit weight vector of weight  $\mu$ ,

$$\begin{aligned} \langle T_p^q(f_\lambda \otimes e_\mu), f_\lambda \otimes e_\mu \rangle &\geq 2 \sum_{\substack{\alpha \in B^+ \\ \alpha > \alpha^\theta}} |\lambda(H_\alpha + H_{\alpha^\theta})/2| + 2 \sum_{\alpha \in C^+} \lambda(H_\alpha) \\ &\quad + 2 \langle S(f_\lambda), f_\lambda \rangle - 2 \sum_{i=1}^p \lambda(H_i) \mu(H_i) \end{aligned}$$

Now  $\mu$  being a weight of  $\sigma_q$  it is the sum of  $q$  of the weights of the adjoint representation of  $k_0$  in  $p_0$ . Hence

$$\mu = \sum_{i=1}^q (\alpha_i + \alpha_2^\theta)/2$$

where all the  $\alpha_i$  belong to  $\Sigma_2$ . Hence

$$\langle T_p^q(f_\lambda \otimes e_\mu), f_\lambda \otimes e_\mu \rangle \geq 2 \sum_{\alpha \in \Sigma_2} \lambda(H_\alpha + H_{\alpha^\theta})/2 - 2 \sum_{i=1}^q \lambda(H_{\alpha_i} + H_{\alpha_i^\theta})/2$$

Here equality can occur only if  $E_\alpha f_\lambda = 0$  for  $\alpha \in \Delta^+$  and  $\langle Sf_\lambda, f_\lambda \rangle = 0$ . It follows therefore that  $a(\lambda, \mu) > 0$  if there exists  $\alpha_0 \in C^+$  with  $E_{\alpha_0} f_\lambda \neq 0$ .

In view of Assertions I, II and III, we see that  $T$  is positive definite if and only if  $a(\lambda_0, \mu) > 0$  where  $\lambda_0$  is the greatest of the dominant weights  $\{\lambda \mid \lambda \in L\}$ : this follows from the fact that  $E_\alpha f_{\lambda_0} = 0$  for all  $\alpha \in \Delta^+$  if and only if  $f_{\lambda_0}$  is the highest weight vector for  $\rho$ ; it follows that any weight of  $\rho|_k$  is of the form  $\lambda_0 - \sum m_i r(\alpha_i)$  where  $m_i \geq 0$  and  $r(\alpha_i)$  are the restriction of positive roots of  $\mathfrak{g}$ ; finally  $r(\alpha_i) \neq 0$  hence greater than zero (see Lemma 16 (f) [4]).

Thus to complete the proof of the Theorem, we need only prove

**Assertion IV.** *If  $\lambda_0$  is the restriction  $r(\Lambda)$  of the highest weight  $\Lambda$  of  $\rho$ , then  $a(\lambda_0, \mu) > 0$  for all  $\mu \in M$  provided there are at least  $(q+1)$  roots  $\alpha \in \Sigma_2$  such that  $\Lambda(H_\alpha + H_{\alpha^\theta}) > 0$ .*

**Proof.** By evaluation on the highest weight  $f_{\lambda_0} \otimes e_\mu$  we have (Lemma 2)

$$\begin{aligned} T_\rho(f_{\lambda_0} \otimes e_\mu) &= \{2 \sum_{\alpha \in \Sigma_2} \Lambda(H_\alpha + H_{\alpha^\theta})/2 + 2 \sum_{i=1}^p \Lambda(H_i)^2 - 2 \sum_{i=1}^p \Lambda(H_i)\mu(H_i)\} (f_{\lambda_0} \otimes e_\mu) \\ &= \{2 \sum_{\alpha \in \Sigma_2} \Lambda(H_\alpha + H_{\alpha^\theta})/2 - 2 \sum_{i=1}^q (H_{\alpha_i} + H_{\alpha_i^\theta})/2 + 2 \sum_{i=1}^q \Lambda(H_i)^2\} (f_{\lambda_0} \otimes e_\mu) \end{aligned}$$

where

$$\mu = r(\sum_{i=1}^q (\alpha_i + \alpha_i^\theta)/2). \quad \text{It follows that}$$

$$a(\lambda_0, \mu) > 0 \quad \text{under our hypothesis,}$$

since

$$\sum_{i=1}^p \Lambda(H_i)^2 \geq 0.$$

This completes the proof of the Theorem.

REMARK 1. Theorem 1 generalises Theorem 12.1 of [3] where only the case when  $G/K$  is hermitian symmetric, is considered. In fact, the present theorem is more general than Theorem 12.1 of [3] even in this case:  $H^n(\Gamma, X, \rho)$  admits a type decomposition (see [3])

$$H^n(\Gamma, X, \rho) \simeq \bigoplus_{r+s=n} H^{rs}(\Gamma, X, \rho)$$

so that under the hypothesis of Theorem 1, we have

$$H^{rs}(\Gamma, X, \rho) = 0$$

for  $r+s \leq q$ . Theorem 12.1 of [3] is the special case  $q = \dim G/K$ . In section §2, we will give an interpretation of the groups  $H^{rs}(\Gamma, X, \rho)$ . In [4] all the representations for which  $T_\rho^1$  is positive definite are determined.

REMARK 2. The author has checked in a number of *classical cases*, that if  $G$  is simple and non-compact and  $\rho$  is *any* nontrivial irreducible representation, then the number of elements in  $\sum_\rho$  is greater than or equal to the rank of the associated symmetric space.

## 2. Compact quotients of complex semisimple Lie groups

Let  $X$  be a complex manifold and  $\tilde{X} \xrightarrow{\pi} X$  be the universal covering of  $X$ . Let  $\Gamma$  be the fundamental group of  $X$  acting fixed point free on  $\tilde{X}$ . Let  $\rho$  be a representation of  $\Gamma$  in a finite dimensional complex vector space. Let  $L_\rho$  denote the local system associated to  $\rho$  and  $W_\rho$  the holomorphic vector bundle associated to  $\rho$ . Let  $\underline{L}_\rho$  and  $\underline{W}_\rho$  denote respectively the sheaf of germs of sections of  $L_\rho$  and holomorphic sections of  $W_\rho$ . By the de Rham theorem, the cohomology groups  $H^p(X, L_\rho)$  of  $X$  with coefficients in the local system  $L_\rho$  are the cohomology groups of the complex

$$A = \sum_p A^p(\Gamma, \tilde{X}, \rho)$$

defined as follows:  $A^p(\Gamma, X, \rho)$  is the vector space of  $C^\infty$ -exterior  $p$ -forms  $\eta$  on  $X$  with values in  $F$  satisfying the condition

$$\eta(\gamma_*(t_1), \gamma_*(t_2), \dots, \gamma_*(t_p)) = \rho(\gamma)^{-1} \eta(t_1, \dots, t_p)$$

where  $t_1, \dots, t_p$  are tangent vectors to  $\tilde{X}$  and  $\gamma_*(t)$  denotes the image by  $\gamma$  of the tangent vector  $t$  to  $X$ ; the boundary operator in the complex is the exterior differentiation of  $F$ -valued forms on  $\tilde{X}$ . The complex structure on  $X$  gives a decomposition of each of the space  $A^p(\Gamma, \tilde{X}, \rho)$  as a direct sum  $\sum_{r+s=p} A^{r,s}(\Gamma, \tilde{X}, \rho)$  according to the bidegree. Moreover  $d=d'+d''$  where  $d'$  and  $d''$  are of bidegree  $(1, 0)$  and  $(0, 1)$  respectively. This gives  $A$  a structure of a double complex. The term  $E_1^{pq}$  of the spectral sequence associated to this double complex is clearly the  $q^{th}$  cohomology of the complex

$$0 \rightarrow A^{p,0}(\Gamma, \tilde{X}, \rho) \rightarrow A^{p,1}(\Gamma, \tilde{X}, \rho) \rightarrow \dots \rightarrow A^{p,n}(\Gamma, X, \rho) \rightarrow 0$$

( $n=\dim X$ ). Again, by the Dolbeault theorem, the  $q^{th}$  cohomology of this complex is  $H^q(X, \underline{\Omega}^p \otimes \underline{W}_\rho)$  where  $\underline{\Omega}^p$  is the holomorphic bundle of holomorphic  $p$ -forms, and  $\underline{\Omega}^p \otimes \underline{W}$  is the sheaf of germs of holomorphic  $p$ -forms on  $X$  with coefficients in  $W$ . Moreover, the derivation  $d_1$  in the term  $E_1$  is clearly the map induced by the exterior differentiation

$$d: \underline{\Omega}^p \otimes \underline{W}_\rho \rightarrow \underline{\Omega}^{p+1} \otimes \underline{W}_\rho$$

(since we have  $\underline{\Omega}^p \otimes \underline{W}_\rho \simeq \underline{\Omega}^p \otimes \underline{L}_\rho$ , the operator  $d$  above makes sense:  $\underline{\Omega}^p \otimes \underline{L}_\rho \rightarrow \underline{\Omega}^{p+1} \otimes \underline{L}_\rho$ ).

We have thus

**Proposition 1.** *There is a convergent spectral sequence  $\{E_r^{pq}\}_{c \leq r \leq \infty}$  converging to  $H^*(\Gamma, \tilde{X}, \rho)$  such that  $E_1^{pq} = H^q(X, \underline{\Omega}^p \otimes \underline{W}_\rho)$  and  $d_1$  is induced by the map  $d: \underline{\Omega}^p \otimes \underline{W}_\rho \rightarrow \underline{\Omega}^{p+1} \otimes \underline{W}_\rho$ .*

Now let  $\tilde{X}=G$  be a simply connected complex Lie group and  $\Gamma \subset G$  a discrete subgroup; then  $X=\Gamma \backslash G$ . Let  $\mathfrak{g}$  be the Lie algebra of left invariant vectorfields on  $G$ . (Then elements of  $\mathfrak{g}$  may be regarded as vectorfields on  $\Gamma \backslash G$  as well). Let  $\mathfrak{g}^c$  denote the complexification of  $\mathfrak{g}$ . Then  $\mathfrak{g}^c \simeq \mathfrak{u}_1 \oplus \mathfrak{u}_2$  where  $\mathfrak{u}_1$  and  $\mathfrak{u}_2$  are respectively the complex ideals of holomorphic and antiholomorphic left-invariant vectorfields. The natural projections  $\mathfrak{g} \rightarrow \mathfrak{u}_1$  and  $\mathfrak{g} \rightarrow \mathfrak{u}_2$  define isomorphisms of  $\mathfrak{g}$  on  $\mathfrak{u}_1$  and  $\mathfrak{u}_2$  respectively.

Suppose now that  $\rho$  is the restriction of a representation of  $G$  in a finite dimensional vector space  $F$ . In this special case we can compute the term  $E_2$  as well.

In the first place, there is a canonical (holomorphic) isomorphism of the vector bundle  $W_\rho$  on  $X$  with the trivial bundle. In fact the vector bundle  $W_\rho$  is obtained as follows: the group  $\Gamma$  acts  $G \times F$  by diagonal action:

$$\gamma(g, f) = (\gamma g, \rho(\gamma)f) \quad \text{for } \gamma \in \Gamma.$$

This is an (holomorphic) automorphism of the vector bundle  $G \times F$  on itself covering the left translation by  $\gamma$  and hence this action defines a vector bundle on  $\Gamma \backslash G$ . Now let  $\Phi: G \times F \rightarrow G \times F$  be the isomorphism

$$\Phi(g, f) = (g, \rho(g)^{-1}f)$$

Then

$$\Phi(\gamma g, \rho(\gamma)f) = (\gamma g, \rho(g)^{-1}f)$$

Hence  $\Phi$  defines an isomorphism  $\Phi_0$  of  $W_p$  on the trivial bundle  $X \times F$ .

Now, for left-invariant holomorphic vectorfields  $Z_1, \dots, Z_{p+1}$  and a holomorphic  $p$ -form  $\eta$  with values in  $F$ ,

$$\begin{aligned} d\eta(Z_1, \dots, Z_{p+1}) &= \sum_{i=1}^{p+1} (-1)^{i+1} Z_i \eta(Z_1, \dots, \hat{Z}_i, \dots, Z_{p+1}) \\ &\quad + \sum_{i < j} (-1)^{i+j} \eta([Z_i, Z_j], Z_1 \cdots \hat{Z}_i \cdots \hat{Z}_j \cdots Z_{p+1}) \end{aligned}$$

It follows that

$$\begin{aligned} (\Phi d \Phi^{-1})(\eta)(Z_1, \dots, Z_{p+1})_{g_0} &= \sum_{i=1}^{p+1} (-1)^{i+1} \{ \rho(g_0)^{-1} Z_i \rho(g) \eta(Z_1, \dots, Z_i, \dots, Z_{p+1}) \}_{g_0} \\ &\quad + \sum_{i < j} (-1)^{i+j} \{ \rho(g_0)^{-1} ([Z_i, Z_j], Z_1 \cdots Z_i \cdots Z_j \cdots Z_{p+1}) \}_{g_0} \\ &= \sum_{i=1}^{p+1} (-1)^{i+1} \rho(Z_i) \eta(Z_1 \cdots \hat{Z}_i \cdots Z_{p+1}) \\ &\quad + \sum_{i=1}^{p+1} (-1)^{i+1} Z_i \eta(Z_1 \cdots Z_i \cdots Z_{p+1}) \\ &\quad + \sum_{i < j} (-1)^{i+j} \eta([Z_i, Z_j], Z_1 \cdots \hat{Z}_i \cdots \hat{Z}_j \cdots Z_{p+1}) \}_{g_0} \end{aligned}$$

( $\rho$  has a natural extension to  $g^C$  hence to  $u_1$ )

It follows that if we identify germs of holomorphic  $W$ -valued forms on  $\Gamma \backslash G$  with germs of holomorphic  $F$ -valued forms on  $\Gamma \backslash G$  through the isomorphism  $\Phi_0$ , the operator  $d$  is transformed into the operator  $d_0$  defined by

$$\begin{aligned} d_0 \eta(Z_1, \dots, Z_{p+1}) &= \sum_{i=1}^{p+1} (-1)^{i+1} (Z_i + \rho(Z_i)) \eta(Z_1, \dots, \hat{Z}_i, \dots, Z_{p+1}) \\ &\quad + \sum_{i < j} (-1)^{i+j} \eta([Z_i, Z_j], Z_1 \cdots \hat{Z}_i \cdots \hat{Z}_j \cdots Z_{p+1}) \dots \dots \dots \text{①} \end{aligned}$$

Now the map which associates to each  $W_p$ -valued holomorphic  $p$ -form  $\eta$ , the  $F$ -valued holomorphic form  $\Phi_0(\eta)$  defined by

$$(\Phi_0 \eta)(Z_1, \dots, Z_p) = \Phi_0(\eta(Z_1, \dots, Z_p))$$

for every  $p$ -tuple  $(Z_1, \dots, Z_p)$  of projections of left invariant holomorphic vectorfields on  $G$ , defines an isomorphism  $\Phi_p$  of the sheaf  $\underline{\Omega}^p \otimes \underline{W}_p$  on the sheaf  $\text{Hom}_C(\bigwedge^p \mathfrak{u}_1, \mathcal{O} \otimes F)$ . Moreover clearly the diagram

$$\begin{array}{ccc}
 \Omega^p \otimes_{\mathcal{O}} W_{\rho} & \xrightarrow{\Phi_{\rho}} & \text{Hom}_C(\Lambda^p \mathfrak{u}_1, \mathcal{O} \otimes_{\mathcal{C}} F) \\
 \downarrow d & & \downarrow d_0 \\
 \Omega^{p+1} \otimes_{\mathcal{O}} W_{\rho} & \xrightarrow{\Phi_{\rho+1}} & \text{Hom}_C(\Lambda^{p+1} \mathfrak{u}_1, \mathcal{O} \otimes_{\mathcal{C}} F)
 \end{array}$$

where  $d_0$  is defined by equation ① above, is commutative. Now  $\mathcal{O}$  is a sheaf of  $\mathfrak{u}_1$ -modules: the map  $f \rightarrow Zf$  for the projection on  $X$  of a left invariant holomorphic vectorfield  $Z$  on  $G$  defines a representation  $\mathfrak{u}_1 (\simeq \mathfrak{g})$  in the Lie algebra of endomorphisms of  $\mathcal{O}$ . The stalks at a point  $x \in X$  of the complex of sheaves

$$0 \rightarrow \mathcal{O} \otimes_{\mathcal{C}} F \rightarrow \text{Hom}_C(\mathfrak{u}_1, \mathcal{O} \otimes_{\mathcal{C}} F) \rightarrow \dots \rightarrow \text{Hom}(\Lambda^n \mathfrak{u}_1, \mathcal{O} \otimes_{\mathcal{C}} F) \rightarrow 0$$

from then clearly the standard complex of the Lie algebra  $\mathfrak{u}$  with values in  $\mathcal{O}_x \otimes F$ , where  $\mathcal{O}_x$  is the stalk at  $x$  of  $\mathcal{O}$ . Passing then to the  $q^{\text{th}}$ -cohomology groups of this sheaves, we see that, we obtain the standard complex

$$0 \rightarrow H^q(X, \mathcal{O}) \otimes_{\mathcal{C}} F \rightarrow \text{Hom}_C(\mathfrak{u}_1, H^q(X, \mathcal{O}) \otimes_{\mathcal{C}} F) \dots \text{Hom}_C(\Lambda^n \mathfrak{u}_1, H^q(X, \mathcal{O}) \otimes_{\mathcal{C}} F) \rightarrow 0$$

where  $H^q(X, \mathcal{O})$  carries the  $\mathfrak{u}_1$ -module structure defined by the action of  $\mathfrak{u}_1$  on  $\mathcal{O}$  defined above and  $H^q(X, \mathcal{O}) \otimes F$  is the tensor product of this representation and  $\rho$ .

Combining the preceding, with Proposition 1, we obtain

**Theorem 2.** *Let  $G$  be a connected complex Lie group and  $\Gamma$  a discrete subgroup. Let  $\mathcal{O}$  be the sheaf of germs of holomorphic functions on  $X = \Gamma \backslash G$ . Let  $\rho$  be a representation of  $G$  in a finite dimensional complex vector space  $F$  and  $L_{\rho}$  the associated local system. Then there is a convergent spectral sequence  $\{E_r\}_{0 \leq r \leq \infty}$  converging to  $H^*(X, L_{\rho})$  such that  $E_2^{pq} = H^p(g, H^q(X, \mathcal{O}) \otimes F)$  where  $H^q(X, \mathcal{O})$  and  $F$  are considered as  $g$ -modules as follows: a left-invariant vectorfield  $Y$  on  $G$  projects on  $X$  as a vectorfield whose 1-parameter group is a group of holomorphic automorphisms of  $X$ ; hence  $f \rightarrow Xf$  defines an endomorphism of  $\mathcal{O}$  and hence a representation of  $g$ ; in  $F$  we have the representation  $\rho$ .*

**Proof.** The argument above is incomplete only in two details, under the isomorphism  $g \xrightarrow{p_1} \mathfrak{u}_1$ , we must show the following:

- i) If  $\rho^c$  is the extension to  $\mathfrak{g}$  of  $\rho$ , then  $\rho^c \circ p_1$  and  $\rho$  are equivalent.
- ii)  $Xf = p_1(X) \cdot f$

The former is a well known fact; the latter follows from the fact that if  $p_2: \mathfrak{g} \rightarrow \mathfrak{u}_2$  is the projection onto antiholomorphic vectorfields, then,  $p_2(X)f = 0$  for holomorphic  $f$ .

A corollary is the following

**Theorem 3.** *Let  $G$  be a connected complex semisimple Lie group and  $\Gamma$  a*

discrete subgroup such that  $\Gamma \backslash G$  is compact. Then,  $H^1(\Gamma \backslash G, \mathcal{O})$  where  $\mathcal{O}$  is the sheaf of germs of holomorphic functions on  $\Gamma \backslash G$  vanishes provided that  $G$  has no 3-dimensional components.

Proof. Since  $\Gamma \backslash G$  is compact  $H^q(X, \mathcal{O})$  are finite dimensional so that, in view of the Whitehead Lemma for semisimple Lie algebras, we have, for any finite dimensional representation  $\rho$  of  $G$  in a vector space  $F$ , in the spectral sequence of Theorem 2

$$E_2^{10} = E_2^{20} = 0. \quad \text{On the other hand,} \\ E_\infty^{01} = E_3^{01}$$

is the homology of

$$0 \rightarrow E_2^{01} \rightarrow E_2^{20} = 0$$

Hence  $E_\infty^{01} = E_2^{01} = H^0(g, H^1(X, \mathcal{O}) \otimes F)$ . Now if  $H^1(X, \mathcal{O}) \neq 0$ , and if we choose  $F$  to be the dual of this module, then,  $H^0(g, H^1(X, \mathcal{O}) \otimes F) \neq 0$ . On the other hand since the spectral sequence converges to  $H^*(X, L_\rho)$ , this implies that  $H^1(X, L_\rho) \neq 0$ . But according to [1a] and [4] under the hypothesis of the theorem, viz., that  $G$  has no 3-dimensional components,  $H^1(X, L_\rho) = 0$ , a contradiction. Hence the theorem.

**Corollary.** *If  $\Gamma \subset G$  is a discrete subgroup of a connected complex semisimple Lie group  $G$  such that  $\Gamma \backslash G$  is compact, then the natural complex structure on  $\Gamma \backslash G$  is locally rigid.*

Proof.  $\Gamma \backslash G$  is holomorphically parallelisable. Hence the sheaf  $\Theta$  of germs of holomorphic vectorfields is isomorphic to a direct sum of copies of  $\mathcal{O}$ . From Theorem 3, therefore,  $H^1(\Gamma \backslash G, \Theta) = 0$ . It is well known that this last implies that the complex structure is locally rigid.

REMARK. Reverting to the notation of §1, when  $K \backslash G$  is hermitian symmetric, Matsushima and Murakami have given a type decomposition

$$H^q(\Gamma, X, \rho) \simeq \sum_{r+s=q} H^{rs}(\Gamma, X, \rho).$$

The groups  $H^{rs}(\Gamma, X, \rho)$  have an interpretation in terms of the spectral sequence of Proposition 1 of this section. In fact, according to proposition 1, there is a spectral sequence converging to  $H^*(\Gamma, X, \rho)$  with  $E_1^{pq}$  as  $H^q(X, \underline{\Omega} \otimes \underline{W}_\rho)$ . A simple calculation using Lemma 4.1 of [3] shows that  $E_2^{pq}$  is isomorphic to  $H^{pq}(\Gamma, X, \rho)$  and that the spectral sequence degenerates from the  $E_2$  stage onwards.

**Bibliography**

- [1] Y. Matsushima: *On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces*, Ann. of Math. **75** (1962) 312–330.
- [1a] Y. Matsushima: *On the cohomology groups of locally symmetric compact, Riemannian manifolds*, ‘Differential Analysis’, Papers presented at the Bombay Colloquium, 1964, 237–242.
- [2] Y. Matsushima and S. Murakami: *On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds*, Ann. of Math. **78** (1963), 365–416.
- [3] Y. Matsushima and S. Murakami: *On certain cohomology groups attached to hermitian symmetric spaces*, Osaka J. Math. **2** (1965), 1–35.
- [4] M.S. Raghunathan: *On the first cohomology of discrete subgroups of semisimple Lie groups*, Amer. J. Math. **87** (1965), 103–139.