

Title	Note on microbundles
Author(s)	Adachi, Masahisa
Citation	Osaka Journal of Mathematics. 1966, 3(1), p. 121–137
Version Type	VoR
URL	https://doi.org/10.18910/8769
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Adachi, M. Osaka J. Math. 3 (1966), 121-137

NOTE ON MICROBUNDLES*

Masahisa ADACHI

(Received February 23, 1966)

In [2] Lashof and Rothenberg have defined the css-group 0 and the Kan complex PD, and shown a certain exact sequence of abelian groups (Theorem (4.2)) which is fundamental to the studies of the PL-microbundles and smoothing.

In the present note we shall define a css-group H for the topological microbundles parallel to the css-group PL for the PL-microbundles (§ 1), and show an analogous exact sequence of abelian groups (§ 4) which seems to have some meaning to the study of the topological microbundles (§ 2, § 3).

Our method is quite analogous to that of Lashof and Rothenberg [2], and Milnor [3], and is based on Heller's theory [1].

The author is grateful to Professors R. Shizuma, K. Shiraiwa and T. Nakamura for their kind criticisms.

0. Preliminaries

a) Directed systems of css-complexes.

Let Σ be a partially ordered set, i.e. a set in which we have a transitive relation < defined for some (but not necessary all) pairs of elements. Σ is called a directed set if every pair of elements has a common successor: given σ and τ in Σ there is an element ρ in Σ satisfying $\sigma < \rho$ and $\tau < \rho$.

In the present note all css-complexes are supposed to satisfy Kan's extension condition unless otherwise stated.

Suppose to each element σ of Σ is assigned a css-complex¹) K_{σ} (cssgroup G_{σ}) and to each pair of elements $\sigma < \tau$ of Σ there corresponds a css-map $h_{\sigma\tau}$ of K_{σ} into K_{τ} (css-homomorphism $h_{\sigma\tau}$ of G_{σ} into G_{τ}) such that if $\rho < \sigma < \tau$ then

^{*)} This work is partially supported by Yukawa Fellowship.

¹⁾ For the theory of css-complexes, see for example Heller [1], Moore [5], Puppe [6].

$$h_{\rho\tau} = h_{\sigma\tau} \circ h_{\rho\sigma}$$
.

A system of css-complexes (css-groups) of this sort is called a *directed* system of css-complexes (css-groups).

Given a directed system of css-complexes (css-groups), we can define naturally a new css-complex (css-group) called the *limit* css-complex K (css-group G) of the directed system. We shall denote $K = \varinjlim_{\sigma} K_{\sigma}(G)$ $= \varinjlim_{\sigma} G_{\sigma}$).

Lemma 1. Let $\{K_{\sigma}, h_{\sigma\tau}; \sigma, \tau \in \Sigma\}$, $\{L_{\sigma}, h_{\tau}; \sigma, \tau \in \Sigma\}$ be directed systems of css-complexes. Suppose to each element σ of Σ is assigned a css-map φ_{σ} of K_{σ} into L_{σ} such that to each pair of elements $\sigma < \tau$ of Σ the following diagram

is commutative. Then, there exists a css-map φ of $K = \varinjlim K_{\sigma}$ into $L = \varinjlim L_{\sigma}$ which corresponds an element $\{k_{\sigma}\}$ of K with representative k_{σ} to $\{\varphi_{\sigma}(k_{\sigma})\}$ of L. If φ_{σ} is injective for each $\sigma \in \Sigma$, then the css-map φ is also injective. If $\{K_{\sigma}, h_{\sigma^{+}}; \sigma, \tau \in \Sigma\}$, $\{L_{\sigma}, h'_{\tau}; \sigma, \tau \in \Sigma\}$ are directed systems of css-groups and each φ_{σ} is a css-homomorphism, then the css-map φ is also a css-homomorphism.

Proof. We shall prove the second assertion. Let $k = \{k_{\sigma}\}$, $k' = \{k'_{\tau}\}$ be elements of K such that $\varphi(k) = \varphi(k')$. Then there exists a common successor ρ of σ and τ such that $h'_{\sigma\rho}(\varphi_{\sigma}(k_{\sigma})) = h'_{\tau\rho}(\varphi_{\tau}(k'_{\tau}))$. The following diagrams are commutative:

Thus we have

$$arphi_{
ho}\circ h_{\sigma
ho}(k_{\sigma})=arphi_{
ho}\circ h_{ au
ho}(k_{ au}')$$
 .

Since φ_{ρ} is injective, we have $h_{\sigma\rho}(k_{\sigma}) = h_{\tau\rho}(k_{\tau})$. Thus we have $\{k_{\sigma}\} = \{k_{\tau}'\}$.

Let $\{G_{\sigma}, h_{\sigma\tau}; \sigma, \tau \in \Sigma\}$, $\{H_{\sigma}, h'_{\sigma\tau}; \sigma, \tau \in \Sigma\}$ be directed systems of

css-groups, and for each $\sigma \in \Sigma$ H_{σ} is a css-subgroup of G_{σ} . Then, corresponding to each σ css-complex G_{σ}/H_{σ} , we have naturally a directed system of css-complexes $\{G_{\sigma}/H_{\sigma}, \bar{h}_{\sigma\tau}; \sigma, \tau \in \Sigma\}$. Let $G = \varinjlim G_{\sigma}, H = \varinjlim G_{\sigma}$, By Lemma 1, we can consider H as a css-subgroup of G. So we have a css-complex G/H. Then we have

Lemma 2. $\lim_{\sigma} G_{\sigma}/H_{\sigma}$ and G/H are css-equivalent, that is, there exists a bijective css-map between them.

Proof. Let $K = \varinjlim G_{\sigma}/H_{\sigma}$. Define $\varphi_q: K^{(q)} \to (G/H)^{(q)}$ by $\varphi_q(g) = \{g_{\sigma}\}$ mod $H^{(q)}$, for $g = \{g_{\sigma} \mod H^{(q)}_{\sigma}\} \in K^{(q)}$. This is independent of the representative of g.

Clearly φ_q is surjective.

Let g, $g' \in K^{(q)}$, $g = \{g_{\sigma} \mod H^{(q)}_{\sigma}\}$, $g' = \{g'_{\tau} \mod H^{(q)}_{\tau}\}$ and $\varphi_q(g) = \varphi_q(g')$. Then we have

$$\{g_{\sigma}\} \mod H^{(q)} = \{g'_{\tau}\} \mod H^{(q)},$$

that is, there exists a common successor ρ of σ and τ such that

$$(h_{\sigma\rho}(g_{\sigma}))^{-1}h_{\tau\rho}(g_{\tau})\in H^{(q)}_{\rho}$$
.

Namely

$$h_{\sigma \,
ho}(g_{\sigma}) \operatorname{mod} H_{\,
ho}^{\, \scriptscriptstyle (\mathbf{q})} = h_{ au
ho}(g_{ au}) \operatorname{mod} H_{\,
ho}^{\, \scriptscriptstyle (\mathbf{q})}$$
 .

Thus we have g=g'.

For a weakly monotone map $\lambda : \Delta_p \rightarrow \Delta_q$, we can easily see that the following diagram

is commutative. Thus $\varphi = \{\varphi_q\} : K \rightarrow G/H$ is a surjective css-map.

We shall sometimes identify two css-equivalent css-complexes.

b) Heller's U-functor.

We shall recall Heller's theory [1]. If Γ is a css-group, a *universal* group for Γ is a css-group Υ containing Γ as a css-subgroup and with all homotopy groups $\pi_q(\Upsilon)=0$. For any css-group Γ , there corresponds a css-group $U(\Gamma)$, which is universal for Γ . Moreover, U is a covariant functor on the category of css-groups and css-homomorphisms into itself.

Explicitly, the css-group $U(\Gamma)$ is constructed as follows. Le $U(\Gamma)^{(q)}$ be the set of all map σ of css-complex Δ_q into css-group Γ preserving dimension but not in general incidence. The incidence operations are defined by composition of maps

$$\Delta_p \xrightarrow{\lambda} \Delta_q \longrightarrow \Gamma$$

for a weakly monotone map λ . The group operation in $U(\Gamma)^{(q)}$ is defined by that in Γ : if $\tau \in \Delta_q$ and σ , $\sigma' \in U(\Gamma)^{(q)}$, then

$$(\sigma\sigma')(\tau) = \sigma(\tau)\sigma'(\tau)$$

With these definitions it is clear that $U(\Gamma) = \bigcup_{q \ge 0} U(\Gamma)^{(q)}$ is a css-group. Γ may be identified with the subgroup of $U(\Gamma)$ consisting of those simplices which are css-maps $\sigma : \Delta_q \to \Gamma$. We shall denote the identification by

$$\iota_{\Gamma}: \Gamma \to U(\Gamma).$$

Let Γ , Γ' be css-groups and $\varphi: \Gamma \rightarrow \Gamma'$ be a css-homomorphism. Then the css-homomorphism

$$U(\varphi): U(\Gamma) \to U(\Gamma')$$

is defined as follows. Let $\sigma \in U(\Gamma)^{(q)}$. We define $U(\varphi)(\sigma) \in U(\Gamma')^{(q)}$ to be $\varphi \circ \sigma$. Then $U(\varphi)$ is a dimension preserving map. For a weakly monotone map $\lambda : \Delta_{p} \to \Delta_{q}$, and $\tau \in U(\Gamma)^{(q)}$

$$egin{aligned} \lambda^{\sharp} &\circ U(arphi)(au) &= \lambda^{\sharp}(arphi \circ au) \ &= (arphi \circ au) \circ \lambda \ &= arphi \circ (au \circ \lambda) \ &= arphi \circ \lambda^{\sharp}(au) \ &= U(arphi) \circ \lambda^{\sharp}(au) \,. \end{aligned}$$

Thus $U(\varphi)$ is a css-map, and clearly css-homomorphism.

By the definition, if φ is a css-monomorphism, the $U(\varphi)$ is also a css-monomorphism.

Now let $\Gamma,\ \Gamma'$ be css-groups. Then $\Gamma\times\Gamma'$ is also css-groups. Then we have

Lemma 3. There exists a css-isomorphism $\alpha : U(\Gamma) \times U(\Gamma') \rightarrow U(\Gamma \times \Gamma')$ such that the following diagram

NOTE ON MICROBUNDLES

is commutative.

Proof. Define

$$\begin{split} \alpha_q &: U(\Gamma)^{(q)} \times U(\Gamma')^{(q)} \to U(\Gamma \times \Gamma')^{(q)} \\ \alpha_q(\sigma, \sigma') &= \tau, \\ \tau(\omega) &= (\sigma(\omega), \, \sigma'(\omega)), \, \omega \in \Delta_q \,. \end{split}$$

Then α_q is clearly an injective map.

Let $\lambda: \Delta_p {\rightarrow} \Delta_q$ be a weakly monotone map. Then the following diagram

$$\begin{array}{cccc} U(\Gamma)^{(q)} \times U(\Gamma')^{(q)} & \xrightarrow{\alpha_q} & U(\Gamma \times \Gamma')^{(q)} \\ \lambda^{\sharp} & & & \downarrow \\ U(\Gamma)^{(p)} \times U(\Gamma')^{(p)} & \xrightarrow{\alpha_p} & U(\Gamma \times \Gamma')^{(p)} \end{array}$$

is commutative. Thus $\alpha = \{\alpha_q\} : U(\Gamma) \times U(\Gamma') \rightarrow U(\Gamma \times \Gamma')$ is an injective css-map.

Let $(\sigma, \sigma'), (\rho, \rho') \in U(\Gamma)^{(q)} \times U(\Gamma')^{(q)}$, and $\alpha_q(\sigma, \sigma') = \tau$, $\alpha_q(\rho, \rho') = \tau'$. Then $(\sigma, \sigma')(\rho, \rho') = (\sigma\rho, \sigma'\rho')$. Let $\alpha_q(\sigma\rho, \sigma'\rho') = \tau''$. Then we can prove easily

$$\tau''(\omega) = (\tau \tau')(\omega), \text{ for } \omega \in \Delta_q.$$

Thus α is a css-monomorphism, Clearly α is surjective.

Then commutativity is easily seen.

Lemma 4. Let $\{\Gamma_m, h_{m,n}; m, n \in Z\}$ be a directed system of css-groups and $\Gamma = \varinjlim_{m} \Gamma_m$. Then $\{U(\Gamma_m), U(h_{m,n}); m, n \in Z\}$ is also a directed system of css-groups, and

$$\lim U(\Gamma_m) \simeq U(\Gamma).$$

Proof. Define $\varphi : \varinjlim U(\Gamma_m) \to U(\Gamma)$ by $\varphi(\{\sigma_{(m)}^q\}) = \iota_m \circ \sigma_{(m)}^q$, where $\iota_m : \Gamma_m \to \Gamma$ is the projection map and $\sigma_{(m)}^q : \Delta_q \to \Gamma_m$ is a representative of an element σ^q of $(\varinjlim U(\Gamma_m))^{(q)}$. Let $\sigma_{(n)}^q$ be another representative of $\sigma^q : \{\sigma_{(m)}^q\} = \{\sigma_{(m)}^q\}$. Then there exists an integer p such that $m, n \leq p$, $h_{m_p} \circ \sigma_{(m)}^q = h_{n_p} \circ \sigma_{(n)}^q$. Then

$$\iota_{n} \circ \sigma_{(n)}^{q} = \iota_{p} \circ h_{np} \circ \sigma_{(n)}^{q}$$
$$= \iota_{p} \circ h_{mp} \circ \sigma_{(m)}^{q}$$
$$= \iota_{m} \circ \sigma_{(m)}^{q}.$$

Thus the above definition has no ambiguity.

Clearly φ is an onto css-homomorphism.

Now we shall prove that φ is injective. Let $\varphi(\{\sigma_{(m)}^q\}) = \varphi(\{\tau_{(n)}^q\})$. Then we have $\iota_m \circ \sigma_{(m)}^q = \iota_n \circ \tau_{(n)}^q$. Therefore, there exists an integer p such that $m, n \leq p$ and $h_{m_p} \circ \sigma_{(m)}^q = h_{n_p} \circ \tau_{(m)}^q$. Thus we have $\{\sigma_{(m)}^q\} = \{\tau_{(n)}^q\}$.

1. css-groups H_n , H

In this section we shall construct a css-group H_n for topological microbundles of dimension n. The construction of the css-group H_n is completely parallel to Milnor's construction [3] of the css-group PL_n for PL-microbundles of dimension n.

First we need to define the concept of an isomorphism-germ between topological microbundles. Let

$$\mathfrak{x}_{\alpha}: B \xrightarrow{i_{\alpha}} E_{\alpha} \xrightarrow{j_{\alpha}} B, \qquad \alpha = 1, 2$$

be two topological microbundles over *B*. Recall that g_1 and g_2 are *isomorphic* if there exist neighborhoods U_{α} of $i_{\alpha}(B)$ in E_{α} for $\alpha = 1, 2$, and a homeomorphism $f: U_1 \rightarrow U_2$ so that the diagram

is commutative.

DEFINITION. Two these homeomorphisms

$$f: U_1 \to U_2,$$

$$f': U'_1 \to U'_2,$$

are said to define the same *isomorphism-germ* F from \mathfrak{x}_1 to \mathfrak{x}_2 , if the two maps f, f' coincide on some sufficiently small neighborhood of $i_1(B)$. (Thus an isomorphism-germ

$$F:\mathfrak{x}_1\to\mathfrak{x}_2$$

is an equivalence class of such homeomorphisms.)

Now consider the topological microbundle $g^* \mathfrak{x}_1$ and $g^* \mathfrak{x}_2$ induced by some continuous mapping $g: B' \to B$. Any isomorphism-germ $F: \mathfrak{x}_1 \to \mathfrak{x}_2$ clearly gives rise to an isomorphism-germ $g^* \mathfrak{x}_1 \to g^* \mathfrak{x}_2$. This induced isomorphism-germ will be denoted by $g^* F$.

For each integer $n \ge 0$, we shall construct a css-group H_n as follows. Let Δ_k denote the standard ordered k-simplex. As usual let $e_{\Delta_k}^n$ denote the trivial topological microbundle

$$\mathbf{e}^{\mathbf{n}}_{\Delta_{\mathbf{k}}}:\Delta_{\mathbf{k}}\xrightarrow{\times \mathbf{0}}\Delta_{\mathbf{k}}\times R^{\mathbf{n}}\xrightarrow{p_{1}}\Delta_{\mathbf{k}}.$$

DEFINITION. A k-simplex F of the css-complex H_n is an isomorphismgerm $F: e^n_{\Delta k} \rightarrow e^n_{\Delta k}$. The operation of composing isomorphism-germs makes the set $H_n^{(k)}$ of k-simplexes into a group. For each weakly monotone simplicial map $\lambda: \Delta_l \rightarrow \Delta_k$ define a homomorphism

$$\lambda^{\sharp}: H_{n}^{(k)} \to H_{n}^{(l)}$$

as follows. Let λ^{\sharp} carry each isomorphism-germ F to the induced isomorphism-germ $\lambda^{\sharp}F$. Thus $H_n = \{H_n^{(k)}, \lambda^{\sharp}\}$ is a css-group.

We have a natural css-monomorphism

$$\iota_{r,s}: H_r \to H_s, \quad r \leq s.$$

The family $\{H_r; \iota_{r,s}\}$ is a directed system of css-groups. Define

$$H=\lim H_n.$$

Then H is also a css-group.

We have a natural css-monomorphism

$$\mu_n: PL_n \to H_n$$
,

and the following diagram

(1)
$$\begin{array}{c} PL_{r} \xrightarrow{\mu_{r}} H_{r} \\ \iota'_{r,s} \downarrow & \downarrow \iota_{r,s} \\ PL_{s} \xrightarrow{\mu_{s}} H_{s} \end{array} (r \leq s)$$

is commutative, where $\iota'_{r,s}: PL_r \to PL_s$ is a natural css-monomorphism. Therefore, by Lemma 1 we have a css-monomorphism

$$\mu: PL \to H$$
.

Thus we can consider PL_n , PL as css-subgroup of H_n , H respectively. Then we can consider css-complexes H_n/PL_n , H/PL.

By the commutative diagram (1), we have a natural css-map

$$\omega_{r,s}: H_r/PL_r \to H_s/PL_s, \quad r \leq s.$$

The family $\{H_r/PL_r; \omega_{r,s}\}$ is a directed system of css-complexes. By Lemma 2, we have an css-equivalence

$$H/PL = \lim H_i/PL_i$$
.

Let K be a css-complex not necessarily satisfying Kan's condition, L a css-complex. Then we shall denote by [K, L] the css-homotopy classes of css-maps of K into L. As is remarked above, $[K, H_n]$, [K, H], $[K, H_n/PL_n]$ and [K H/PL], have meanings.

2. Kan complexes BPL_n , BPL; BH_n , BH

Since U is a covariant functor, to the css-monomorphism $\iota_{m,n}: H_m \to H_n$, $m \leq n$, corresponds a css-monomorphism

$$U(\iota_m n)$$
; $U(H_m) \to U(H_n), \quad m \leq n$.

Then the family $\{U(H_m); U(\iota_{mn})\}$ is a directed system of css-groups. Define

$$U = \lim U(H_n).$$

Then U is also a css-group, and by Lemma 4 U can be considered as U(H), therefore, its all homotopy groups vanish.

Since U is a covariant functor, the following diagram

(2)
$$\begin{array}{c} H_{m} \xrightarrow{\nu_{m}} U(H_{m}) \\ \downarrow \\ \iota_{m,n} \downarrow \qquad \qquad \downarrow U(\iota_{m,n}) \\ H_{n} \xrightarrow{\nu_{n}} U(H_{n}) \end{array} (m \leq n)$$

is commutative, where $\nu_m: H_m \rightarrow U(H_m)$ is the inclusion map ι_{H_m} . Therefore, by Lemma 1 we have a css-monomorphism

$$\nu: H \to U.$$

By Lemma 4 this css-monomorphism is nothing but the inclusion map $\iota_H: H \rightarrow U(H)$. Thus we can consider H as css-subgroup of U.

By the commutative diagram (2), we have a css-map

$$\iota_{m,n}: U(H_m)/H_m \to U(H_n)/H_n, \quad (m \leq n).$$

The family $\{U(H_m)/H_m; \iota_{m,n}\}$ is a directed system of css-complexes. By Lemma 2, we have a css-equivalence

$$U/H = \lim U(H_n)/H_n.$$

The css-group PL_n is a css-subgroup of H_n . Therefore, PL_n also can be considered as a css-subgroup of $U(H_n)$. The following diagram

$$\begin{array}{cccc} PL_{m} & \stackrel{\nu_{m} \circ \mu_{m}}{\longrightarrow} & U(H_{n}) \\ \iota'_{m,n} & & & \downarrow U(\iota_{m,n}) & (m \leq n) \\ PL_{n} & \stackrel{\nu_{n} \circ \mu_{n}}{\longrightarrow} & U(H_{n}) \end{array}$$

is commutative. Therefore, we have a css-map

$$\iota_{m,n}: U(H_m)/PL_m \to U(H_n)/PL_n, \quad (m \leq n).$$

The family $\{U(H_m)/PL_m; \iota_m\}$ is a directed system of css-complexes. By Lemma 2, we have a css-equivalence

$$U/PL = \lim U(H_n)/PL_n$$
.

Now the natural map

$$\pi_n: U(H_n) \to U(H_n)/H_n$$

can be considered as a H_n -bundle in Heller's sense (cf. Heller [1]). Namely, $U(H_n)/H_n$ is a classifying css-complex of H_n -bundles. We shall denote $U(H_n)/H_n$ by BH_n , and U/H by BH. Similarly, we shall denote $U(H_n)/PL_n$ by BPL_n , and U/PL by BPL.

We shall denote the natural map $U/PL \rightarrow U/H$ by

 $\rho: BPL \to BH$.

By Lemma 1 and 2, this css-map can be considered as the limit of cssmaps $\rho_n: U(H_n)/PL_n \rightarrow U(H_n)/H_n$.

Let K be a locally finite simplicial complex. Choose some wellordering for the vertices of K. Let \tilde{K} be the css-complex consisting of all weakly monotone simplicial maps $f: \Delta_k \to K$, with $\lambda^{\sharp}: \tilde{K}^{(k)} \to K^{(l)}$ defined by $\lambda^{\sharp}(f) = f \circ \lambda$ for a weakly monotone map $\lambda: \Delta_l \to \Delta_k$.

Now consider a topological microbundle x of dimension n over K.

DEFINITION. The H_n -bundle $\tilde{\mathfrak{x}} = (\tilde{E}, \pi, \tilde{K})$ associated with \mathfrak{x} is constructed as follows. A k-simplex of the total css-complex \tilde{E} consists of

1) a k-simplex $f \in \tilde{K}^{(k)}$, together with

2) an isomorphism-germ $F: e^n_{\Delta k} \to f^* \mathfrak{x}$.

The function $\lambda^{\sharp}: \widetilde{E}^{(k)} \to \widetilde{E}^{(l)}$ are defined by the formula $\lambda^{\sharp}(f, F) = (f \circ \lambda, \lambda^{\ast}F)$. The right translation function

 $\widetilde{E} \times H_n \to \widetilde{E}$

is just the operation of composing isomorphism-germs. Since this operation is free, it follows that \tilde{E} is an H_n -bundle in Heller's sense and $\tilde{E}/H_n = \tilde{K}$.

Proposition 1. Let K be a locally finite simplicial complex. Then the operation of assigning to each topological microbundle \underline{x} of dimension n over K its associated H_n -bundle \underline{x} sets up one to one correspondence between isomorphism classes of topological microbundles of dimension n over K and equivalence² classes of H_n -bundles over \hat{K} .

The proof in the case of PL-microbundles given in Milnor [3] applies without essential change. Details will be left to the readers.

By Heller's classification theorem (Heller [1], Theorem (10.1), we have

Proposition 2. Let K be a css-complex. The equivalence classes of H_n -bundles X such that X/H_n is K, are in one to one correspondence with the css-homotopy classes $[K, BH_n]$ of css-maps $\alpha : K \rightarrow BH_n$.

By Propositions 1 and 2, we have

Theorem 1. Let K be a locally finite simplicial complex. Then the isomorphism classes of topological microbundle of dimension n over K are in one to one correspondence with the css-homotopy classes $[\tilde{K}, BH_n]$.

3. Whitney sums

Let $H_k^{(p)} \ni \alpha$, $H_a^{(p)} \ni \beta$. The α and β are represented by following maps, respectively:

$$\begin{split} &\Delta_{p} \times 0 \subset U \subset \Delta_{p} \times R^{k}, \\ &\Delta_{p} \times 0 \subset V \subset \Delta_{p} \times R^{n}, \\ &f \colon U \to \Delta_{p} \times R^{k}, \\ &g \colon V \to \Delta_{p} \times R^{n} \,. \end{split}$$

Define the *Whitney sum* $\alpha \oplus \beta \in H_{k+n}^{(p)}$ by the class represented by the following map:

$$\begin{split} &\Delta_{p} \times 0 \subset W \subset \Delta_{p} \times R^{k} \times R^{n}, \\ &f \oplus g : W \to \Delta_{p} \times R^{k} \times R^{n}, \\ &(f \oplus g)(x, u, v) = (x, p_{2} \circ f(x, u), p_{2} \circ g(x, v)), \end{split}$$

2) By equivalence we say strong equivalence in Heller's sense (cf. Heller [1]).

where p_2 is the projection to the second factor. Then \oplus is a css-map

$$\oplus: H_{k} \times H_{n} \to H_{k+n}.$$

By restruction, we get

$$\oplus: PL_k \times PL_n \to PL_{k+n}$$

This css-map is defined in Lashof-Rothenberg [2].

Now we define css-map

$$\oplus: U(H_k) \times U(H_n) \to U(H_{n+k}).$$

Let $(\sigma, \sigma') \in U(H_k)^{(q)} \times U(H_n)^{(q)}$. Define

$$\bigoplus(\sigma, \, \sigma') = \, \sigma'', \\ \sigma'' : \Delta_q \to H_{k+n} \, ,$$

by

$$\sigma^{\prime\prime}\!\left(au
ight)=\sigma(au)\oplus\sigma^{\prime}\!\left(au
ight),\ \ au\!\in\!\Delta_{q}$$
 .

For a weakly monotone map $\lambda : \Delta_p \rightarrow \Delta_q$,

$$igoplus (\lambda(\sigma),\,\lambda^{\sharp}(\sigma'))(au) = \lambda^{\sharp}(\sigma)(au) \oplus \,\lambda^{\sharp}(\sigma')(au) = \sigma \circ \lambda(au) \oplus \sigma' \circ \lambda(au) = \sigma'' \circ \lambda(au) = \sigma'' \circ \lambda(au) = \lambda^{\sharp}(\sigma'')(au) = \lambda^{\sharp}(\sigma'')(au) = \lambda^{\sharp} \circ \oplus (\sigma,\sigma')(au) \,.$$

Thus the map \oplus defined above is a css-map.

By the above definition the following diagram

$$\begin{array}{ccc} H_k \times H_n & \stackrel{\bigoplus}{\longrightarrow} & H_{k+n} \\ \iota_{H_k} \times \iota_{H_n} & & & \downarrow \iota_{H_{k+n}} \\ U(H_k) \times U(H_n) & \stackrel{\bigoplus}{\longrightarrow} & U(H_{k+n}) \end{array}$$

is commutative.

By left translation $PL_k \times PL_n$ acts on $H_k \times H_n$ and we have a commutative diagram

Thus the above map passes to the quotient

 $\oplus: H_k/PL_k \times H_n/PL_n \to H_{k+n}/PL_{k+n}.$

Similarly we have

 $\bigoplus : U(H_k)/H_k \times U(H_n)/H_n \to U(H_{k+n})/H_{k+n},$ $\oplus : U(H_k)/PL_k \times U(H_n)/PL_n \to U(H_{k+n})/PL_{k+n}.$

Let K be a css-complex, and

 $\alpha_k: K \to H_k, \ \alpha_n: K \to H_n$

be css-maps. Then the above operation induces a map

 $\alpha_{k} \oplus \alpha_{n} : K \to H_{k+n}.$

We note

 $(\alpha_{k} \oplus \alpha_{n}) \oplus \alpha_{p} = \alpha_{k} \oplus (\alpha_{n} \oplus \alpha_{p}).$

Thus we have

 $\oplus: [K, H_k] \times [K, H_n] \to [K, H_{k+n}].$

Similarly we have

$$\oplus : [K, U(H_k)] \times [K, U(H_n)] \to [K, U(H_{k+n})],$$

and moreover

$$\bigoplus : [K, U(H_k)/H_k] \times [K, U(H_n)/H_n] \rightarrow [K, U(H_{k+n})/H_{k+n}], \bigoplus : [K, U(H_k)/PL_k] \times [K, U(H_n/PL_n] \rightarrow [K, U(H_{k+n})/PL_{k+n}], \bigoplus : [K, H_k/PL_k] \times [K, H_n/PL_n] \rightarrow [K, H_{k+n}/PL_{k+n}].$$

Let A_n be one of the Kan complexes

$$PL_n$$
, H_n , $U(H_n)$, $U(H_n)/H_n$, $U(H_n)/PL_n$, H_n/PL_n ,

and $\iota_{m,n}$ be one of the natural css-maps

$$\begin{split} PL_m &\to PL_n, & H_m/PL_m \to H_n/PL_n, \\ H_m &\to H_n, & U(H_m)/PL_m \to U(H_n)/PL_n, \\ U(H_m) &\to U(H_n), & U(H_m)/H_m \to U(H_n)/H_n \,. \end{split}$$

Then the family $\{A_m; \iota_{m,n}\}$ is a directed system of Kan complexes. Define $A = \lim A_n$.

We shall call a css-complex K finite, if it has only a finite number of non-degenerate simplices. For any finite css-complex K an easy argument shows $[K, A] = \lim_{K \to \infty} [K, A_n]$. By the same argument as Lashof-

Rothenberg [2], §4, we have

Proposition 3. Let K be a finite css-complex. We have the following commutative diagram:

Consequently we have

 $\oplus: [K, A] \times [K, A] \to [K, A].$

Proposition 4. Let K be a finite css-complex. For A=PL, H the Whitney sum on [K, A] is induced from group multiplication. Further [K, A] is an abelian group.

Proposition 5. Let K be a finite css-complex K. For A=H/PL, U/PL, U/H the Whitney sum induces on [K, A] the structure of an associative abelian monoid with two sided identity.

By Lemma 3, we have the following commutative diagram

$$\begin{array}{c|c} U(H_k) \times U(H_n) \\ \downarrow \\ PL_k \times PL_n \xrightarrow{\mu_k \times \mu_n} H_k \times H_n \xrightarrow{\iota_{H_n} \times H_n} U(H_k \times H_n) \\ \oplus \downarrow & \oplus \downarrow & \downarrow \\ PL_{k+n} \xrightarrow{\mu_{k+n}} H_{k+n} \xrightarrow{\iota_{H_{k+n}}} U(H_{k+n}). \end{array}$$

Notice that the css-homomorphism $U(\oplus) \circ \alpha$ is nothing but the Whiteney sum

$$\oplus: U(H_k) \times U(H_n) \to U(H_{k+n})$$

defined above. Then we have

Proposition 6. Let K be a css-complex. The following diagram

 $\overline{}$

is commutative, where $U_n = U(H_n)$.

Let K be a locally finite simplicial complex of finite dimension. Recall that the s-classes of topological microbundles over K form an abelian group $k_{\text{Top}}(K)$ by Whitney sum (Milnor [4], §4).

The following theorem will give some meaning to the css-complex *BH*.

Theorem 2. Let K be a finite simplicial complex. Then there exists an isomorphism of $k_{\text{Top}}(K)$ onto $[\tilde{K}, BH]$ as semi-group.

Proof. Let $(\mathfrak{x}) \in k_{\operatorname{Top}}(K)$, and the fibre dimension of \mathfrak{x} be m. By Theorem 1, to \mathfrak{x} corresponds a css-map $f: \widetilde{K} \to BH_m = U(H_m)/H_m$. Let ι_m ; $BH_m \to BH$ be the canonical inclusion map. To the s-class (\mathfrak{x}) we correspond the css-homotopy class $\{\iota_m \circ f\}$. We shall denote $\varphi((\mathfrak{x})) = \{\iota_m \circ f\}$.

Now we shall prove that this class does not depends on the representative \mathfrak{x} of the class $(\mathfrak{x}) \in k_{\operatorname{Top}}(K)$. Let $e_{m,p}^{(\rho)} \colon U(H_m)^{(q)} \to U(H_p)^{(q)}$ be the map which corresponds all elements of $U(H_m)^{(q)}$ to the unit of $U(H_p)^{(q)}$. Then

$$e_{m,p} = \{e_{m,p}^{(q)}\} : U(H_m) \to U(H_p)$$

is a css-homomorphism, and the following diagram

is commutative, where $\bar{e}_{m,p}$ is the restriction of $e_{m,p}$ over H_m . Thus we have the following commutative diagram

$$\begin{array}{ccc} U(H_m)/H_m & \xrightarrow{t_{m,m+p}} & U(H_{m+p})/H_{m+p} \\ 1 \times \tilde{e}_{m,p} & \swarrow \\ & U(H_m)/H_m \times U(H_p)/H_p \end{array}$$

where $\hat{e}_{m,p}$: $U(H_m)/H_m \rightarrow U(H_p)/H_p$ is the css-map induced for $e_{m,p}$: $U(H_n) \rightarrow U(H_p)$.

Let $(\mathfrak{x})=(\mathfrak{y})$, and the fibre dimension of \mathfrak{y} be *n*. Then there exist integers $0 \leq p, q$ such that

Considering the definition of Whitney sums and the correspondence in

Theorem 1, we find that to the microbundle $\mathfrak{x} \oplus \mathfrak{e}^q$ corresponds the composite css-map

$$\begin{split} \tilde{K} & \stackrel{f}{\longrightarrow} U(H_m)/H_m \xrightarrow{1 \times \tilde{e}_{m,p}} U(H_m)/H_m \times U(H_p)/H_p \\ & \stackrel{\bigoplus}{\longrightarrow} U(H_{m+p})/H_{m+p} \,. \end{split}$$

By the above commutative diagram, we obtain that to the microbundle $\mathfrak{x} \oplus \mathfrak{e}^p$ corresponds the css-map $\iota_{m,m+p} \circ f$. If we denote the css-map corresponding to the microbundle \mathfrak{y} by $g: \widetilde{K} \to BH_n$, then to the microbundle $\mathfrak{y} \oplus \mathfrak{e}^q$ corresponds the css-map $\iota_{n,n+q} \circ g$. By (3) $\iota_{m,m+q} \circ f$ and $\iota_{n,n+q} \circ g$ are css-homotopic each other. Thus we have $\{\iota_m \circ f\} = \{\iota_n \circ g\}$.

By Theorem 1, the above map φ is clearly surjective.

Let $\varphi((\mathfrak{x})) = \varphi((\mathfrak{y}))$ and to \mathfrak{x} and \mathfrak{y} correspond css-maps f and g, respectively. Then $\iota_m \circ f$ and $\iota_n \circ g$ are homotopic each other. Therefore, there exist integers p, $q \ge 0$ such that m + p = n + q and $\iota_{m,m+p} \circ f$ and $\iota_{n,n+q} \circ g$ are homotopic each other. So we have $(\mathfrak{x}) = (\mathfrak{y})$.

Now we shall show that φ is a homomorphism. Let $(\underline{y}), (\underline{y}) \in k_{\text{Top}}(K)$, and $\underline{x} = (\tilde{E}, \pi, \tilde{K}), \ \underline{y} = (\tilde{E}', \pi', \tilde{K})$ be associated H_m - and H_n -bundles to \underline{x} and \underline{y} , and $f: \tilde{K} \to U(H_m)/H_m$, $g: \tilde{K} \to U(H_n)/H_n$ be css-maps corresponding to \underline{y} and \underline{y} respectively. We have the following commutative diagram;

$$\begin{array}{cccc} \widetilde{K} \times \widetilde{K} \xrightarrow{f \times g} & U(H_m) / H_m \times U(H_n) / H_n \\ \overrightarrow{\alpha} \circ (f \times g) & \overrightarrow{\alpha} & & \\ & U(H_m \times H_n) / H_m \times H_n \xrightarrow{U(\oplus)} & U(H_{m+n}) / H_{m+n}, \end{array}$$

where $\overline{\alpha}$ and $\overline{U(\oplus)}$ are the css-maps induced by α and $U(\oplus)$ respectively. Considering the correspondence in Theorem 1, we obtain that the H_{m+n} bundle associated to $\mathfrak{x} \times \mathfrak{y}$ is induced by the css-map $\oplus \circ (f \times g)$. Let $d: K \to K \times K$, $\tilde{d}: \tilde{K} \times \tilde{K}$ be diagonal maps. As $\mathfrak{x} \oplus \mathfrak{y} = d^*(\mathfrak{x} \times \mathfrak{y})$, the H_{m+n} bundle associated to $\mathfrak{x} \oplus \mathfrak{y}$ is induced by $\oplus \circ (f \times g) \circ d$. By Proposition 3, we obtain that φ is a homomorphism.

4. Exact sequence

Theorem 3. For any finite css-complex K, the sequence

$$[K, PL] \xrightarrow{\mu_*} [K, H] \xrightarrow{\lambda_*} [K, H/PL] \xrightarrow{\zeta_*} [K, BPL] \xrightarrow{\rho_*} [K, BH]$$

is an exact sequence of abelian groups.

Proof. That this is an exact sequence of base-pointed sets is the

usual property of fibre spaces applied to the css-fibre spaces

I
$$PL \rightarrow H \rightarrow H/PL$$
,
II $H/PL \rightarrow U/PL \rightarrow U/H$

noticing that I is fibration induced from II by inclusion $H/PL \rightarrow U/PL$.

That the maps are additive follows from definitions and from Proposition 6.

The fact that [K,BPL] and [K,BH] are abelian groups is known (Theorem 2). Now it only remains to show that [K, H/PL] is actually a group, i.e. that inverses exist. Let $\alpha \in [K, H/PL]$. Then $\zeta_*(\alpha) \in [K, BPL]$ has an inverse $\nu \in [K, BPL]$. Since ρ_* is a group homomorphism, $\rho_*(\nu)=0$. Thus there is an $\alpha' \in [K, H/PL]$ with $\zeta_*(\alpha')=\nu$. Thus $\zeta_*(\alpha + \alpha')=0$, and there is a $\beta \in [K, H]$ with $\lambda_*(\beta)=\alpha+\alpha'$. Now β has an inverse $(-\beta)$ in [K, H] so that $\lambda_*(-\beta)+(\alpha+\alpha')=\lambda_*(-\beta)+\lambda_*(\beta)=\lambda_*(-\beta+\beta)=0$. Thus $\alpha'+\lambda_*(-\beta)$ is an inverse to α .

Thus the theorem is proved.

Let O be the css-group defined in Lashof-Rothenberg [2]. Then O is a css-subgroup of H and BO can be considered as U/O. Let

$$\mu': O \to H,$$

$$\lambda': H \to H/O,$$

$$\zeta': H/O \to U/O = BO,$$

$$\rho': BO = U/O \to U/H = BH$$

be the naturally defined css-maps.

Then in quite a parallel way, we obtain the following

Theorem 4. For any finite css-complex K, the sequence

$$[K, O] \xrightarrow{\mu'_{*}} [K, H] \xrightarrow{\lambda'_{*}} [K, H/O] \xrightarrow{\zeta'_{*}} [K, BO] \xrightarrow{\rho'_{*}} [K, BH]$$

is an exact sequence of abelian groups.

NAGOYA UNIVERSITY

References

 [1] A. Heller: Homotopy resolutions of semi-simplicial complexes, Trans. Amer. Math. Soc. 80 (1955), 299-344.

- [2] R. Lashof-M. Rothenberg: Microbundles and smoothing, Topology 3 (1965), 357-388.
- [3] J. Milnor: Microbundles and differentiable structures, Mimeographed Note, Princeton University, 1961.
- [4] J. Milnor: Microbundles-I, Topology 3 Suppl. (1964), 53-80.
- [5] J. Moore: Semi-simplicial complexes and Postnikov systems, Symp. Int. Topologia Algebraica, Mexico, 1958, 232-247.
- [6] D. Puppe: Homotopie und Homologie in abelschen Gruppen- und Monoidkomplexen, I, Math. Z. 68 (1958), 367-406.