

Title	Note on microbundles
Author(s)	Adachi, Masahisa
Citation	Osaka Journal of Mathematics. 1966, 3(1), p. 121-137
Version Type	VoR
URL	https://doi.org/10.18910/8769
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Adachi, M.
Osaka J. Math.
3 (1966), 121-137

NOTE ON MICROBUNDLES^{*)}

MASAHIWA ADACHI

(Received February 23, 1966)

In [2] Lashof and Rothenberg have defined the css-group O and the Kan complex PD , and shown a certain exact sequence of abelian groups (Theorem (4.2)) which is fundamental to the studies of the PL-microbundles and smoothing.

In the present note we shall define a css-group H for the topological microbundles parallel to the css-group PL for the PL-microbundles (§ 1), and show an analogous exact sequence of abelian groups (§ 4) which seems to have some meaning to the study of the topological microbundles (§ 2, § 3).

Our method is quite analogous to that of Lashof and Rothenberg [2], and Milnor [3], and is based on Heller's theory [1].

The author is grateful to Professors R. Shizuma, K. Shiraiwa and T. Nakamura for their kind criticisms.

0. Preliminaries

a) Directed systems of css-complexes.

Let Σ be a partially ordered set, i.e. a set in which we have a transitive relation $<$ defined for some (but not necessary all) pairs of elements. Σ is called a directed set if every pair of elements has a common successor: given σ and τ in Σ there is an element ρ in Σ satisfying $\sigma < \rho$ and $\tau < \rho$.

In the present note all css-complexes are supposed to satisfy Kan's extension condition unless otherwise stated.

Suppose to each element σ of Σ is assigned a css-complex¹⁾ K_σ (css-group G_σ) and to each pair of elements $\sigma < \tau$ of Σ there corresponds a css-map $h_{\sigma\tau}$ of K_σ into K_τ (css-homomorphism $h_{\sigma\tau}$ of G_σ into G_τ) such that if $\rho < \sigma < \tau$ then

*) This work is partially supported by Yukawa Fellowship.

1) For the theory of css-complexes, see for example Heller [1], Moore [5], Puppe [6].

$$h_{\rho\tau} = h_{\sigma\tau} \circ h_{\rho\sigma}.$$

A system of css-complexes (css-groups) of this sort is called a *directed system of css-complexes (css-groups)*.

Given a directed system of css-complexes (css-groups), we can define naturally a new css-complex (css-group) called the *limit css-complex* K (css-group G) of the directed system. We shall denote $K = \varinjlim K_\sigma (G = \varinjlim G_\sigma)$.

Lemma 1. *Let $\{K_\sigma, h_{\sigma\tau}; \sigma, \tau \in \Sigma\}$, $\{L_\sigma, h_\tau; \sigma, \tau \in \Sigma\}$ be directed systems of css-complexes. Suppose to each element σ of Σ is assigned a css-map φ_σ of K_σ into L_σ such that to each pair of elements $\sigma < \tau$ of Σ the following diagram*

$$\begin{array}{ccc} K_\sigma & \xrightarrow{\varphi_\sigma} & L_\sigma \\ h_{\sigma\tau} \downarrow & & \downarrow h'_{\sigma\tau} \\ K_\tau & \xrightarrow{\varphi_\tau} & L_\tau \end{array}$$

is commutative. Then, there exists a css-map φ of $K = \varinjlim K_\sigma$ into $L = \varinjlim L_\sigma$ which corresponds an element $\{k_\sigma\}$ of K with representative k_σ to $\{\varphi_\sigma(k_\sigma)\}$ of L . If φ_σ is injective for each $\sigma \in \Sigma$, then the css-map φ is also injective. If $\{K_\sigma, h_{\sigma\tau}; \sigma, \tau \in \Sigma\}$, $\{L_\sigma, h'_\tau; \sigma, \tau \in \Sigma\}$ are directed systems of css-groups and each φ_σ is a css-homomorphism, then the css-map φ is also a css-homomorphism.

Proof. We shall prove the second assertion. Let $k = \{k_\sigma\}$, $k' = \{k'_\tau\}$ be elements of K such that $\varphi(k) = \varphi(k')$. Then there exists a common successor ρ of σ and τ such that $h'_{\sigma\rho}(\varphi_\sigma(k_\sigma)) = h'_{\tau\rho}(\varphi_\tau(k'_\tau))$. The following diagrams are commutative :

$$\begin{array}{ccc} K_\sigma & \xrightarrow{\varphi_\sigma} & L_\sigma & \quad K_\tau & \xrightarrow{\varphi_\tau} & L_\tau \\ h_{\sigma\rho} \downarrow & & \downarrow h'_{\sigma\rho} & \quad h_{\tau\rho} \downarrow & & \downarrow h'_{\tau\rho} \\ K_\rho & \xrightarrow{\varphi_\rho} & L_\rho & \quad K_\rho & \xrightarrow{\varphi_\rho} & L_\rho \end{array}$$

Thus we have

$$\varphi_\rho \circ h_{\sigma\rho}(k_\sigma) = \varphi_\rho \circ h_{\tau\rho}(k'_\tau).$$

Since φ_ρ is injective, we have $h_{\sigma\rho}(k_\sigma) = h_{\tau\rho}(k'_\tau)$. Thus we have $\{k_\sigma\} = \{k'_\tau\}$.

Let $\{G_\sigma, h_{\sigma\tau}; \sigma, \tau \in \Sigma\}$, $\{H_\sigma, h'_{\sigma\tau}; \sigma, \tau \in \Sigma\}$ be directed systems of

css-groups, and for each $\sigma \in \Sigma$ H_σ is a css-subgroup of G_σ . Then, corresponding to each σ css-complex G_σ/H_σ , we have naturally a directed system of css-complexes $\{G_\sigma/H_\sigma, \bar{h}_{\sigma\tau}; \sigma, \tau \in \Sigma\}$. Let $G = \varinjlim G_\sigma$, $H = \varinjlim G_\sigma$. By Lemma 1, we can consider H as a css-subgroup of \overline{G} . So we have a css-complex G/H . Then we have

Lemma 2. $\varinjlim G_\sigma/H_\sigma$ and G/H are css-equivalent, that is, there exists a bijective css-map between them.

Proof. Let $K = \varinjlim G_\sigma/H_\sigma$. Define $\varphi_q : K^{(q)} \rightarrow (G/H)^{(q)}$ by $\varphi_q(g) = \{g_\sigma \bmod H_\sigma^{(q)}\}$ for $g = \{g_\sigma \bmod H_\sigma^{(q)}\} \in K^{(q)}$. This is independent of the representative of g .

Clearly φ_q is surjective.

Let $g, g' \in K^{(q)}$, $g = \{g_\sigma \bmod H_\sigma^{(q)}\}$, $g' = \{g'_\tau \bmod H_\tau^{(q)}\}$ and $\varphi_q(g) = \varphi_q(g')$. Then we have

$$\{g_\sigma\} \bmod H_\sigma^{(q)} = \{g'_\tau\} \bmod H_\tau^{(q)},$$

that is, there exists a common successor ρ of σ and τ such that

$$(h_{\sigma\rho}(g_\sigma))^{-1}h_{\tau\rho}(g_\tau) \in H_\rho^{(q)}.$$

Namely

$$h_{\sigma\rho}(g_\sigma) \bmod H_\rho^{(q)} = h_{\tau\rho}(g_\tau) \bmod H_\rho^{(q)}.$$

Thus we have $g = g'$.

For a weakly monotone map $\lambda : \Delta_p \rightarrow \Delta_q$, we can easily see that the following diagram

$$\begin{array}{ccccc} \varinjlim G_\rho^{(q)}/H_\rho^{(q)} & = & K^{(q)} & \xrightarrow{\varphi_q} & (G/H)^{(q)} = G^{(q)}/H^{(q)} \\ & & \lambda^\# \downarrow & & \downarrow \lambda^\# \\ \varinjlim G_\sigma^{(p)}/H_\sigma^{(p)} & = & K^{(p)} & \xrightarrow{\varphi_p} & (G/H)^{(p)} = G^{(p)}/H^{(p)} \end{array}$$

is commutative. Thus $\varphi = \{\varphi_q\} : K \rightarrow G/H$ is a surjective css-map.

We shall sometimes identify two css-equivalent css-complexes.

b) Heller's U -functor.

We shall recall Heller's theory [1]. If Γ is a css-group, a *universal group for* Γ is a css-group Υ containing Γ as a css-subgroup and with all homotopy groups $\pi_q(\Upsilon) = 0$. For any css-group Γ , there corresponds a css-group $U(\Gamma)$, which is universal for Γ . Moreover, U is a covariant functor on the category of css-groups and css-homomorphisms into itself.

Explicitly, the css-group $U(\Gamma)$ is constructed as follows. Let $U(\Gamma)^{(\varphi)}$ be the set of all map σ of css-complex Δ_q into css-group Γ preserving dimension but not in general incidence. The incidence operations are defined by composition of maps

$$\Delta_p \xrightarrow{\lambda} \Delta_q \longrightarrow \Gamma$$

for a weakly monotone map λ . The group operation in $U(\Gamma)^{(\varphi)}$ is defined by that in Γ : if $\tau \in \Delta_q$ and $\sigma, \sigma' \in U(\Gamma)^{(\varphi)}$, then

$$(\sigma\sigma')(\tau) = \sigma(\tau)\sigma'(\tau).$$

With these definitions it is clear that $U(\Gamma) = \bigcup_{q \geq 0} U(\Gamma)^{(\varphi)}$ is a css-group. Γ may be identified with the subgroup of $U(\Gamma)$ consisting of those simplices which are css-maps $\sigma : \Delta_q \rightarrow \Gamma$. We shall denote the identification by

$$\iota_\Gamma : \Gamma \rightarrow U(\Gamma).$$

Let Γ, Γ' be css-groups and $\varphi : \Gamma \rightarrow \Gamma'$ be a css-homomorphism. Then the css-homomorphism

$$U(\varphi) : U(\Gamma) \rightarrow U(\Gamma')$$

is defined as follows. Let $\sigma \in U(\Gamma)^{(\varphi)}$. We define $U(\varphi)(\sigma) \in U(\Gamma')^{(\varphi)}$ to be $\varphi \circ \sigma$. Then $U(\varphi)$ is a dimension preserving map. For a weakly monotone map $\lambda : \Delta_p \rightarrow \Delta_q$, and $\tau \in U(\Gamma)^{(\varphi)}$

$$\begin{aligned} \lambda^* \circ U(\varphi)(\tau) &= \lambda^*(\varphi \circ \tau) \\ &= (\varphi \circ \tau) \circ \lambda \\ &= \varphi \circ (\tau \circ \lambda) \\ &= \varphi \circ \lambda^*(\tau) \\ &= U(\varphi) \circ \lambda^*(\tau). \end{aligned}$$

Thus $U(\varphi)$ is a css-map, and clearly css-homomorphism.

By the definition, if φ is a css-monomorphism, the $U(\varphi)$ is also a css-monomorphism.

Now let Γ, Γ' be css-groups. Then $\Gamma \times \Gamma'$ is also css-groups. Then we have

Lemma 3. *There exists a css-isomorphism $\alpha : U(\Gamma) \times U(\Gamma') \rightarrow U(\Gamma \times \Gamma')$ such that the following diagram*

$$\begin{array}{ccc}
 \Gamma \times \Gamma' & \xrightarrow{\iota_\Gamma \times \iota_{\Gamma'}} & U(\Gamma) \times U(\Gamma') \\
 & \searrow & \downarrow \alpha \\
 & \iota_{\Gamma \times \Gamma'} & U(\Gamma \times \Gamma')
 \end{array}$$

is commutative.

Proof. Define

$$\begin{aligned}
 \alpha_q : U(\Gamma)^{(q)} \times U(\Gamma')^{(q)} &\rightarrow U(\Gamma \times \Gamma')^{(q)} \\
 \alpha_q(\sigma, \sigma') &= \tau, \\
 \tau(\omega) &= (\sigma(\omega), \sigma'(\omega)), \omega \in \Delta_q.
 \end{aligned}$$

Then α_q is clearly an injective map.

Let $\lambda : \Delta_p \rightarrow \Delta_q$ be a weakly monotone map. Then the following diagram

$$\begin{array}{ccc}
 U(\Gamma)^{(q)} \times U(\Gamma')^{(q)} & \xrightarrow{\alpha_q} & U(\Gamma \times \Gamma')^{(q)} \\
 \lambda^{\#} \downarrow & & \downarrow \lambda^{\#} \\
 U(\Gamma)^{(p)} \times U(\Gamma')^{(p)} & \xrightarrow{\alpha_p} & U(\Gamma \times \Gamma')^{(p)}
 \end{array}$$

is commutative. Thus $\alpha = \{\alpha_q\} : U(\Gamma) \times U(\Gamma') \rightarrow U(\Gamma \times \Gamma')$ is an injective css-map.

Let $(\sigma, \sigma'), (\rho, \rho') \in U(\Gamma)^{(q)} \times U(\Gamma')^{(q)}$, and $\alpha_q(\sigma, \sigma') = \tau$, $\alpha_q(\rho, \rho') = \tau'$. Then $(\sigma, \sigma')(\rho, \rho') = (\sigma\rho, \sigma'\rho')$. Let $\alpha_q(\sigma\rho, \sigma'\rho') = \tau''$. Then we can prove easily

$$\tau''(\omega) = (\tau\tau')(\omega), \text{ for } \omega \in \Delta_q.$$

Thus α is a css-monomorphism. Clearly α is surjective.

Then commutativity is easily seen.

Lemma 4. Let $\{\Gamma_m, h_{m,n}; m, n \in Z\}$ be a directed system of css-groups and $\Gamma = \varinjlim \Gamma_m$. Then $\{U(\Gamma_m), U(h_{m,n}); m, n \in Z\}$ is also a directed system of css-groups, and

$$\varinjlim U(\Gamma_m) \simeq U(\Gamma).$$

Proof. Define $\varphi : \varinjlim U(\Gamma_m) \rightarrow U(\Gamma)$ by $\varphi(\{\sigma_{(m)}^q\}) = \iota_m \circ \sigma_{(m)}^q$, where $\iota_m : \Gamma_m \rightarrow \Gamma$ is the projection map and $\sigma_{(m)}^q : \Delta_q \rightarrow \Gamma_m$ is a representative of an element σ^q of $(\varinjlim U(\Gamma_m))^{(q)}$. Let $\sigma_{(n)}^q$ be another representative of $\sigma^q : \{\sigma_{(n)}^q\} = \{\sigma_{(m)}^q\}$. Then there exists an integer p such that $m, n \leq p$, $h_{m,p} \circ \sigma_{(m)}^q = h_{n,p} \circ \sigma_{(n)}^q$. Then

$$\begin{aligned}
 \iota_n \circ \sigma_{(n)}^q &= \iota_p \circ h_{n,p} \circ \sigma_{(n)}^q \\
 &= \iota_p \circ h_{m,p} \circ \sigma_{(m)}^q \\
 &= \iota_m \circ \sigma_{(m)}^q.
 \end{aligned}$$

Thus the above definition has no ambiguity.

Clearly φ is an onto css-homomorphism.

Now we shall prove that φ is injective. Let $\varphi(\{\sigma_{(m)}^q\}) = \varphi(\{\tau_{(n)}^q\})$. Then we have $\iota_m \circ \sigma_{(m)}^q = \iota_n \circ \tau_{(n)}^q$. Therefore, there exists an integer p such that $m, n \leq p$ and $h_{m,p} \circ \sigma_{(m)}^q = h_{n,p} \circ \tau_{(n)}^q$. Thus we have $\{\sigma_{(m)}^q\} = \{\tau_{(n)}^q\}$.

1. css-groups H_n, H

In this section we shall construct a css-group H_n for topological microbundles of dimension n . The construction of the css-group H_n is completely parallel to Milnor's construction [3] of the css-group PL_n for PL -microbundles of dimension n .

First we need to define the concept of an isomorphism-germ between topological microbundles. Let

$$\mathfrak{x}_\alpha : B \xrightarrow{i_\alpha} E_\alpha \xrightarrow{j_\alpha} B, \quad \alpha = 1, 2$$

be two topological microbundles over B . Recall that \mathfrak{x}_1 and \mathfrak{x}_2 are *isomorphic* if there exist neighborhoods U_α of $i_\alpha(B)$ in E_α for $\alpha = 1, 2$, and a homeomorphism $f : U_1 \rightarrow U_2$ so that the diagram

$$\begin{array}{ccccc}
 & & U_1 & & \\
 & \nearrow i_1 & \downarrow f & \searrow j_1 & \\
 B & & U_2 & & B \\
 & \searrow i_2 & \uparrow f & \nearrow j_2 & \\
 & & U_2' & &
 \end{array}$$

is commutative.

DEFINITION. Two these homeomorphisms

$$\begin{aligned}
 f : U_1 &\rightarrow U_2, \\
 f' : U_1' &\rightarrow U_2',
 \end{aligned}$$

are said to define the same *isomorphism-germ* F from \mathfrak{x}_1 to \mathfrak{x}_2 , if the two maps f, f' coincide on some sufficiently small neighborhood of $i_1(B)$. (Thus an isomorphism-germ

$$F : \mathfrak{x}_1 \rightarrow \mathfrak{x}_2$$

is an equivalence class of such homeomorphisms.)

Now consider the topological microbundle $g^*\mathfrak{X}_1$ and $g^*\mathfrak{X}_2$ induced by some continuous mapping $g: B' \rightarrow B$. Any isomorphism-germ $F: \mathfrak{X}_1 \rightarrow \mathfrak{X}_2$ clearly gives rise to an isomorphism-germ $g^*F: g^*\mathfrak{X}_1 \rightarrow g^*\mathfrak{X}_2$. This induced isomorphism-germ will be denoted by g^*F .

For each integer $n \geq 0$, we shall construct a css-group H_n as follows. Let Δ_k denote the standard ordered k -simplex. As usual let $e_{\Delta_k}^n$ denote the trivial topological microbundle

$$e_{\Delta_k}^n: \Delta_k \xrightarrow{\times 0} \Delta_k \times R^n \xrightarrow{p_1} \Delta_k.$$

DEFINITION. A k -simplex F of the css-complex H_n is an isomorphism-germ $F: e_{\Delta_k}^n \rightarrow e_{\Delta_k}^n$. The operation of composing isomorphism-germs makes the set $H_n^{(k)}$ of k -simplexes into a group. For each weakly monotone simplicial map $\lambda: \Delta_l \rightarrow \Delta_k$ define a homomorphism

$$\lambda^*: H_n^{(k)} \rightarrow H_n^{(l)}$$

as follows. Let λ^* carry each isomorphism-germ F to the induced isomorphism-germ λ^*F . Thus $H_n = \{H_n^{(k)}, \lambda^*\}$ is a css-group.

We have a natural css-monomorphism

$$\iota_{r,s}: H_r \rightarrow H_s, \quad r \leq s.$$

The family $\{H_r; \iota_{r,s}\}$ is a directed system of css-groups. Define

$$H = \varinjlim H_n.$$

Then H is also a css-group.

We have a natural css-monomorphism

$$\mu_n: PL_n \rightarrow H_n,$$

and the following diagram

$$(1) \quad \begin{array}{ccc} PL_r & \xrightarrow{\mu_r} & H_r \\ \iota'_{r,s} \downarrow & & \downarrow \iota_{r,s} \\ PL_s & \xrightarrow{\mu_s} & H_s \end{array} \quad (r \leq s)$$

is commutative, where $\iota'_{r,s}: PL_r \rightarrow PL_s$ is a natural css-monomorphism. Therefore, by Lemma 1 we have a css-monomorphism

$$\mu: PL \rightarrow H.$$

Thus we can consider PL_n, PL as css-subgroup of H_n, H respectively. Then we can consider css-complexes $H_n/PL_n, H/PL$.

By the commutative diagram (1), we have a natural css-map

$$\omega_{r,s} : H_r/PL_r \rightarrow H_s/PL_s, \quad r \leq s.$$

The family $\{H_r/PL_r; \omega_{r,s}\}$ is a directed system of css-complexes. By Lemma 2, we have an css-equivalence

$$H/PL = \varinjlim H_i/PL_i.$$

Let K be a css-complex not necessarily satisfying Kan's condition, L a css-complex. Then we shall denote by $[K, L]$ the css-homotopy classes of css-maps of K into L . As is remarked above, $[K, H_n]$, $[K, H]$, $[K, H_n/PL_n]$ and $[K H/PL]$, have meanings.

2. Kan complexes BPL_n , BPL ; BH_n , BH

Since U is a covariant functor, to the css-monomorphism $\iota_{m,n} : H_m \rightarrow H_n$, $m \leq n$, corresponds a css-monomorphism

$$U(\iota_{m,n}) : U(H_m) \rightarrow U(H_n), \quad m \leq n.$$

Then the family $\{U(H_m); U(\iota_{mn})\}$ is a directed system of css-groups. Define

$$U = \varinjlim U(H_n).$$

Then U is also a css-group, and by Lemma 4 U can be considered as $U(H)$, therefore, its all homotopy groups vanish.

Since U is a covariant functor, the following diagram

$$(2) \quad \begin{array}{ccc} H_m & \xrightarrow{\nu_m} & U(H_m) \\ \iota_{m,n} \downarrow & & \downarrow U(\iota_{m,n}) \quad (m \leq n) \\ H_n & \xrightarrow{\nu_n} & U(H_n) \end{array}$$

is commutative, where $\nu_m : H_m \rightarrow U(H_m)$ is the inclusion map ι_{H_m} . Therefore, by Lemma 1 we have a css-monomorphism

$$\nu : H \rightarrow U.$$

By Lemma 4 this css-monomorphism is nothing but the inclusion map $\iota_H : H \rightarrow U(H)$. Thus we can consider H as css-subgroup of U .

By the commutative diagram (2), we have a css-map

$$\iota_{m,n} : U(H_m)/H_m \rightarrow U(H_n)/H_n, \quad (m \leq n).$$

The family $\{U(H_m)/H_m; \iota_{m,n}\}$ is a directed system of css-complexes. By Lemma 2, we have a css-equivalence

$$U/H = \varinjlim U(H_n)/H_n.$$

The css-group PL_n is a css-subgroup of H_n . Therefore, PL_n also can be considered as a css-subgroup of $U(H_n)$. The following diagram

$$\begin{array}{ccc} PL_m & \xrightarrow{\nu_m \circ \mu_m} & U(H_n) \\ \iota'_{m,n} \downarrow & & \downarrow U(\iota_{m,n}) \quad (m \leq n) \\ PL_n & \xrightarrow{\nu_n \circ \mu_n} & U(H_n) \end{array}$$

is commutative. Therefore, we have a css-map

$$\iota_{m,n} : U(H_m)/PL_m \rightarrow U(H_n)/PL_n, \quad (m \leq n).$$

The family $\{U(H_m)/PL_m; \iota_{m,n}\}$ is a directed system of css-complexes. By Lemma 2, we have a css-equivalence

$$U/PL = \varinjlim U(H_n)/PL_n.$$

Now the natural map

$$\pi_n : U(H_n) \rightarrow U(H_n)/H_n$$

can be considered as a H_n -bundle in Heller's sense (cf. Heller [1]). Namely, $U(H_n)/H_n$ is a classifying css-complex of H_n -bundles. We shall denote $U(H_n)/H_n$ by BH_n , and U/H by BH . Similarly, we shall denote $U(H_n)/PL_n$ by BPL_n , and U/PL by BPL .

We shall denote the natural map $U/PL \rightarrow U/H$ by

$$\rho : BPL \rightarrow BH.$$

By Lemma 1 and 2, this css-map can be considered as the limit of css-maps $\rho_n : U(H_n)/PL_n \rightarrow U(H_n)/H_n$.

Let K be a locally finite simplicial complex. Choose some well-ordering for the vertices of K . Let \tilde{K} be the css-complex consisting of all weakly monotone simplicial maps $f : \Delta_k \rightarrow K$, with $\lambda^* : \tilde{K}^{(k)} \rightarrow K^{(l)}$ defined by $\lambda^*(f) = f \circ \lambda$ for a weakly monotone map $\lambda : \Delta_l \rightarrow \Delta_k$.

Now consider a topological microbundle $\tilde{\xi}$ of dimension n over K .

DEFINITION. The H_n -bundle $\tilde{\xi} = (\tilde{E}, \pi, \tilde{K})$ associated with ξ is constructed as follows. A k -simplex of the total css-complex \tilde{E} consists of

- 1) a k -simplex $f \in \tilde{K}^{(k)}$, together with
- 2) an isomorphism-germ $F : e_{\Delta_k}^n \rightarrow f^* \xi$.

The function $\lambda^* : \tilde{E}^{(k)} \rightarrow \tilde{E}^{(l)}$ are defined by the formula $\lambda^*(f, F) = (f \circ \lambda, \lambda^* F)$. The right translation function

$$\tilde{E} \times H_n \rightarrow \tilde{E}$$

is just the operation of composing isomorphism-germs. Since this operation is free, it follows that \tilde{E} is an H_n -bundle in Heller's sense and $\tilde{E}/H_n = \tilde{K}$.

Proposition 1. *Let K be a locally finite simplicial complex. Then the operation of assigning to each topological microbundle \mathfrak{X} of dimension n over K its associated H_n -bundle \mathfrak{X} sets up one to one correspondence between isomorphism classes of topological microbundles of dimension n over K and equivalence²⁾ classes of H_n -bundles over \tilde{K} .*

The proof in the case of PL-microbundles given in Milnor [3] applies without essential change. Details will be left to the readers.

By Heller's classification theorem (Heller [1], Theorem (10.1)), we have

Proposition 2. *Let K be a css--complex. The equivalence classes of H_n -bundles X such that X/H_n is K , are in one to one correspondence with the css-homotopy classes $[K, BH_n]$ of css-maps $\alpha : K \rightarrow BH_n$.*

By Propositions 1 and 2, we have

Theorem 1. *Let K be a locally finite simplicial complex. Then the isomorphism classes of topological microbundle of dimension n over K are in one to one correspondence with the css-homotopy classes $[\tilde{K}, BH_n]$.*

3. Whitney sums

Let $H_k^{(p)} \ni \alpha$, $H_n^{(p)} \ni \beta$. The α and β are represented by following maps, respectively :

$$\begin{aligned} \Delta_p \times 0 &\subset U \subset \Delta_p \times R^k, \\ \Delta_p \times 0 &\subset V \subset \Delta_p \times R^n, \\ f : U &\rightarrow \Delta_p \times R^k, \\ g : V &\rightarrow \Delta_p \times R^n. \end{aligned}$$

Define the *Whitney sum* $\alpha \oplus \beta \in H_{k+n}^{(p)}$ by the class represented by the following map :

$$\begin{aligned} \Delta_p \times 0 &\subset W \subset \Delta_p \times R^k \times R^n, \\ f \oplus g : W &\rightarrow \Delta_p \times R^k \times R^n, \\ (f \oplus g)(x, u, v) &= (x, p_2 \circ f(x, u), p_2 \circ g(x, v)), \end{aligned}$$

2) By equivalence we say strong equivalence in Heller's sense (cf. Heller [1]).

where p_2 is the projection to the second factor. Then \oplus is a css-map

$$\oplus : H_k \times H_n \rightarrow H_{k+n}.$$

By restriction, we get

$$\oplus : PL_k \times PL_n \rightarrow PL_{k+n}.$$

This css-map is defined in Lashof-Rothenberg [2].

Now we define css-map

$$\oplus : U(H_k) \times U(H_n) \rightarrow U(H_{k+n}).$$

Let $(\sigma, \sigma') \in U(H_k)^{(q)} \times U(H_n)^{(q)}$. Define

$$\begin{aligned} \oplus(\sigma, \sigma') &= \sigma'', \\ \sigma'' : \Delta_q &\rightarrow H_{k+n}, \end{aligned}$$

by

$$\sigma''(\tau) = \sigma(\tau) \oplus \sigma'(\tau), \quad \tau \in \Delta_q.$$

For a weakly monotone map $\lambda : \Delta_p \rightarrow \Delta_q$,

$$\begin{aligned} \oplus(\lambda(\sigma), \lambda^*(\sigma'))(\tau) &= \lambda^*(\sigma)(\tau) \oplus \lambda^*(\sigma')(\tau) \\ &= \sigma \circ \lambda(\tau) \oplus \sigma' \circ \lambda(\tau) \\ &= \sigma'' \circ \lambda(\tau) \\ &= \lambda^*(\sigma'')(\tau) \\ &= \lambda^* \circ \oplus(\sigma, \sigma')(\tau). \end{aligned}$$

Thus the map \oplus defined above is a css-map.

By the above definition the following diagram

$$\begin{array}{ccc} H_k \times H_n & \xrightarrow{\oplus} & H_{k+n} \\ \iota_{H_k} \times \iota_{H_n} \downarrow & & \downarrow \iota_{H_{k+n}} \\ U(H_k) \times U(H_n) & \xrightarrow{\oplus} & U(H_{k+n}) \end{array}$$

is commutative.

By left translation $PL_k \times PL_n$ acts on $H_k \times H_n$ and we have a commutative diagram

$$\begin{array}{ccc} (PL_k \times PL_n) \times (H_k \times H_n) & \rightarrow & H_k \times H_n \\ \oplus \times \oplus \downarrow & & \downarrow \oplus \\ PL_{k+n} \times H_{k+n} & \rightarrow & H_{k+n}. \end{array}$$

Thus the above map passes to the quotient

$$\oplus : H_k/PL_k \times H_n/PL_n \rightarrow H_{k+n}/PL_{k+n}.$$

Similarly we have

$$\begin{aligned} \oplus : U(H_k)/H_k \times U(H_n)/H_n &\rightarrow U(H_{k+n})/H_{k+n}, \\ \oplus : U(H_k)/PL_k \times U(H_n)/PL_n &\rightarrow U(H_{k+n})/PL_{k+n}. \end{aligned}$$

Let K be a css-complex, and

$$\alpha_k : K \rightarrow H_k, \quad \alpha_n : K \rightarrow H_n$$

be css-maps. Then the above operation induces a map

$$\alpha_k \oplus \alpha_n : K \rightarrow H_{k+n}.$$

We note

$$(\alpha_k \oplus \alpha_n) \oplus \alpha_p = \alpha_k \oplus (\alpha_n \oplus \alpha_p).$$

Thus we have

$$\oplus : [K, H_k] \times [K, H_n] \rightarrow [K, H_{k+n}].$$

Similarly we have

$$\oplus : [K, U(H_k)] \times [K, U(H_n)] \rightarrow [K, U(H_{k+n})],$$

and moreover

$$\begin{aligned} \oplus : [K, U(H_k)/H_k] \times [K, U(H_n)/H_n] &\rightarrow [K, U(H_{k+n})/H_{k+n}], \\ \oplus : [K, U(H_k)/PL_k] \times [K, U(H_n)/PL_n] &\rightarrow [K, U(H_{k+n})/PL_{k+n}], \\ \oplus : [K, H_k/PL_k] \times [K, H_n/PL_n] &\rightarrow [K, H_{k+n}/PL_{k+n}]. \end{aligned}$$

Let A_n be one of the Kan complexes

$$PL_n, \quad H_n, \quad U(H_n), \quad U(H_n)/H_n, \quad U(H_n)/PL_n, \quad H_n/PL_n,$$

and $\iota_{m,n}$ be one of the natural css-maps

$$\begin{aligned} PL_m \rightarrow PL_n, \quad H_m/PL_m &\rightarrow H_n/PL_n, \\ H_m \rightarrow H_n, \quad U(H_m)/PL_m &\rightarrow U(H_n)/PL_n, \\ U(H_m) \rightarrow U(H_n), \quad U(H_m)/H_m &\rightarrow U(H_n)/H_n. \end{aligned}$$

Then the family $\{A_n; \iota_{m,n}\}$ is a directed system of Kan complexes. Define $A = \varinjlim A_n$.

We shall call a css-complex K *finite*, if it has only a finite number of non-degenerate simplices. For any finite css-complex K an easy argument shows $[K, A] = \varinjlim [K, A_n]$. By the same argument as Lashof-

Rothenberg [2], §4, we have

Proposition 3. *Let K be a finite css-complex. We have the following commutative diagram :*

$$\begin{array}{ccc} [K, A_k] \times [K, A_n] & \xrightarrow{\oplus} & [K, A_{k+n}] \\ (\iota_{n,n+r})_* \times (\iota_{k,k+s})_* \downarrow & & \downarrow (\iota_{k+n,k+n+r+s})_* \\ [K, A_{k+r}] \times [K, A_{n+s}] & \xrightarrow{\oplus} & [K, A_{k+n+r+s}]. \end{array}$$

Consequently we have

$$\oplus : [K, A] \times [K, A] \rightarrow [K, A].$$

Proposition 4. *Let K be a finite css-complex. For $A=PL$, H the Whitney sum on $[K, A]$ is induced from group multiplication. Further $[K, A]$ is an abelian group.*

Proposition 5. *Let K be a finite css-complex K . For $A=H/PL$, U/PL , U/H the Whitney sum induces on $[K, A]$ the structure of an associative abelian monoid with two sided identity.*

By Lemma 3, we have the following commutative diagram

$$\begin{array}{ccccc} & & U(H_k) \times U(H_n) & & \\ & \nearrow \iota_{H_k} \times \iota_{H_n} & & & \downarrow \alpha \\ PL_k \times PL_n & \xrightarrow{\mu_k \times \mu_n} & H_k \times H_n & \xrightarrow{\iota_{H_n \times H_n}} & U(H_k \times H_n) \\ \oplus \downarrow & & \oplus \downarrow & & \downarrow U(\oplus) \\ PL_{k+n} & \xrightarrow{\mu_{k+n}} & H_{k+n} & \xrightarrow{\iota_{H_{k+n}}} & U(H_{k+n}). \end{array}$$

Notice that the css-homomorphism $U(\oplus) \circ \alpha$ is nothing but the Whitney sum

$$\oplus : U(H_k) \times U(H_n) \rightarrow U(H_{k+n})$$

defined above. Then we have

Proposition 6. *Let K be a css-complex. The following diagram*

$$\begin{array}{ccc} [K, H_k/PL_k] \times [K, H_n/PL_n] & \xrightarrow{\oplus} & [K, U_{k+n}/PL_{k+n}] \\ (\zeta_k)_* \times (\zeta_n)_k \downarrow & & \downarrow (\zeta_{k+n})_* \\ [K, U_k/PL_k] \times [K, U_n/PL_n] & \xrightarrow{\oplus} & [K, H_{k+n}/PL_{k+n}] \\ (\rho_k)_* \times (\rho_n)_* \downarrow & & \downarrow (\rho_{k+n})_* \\ [K, U_k/H_k] \times [K, U_n/H_n] & \xrightarrow{\oplus} & [K, U_{k+n}/H_{k+n}] \end{array}$$

is commutative, where $U_n = U(H_n)$.

Let K be a locally finite simplicial complex of finite dimension. Recall that the s-classes of topological microbundles over K form an abelian group $k_{\text{Top}}(K)$ by Whitney sum (Milnor [4], §4).

The following theorem will give some meaning to the css-complex BH .

Theorem 2. *Let K be a finite simplicial complex. Then there exists an isomorphism of $k_{\text{Top}}(K)$ onto $[\tilde{K}, BH]$ as semi-group.*

Proof. Let $(\xi) \in k_{\text{Top}}(K)$, and the fibre dimension of ξ be m . By Theorem 1, to ξ corresponds a css-map $f: \tilde{K} \rightarrow BH_m = U(H_m)/H_m$. Let $\iota_m: BH_m \rightarrow BH$ be the canonical inclusion map. To the s-class (ξ) we correspond the css-homotopy class $\{\iota_m \circ f\}$. We shall denote $\varphi((\xi)) = \{\iota_m \circ f\}$.

Now we shall prove that this class does not depends on the representative ξ of the class $(\xi) \in k_{\text{Top}}(K)$. Let $e_{m,p}^{(q)}: U(H_m)^{(q)} \rightarrow U(H_p)^{(q)}$ be the map which corresponds all elements of $U(H_m)^{(q)}$ to the unit of $U(H_p)^{(q)}$. Then

$$e_{m,p} = \{e_{m,p}^{(q)}\}: U(H_m) \rightarrow U(H_p)$$

is a css-homomorphism, and the following diagram

$$\begin{array}{ccccc} & H_m & \xrightarrow{\iota_{H_m}} & U(H_m) & \\ 1 \times \bar{e}_{m,p} \swarrow & \downarrow & & \downarrow 1 \times e_{m,p} & \\ H_m \times H_p & \xrightarrow{\iota_{H_m} \times \iota_{H_p}} & U(H_m) \times U(H_p) & \xrightarrow{\oplus} & U(H_{m+p}) \\ \oplus \swarrow & \downarrow \iota_{m,m+p} & \searrow \iota_{H_{m+p}} & \swarrow \oplus & \downarrow U(\iota_{m,m+p}) \\ & H_{m+p} & \xrightarrow{\iota_{H_{m+p}}} & U(H_{m+p}) & \end{array}$$

is commutative, where $\bar{e}_{m,p}$ is the restriction of $e_{m,p}$ over H_m . Thus we have the following commutative diagram

$$\begin{array}{ccc} U(H_m)/H_m & \xrightarrow{\iota_{m,m+p}} & U(H_{m+p})/H_{m+p} \\ 1 \times \tilde{e}_{m,p} \searrow & \nearrow \oplus & \\ U(H_m)/H_m \times U(H_p)/H_p & & \end{array}$$

where $\tilde{e}_{m,p}: U(H_m)/H_m \rightarrow U(H_p)/H_p$ is the css-map induced for $e_{m,p}: U(H_m) \rightarrow U(H_p)$.

Let $(\xi) = (\eta)$, and the fibre dimension of η be n . Then there exist integers $0 \leq p, q$ such that

$$(3) \quad \xi \oplus e^p \sim \eta \oplus e^q.$$

Considering the definition of Whitney sums and the correspondence in

Theorem 1, we find that to the microbundle $\mathfrak{x} \oplus \mathfrak{e}^q$ corresponds the composite css-map

$$\begin{array}{ccc} \tilde{K} & \xrightarrow{f} & U(H_m)/H_m \xrightarrow{1 \times \tilde{e}_{m,p}} U(H_m)/H_m \times U(H_p)/H_p \\ & \xrightarrow{\oplus} & U(H_{m+p})/H_{m+p}. \end{array}$$

By the above commutative diagram, we obtain that to the microbundle $\mathfrak{x} \oplus \mathfrak{e}^p$ corresponds the css-map $\iota_{m,m+p} \circ f$. If we denote the css-map corresponding to the microbundle \mathfrak{y} by $g: \tilde{K} \rightarrow BH_n$, then to the microbundle $\mathfrak{y} \oplus \mathfrak{e}^q$ corresponds the css-map $\iota_{n,n+q} \circ g$. By (3) $\iota_{m,m+p} \circ f$ and $\iota_{n,n+q} \circ g$ are css-homotopic each other. Thus we have $\{\iota_m \circ f\} = \{\iota_n \circ g\}$.

By Theorem 1, the above map φ is clearly surjective.

Let $\varphi((\mathfrak{x})) = \varphi((\mathfrak{y}))$ and to \mathfrak{x} and \mathfrak{y} correspond css-maps f and g , respectively. Then $\iota_m \circ f$ and $\iota_n \circ g$ are homotopic each other. Therefore, there exist integers $p, q \geq 0$ such that $m+p=n+q$ and $\iota_{m,m+p} \circ f$ and $\iota_{n,n+q} \circ g$ are homotopic each other. So we have $(\mathfrak{x}) = (\mathfrak{y})$.

Now we shall show that φ is a homomorphism. Let $(\mathfrak{x}), (\mathfrak{y}) \in k_{\text{Top}}(K)$, and $\mathfrak{x} = (\tilde{E}, \pi, \tilde{K})$, $\mathfrak{y} = (\tilde{E}', \pi', \tilde{K})$ be associated H_m - and H_n -bundles to \mathfrak{x} and \mathfrak{y} , and $f: \tilde{K} \rightarrow U(H_m)/H_m$, $g: \tilde{K} \rightarrow U(H_n)/H_n$ be css-maps corresponding to \mathfrak{x} and \mathfrak{y} respectively. We have the following commutative diagram;

$$\begin{array}{ccccc} \tilde{K} \times \tilde{K} & \xrightarrow{f \times g} & U(H_m)/H_m \times U(H_n)/H_n & & \\ \overline{\alpha} \circ (f \times g) \searrow & & \overline{\alpha} \downarrow & & \swarrow \oplus \\ & & U(H_m \times H_n)/H_m \times H_n & \xrightarrow{U(\oplus)} & U(H_{m+n})/H_{m+n}, \end{array}$$

where $\overline{\alpha}$ and $\overline{U(\oplus)}$ are the css-maps induced by α and $U(\oplus)$ respectively. Considering the correspondence in Theorem 1, we obtain that the H_{m+n} -bundle associated to $\mathfrak{x} \times \mathfrak{y}$ is induced by the css-map $\oplus \circ (f \times g)$. Let $d: K \rightarrow K \times K$, $\tilde{d}: \tilde{K} \times \tilde{K}$ be diagonal maps. As $\mathfrak{x} \oplus \mathfrak{y} = d^*(\mathfrak{x} \times \mathfrak{y})$, the H_{m+n} -bundle associated to $\mathfrak{x} \oplus \mathfrak{y}$ is induced by $\oplus \circ (f \times g) \circ d$. By Proposition 3, we obtain that φ is a homomorphism.

4. Exact sequence

Theorem 3. *For any finite css-complex K , the sequence*

$$[K, PL] \xrightarrow{\mu_*} [K, H] \xrightarrow{\lambda_*} [K, H/PL] \xrightarrow{\zeta_*} [K, BPL] \xrightarrow{\rho_*} [K, BH]$$

is an exact sequence of abelian groups.

Proof. That this is an exact sequence of base-pointed sets is the

usual property of fibre spaces applied to the css-fibre spaces

$$\begin{aligned} \text{I} \quad & PL \rightarrow H \rightarrow H/PL, \\ \text{II} \quad & H/PL \rightarrow U/PL \rightarrow U/H, \end{aligned}$$

noticing that I is fibration induced from II by inclusion $H/PL \rightarrow U/PL$.

That the maps are additive follows from definitions and from Proposition 6.

The fact that $[K, BPL]$ and $[K, BH]$ are abelian groups is known (Theorem 2). Now it only remains to show that $[K, H/PL]$ is actually a group, i.e. that inverses exist. Let $\alpha \in [K, H/PL]$. Then $\zeta_*(\alpha) \in [K, BPL]$ has an inverse $\nu \in [K, BPL]$. Since ρ_* is a group homomorphism, $\rho_*(\nu) = 0$. Thus there is an $\alpha' \in [K, H/PL]$ with $\zeta_*(\alpha') = \nu$. Thus $\zeta_*(\alpha + \alpha') = 0$, and there is a $\beta \in [K, H]$ with $\lambda_*(\beta) = \alpha + \alpha'$. Now β has an inverse $(-\beta)$ in $[K, H]$ so that $\lambda_*(-\beta) + (\alpha + \alpha') = \lambda_*(-\beta) + \lambda_*(\beta) = \lambda_*(-\beta + \beta) = 0$. Thus $\alpha' + \lambda_*(-\beta)$ is an inverse to α .

Thus the theorem is proved.

Let O be the css-group defined in Lashof-Rothenberg [2]. Then O is a css-subgroup of H and BO can be considered as U/O . Let

$$\begin{aligned} \mu' &: O \rightarrow H, \\ \lambda' &: H \rightarrow H/O, \\ \zeta' &: H/O \rightarrow U/O = BO, \\ \rho' &: BO = U/O \rightarrow U/H = BH \end{aligned}$$

be the naturally defined css-maps.

Then in quite a parallel way, we obtain the following

Theorem 4. *For any finite css-complex K , the sequence*

$$[K, O] \xrightarrow{\mu'_*} [K, H] \xrightarrow{\lambda'_*} [K, H/O] \xrightarrow{\zeta'_*} [K, BO] \xrightarrow{\rho'_*} [K, BH]$$

is an exact sequence of abelian groups.

NAGOYA UNIVERSITY

References

[1] A. Heller: *Homotopy resolutions of semi-simplicial complexes*, Trans. Amer. Math. Soc. 80 (1955), 299–344.

- [2] R. Lashof-M. Rothenberg: *Microbundles and smoothing*, Topology 3 (1965), 357-388.
- [3] J. Milnor: Microbundles and differentiable structures, Mimeographed Note, Princeton University, 1961.
- [4] J. Milnor: *Microbundles—I*, Topology 3 Suppl. (1964), 53-80.
- [5] J. Moore: *Semi-simplicial complexes and Postnikov systems*, Symp. Int. Topologia Algebraica, Mexico, 1958, 232-247.
- [6] D. Puppe: *Homotopie und Homologie in abelschen Gruppen- und Monoidkomplexen*, I, Math. Z. 68 (1958), 367-406.

