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Chapter 1

Introduction

This thesis is concerned with two types of nonlinear partial differential equa-
tions.

We first consider the large-time behavior of small solutions to the Cauchy
problem for semilinear wave equations

∂2t u−∆u = F (∂u), (t, x) ∈ (0,∞)× R2,
u(0, x) = εf(x),
∂tu(0, x) = εg(x),

x ∈ R2,
(1.0.1)

where u = u(t, x) is a R-valued unknown function, F (∂u) is a nonlinearity,
∂u = (∂tu, ∂x1u, ∂x2u). The initial data f , g are compactly-supported C∞-
functions and ε > 0 is a small parameter. To begin with, let us review the
free wave equation ∂2t u − ∆u = 0 (i.e., F ≡ 0). It is well known that the
following estimates hold for the free solution u(t):

|u(t, x)| ≤ Cε(1 + t)−1/2, t ≥ 0, x ∈ R2, (1.0.2)

∥u(t)∥E = ∥u(0)∥E , t ≥ 0, (1.0.3)

where the energy norm ∥ · ∥E is defined by

∥φ(t)∥2E =
1

2

∫
R2

2∑
a=0

|∂aφ(t, x)|2 dx.

Next, we consider (1.0.1) in the case F (∂u) = O(|∂u|p) near ∂u = 0, where
p > 1. For the small amplitude solution, we may expect the nonlinearity
can be treated as a perturbation and the solutions behave like free solutions
if p is large enough. If we assume that (1.0.2) and (1.0.3) are valid in this
case, we have∫ ∞

0
∥F (∂u)(τ)∥E dτ ≤ Cεp

∫
R
(1 + τ)−(p−1)/2 dτ ≤ Cεp
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when p > 3. Therefore we may expect that there exists an unique global
solution to (1.0.1) in nonlinear case when p > 3. Indeed, if p > 3, the small
data global existence (which we refer as SDGE in what follows) holds for
(1.0.1), that is, (1.0.1) admits a unique global C∞-solution for suitably small
ε. Moreover, there exists a solution u+ to the free wave equation 2u+ = 0
such that

lim
t→∞

∥u(t)− u+(t)∥E = 0.

In other wards, the global solution u(t) is asymptotically free in the sense of
the energy. In contrast, for the case p ≤ 3, the global existence does not hold
in general even if ε is arbitrarily small. Furthermore, even if there exists the
global solution to (1.0.1), it does not behave like free solutions in general.
In the sense, p = 3 is one of the critical situations. Thus, we need some
structural conditions to conclude that the SDGE holds and the solution is
asymptotically free. One of the most famous conditions is so called null con-
dition which was first introduced by Klainerman [48] and Christodoulou [6]
for the quasilinear wave equations in three space dimensions, and developed
by many researchers later. We will give a review on the detail of the null
condition in Section 2.1 below. Recently, weaker conditions than the null
condition are studied. The Agemi-type condition introduced in [39] is one of
them. This condition includes the dissipative structure such as cubic non-
linear damping 2v = −(∂tv)

3 in addition to the cubic null condition. Under
the Agemi-type condition, the SDGE holds for (1.0.1). However, there are a
lot of unsolved problems in the asymptotic behavior of solutions under the
Agemi-type condition.

The second equations which we are interested in are the nonlinear Schrödinger
equations. Let us consider the Cauchy problem{

i∂tu+
1

2
∂2xu = N(u, ∂xu), (t, x) ∈ (0,∞)× R,

u(0, x) = ϕ(x), x ∈ R,
(1.0.4)

where i =
√
−1, u = u(t, x) is a C-valued unknown function and the non-

linear term N(u, ∂xu) is a cubic homogeneous polynomial in (u, u, ∂xu, ∂xu)
with complex coefficients. The initial data ϕ(x) is suitably small, smooth
and decay fast as |x| → ∞. For the free Schrödinger equation i∂tu+

1
2∂

2
xu =

0, the properties of the solutions

∥u(t)∥L∞(R) ≤ C(1 + t)−1/2, ∥u(t)∥L2(R) = ∥u(0)∥L2(R),

for t ≥ 0 is well-known. By these properties and the similar argument
as above, the cubic nonlinearities for the nonlinear Schrödinger equations
in one space dimension cause a situation similar to two-dimensional cubic
semilinear wave equations. Therefore it would be natural to expect that the
structure corresponding to semilinear wave equations may exist for nonlinear
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Schrödinger equations. From this point of view, the condition introduced in
[51] can be regarded as an NLS-analog of the Agemi-type condition. This
condition guarantees the SDGE for (1.0.4), but, as is the case with the
Agemi-type condition, the asymptotics for the global solutions are not well
understood.

The purpose of this thesis is two-fold: The first one is to develop the un-
derstanding for asymptotic behavior of solutions to (1.0.1) under the Agemi-
type condition. In particular, we focus on the energy of the solutions and
make clear whether the energy decay occurs likewise the nonlinear damp-
ing or another kind of phenomenon occurs. The second is to consider these
analogs in the Schrödinger case (1.0.4) with a suitable dissipative condition.

This thesis is organized as follows. In Chapter 2, we consider the asymp-
totic behavior of the solution u to (1.0.1) under the Agemi-type condition.
For the single case, we prove the energy decay occurs unless the null con-
dition and we give an upper bound estimate for ∥u(t)∥E . We also study a
two-component system of semilinear wave equations with cubic nonlinearity
satisfying the Agemi-type condition. We show that small amplitude solu-
tions of this system behave like free solutions as t → +∞. Furthermore,
we give a criterion for large time non-decay of the energy for small am-
plitude solutions in terms of the radiation fields associated with the initial
data. This chapter is based on [63], [64] and [62]. Chapter 3 deals with the
Cauchy problem for (1.0.4). Under a suitable weakly dissipative condition
on the nonlinearity, we show that the small data solution has a logarithmic
time decay in L2 for the single case. For a two-component system case, we
show each component of the solutions are asymptotically free in the large
time and that the scattering states have a non-trivial restricted condition.
We also provide criteria for large time decay or non-decay in L2 of the small
amplitude solutions in terms of the Fourier transforms of the initial data.
This part is based on [53], [54] and [55].

Before closing this chapter, we introduce some notations and function
spaces. We denote by C∞

0 (Rd) the set of compactly-supported C∞ functions
on Rd. For 1 ≤ p ≤ ∞, we denote the Lebesgue space on Rd by Lp(Rd) and
its norm by ∥ · ∥Lp(Rd). For m ∈ N and 1 ≤ p ≤ ∞, we denote by Wm,p(Rd)

the Lp(Rd)-based Sobolev space of order m

Wm,p(Rd) := {f ∈ Lp(Rd) ; ∂αx f ∈ Lp(Rd), α ∈ Zd
+, |α| ≤ m}

equipped with the norm

∥φ∥Wm,p(Rd) :=
∑

|α|≤m

∥∂αx f∥Lp(Rd),

where Z+ := N ∪ {0}. We write Hm(Rd) = Wm,2(Rd). For m, s ∈ Z+, we
denote by Hk,m(Rd) the (L2(Rd)-based) weighted Sobolev space

Hm,s(Rd) := {f ∈ Hm(Rd) ; ⟨ · ⟩sf ∈ Hm(Rd)}
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equipped with the norm

∥f∥Hm,s(Rd) := ∥⟨ · ⟩sf∥Hm(Rd),

where ⟨z⟩ =
√
1 + |z|2. We will occasionally omit “(Rd)” if it causes no

confusion. The Fourier transform of φ is defined by(
Fφ
)
(ξ) = φ̂(ξ) :=

1√
2π

∫
R
e−ixξφ(x) dx, ξ ∈ R,

and the inverse Fourier transform of φ is defined by(
F−1φ

)
(x) :=

1√
2π

∫
R
eixξφ(ξ) dξ, x ∈ R.

We denote several positive constants by the same letter C, which may be
different from one line to another.
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Chapter 2

Asymptotic behavior of
solutions to semilinear wave
equations with weakly
dissipative structure

2.1 Introduction and results

This chapter is based on the joint works [63] with Hideaki Sunagawa, [64]
with Hideaki Sunagawa and Hiroki Terashita, and the author’s work [62]. We
consider large-time asymptotic behavior of the solution u = (uj(t, x))1≤j≤N

to the Cauchy problem

2uj = Fj(∂u), (t, x) ∈ (0,∞)× R2, (2.1.1)

with the initial condition

uj(0, x) = εfj(x), ∂tuj(0, x) = εgj(x), x ∈ R2, (2.1.2)

for 1 ≤ j ≤ N , where 2 = ∂2t −∆ = ∂20 − (∂21 + ∂22), ∂0 = ∂t = ∂/∂t, ∂1 =
∂/∂x1, ∂2 = ∂/∂x2, ε > 0 is a small parameter and fj , gj ∈ C∞

0 (R2). We
suppose that the nonlinearity F = (Fj)1≤j≤N is a RN -valued C∞-function
given by

Fj(∂u) = F q
j (∂u) + F c

j (∂u) +O(|∂u|4)
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near ∂u = 0, where the quadratic homogeneous part F q
j (∂u) and the cubic

homogeneous part F c
j (∂u) are given by

F q
j (∂u) =

N∑
k,l=1

2∑
a,b,c=0

Bab
jkl(∂auk)(∂bul),

F c
j (∂u) =

N∑
k,l,m=1

2∑
a,b,c=0

Cabc
jklm(∂auk)(∂bul)(∂cum),

with some real constants Bab
jkl and C

abc
jklm, respectively.

To explain the backgrounds, we consider (2.1.1)–(2.1.2) in Rd and assume
that F vanishes of order p ≥ 2 in a neighborhood of 0 ∈ RN×(1+d) for a while.
If p > 1 + 2/(d − 1), it is well known that the SDGE holds. Moreover, the
solution behaves like a solution to the free wave equation as t→ ∞. On the
other hands, if p ≤ 1+2/(d−1), global existence fails to hold in general even
when ε > 0 is arbitrarily small. (see [29], [8], etc). In this sense, the power
pc(d) := 1 + 2/(d − 1) is a critical exponent for nonlinear perturbation.
Note that pc(2) = 3 and pc(3) = 2. On the other hand, the small data
global existence can hold for some class of nonlinearity of the critical power.
One of the most famous example is the so called null condition, which has
been originally introduced by Christodoulou[6] and Klainerman[48] in three
dimensional case. Its counterparts for two dimensional case are developed
later by several authors (see [8], [24], [33], [2] etc.). In what follows S1
stands for the unit circle in R2. We say that the quadratic (resp. cubic) null
condition is satisfied if and only if F q,red(ω, Y ) (resp. F c,red(ω, Y )) vanishes

identically on S1×RN , where F q,red = (F q,red
j )1≤j≤N , F c,red = (F c,red

j )1≤j≤N

are defined by

F q,red
j (ω, Y ) =

N∑
k,l,m=1

2∑
a,b=0

Bab
jklωaωbYkYl,

F c,red
j (ω, Y ) =

N∑
k,l,m=1

2∑
a,b,c=0

Cabc
jklmωaωbωcYkYlYm

for Y = (Yj)1≤j≤N ∈ RN and ω = (ω1, ω2) ∈ S1 with the convention ω0 =
−1. When d = 2, if both the quadratic null condition and the cubic null
condition are satisfied, then the SDGE holds for (2.1.1)–(2.1.2). Moreover
the global solution u under the null condition is asymptotically free in the
sense of the energy. Note that we need only the quadratic null condition to
conclude the same in three space dimensions case. We also remark that if
only the quadratic null condition is assumed, it is shown by Godin [8] that
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the following estimate for the lifespan Tε holds for the single case (N = 1):

lim inf
ε→+0

ε2 log Tε ≥
1

sup
(σ,ω)∈R×S1

[
−F c,red(ω, 1)(∂σF0[f, g](σ, ω))

2
]

with the convention 1/0 = +∞, where F0[f, g] is the radiation field associ-
ated with the initial data. To be more specific, F0[f, g] =: R × S1 → R is
defined by

F0[f, g](σ, ω) := −∂σR2[f ](σ, ω) +R2[g](σ, ω), (2.1.3)

where

R2[φ](σ, ω) :=
1

2
√
2π

∫ ∞

σ

R[φ](s, ω)√
s− σ

ds, R[φ](s, ω) :=

∫
y·ω=s

φ(y) dSy,

for φ ∈ C∞
0 (R2). More information on the detailed lifespan estimates and

the related topics can be found in [1], [3], [7], [22], [23], [25], [30], [31], [34],
[66], [70], etc., and the references cited therein.

Recently, a lot of efforts have been made for the study on weaker struc-
tural conditions than the null condition mentioned above which ensure the
small data global existence (see e.g., [56], [57], [58], [59], [2], [4], [5], [26],
[49], [36], [40], [38], [39], [34], [35], [20], [21], [26], etc). It should be empha-
sized that the situation becomes much more complicated because long-range
nonlinear effects must be taken into account. In [39], the following condition
has been introduced:

(Ag) There exists an N ×N -matrix valued continuous function A = A(ω)
on S1, which is a positive-definite symmetric matrix for each ω ∈ S1,
such that

Y · A(ω)F c,red(ω, Y ) ≥ 0, (ω, Y ) ∈ S1 × RN ,

where the symbol · denotes the standard inner product in RN .

After the partial results [49], [26], [40], it has been shown in [39] that the
quadratic null condition and (Ag) imply the small data global existence for
(2.1.1)–(2.1.2) in two space dimensions. (see also [38] for the quadratic non-
linearities in three space dimensions case). It is obvious that (Ag) is weaker
than the cubic null condition. We note that this condition is motivated by
works of Rentaro Agemi in the late 1990’s. He tried to find a structural
condition which covers not only the standard null condition but also the
wave equations with cubic nonlinear damping. Therefore it would be fair
to call this the Agemi-type condition. As for the asymptotic behavior of the
global solutions under (Ag), many interesting problems seem left unsolved.
To the author’s knowledge, only the following two cases (Ag+) and (Ag0)
are well-understood:
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(Ag+) There exist an A(ω) as in (Ag) and a positive constant C such that

Y · A(ω)F c,red(ω, Y ) ≥ C|Y |4, (ω, Y ) ∈ S1 × RN .

Under (Ag+), the total energy ∥u(t)∥E decays like O((log t)−1/4+δ) as t →
+∞, where δ > 0 can be arbitrarily small. See [39] for the detail. A typical
example of F c(∂u) satisfying (Ag+) is the cubic damping term −(∂tu)

3.
Note also that the energy decay of this kind never occur under the cubic
null condition unless f = g ≡ 0 (see e.g., Chapter 9 in [34] for the detail).
Therefore it will be fair to say that (Ag+) yields dissipative structure.

(Ag0) There exists an A(ω) as in (Ag) such that

Y · A(ω)F c,red(ω, Y ) = 0, (ω, Y ) ∈ S1 × RN .

Note that (Ag0) is stronger than (Ag) if F is cubic (while it is equivalent to
(Ag) in the quadratic case). Roughly speaking, it holds under (Ag0) that

∂u(t, x) ∼ |x|−1/2ω̂(x)V (t; |x| − t, x/|x|)

as t→ ∞, where ω̂(x) = (−1, x1/|x|, x2/|x|), and V (t;σ, ω) solves

∂tV =
1

t
Q(ω, V )V

with a suitable skew-symmetric matrix Q depending on (ω, V ). In contrast
to (Ag+), decay of the total energy never occurs under (Ag0) except for
the trivial solution. Typical example satisfying (Ag0) is{

2u1 = −(∂tu1)
2∂tu2,

2u2 = (∂tu1)
3.

For more details on (Ag0), see [38], [35] and Chapter 10 in [34].
However, there is a gap between (Ag) and (Ag+), (Ag0). Now we come

to a following question naturally: If the quadratic null condition and (Ag)
is satisfied but the cubic null condition, (Ag+) and (Ag0) are violated, how
does the solution to (2.1.1)–(2.1.2) behave as t → +∞? In particular, does
the energy decay occur? To the authors’ knowledge, there are no previous
works which address this question. The aim of this chapter is to give answers
to this question.

Let us start with the single case (N = 1) of (2.1.1)-(2.1.2), that is,
2u = F (∂u), (t, x) ∈ (0,∞)× R2,
u(0, x) = εf(x),
∂tu(0, x) = εg(x),

x ∈ R2,
(2.1.4)
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where u = u(t, x) is R-valued unknown function and f , g ∈ C∞
0 (R2). In this

case, cubic part of the nonlinearity F c(∂u) and its reduced form F c,red(ω, Y )
can be written as the forms

F c(∂u) =

2∑
a,b,c=0

Cabc(∂au)(∂bu)(∂cu)

and

F c,red(ω, Y ) =
2∑

a,b,c=0

CabcωaωbωcY
3.

We put P (ω) = F c,red(ω, 1), then (Ag) is equivalent to P (ω) ≥ 0 on S1 and
(Ag+) is equivalent to P (ω) > 0 on S1. We also note that (Ag0) holds if
and only if the cubic null condition is satisfied. Therefore, for the single
case, we are interested in the case in which (Ag) is satisfied but the cubic
null condition and (Ag+) are violated.

The first result, which concerns the single case, is as follows.

Theorem 2.1.1. Let N = 1. Assume that quadratic null condition and
(Ag) are satisfied but the cubic null condition is violated. For the global
solution u to (2.1.4), there exist positive constants C and λ such that

∥u(t)∥E ≤ Cε

(1 + ε2 log(t+ 2))λ

for t ≥ 0, provided that ε is sufficiently small.

Remark 2.1.1. We give some examples of Fc(∂u) which satisfy (Ag) but
violate the cubic null condition and (Ag+):

−(∂1u)
2∂tu, −(∂1u)

2(∂tu+ ∂2u), −(∂tu+ ∂2u)
3.

The corresponding P (ω)’s are ω2
1, ω

2
1(1−ω2), (1−ω2)

3, respectively. We will
give more precise estimates of λ for these three cases in Subsection 2.4.4,
below.

Theorem 2.1.1 says that the energy decay occurs under (Ag) for the
single case unless the cubic null condition. It may be natural to ask what
happens in the system case. We next address this point. Let us consider
the following two-component system:{

2u1 = −(∂tu2)
2∂tu1,

2u2 = −(∂tu1)
2∂tu2,

(t, x) ∈ (0,∞)× R2, (2.1.5)

The system (2.1.5) satisfies (Ag) with A(ω) being 2 × 2 identity matrix.
Indeed we have Y ·F c,red(ω, Y ) = 2Y 2

1 Y
2
2 . This expression tells us that both

12



(Ag+) and (Ag0) are violated. Note also that the system (2.1.5) possesses
two conservation laws

d

dt

(
∥u1(t)∥2E + ∥u2(t)∥2E

)
= −2

∫
R2

(
∂tu1(t, x)

)2(
∂tu2(t, x)

)2
dx (2.1.6)

and

d

dt

(
∥u1(t)∥2E − ∥u2(t)∥2E

)
= 0. (2.1.7)

However, these are not enough to say something about the large-time asymp-
totics for u(t), and this is not trivial at all. Our next aim is to clarify the
asymptotic behavior of the solution u(t) to (2.1.5)–(2.1.2). The second result
is as follows.

Theorem 2.1.2. Assume that f , g ∈ C∞
0 (R2) and ε is suitably small. Then

the global solution u(t) to (2.1.5)–(2.1.2) is asymptotically free.

Remark 2.1.2. If we consider the case (f1, g1) = (f2, g2), the system (2.1.5)
can be reduced to the single euation 2v = −(∂tv)

3. Therefore we can adapt
the result of [40], [39] (or Theorem 2.1.1) to see that the total energy ∥u(t)∥E
decays like O((log t)−1/4+δ) as t→ +∞.

We note that the total energy decay stated in Remark 2.1.2 is an ex-
ceptional case. Indeed, it follows from the conservation law (2.1.7) that
at least one component u1 or u2 tends to a non-trivial free solution if
∥u1(0)∥E ̸= ∥u2(0)∥E . It is far from obvious whether both u+1 and u+2 do not
vanish in a certain case. We reveal a criterion for the energy non-decay in
the terms of the radiation fields associated with the initial data as follows.
This is our third result.

Theorem 2.1.3. Let Fj(σ, ω) = F0[fj , gj ](σ, ω) for j = 1, 2, where F0

is defined by (2.1.3). Suppose that there exist (σ∗, ω∗), (σ∗, ω∗) ∈ R × S1
satisfying

|∂σF1(σ
∗, ω∗)| > |∂σF2(σ

∗, ω∗)| (2.1.8)

and

|∂σF1(σ∗, ω∗)| < |∂σF2(σ∗, ω∗)|,

respectively. Then we have limt→+∞ ∥u1(t)∥E > 0 and limt→+∞ ∥u2(t)∥E >
0 for suitably small ε.

Remark 2.1.3. From Theorem 2.1.3, we can construct the solution u =
(u1, u2) to (2.1.5)–(2.1.2) with energy of each component does not decay.
Consequently, if we choose a suitable (f, g), both u1(t) and u2(t) can behave
like non-trivial free solutions as t→ +∞.
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Remark 2.1.4. Our proof of Theorems 2.1.2 and 2.1.3 below do not rely
on the conservation laws (2.1.6) and (2.1.7) at all. For example, the same
proof is valid for the system{

2u1 = −|∇xu2|2∂tu1,
2u2 = −|∇xu1|2∂tu2,

or more generally, any cubic satisfying the quadratic or cubic null conditions
can be added to the right-hand side of it.

Remark 2.1.5. Theorems 2.1.2 and 2.1.3 concern only the forward Cauchy
problem (i.e., for t > 0). For the backward Cauchy problem, we can con-
struct a blowing-up solution with arbitrary small ε > 0 and a suitable choice
of f , g based on the idea of [8]. This should be contrasted with the behavior
of solutions under (Ag0).

2.2 Preliminaries

In this section, we collect several notations and estimates which will be used
in the subsequent sections.

We define S := t∂t+x1∂1+x2∂2, L1 := t∂1+x1∂t, L2 := t∂2+x2∂t, Ω :=
x1∂2 − x2∂1, and we set Γ = (Γj)0≤j≤6 = (S,L1, L2,Ω, ∂0, ∂1, ∂2). For a
multi-index α = (α0, α1, · · · , α6) ∈ Z7

+, we write |α| = α0 + α1 + · · · + α6

and Γα = Γα0
0 Γα1

1 · · ·Γα6
6 . We define | · |s, ∥ · ∥s by

|φ(t, x)|s =
∑
|α|≤s

|Γαφ(t, x)|, ∥φ(t, ·)∥s =
∑
|α|≤s

∥Γαφ(t, ·)∥L2(R2),

respectively. For x ∈ R2\{0}, we write r := |x|, ω = (ω1, ω2) := x/|x|,
ω⊥ = (ω⊥

1 , ω
⊥
2 ) := (−ω2, ω1), ∂r := ω1∂1+ω2∂2, and ∂± := ∂t±∂r. Following

relations will play an important roll in the reduction argument of Section 2.3:

∂+∂−(r
1/2φ) = r1/22φ+

1

4r3/2
(4Ω2 + 1)φ, (2.2.1)

(t+ r)(∂j − ωj∂r) = ω⊥
j (Ω + ω1L2 − ω2L1), j = 1, 2, (2.2.2)

(t+ r)∂+ = S + ω1L1 + ω2L2, (2.2.3)

and ∂+ + ∂− = 2∂t, ∂+ − ∂− = 2∂r.
Next we review several estimates relevant to the free wave equation

2φ = 0, (t, x) ∈ (0,∞)× R2,
φ(0) = φ0,
∂tφ(0) = φ1,

x ∈ R2.
(2.2.4)
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Lemma 2.2.1. For φ0, φ1 ∈ C∞
0 (R2) and α ∈ Z3

+, there is a positive con-
stant C = Cα(φ0, φ1) such that the smooth solution φ to (2.2.4) satisfies

|∂αφ(t, x)| ≤ C⟨t+ |x|⟩−1⟨t− |x|⟩−|α|−1/2 (2.2.5)

for (t, x) ∈ [0,∞)× R2.

Lemma 2.2.2. For φ0, φ1 ∈ C∞
0 (R2), there is a positive constant C =

C(φ0, φ1) such that the smooth solution φ to (2.2.4) satisfies∣∣∣|x|1/2∂φ(t, x)− ω̂(x)(∂σF0[φ0, φ1])(|x| − t, ω)
∣∣∣ ≤ C⟨t+ |x|⟩−1⟨t− |x|⟩−1/2

(2.2.6)

for (t, x) ∈ [0,∞)× R2 \ {0}, where ω̂(x) = (−1, x1/|x|, x2/|x|).

Lemma 2.2.3. For φ0, φ1 ∈ C∞
0 (R2), there is a positive constant C =

C(φ0, φ1) such that

|∂σF0[φ0, φ1](σ, ω)| ≤ C⟨σ⟩−3/2 (2.2.7)

for (σ, ω) ∈ R× S1.

For the proof of Lemmas 2.2.1, 2.2.2 and 2.2.3, see Section 3 in [34].
We close this section with the basic estimates for the global small am-

plitude solution u to (2.1.1)–(2.1.2) under (Ag). According to Section 3 in
[39], we already know the following estimates.

Lemma 2.2.4. Let k ≥ 4, 0 < µ < 1/10 and 0 < (8k + 7)ν < µ. If ε > 0
is suitably small, then the solution u to (2.1.1)–(2.1.2) satisfies

|u(t, x)|k+1 ≤ Cε⟨t+ |x|⟩−1/2+µ, (2.2.8)

|∂u(t, x)| ≤ Cε⟨t+ |x|⟩−1/2⟨t− |x|⟩µ−1, (2.2.9)

|∂u(t, x)|k ≤ Cε⟨t+ |x|⟩−1/2+ν⟨t− |x|⟩µ−1, (2.2.10)

for (t, x) ∈ [0,∞)× R2 and

∥∂u(t)∥k ≤ Cε(1 + t)µ−ν (2.2.11)

for t ≥ 0, where C is a positive constant independent of ε.

2.3 The John–Hörmander reduction

In this section, we are going to make reductions of the problem to along
the approach exploited in [40], [38], [39], [35]. The essential idea is based
on John[30] and Hörmander [22] concerning detailed lifespan estimates for
quadratic quasilinear wave equations in three space dimensions.
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Let u = (uj)1≤j≤N be a smooth solution to (2.1.1)–(2.1.2) on [0,∞) ×
R2. Since f and g are compactly-supported, we can take R > 0 such that
supp f ∪ supp g ⊂ {x ∈ R2; |x| ≤ R}. Then, by the finite propagation
property, we have

suppu(t, ·) ⊂ {x ∈ R2; |x| ≤ t+R} (2.3.1)

for t ≥ 0. We define U = (Uj(t, x))1≤j≤N by Uj(t, x) = D(|x|1/2uj(t, x)),
1 ≤ j ≤ N , D = −2−1∂−. We also introduce H = (Hj(t, x))1≤j≤N by

Hj =
1

2

(
1

t
F c,red(ω,U)− r1/2F (∂u)

)
− 1

8r3/2
(4Ω2 + 1)uj .

By (2.2.1), we have

∂+Uj(t, x) =
−1

2t
F c,red
j (ω,U(t, x)) +Hj(t, x). (2.3.2)

We introduce the following lemmas associated with U and H:

Lemma 2.3.1. There exists a positive constant C such that∣∣∣|x|1/2∂u(t, x)− ω̂(x)U(t, x)
∣∣∣ ≤ C⟨t+ |x|⟩−1/2|u(t, x)|1

for (t, x) ∈ Λ∞ := {(t, x) ∈ [0,∞)× R2; |x| ≥ t/2 ≥ 1}.

It follows from (2.2.2) and (2.2.3). See Corollary 3.3 in [40] for more
detail of the proof.

Lemma 2.3.2. Under the quadratic null condition and (2.3.1), there exists
a positive constant C which may depend on R such that

|H(t, x)| ≤ Ct−1/2
(
|∂u|+ ⟨t+ |x|⟩−1|u|1

)2|u|1 + Ct−3/2|u|2 (2.3.3)

for (t, x) ∈ Λ∞,R := {(t, x) ∈ Λ∞ ; |x| ≤ t+R}.

For the proof, see Lemma 2.8 in [39].
These lemmas tell us that ω̂U can be regarded as a good approximation

of r1/2∂u and H can be regarded as a remainder if u decays fast near the
light cone. From (2.2.8), (2.2.9), (2.3.3) and Lemma 2.3.1, we obtain

|U(t, x)| ≤
∣∣∣|x|1/2∂u(t, x)∣∣∣+ ∣∣∣|x|1/2∂u(t, x)− ω̂U(t, x)

∣∣∣
≤ Cε⟨t− |x|⟩µ−1 (2.3.4)

and

|H(t, x)| ≤ Cε2t−1/2⟨t+ |x|⟩µ−1⟨t− |x|⟩µ−1 + Cεt−3/2⟨t+ |x|⟩µ−1/2

≤ Cεt2µ−3/2⟨t− |x|⟩−µ−1/2 (2.3.5)
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for (t, x) ∈ Λ∞,R. Note that the weights |x|−1, t−1, (1+ t)−1, ⟨t+ |x|⟩−1 are
equivalent to each other on Λ∞,R. Indeed we have

⟨t+ |x|⟩−1 ≤ |x|−1 ≤ 2t−1 ≤ 3(1 + t)−1 ≤ 3(R+ 2)⟨t+ |x|⟩−1.

Now we make the final reduction. We set

Σ = {(t, x) ∈ [0,∞)× R2; |x| ≥ t/2 = 1 or |x| = t/2 ≥ 1}

and t0,σ = max{2,−2σ}. Then, since the half line {(t, (t + σ)ω) ; t ≥ 0}
meets Σ at the point (t0,σ, (t0,σ + σ)ω) for each (σ, ω) ∈ R× S1, we can see
that

Λ∞,R =
⋃

(σ,ω)∈(−∞,R]×S1
{ (t, (t+ σ)ω) ; t ≥ t0,σ}.

We also note that there exists a positive constant c0 depending only on R
such that

c−1
0 ⟨σ⟩ ≤ t0,σ ≤ c0⟨σ⟩ (2.3.6)

for σ ∈ (−∞, R]. We set Vj(t;σ, ω) = Uj(t, (t + σ)ω) and Kj(t;σ, ω) =
Hj(t, (t + σ)ω) for (t;σ, ω) ∈ [t0,σ,∞) × R × S1, 1 ≤ j ≤ N . Then we can
rewrite (2.3.2) as

∂tVj(t) =
−1

2t
F c,red
j (ω, V (t)) +Kj(t), (2.3.7)

which we call the profile equation. It follows from (2.3.4) and (2.3.5) that

|V (t;σ, ω)| ≤ Cε⟨σ⟩µ−1 (2.3.8)

and

|K(t;σ, ω)| ≤ Cε⟨σ⟩−µ−1/2t2µ−3/2 (2.3.9)

for (t, σ, ω) ∈ [t0,σ,∞)× (−∞, R]× S1.

2.4 Proof of Theorem 2.1.1

In this section, we are going to prove Theorem 2.1.1. We always assume
that the quadratic null condition and (Ag) are satisfied but the cubic null
condition is violated in this section.
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2.4.1 A detailed pointwise estimate under (Ag) for single
case

This subsection is devoted to a detailed pointwise estimate for the solution
to (2.1.4) under the quadratic null condition and (Ag). The goal of this
subsection is the following lemma.

Lemma 2.4.1. Let 0 < µ < 1/10. Assume that the quadratic null condition
and (Ag) are satisfied. If ε is suitably small, there exists a positive constant
C, not depending on ε, such that the solution u to (2.1.4) satisfies

|∂u(t, rω)| ≤ Cε√
t
min

{
1√

P (ω)ε2 log t
,

1

⟨t− r⟩1−µ

}
(2.4.1)

for (t, r, ω) ∈ [2,∞)× [0,∞)× S1.

Proof. By the definition of P (ω), we have F c,red(ω, Y ) = P (ω)Y 3. In virtue
of (2.3.7), we see that (2.1.4) is reduced to

∂tV (t) = −P (ω)
2t

V (t)3 +K(t). (2.4.2)

To investigate the asymptotics for V (t), let us also recall the following
useful lemma due to Matsumura.

Lemma 2.4.2. Let C0 > 0, C1 ≥ 0, p > 1, q > 1 and t0 ≥ 2. Suppose that
a function Φ(t) satisfies

dΦ

dt
(t) ≤ −C0

t
|Φ(t)|p + C1

tq

for t ≥ t0. Then we have

Φ(t) ≤ C2

(log t)p∗−1

for t ≥ t0, where p
∗ is the Hölder conjugate of p (i.e., 1/p+ 1/p∗ = 1), and

C2 =
1

log 2

(
(log t0)

p∗Φ(t0) + C1

∫ ∞

2

(log τ)p
∗

τ q
dτ

)
+

(
p∗

C0p

)p∗−1

.

For the proof, see Lemma 4.1 of [39].
Let (σ, ω) ∈ (−∞, R] × S1 be fixed, and we set Φ(t) = Φ(t;σ, ω) =

P (ω)V (t;σ, ω)2 for t ≥ t0,σ. It follows from (2.3.8), (2.3.9) and (2.4.2) that

∂tΦ(t) = 2P (ω)V (t)∂tV (t)

= −P (ω)
2

t
V (t)4 + 2P (ω)V (t)K(t)

≤ −1

t
Φ(t)2 +

C∗ε
2

t3/2−2µ⟨σ⟩3/2
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with some C∗ > 0 not depending on σ, ω and ε. Therefore we can apply
Lemma 2.4.2 with p = 2, q = 3/2− 2µ and t0 = t0,σ to obtain

0 ≤ Φ(t;σ, ω) ≤ M(σ, ω)

log t
,

where

M(σ, ω) =
1

log 2

(
(log t0,σ)

2P (ω)V (t0,σ;σ, ω)
2 +

C∗ε
2

⟨σ⟩3/2

∫ ∞

2

(log τ)2

τ3/2−2µ
dτ

)
+1.

By virtue of (2.3.6) and (2.3.8), we see that M(σ, ω) can be dominated by
a positive constant not depending on σ, ω and ε. Therefore we deduce that

|V (t;σ, ω)| ≤

√
Φ(t;σ, ω)

P (ω)
≤ C√

P (ω) log t

for (t, σ, ω) ∈ [t0,σ,∞)×(−∞, R]×S1. By Lemma 2.3.1 and (2.2.8), we have

r1/2|∂u(t, rω)| ≤
√
2|V (t; r − t, ω)|+

∣∣∣r1/2∂u(t, rω)− ω̂U(t, rω)
∣∣∣

≤ C√
P (ω) log t

+
Cε

⟨t+ r⟩1−µ

for (t, rω) ∈ Λ∞,R, whence

|∂u(t, rω)| ≤ C√
rP (ω) log t

(
1 +

ε
√
P (ω) log t

t1−µ

)
≤ Cε√

t
· 1√

P (ω)ε2 log t

for (t, rω) ∈ Λ∞,R. Piecing together this with (2.2.9), we arrive at the
desired estimate (2.4.1) in the case of (t, rω) ∈ Λ∞,R. It is much easier
to derive the bound for |∂u(t, rω)| in the case of (t, rω) ̸∈ Λ∞,R (indeed it
follows from (2.2.9) only), so we skip it here.

2.4.2 Key lemmas

This subsection is devoted to two important lemmas which play key roles
in our analysis. Throughout this subsection, we suppose that Ψ(θ) is a
real-valued function on [0, 2π] which can be written as a (finite) linear com-
bination of the terms cosp1 θ sinp2 θ with p1, p2 ∈ Z≥0.

Lemma 2.4.3. If Ψ(θ) ≥ 0 for all θ ∈ [0, 2π], then we have either of the
following three assertions:

(a) Ψ(θ) = 0 for all θ ∈ [0, 2π].

(b) Ψ(θ) > 0 for all θ ∈ [0, 2π].
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(c) There exist positive integers m, ν1, . . . , νm, points θ1, . . . , θm ∈ [0, 2π],
and positive constants c1, . . . , cm such that

• Ψ(θ) > 0 for θ ∈ [0, 2π]\{θ1, . . . , θm},
• Ψ(θ) = (θ − θj)

2νj
(
cj + o(1)

)
as θ → θj for each j = 1, . . . ,m.

Proof. Let N be the set of zeros of Ψ on [0, 2π]. It is easy to see that the
case N = ∅ corresponds to the case (b) in the statement. Next we consider
the case of ]N = ∞. It follows from the Bolzano-Weierstrass theorem
that N has an accumulation point. This is impossible unless Ψ vanishes
identically on [0, 2π] since Ψ is a trigonometric polynomial. (Indeed, through
the standard identification of S1 with C := {z ∈ C ; |z| = 1}, we may regard
Ψ(θ) as a function ψ(z) in the form

∑L
k=−L akz

k on C, which is analytic in
a neighborhood of C in C. Then the identity theorem implies ψ(z) vanishes
identically on C, so does Ψ(θ) on [0, 2π].) Therefore we have (a). What
remains is the case where 0 < ]N < ∞. In this case we can write N as
{θ1, . . . , θm} with m = ]N . Note that Ψ(θ) > 0 for θ ∈ [0, 2π]\N . Now let
us focus on local behavior of Ψ(θ) near the point θj . We observe that we
can take κj ∈ Z>0 such that Ψ(l)(θj) = 0 for l ≤ κj − 1 and Ψ(κj)(θj) ̸= 0.
By the Taylor expansion, we have

Ψ(θ) =
∑
l≤κj

Ψ(l)(θj)

l!
(θ − θj)

l +O((θ − θj)
κj+1)

= (θ − θj)
κj

(
Ψ(κj)(θj)

κj !
+ o(1)

)

as θ → θj . By the assumption that Ψ is non-negative, we see that κj must
be an even integer and Ψ(κj)(θj) must be strictly positive. Therefore we
arrive at the case (c) by setting cj = Ψ(κj)(θj)/(κj !) and νj = κj/2.

Lemma 2.4.4. Assume that Ψ satisfies (c). We set ν = max{ν1, . . . , νm}.
Then, for 0 < γ < 1/(2ν), we have∫ 2π

0

dθ

Ψ(θ)γ
<∞.

Proof. We consider only the case where θj ̸= 0, 2π for j = 1, . . . ,m. The
other case can be also shown by minor modifications. We take positive
constants δj (j = 1, . . . ,m) so small that the intervals Jj = (θj − δj , θj + δj)
satisfy

Jj ∩ Jk = ∅ for 1 ≤ j < k ≤ m

and
Ψ(θ) ≥ cj

2
(θ − θj)

2νj for θ ∈ Jj .
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We also set

K = [0, 2π]\
m⋃
j=1

Jj .

Since K is compact, we can take M > 0 such that Ψ(θ) ≥M for θ ∈ K. So
it follows that ∫

K

dθ

Ψ(θ)γ
≤ 2π

Mγ
<∞.

On the other hand, since 2γνj ≤ 2γν < 1, we have∫
Jj

dθ

Ψ(θ)γ
≤
(

2

cj

)γ ∫ δj

−δj

dθ

|θ|2γνj
<∞

for j = 1, . . . ,m. Summing up, we arrive at∫ 2π

0

dθ

Ψ(θ)γ
=

∫
K

dθ

Ψ(θ)γ
+

m∑
j=1

∫
Jj

dθ

Ψ(θ)γ
<∞,

as desired.

2.4.3 Proof of Theorem 2.1.1

Now we are ready to prove Theorem 2.1.1. As mentioned in Section 2.1,
we already know that the conclusion is true under (A+). Since we as-
sume that the quadratic null condition and (Ag) are satisfied but the cubic
null condition is violated, we see that the case (a) in Lemma 2.4.3 is ex-
cluded by Ψ(θ) = P (cos θ, sin θ), whence it satisfies (b) or (c). Therefore,
by Lemma 2.4.4, there exists 0 < λ < 1/4 such that∫ 2π

0

dθ

P (cos θ, sin θ)2λ
<∞.

With this λ, we choose µ such that

0 < µ < min

{
1

10
,
1− 4λ

2− 4λ

}
.

Let t ≥ 2 from now on. By Lemma 2.4.1, we have

|∂u(t, rω)| ≤ Cε√
t

(
1√

P (ω)ε2 log t

)2λ(
1

⟨t− r⟩1−µ

)1−2λ

=
Cε

(ε2 log t)λ
· 1

P (ω)λ
· 1√

t⟨t− r⟩(1−µ)(1−2λ)
(2.4.3)
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for (t, r, ω) ∈ [2,∞) × (0,∞) × S1. Next we set ρ(t) = (ε2 log t)
2λ

1−2µ . For
small ε > 0, we have 0 < ρ(t) < t, and thus 0 < t+R− ρ(t) ≤ t+R. Then
we can split

2∥u(t)∥2E =

∫
|x|≤t+R−ρ(t)

|∂u(t, x)|2dx+

∫
t+R−ρ(t)≤|x|≤t+R

|∂u(t, x)|2dx

=: I1(t) + I2(t).

We also note that

r/t ≤ (t+R)/t ≤ 1 +R/2 for 0 ≤ r ≤ t+R,

and

0 < ρ(t) ≤ R+ t− r ≤ (1 +R)⟨t− r⟩ for 0 ≤ r ≤ t+R− ρ(t).

By using the polar coordinates, we deduce from (2.4.1) and (2.4.3) that

I1(t) ≤
∫ 2π

0

∫ t+R−ρ(t)

0

(
Cε√

t⟨t− r⟩1−µ

)2

rdrdθ

≤ Cε2
∫ t+R−ρ(t)

0

rdr

t⟨t− r⟩2−2µ

≤ Cε2
∫ t+R−ρ(t)

0

dr

(R+ t− r)2−2µ

≤ Cε2

ρ(t)1−2µ

and

I2(t) ≤
Cε2

(ε2 log t)2λ

(∫ 2π

0

dθ

P (cos θ, sin θ)2λ

)(∫ t+R

t+R−ρ(t)

rdr

t⟨t− r⟩2(1−µ)(1−2λ)

)

≤ Cε2

(ε2 log t)2λ

∫
R

dσ

⟨σ⟩2(1−µ)(1−2λ)
,

respectively. Since 2(1− µ)(1− 2λ) > 1, we see that the integral in the last
line converges. Eventually we obtain

∥u(t)∥2E ≤ Cε2

ρ(t)1−2µ
+

Cε2

(ε2 log t)2λ
≤ Cε2

(ε2 log(t+ 2))2λ
.

We also have

∥u(t)∥2E ≤ Cε2
∫ t+R

0

rdr

t⟨t− r⟩2−2µ
≤ Cε2

∫
R

dσ

⟨σ⟩2−2µ
≤ Cε2

by (2.4.1). Summing up, we arrive at the desired estimate.
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2.4.4 Remarks on the decay rates

It is worthwhile to mention the exponent λ appearing in Theorem 2.1.1. In
view of the argument in Subsection 2.4.3, we can see that λ is determined by
ν coming from Lemma 2.4.4. To be more precise, we can take λ = 1/(4ν)−δ
with arbitrarily small δ > 0, and 2ν is the maximum of the vanishing order
of zeros of Ψ(θ) = P (cos θ, sin θ).

Now, let us compute ν for the examples of F c(∂u) raised in Remark 2.1.1.

(1) We first focus on F c(∂u) = −(∂1u)
2∂tu. Since Ψ(θ) = cos2 θ, we can

check that

Ψ(θ) = (θ − π/2)2(1 + o(1)) (θ → π/2),

Ψ(θ) = (θ − 3π/2)2(1 + o(1)) (θ → 3π/2),

and Ψ(θ) > 0 when θ ̸= π/2, 3π/2. These tell us that ν = 1, and thus
we have ∥u(t)∥E = O((log t)−1/4+δ) as t → ∞, where δ > 0 can be
arbitrarily small.

(2) In the case of F c(∂u) = −(∂1u)
2(∂tu + ∂2u), we see that Ψ(θ) =

cos2 θ(1 − sin θ), and its zeros are θ = π/2 and 3π/2. Near these
points, we have

Ψ(θ) = (θ − π/2)4(1/2 + o(1)) (θ → π/2)

and
Ψ(θ) = (θ − 3π/2)2(2 + o(1)) (θ → 3π/2).

Hence ν = max{2, 1} = 2, from which it follows that ∥u(t)∥E decays
like O((log t)−1/8+δ) as t→ ∞ with arbitrarily small δ > 0.

(3) For F c(∂u) = −(∂tu+∂2u)
3, we have Ψ(θ) = (1−sin θ)3. This vanishes

only when θ = π/2, and it holds that

Ψ(θ) = (θ − π/2)6(1/8 + o(1)) (θ → π/2).

Therefore ν = 3, and this implies that ∥u(t)∥E = O((log t)−1/12+δ) as
t→ ∞ with 0 < δ ≪ 1/12.

Remark 2.4.1. It is not certain whether these decay rates are the best or
not. It may be an interesting problem to specify the optimal rates for the
energy decay.

2.5 Proof of Theorems 2.1.2 and 2.1.3

In this section, we prove Theorems 2.1.2 and 2.1.3. The key of our proof is
to specify the asymptotic behavior of solutions to the profile equation (2.3.7)
in the case of (2.1.5)
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2.5.1 Asymptotics of solutions to the profile equation for a
system case

We focus on large-time behavior of solutions to the profile equation associ-
ated with (2.1.5). In virtue of (2.3.7), we can rewrite (2.1.5) as

∂tV1(t) =
−1

2t
V1(t)V2(t)

2 +K1(t),

∂tV2(t) =
−1

2t
V1(t)

2V2(t) +K2(t).

(2.5.1)

The goal of this subsection is to show the following.

Proposition 2.5.1. Let V = (Vj(t;σ, ω))j=1,2 be the solutions to (2.5.1).
There exists V + = (V +

j (σ, ω))j=1,2 ∈ L2(R× S1) such that

lim
t→∞

∫
R

∫
S1

∣∣χt(σ)V (t;σ, ω)− V +(σ, ω)
∣∣2 dSωdσ = 0, (2.5.2)

where χt : R → R is a bump function satisfying χt(σ) = 1 for σ > −t and
χt(σ) = 0 for σ ≤ −t.

Before we start the proof of Proposition 2.5.1, we introduce a following
lemma on ODE which is used in our proof.

Lemma 2.5.1. Let t0 ≥ 0 be given. For λ, Q ∈ C ∩ L1([t0,∞)), assume
that y(t) satisfies

dy

dt
(t) = λ(t)y(t) +Q(t)

for t ≥ t0. Then we have

|y(t)− y+| ≤ C3

∫ ∞

t

(
|y+||λ(τ)|+ |Q(τ)|

)
dτ

for t ≥ t0, where

C3 = exp

(∫ ∞

t0

|λ(τ)| dτ
)

and

y+ = y(t0)e
∫∞
t0

λ(τ) dτ
+

∫ ∞

t0

Q(s)e
∫∞
s λ(τ) dτ ds.

Proof. Put

Φ(t; s) = exp

(∫ t

s
λ(τ) dτ

)
for s, t ∈ [t0,∞]. Then we see that

y(t) = Φ(t; t0)y(t0) +

∫ t

t0

Φ(t; s)Q(s) ds = Φ(t;∞)y+ −
∫ ∞

t
Φ(t; s)Q(s) ds.
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We also note that |Φ(s; t)| ≤ C3 and that

|Φ(t;∞)− 1| ≤ C3

∫ ∞

t
|λ(τ)| dτ.

Therefore we obtain

|y(t)− y+| ≤ |Φ(t;∞)− 1||y+|+
∫ ∞

t
|Φ(t; s)||Q(s)| ds

≤ C3|y+|
∫ ∞

t
|λ(τ)| dτ + C3

∫ ∞

t
|Q(τ)| dτ,

as desired.

Proof of Proposition 2.5.1.We first show the pointwise convergence of V (t;σ, ω)
as t → +∞. We note that (2.3.1) implies V (t;σ, ω) = 0 if σ ≥ R. In what
follows, we fix (σ, ω) ∈ (−∞, R]× S1 and introduce

ρ(t) = ρ(t;σ, ω) := V1(t;σ, ω)K1(t;σ, ω)− V2(t;σ, ω)K2(t;σ, ω)

so that

1

2
∂t

(
(V1(t))

2 − (V2(t))
2
)
= V1(t)∂tV1(t)− V2(t)∂tV2(t) = ρ(t).

It follows from (2.3.8) and (2.3.9) that

|ρ(t)| ≤
2∑

j=1

|Vj(τ ;σ, ω)Kj(τ ;σ, ω)|

≤ Cε2⟨σ⟩−3/2t2µ−3/2. (2.5.3)

Thus, by (2.3.6) and (2.5.3), we have∫ ∞

t0,σ

|ρ(τ ;σ, ω)| dτ ≤
∫ ∞

t0,σ

Cε2⟨σ⟩−3/2τ2µ−3/2 dτ

≤ Cε2⟨σ⟩−3/2(t0,σ)
2µ−1/2

≤ Cε2⟨σ⟩2µ−2.

Therefore we obtain

(V1(t;σ, ω))
2 − (V2(t;σ, ω))

2

= (V1(t0,σ;σ, ω))
2 − (V2(t0,σ;σ, ω))

2 + 2

∫ t

t0,σ

ρ(τ ;σ, ω) dτ

= m(σ, ω)− r(t;σ, ω) (2.5.4)

25



for t ≥ t0,σ, where

m(σ, ω) := (V1(t0,σ;σ, ω))
2 − (V2(t0,σ;σ, ω))

2 + 2

∫ ∞

t0,σ

ρ(τ ;σ, ω) dτ (2.5.5)

and

r(t) = r(t;σ, ω) := 2

∫ ∞

t
ρ(τ ;σ, ω) dτ.

Note that

|m| ≤ |V (t0,σ)|2 + C

∫ ∞

t0,σ

|ρ(τ)| dτ ≤ Cε2⟨σ⟩2µ−2

and

|r(t)| ≤ C

∫ ∞

t
|ρ(τ)| dτ ≤ Cε2⟨σ⟩−3/2t2µ−1/2. (2.5.6)

Now we divide the argument into three cases according to the sign ofm(σ, ω)
as follows.
Case 1: m(σ, ω) > 0. First we focus on the asymptotics for V2(t). By
(2.3.8), (2.3.9), (2.5.1), (2.5.4) and (2.5.6), we have

∂tV2(t) =
−1

2t
V2(t)

3 − m

2t
V2(t) +

r(t)

2t
V2(t) +K2(t)

≤ −1

2t
V2(t)

3 − m

2t
V2(t) + Cε⟨σ⟩−µ−1/2t2µ−3/2,

whence

1

2
∂t
(
tmV2(t)

2
)
= tmV2(t)

(
∂tV2(t) +

m

2t
V2(t)

)
≤ tm

(
−1

2t
V2(t)

4 + Cε2⟨σ⟩−3/2t2µ−3/2

)
≤ Cε2⟨σ⟩−3/2t2µ+m−3/2.

Integration in t leads to

tmV2(t)
2 − (t0,σ)

mV2(t0,σ)
2 ≤ Cε2⟨σ⟩−3/2

∫ t

t0,σ

τ2µ+m−3/2dτ

≤ Cε2⟨σ⟩−3/2(t0,σ)
2µ+m−1/2

≤ Cε2⟨σ⟩2µ+m−2

for t ≥ t0,σ. Therefore we deduce that

|V2(t)| ≤ Cε⟨σ⟩µ+m/2−1t−m/2. (2.5.7)

26



In particular, V2(t) → 0 as t → +∞. Next we turn our attentions to the
asymptotics for V1(t). Since V1(t) solves ∂tV1(t) = λ(t)V1(t) + Q(t) with
λ(t) = −V2(t)2/t and Q(t) = K1(t;σ, ω), we can apply Lemma 2.5.1 to
V1(t). Then we have

|V1(t)−W+
1 | ≤ C

∫ ∞

t

(
|W+

1 ||V2(τ)|2

τ
+ |K1(τ)|

)
dτ,

where

W+
1 =W+

1 (σ, ω) := V1(t0,σ;σ, ω)e
−

∫∞
t0,σ

V2(τ ;σ,ω)2
dτ
τ

+

∫ ∞

t0,σ

K1(s;σ, ω)e
−

∫∞
s V2(τ ;σ,ω)2

dτ
τ ds.

By (2.3.8), (2.3.9) and (2.5.7), we have

|W+
1 | ≤ |V1(t0,σ)|+

∫ ∞

t0,σ

|K1(s)|ds ≤ Cε⟨σ⟩µ−1 (2.5.8)

and∫ ∞

t

(
|W+

1 ||V2(τ)|2

τ
+ |K1(τ)|

)
dτ ≤ C

∫ ∞

t

(
ε3⟨σ⟩3µ+m−3

τ1+m
+
ε⟨σ⟩−µ−1/2

τ3/2−2µ

)
dτ

≤ Cε3⟨σ⟩3µ+m−3

mtm
+
Cε⟨σ⟩−µ−1/2

t1/2−2µ
.

Therefore we conclude that V1(t) →W+
1 as t→ +∞.

Case 2: m(σ, ω) < 0. Similarly to the previous case, we have

lim
t→∞

|V1(t;σ, ω)| = 0, lim
t→∞

|V2(t;σ, ω)−W+
2 (σ, ω)| = 0,

where

W+
2 (σ, ω) := V2(t0,σ;σ, ω)e

−
∫∞
t0,σ

V1(τ ;σ,ω)2
dτ
τ

+

∫ ∞

t0,σ

K2(s;σ, ω)e
−

∫∞
s V1(τ ;σ,ω)2

dτ
τ ds.

Remark that |W+
2 | ≤ Cε⟨σ⟩µ−1.

Case 3: m(σ, ω) = 0. By (2.3.7), (2.3.8), (2.3.9), (2.5.4) and (2.5.6), we
have

∂t
(
V1(t)

2
)
=

−1

t
V1(t)

4 − r(t)

t
V1(t)

2 + 2V1(t)K1(t)

≤ −1

t
(V1(t))

4 + Cε2⟨σ⟩−3/2t2µ−3/2
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for t ≥ t0,σ. Thus we can apply Lemma 2.4.2 with Φ(t) = V1(t)
2 to obtain

|V1(t)| ≤
C√
log t

→ 0 (t→ +∞).

Also (2.5.4) gives us |V2(t)| =
√
V1(t)2 + r(t) → 0 as t→ ∞.

Summing up the three cases above, we deduce that V (t;σ, ω) converges
as t→ +∞ for each fixed (σ, ω) ∈ R× S1. In order to show (2.5.2), we set

V +
1 (σ, ω) :=

{
W+

1 (σ, ω) (m(σ, ω) > 0) ,
0 (m(σ, ω) ≤ 0) ,

V +
2 (σ, ω) :=

{
0 (m(σ, ω) ≥ 0) ,

W+
2 (σ, ω) (m(σ, ω) < 0) ,

and V +(σ, ω) = (V +
j (σ, ω))j=1,2 for (σ, ω) ∈ R × S1. Then, by virtue of

(2.5.8), we have V + ∈ L2(R× S1) and∣∣χt(σ)V (t;σ, ω)− V +(σ, ω)
∣∣2 ≤ Cε2⟨σ⟩2µ−2 ∈ L1(R× S1)

for all t ≥ t0,σ. Moreover, it holds that

lim
t→∞

∣∣χt(σ)V (t;σ, ω)− V +(σ, ω)
∣∣2 = 0

for each fixed (σ, ω) ∈ R× S1. Consequently, Lebesgue’s dominated conver-
gence theorem yields (2.5.2).

2.5.2 Proof of Theorem 2.1.2

We are going to prove Theorem 2.1.2. First we recall the following useful
lemma.

Lemma 2.5.2 ([32] Theorem 2.1). For φ ∈ C
(
[0,∞); Ḣ1

)
∩C1

(
[0,∞);L2

)
,

the following two assertions (i) and (ii) are equivalent:

(i) There exists (φ+0 , φ
+
1 ) ∈ Ḣ1(R2)× L2(R2) such that

lim
t→∞

∥φ(t)− φ+(t)∥E = 0,

where φ+ ∈ C
(
[0,∞); Ḣ1(R2)

)
∩ C1

(
[0,∞);L2(R2)

)
is a unique so-

lution to 2φ+ = 0, φ+(0) = φ+0 , ∂φ
+(0) = φ+1 .

(ii) There exists Φ = Φ(σ, ω) ∈ L2(R× S1) such that

lim
t→∞

∥∂φ(t, ·)− ω̂(·)Φ♯(t, ·)∥L2(R2) = 0,

where Φ♯(t, x) = |x|−1/2Φ(|x| − t, x/|x|).

28



By virtue of this lemma, to prove that u1 is asymptotically free, it is
sufficient to show

lim
t→∞

∥∂u1(t, ·)− ω̂(·)V +,♯
1 (t, ·)∥L2(R2) = 0 (2.5.9)

for V +
1 (σ, ω) obtained in Proposition 2.5.1. To prove (2.5.9), we split

∥∂u1(t, ·)− ω̂(·)V +,♯
1 (t, ·)∥2L2(R2)

=

∫
R2

|∂u1(t, x)− ω̂(x)|x|−1/2V +
1 (|x| − t, x/|x|)|2dx

≤2

∫
R2\Λ∞

|∂u1(t, x)− ω̂(x)|x|−1/2V1(t; |x| − t, x/|x|)|2 dx

+ 2

∫
Λ∞

|∂u1(t, x)− ω̂(x)|x|−1/2V1(t; |x| − t, x/|x|)|2 dx

+ 2

∫ ∞

0

∫
S1
|ω̂(rω)V1(t; r − t, ω)− ω̂(rω)V +

1 (r − t, ω)|2 dSωdr

=:J1(t) + J2(t) + J3(t).

To show the decay for J1(t), we note that ⟨t+ |x|⟩ ≤ C⟨t− |x|⟩ on R2 \Λ∞.
Then (2.2.9) and (2.3.8) imply

J1(t) ≤ Cε2
∫
R2\Λ∞

(
⟨t− |x|⟩−1⟨t+ |x|⟩2µ−2 + |x|−1⟨t− |x|⟩2µ−2

)
dx

≤ Cε2
∫
R2\Λ∞

|x|−1⟨t+ |x|⟩2µ−2 dx

≤ Cε2
∫ ∞

0

∫
S1
(1 + t+ r)2µ−2dSω dr

≤ Cε2(1 + t)2µ−1.

As for J2(t), we see from Lemma 2.3.1 and (2.2.8) that

J2(t) = 2

∫
Λ∞

|x|−1
∣∣∣|x|1/2∂u1(t, x)− ω̂(x)D

(
|x|1/2u1(t, x)

)∣∣∣2 dx
≤ C

∫
Λ∞

|x|−1⟨t+ |x|⟩−1|u(t, x)|21 dx

≤ Cε2
∫
R2

|x|−1⟨t+ |x|⟩2µ−2 dx

≤ Cε2(1 + t)2µ−1.
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Finally, we note that

J3(t) ≤ C

∫ ∞

0

∫
S1

∣∣V1(t; r − t, ω)− V +
1 (r − t, ω)

∣∣2 dSωdr
≤ C

∫ ∞

−t

∫
S1

∣∣V1(t;σ, ω)− V +
1 (σ, ω)

∣∣2 dSωdσ
≤ C

∫
R

∫
S1

∣∣χt(σ)V1(t;σ, ω)− V +
1 (σ, ω)

∣∣2 dSωdσ.
Then, by using Lebesgue’s dominated convergence theorem, it follows from
(2.5.2) that we obtain limt→∞ J3(t) = 0.

Piecing them together, we arrive at (2.5.9). Similarly we have

lim
t→∞

∥∂u2(t, ·)− ω̂(·)V +,♯
2 (t, ·)∥L2(R2) = 0,

where V +
2 is from Proposition 2.5.1. With the aid of Lemma 2.5.2, we

conclude that u2 is also asymptotically free.

2.5.3 Leading term of m(σ, ω)

According to Subsection 2.5.1, the function m(σ, ω) is closely related to the
vanishing of the scattering state. We summarize the result in the proof of
Proposition 2.5.1 as following lemma.

Lemma 2.5.3. Let V + = (V +
1 , V

+
2 ) be in Proposition 2.5.1 and m =

m(σ, ω) be the function defined by (2.5.5). Then the following holds for
each (σ, ω) ∈ R× S1:

� m(σ, ω) > 0 implies V +
1 (σ, ω) ̸= 0 and V +

2 (σ, ω) = 0;

� m(σ, ω) < 0 implies V +
1 (σ, ω) = 0 and V +

2 (σ, ω) ̸= 0;

� m(σ, ω) = 0 implies V +
1 (σ, ω) = V +

2 (σ, ω) = 0.

From this lemma, it is natural to expect that the better understanding of
m(σ, ω) bring us more precise information on the energy decay. Therefore,
we focus on m(σ, ω) to prove Theorem 2.1.3. In the rest of this subsection,
we are going to specify the leading term of m(σ, ω).

Lemma 2.5.4. Let 0 < µ < 1/10. Then we have

m(σ, ω) = ε2
(
(∂σF1(σ, ω))

2 − (∂σF2(σ, ω))
2
)
+O(ε5/2−2µ)

uniformly in (σ, ω) ∈ R× S1 as ε→ +0.
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Proof. First we note that t0,σ in (2.5.5) can be replaced by t1,σ := max{ε−1,−2σ}
since we have(

V1(t1,σ)
2 − V2(t1,σ)

2
)
−
(
V1(t0,σ)

2 − V2(t0,σ)
2
)

= 2

∫ t1,σ

t0,σ

(V1(τ)∂tV1(τ)− V2(τ)∂tV2(τ)) dτ

= 2

∫ t1,σ

t0,σ

ρ(τ ;σ, ω) dτ. (2.5.10)

It follows from (2.5.3), we also obtain∣∣∣∣∣
∫ ∞

t1,σ

ρ(τ ;σ, ω) dτ

∣∣∣∣∣ ≤ Cε2⟨σ⟩−3/2

∫ ∞

ε−1

τ2µ−3/2 dτ

≤ Cε5/2−2µ. (2.5.11)

From (2.5.5), (2.5.10) and (2.5.11), we get∣∣m(σ, ω)−
(
(V1(t1,σ;σ, ω))

2 − (V2(t1,σ;σ, ω))
2
)∣∣ ≤ Cε5/2−2µ

for (σ, ω) ∈ R× S1. Thus, to prove Lemma 2.5.4, it suffices to show

Vj(t1,σ;σ, ω) = ε∂σFj(σ, ω) +O(ε2−µ) (2.5.12)

as ε → +0 uniformly in (σ, ω) ∈ R × S1 for j = 1, 2. The rest part of this
subsection is devoted to the proof of (2.5.12). We divide the argument into
the following two cases.
Case 1: σ ≤ −1/(2ε). If we assume |x| ≤ t/2 and t ≥ ε−1, we have ε−1 ≤
t ≤ ⟨t+ |x|⟩ ≤ C⟨t− |x|⟩. It follows from (2.2.8) and (2.2.9) that

|U(t, x)| ≤ C|x|−1/2 |u(t, x)|+ C|x|1/2 |∂u(t, x)|
≤ Cε|x|−1/2⟨t+ |x|⟩−1/2+µ + Cε|x|1/2⟨t+ |x|⟩−1/2⟨t− |x|⟩µ−1

≤ Cε2−µ

for |x| ≤ t/2 and t ≥ ε−1. Then we obtain

|V (t;σ, ω)| = |U(t, (t+ σ)ω)| ≤ Cε2−µ (2.5.13)

for t+σ ≤ t/2 and t ≥ ε−1. In the case ε−1 ≤ −2σ, we have t1,σ+σ = t1,σ/2
and t1,σ ≥ ε−1. Therefore, from (2.2.7), (2.5.13) and |σ| ≥ 1/(2ε), we get

|Vj(t1,σ;σ, ω)− ε∂σFj(σ, ω)| ≤ |Vj(t1,σ;σ, ω)|+ ε|∂σFj(σ, ω)|
≤ Cε2−µ + Cε⟨σ⟩−3/2

≤ Cε2−µ.
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Case 2: σ > −1/(2ε). For j = 1, 2, let u0j = u0j (t, x) be the solution to the

free wave equation 2u0j = 0 with the initial data u0j (0) = fj , ∂tu
0
j (0) = gj

and we put u1j (t, x) := uj(t, x)− εu0j (t, x), so that u1j solves

2u1j (t, x) = Fj(∂u), (t, x) ∈ (0,∞)× R2,

u1j (0, x) = ∂u1j (0, x) = 0, x ∈ R2.

We also define U l(t, x) = D(|x|1/2ul(t, x)) and V l(t;σ, ω) := U l(t, (t+ σ)ω),
for l = 0, 1, respectively. It follows from (2.2.5) and (2.2.6) that∣∣U0

j (t, x)− ∂σFj(|x| − t, x/|x|)
∣∣

≤1

2

2∑
a=0

||x|1/2∂au0j (t, x)− ωa∂σFj(|x| − t, ω)|+ 1

4|x|1/2
|u0j (t, x)|

≤C⟨t+ |x|⟩−1⟨t− |x|⟩−1/2 + C|x|−1/2⟨t+ |x|⟩−1/2⟨t− |x|⟩−1/2

≤Cε

for |x| ≥ 1/(2ε). Hence we get∣∣V 0
j (t;σ, ω)− ∂σFj(σ, ω)

∣∣ ≤ Cε (2.5.14)

for t+σ ≥ 1/(2ε). We next consider the estimate for V 1. Note that we have

(Γαφ, ∂tΓ
αφ)|t=0 ∈

(
C∞
0 (R2)

)2
and ∥Γαφ(0)∥L∞(R2), ∥∂tΓαφ(0)∥L∞(R2) =

O(ε3) for α ∈ Z7
+ if φ(t, x) satisfies 2φ = N(∂φ) with a cubic nonlinear

term N(∂φ) and (φ, ∂tφ)|t=0 ∈
(
C∞
0 (R2)

)2
. By using (2.2.10), (2.2.11) and

the standard energy method for Γαu1 with |α| ≤ 2, we obtain

∥∂u1(t)∥2 ≤ Cε3 + C

∫ t

0
∥|∂u(τ, ·)|1∥2L∞ ∥∂u(τ)∥2 dτ

≤ Cε3 + Cε3
∫ ε−1

0
(1 + τ)−1+µ+ν dτ

≤ Cε3 + Cε3(1 + ε−1)µ+ν

≤ Cε3−µ−ν

for 0 ≤ t ≤ ε−1. Then, by the Klainerman-Sobolev inequality, we get

⟨t+ |x|⟩1/2|∂u1(t, x)| ≤ Cε3−µ−ν (2.5.15)

for 0 ≤ t ≤ ε−1, x ∈ R2. It follows from (2.2.5) and (2.2.8) that

|x|−1/2
∣∣u1(t, x)∣∣ ≤ |x|−1/2

(
|u(t, x)|+ ε|u0(t, x)|

)
≤ |x|−1/2

(
Cε⟨t+ |x|⟩µ−1/2 + Cε⟨t+ |x|⟩−1/2⟨t− |x|⟩−1/2

)
≤ Cε2−µ (2.5.16)
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for |x| ≥ 1/(2ε). From (2.5.15) and (2.5.16), we get∣∣U1(t, x)
∣∣ ≤ C|x|1/2|∂u1(t, x)|+ C|x|−1/2|u1(t, x)|
≤ Cε3−µ−ν + Cε2−µ

≤ Cε2−µ

for |x| ≥ 1/(2ε), 0 ≤ t ≤ ε−1. Therefore, we obtain∣∣V 1(t;σ, ω)
∣∣ ≤ Cε2−µ (2.5.17)

for t+ σ ≥ 1/(2ε), 0 ≤ t ≤ ε−1. When ε−1 > −2σ, we have t1,σ = ε−1 and
t1,σ + σ > t1,σ/2 = 1/(2ε). Thus, by (2.5.14) and (2.5.17), we get

|Vj(t1,σ;σ, ω)− ε∂σFj(σ, ω)|
≤|V 1

j (t1,σ;σ, ω)|+ ε|V 0
j (t1,σ;σ, ω)− ∂σFj(σ, ω)|

≤Cε2−µ.

Combining the two cases above, we arrive at the desired expression (2.5.12).
This completes the proof of Lemma 2.5.4.

2.5.4 Proof of Theorem 2.1.3

Now we are ready to prove Theorem 2.1.3. We put

E = {(σ, ω) ∈ R× S1; |∂σF1(σ, ω)| > |∂σF2(σ, ω)|}.

By (2.1.8), E is a non-empty open set. Hence we can take a bounded open
set M in R and an open set N in S1 such that σ∗ ∈ M, ω∗ ∈ N and
M×N ⊂ E, where M×N denotes the closure of M×N in R× S1. Now
we put F = M×N and

C1 = min
(σ,ω)∈F

(
(∂σF1(σ, ω))

2 − (∂σF2(σ, ω))
2
)
.

Then we see that F is compact, and thus C1 > 0. By Lemma 2.5.4, we have

m(σ, ω) ≥ C1ε
2 − Cε5/2−2µ > 0

for (σ, ω) ∈ F , if ε > 0 is small enough. Thus Lemma 2.5.3 implies
V +
1 (σ, ω) ̸= 0 for (σ, ω) ∈ F , whence ∥V +

1 ∥L2(F ) > 0. By virtue of (2.5.9),
we can take T1 > 0 such that

∥∂u1(t, ·)− ω̂(·)V +,#
1 (t, ·)∥L2(R2) <

1√
2
∥V +

1 ∥L2(F )
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for t > T1. Therefore we have

∥u1(t)∥E ≥
(
1

2

∫
R2

|ω̂(x)V +,#
1 (t, x)|2 dx

)1/2

−
(
1

2

∫
R2

|∂u1(t, x)− ω̂(x)V +,#
1 (t, x)|2 dx

)1/2

= ∥V +,#
1 (t, ·)∥L2(R2) −

1√
2
∥∂u1(t, ·)− ω̂(·)V +,#

1 (t, ·)∥L2(R2)

≥ ∥V +
1 ∥L2(F ) −

1

2
∥V +

1 ∥L2(F )

=
1

2
∥V +

1 ∥L2(F )

for t > T1. Consequently, we arrive at the desired estimate

lim
t→+∞

∥u1(t)∥E ≥ 1

2
∥V +

1 ∥L2(F ) > 0.

Interchanging the roles of u1 and u2, we also have limt→+∞ ∥u2(t)∥E > 0.
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Chapter 3

Asymptotic behavior of
solutions to nonlinear
Schrödinger equations with
weakly dissipative structure

3.1 Introduction and results

This chapter is based on the joint works [53], [54] and [55] with Chunhua Li,
Yuji Sagawa and Hideaki Sunagawa. In this chapter, we deal with cubic
nonlinear Schrödinger equations. We first study the initial value problem{

Lu = N(u, ∂xu), t > 0, x ∈ R,
u(0, x) = ϕ(x), x ∈ R, (3.1.1)

where L := i∂t +
1
2∂

2
x, u = (u(t, x)) is a C-valued unknown function on

[0,∞) × R. ϕ is a prescribed C-valued function on R which belongs to
suitable weighted Sobolev space and is suitably small in its norm. We assume
that the nonlinear term N(u, ∂xu) is a cubic homogeneous polynomial in
(u, u, ∂xu, ∂xu) with complex coefficients.

First of all, let us summarize the backgrounds briefly. As is well-known,
cubic nonlinearity gives a critical situation when we consider large time
behavior of solutions to the nonlinear Schrödinger equation in R. In general,
cubic nonlinearity should be regarded as a long-range perturbation. For
example, according to Hayashi–Naumkin [11], the small data solution u(t, x)
to

Lu = λ|u|2u (3.1.2)

with λ ∈ R\{0} behaves like

u(t, x) =
1√
it
α±(x/t)ei{

x2

2t
−λ|α±(x/t)|2 log t} + o(t−1/2) in L∞(Rx)
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as t → ±∞, where α± is a suitable C-valued function on R. An important
consequence of this asymptotic expression is that the solution to (3.1.2)
decays like O(|t|−1/2) uniformly in x ∈ R, while it does not behave like
the free solution (unless λ = 0). In other words, the additional logarithmic
correction in the phase reflects a typical long-range character of the cubic
nonlinear Schrödinger equations in one space dimension. If λ ∈ C in (3.1.2),
another kind of long-range effect can be observed. For instance, according
to [68] (see also [47], [28], [9], etc.), the small data solution u(t, x) to (3.1.2)
decays like O(t−1/2(log t)−1/2) in L∞(Rx) as t→ +∞ if Imλ < 0. This gain
of additional logarithmic time decay should be interpreted as another kind
of long-range effect. There are various extensions of these results. In the
previous works [51] and [52], several structural conditions on the nonlinearity
have been introduced under which the small data global existence holds for a
class of cubic nonlinear Schrödinger systems in R, and large time asymptotic
behavior of the global solutions have also been investigated (see also [42],
[67], [41] and the references cited therein for related works).

What we can expect for general cubic nonlinear Schrödinger equations
in R is the lower estimate for the lifespan Tε in the form Tε ≥ exp(c/ε2)
with some c > 0, and this is best possible in general (see [44] for an example
of small data blow-up). More precise information on the lower bound is
available under the restriction

N(eiθ, 0) = eiθN(1, 0), θ ∈ R. (3.1.3)

According to [66] (see also [70]), if we assume (3.1.3) and the initial condition
in (3.1.1) is replaced by u(0, x) = εψ(x) with ψ ∈ H3 ∩H2,1, then it holds
that

lim inf
ε→+0

ε2 log Tε ≥
1

2 sup
ξ∈R

(|Fψ(ξ)|2 Im ν(ξ))
(3.1.4)

with the convention 1/0 = +∞, where the function ν : R → C is defined by

ν(ξ) =
1

2πi

∮
|z|=1

N(z, iξz)
dz

z2
. (3.1.5)

Note that (3.1.3) excludes just the worst terms u3, |u|2u, u3. As pointed
out in [13], [14], [16], [17], [18], [60], [61], etc., these three terms make the
situation much more complicated. We do not intend to pursue this case
here. We always assume (3.1.3) in what follows.

In view of the right-hand side in (3.1.4), it may be natural to expect
that the sign of Im ν(ξ) has something to do with global behavior of small
data solutions to (3.1.1). In fact, it has been pointed out in [66] that typical
results on small data global existence and large-time asymptotic behavior
for (3.1.1) under (3.1.3) can be summarized in terms of Im ν(ξ) as follows.
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(i) The small data global existence holds in H3∩H2,1 under the condition

Im ν(ξ) ≤ 0, ξ ∈ R. (A)

(ii) If the inequality in (A) is replaced by the equality, i.e.,

Im ν(ξ) = 0, ξ ∈ R, (A0)

then the solution has a logarithmic phase correction in the asymptotic
profile, i.e., it holds that

u(t, x) =
1√
t
α+(x/t) exp

(
ix2

2t
− i|α+(x/t)|2Re ν(x/t) log t

)
+o(t−1/2)

as t → +∞ uniformly in x ∈ R, where α+(ξ) is a suitable C-valued
function of ξ ∈ R.

(iii) If the inequality in (A) is strict, i.e.,

sup
ξ∈R

Im ν(ξ) < 0, (A+)

then the solution gains an additional logarithmic time decay ∥u(t)∥L∞ =
O((t log t)−1/2).

For more details on each case, see the references cited in Section 1 of [66].
As for the large time behavior in the sense of L2

x under (A), it is not dif-
ficult to see that (A+) implies lim

t→+∞
∥u(t)∥L2 = 0, whereas (A0) implies

lim
t→+∞

∥u(t)∥L2 ̸= 0 for generic initial data of small amplitude. However, it

is not clear whether L2-decay occurs or not in the other cases (even for a
simple example such as N(u, ∂xu) = −i|∂xu|2(u+ ∂xu) + ∂x(u

3), for which
we have

ν(ξ) =
1

2πi

∮
|z|=1

(−iξ2(1 + iξ)|z|2z + 3iξz3)
dz

z2
= −iξ2 + ξ3

and Im ν(ξ) = −ξ2). Despite the recent progress of studies on dissipative
nonlinear Schrödinger equations ([9], [19], [27], [28], [37], [42], [45], [46], [47],
[51], [52], [68], etc.), questions on decay/non-decay in L2

x without (A+) have
not been addressed in the previous works. The first aim of this chapter is to
fill in the missing piece between (A+) and (A0), that is, to investigate L2-
decay property of global solutions to (3.1.1) under (3.1.3) and (A) without
(A+) and (A0). The first result in this chapter is as follows.

Theorem 3.1.1. Suppose that ε = ∥ϕ∥H3∩H2,1 is sufficiently small. Assume
that (3.1.3) and (A) are satisfied but (A0) is violated. Then, for any δ > 0,
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there exists a positive constant C such that the global solution u to (3.1.1)
satisfies

∥u(t)∥L2 ≤ Cε

(1 + ε2 log(t+ 2))1/4−δ

for t ≥ 0.

Remark 3.1.1. Under (3.1.3) and (A+), we can show the global solution to
(3.1.1) has the stronger L2-decay of order O((log t)−3/8+δ) with arbitrarily
small δ > 0 by the same method. However, the decay order O((log t)−3/8+δ)
is certainly not optimal. For the detail, see Remark 3.2.1 below.

Our second target in this chapter is a system of cubic nonlinear Schrödinger
equations which can be comparable to (2.1.5). Let us focus on{

Lu1 = −i|u2|2u1,
Lu2 = −i|u1|2u2,

(t, x) ∈ (0,∞)× R, (3.1.6)

with the initial condition

uj(0, x) = ϕ0
j (x), x ∈ R, j = 1, 2, (3.1.7)

where ϕ0 = (ϕ0
1(x), ϕ

0
2(x)) is a given C2-valued function of x ∈ R which

belongs to an appropriate weighted Sobolev space and satisfies a suitable
smallness condition.

There are various extensions of the conditions (A), (A+) and (A0) for
the system case (see e.g. [51], [52], [42], [67], [41]). In the previous works
[51] and [52], several structural conditions on the nonlinearity have been
introduced under which the small data global existence holds for a class
of cubic nonlinear Schrödinger systems in R, and large time asymptotic
behavior of the global solutions have also been investigated (see also [42],
[67], [41] and the references cited therein for related works). We do not
state these conditions here, but we only point out that the small data global
existence for (3.1.6) follows from the results of [51] and [42] but the large
time asymptotic behavior of solutions is not covered by these results.

We note that the system (3.1.6) possesses two conservation laws

d

dt

(
∥u1(t)∥2L2 + ∥u2(t)∥2L2

)
= −4

∫
R
|u1(t, x)|2|u2(t, x)|2 dx

and
d

dt

(
∥u1(t)∥2L2 − ∥u2(t)∥2L2

)
= 0.

However, these are not enough to say something about the large time asymp-
totics for u(t), and this is not trivial at all. To the author’s knowledge, there
are no previous results which cover the asymptotic behavior of solutions to
(3.1.6)–(3.1.7). From the viewpoint of conservation laws, there are a lot of
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similarities between (3.1.6) and (2.1.5). It has been shown in the previous
chapter that global solutions to (2.1.5) with small data behaves like solutions
to the free wave equations, but there is a strong restriction in the profiles.
Although the approach of the previous chapter does not use the conservation
laws directly, it may be natural to expect that an analogous phenomenon
can be observed for solutions to (3.1.6). We are going to reveal it.

Before stating the results, let us introduce a notation. We set U(t) =
exp(i t2∂

2
x), so that U(t)φ =: w(t) solves the free Schrödinger equation Lw =

0 with w(0) = φ.

Theorem 3.1.2. Suppose that ϕ0 = (ϕ0
1, ϕ

0
2) ∈ H2∩H1,1 and ε = ∥ϕ0∥H2∩H1,1

is suitably small. Let u = (u1, u2) ∈ C([0,∞);H2 ∩ H1,1) be the solu-
tion to (3.1.6)–(3.1.7). Then there exists ϕ+ = (ϕ+

1 , ϕ
+
2 ) ∈ L2 with ϕ̂+ =

(ϕ̂+
1 , ϕ̂

+
2 ) ∈ L∞ such that

lim
t→+∞

∥uj(t)− U(t)ϕ+
j ∥L2 = 0, j = 1, 2.

Moreover we have

ϕ̂+
1 (ξ) · ϕ̂

+
2 (ξ) = 0, ξ ∈ R. (3.1.8)

Remark 3.1.2. We emphasize that (3.1.8) should be regarded as a conse-
quence of non-trivial long-range nonlinear interactions because such a phe-
nomenon does not occur in the usual short-range situation. To complement
this point, we will give auxiliary results on the final state problem for (3.1.6)
in Section 3.6.

To investigate more precise information on ϕ+, we put a small parameter
ε in front of the initial data to distinguish information on the amplitude from
the others, that is, we replace the initial condition (3.1.7) by

uj(0, x) = εψj(x), j = 1, 2, (3.1.9)

where ψj ∈ H2 ∩ H1,1 is independent of ε. We have following criteria for
(non-)triviality of the scattering state ϕ+ = (ϕ+

1 , ϕ
+
2 ) for (3.1.6)–(3.1.9).

Theorem 3.1.3. We put ϕ+
j = lim

t→+∞
U(−t)uj(t) in L2, j = 1, 2, for the

global solution u = (u1, u2) to (3.1.6)–(3.1.9), whose existence is guaranteed
by Theorem 3.1.2. Assume that there exist points ξ∗ ∈ R and ξ∗ ∈ R such
that

|ψ̂1(ξ
∗)| > |ψ̂2(ξ

∗)| (3.1.10)

and

|ψ̂1(ξ∗)| < |ψ̂2(ξ∗)|, (3.1.11)

respectively. Then, we have ∥ϕ+
1 ∥L2 > 0 and ∥ϕ+

2 ∥L2 > 0 for sufficiently
small ε.
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Theorem 3.1.4. Assume that

|ψ̂1(ξ)| > |ψ̂2(ξ)| (3.1.12)

for all ξ ∈ R. Then, for sufficiently small ε, ϕ+
2 vanishes almost everywhere

on R, while ∥ϕ+
1 ∥L2 > 0.

It follows from Theorems 3.1.2 and 3.1.3 that both u1(t) and u2(t) behave
like non-trivial free solutions as t → +∞. In particular, we see that L2

decay does not occur for u1(t) and u2(t) under (3.1.10) and (3.1.11). To the
contrary, Theorem 3.1.4 tells us that only the second component u2(t) is
dissipated as t→ ∞ in the sense of L2 under (3.1.12). We emphasize again
that such phenomena do not occur in the usual short-range settings. In this
sense, the dynamics for the system (3.1.6) is much more delicate than that
for the single Schrödinger equation with dissipative cubic nonlinear terms.

Remark 3.1.3. It is worthwhile to note that the presence of −i in the right-
hand sides of (3.1.6) is essential for our result. Indeed, if we drop −i from
the right-hand sides of (3.1.6) (that is, Lu1 = |u2|2u1 and Lu2 = |u1|2u2),
we can show that the solutions have logarithmic phase corrections as in the
single case (3.1.2) with λ ∈ R\{0} (see e.g. [71] for detail).

Remark 3.1.4. Theorems 3.1.2, 3.1.3 and 3.1.4 concern only the forward
Cauchy problem (i.e., for t > 0). In the backward case, the small data global
existence may fail in general. See [65] and the references cited therein for
more information and the related works on this issue.

3.2 Proof of Theorem 3.1.1

This section is devoted to the proof of Theorem 3.1.1. The argument will
be divided into four steps.

Step 1: We begin with the following elementary lemma, whose proof is
skipped.

Lemma 3.2.1. Let p(ξ) be a real polynomial with deg p ≤ 3. If p(ξ) ≥ 0 for
all ξ ∈ R, then we have either of the following three assertions.

(a) p(ξ) vanishes identically on R.

(b) inf
ξ∈R

p(ξ) > 0.

(c) There exist c0 > 0 and ξ0 ∈ R such that p(ξ) = c0(ξ − ξ0)
2.
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For ν(ξ) given by (3.1.5), we put p(ξ) = − Im ν(ξ). Since we assume that
(A) is satisfied but (A0) is violated, we see that the case (a) in Lemma 3.2.1
is excluded. Note also that (b) is equivalent to (A+). Now, let us turn our
attentions to the admissible range of the parameter θ for convergence of the
integral

Iθ =

∫
R

dξ

p(ξ)θ⟨ξ⟩4−4θ
(3.2.1)

under (c) or (b). In the case (c), we have

Iθ = c−θ
0

∫
R

dξ

|ξ − ξ0|2θ⟨ξ⟩4−4θ
<∞

for θ < 1/2. In the case (b), we have

Iθ ≤
(
inf
ξ∈R

p(ξ)
)−θ

∫
R

dξ

⟨ξ⟩4−4θ
<∞

for θ < 3/4.

Step 2: Next we summarize the basic estimates for the global solution u to
(3.1.1). First we write J = x+ it∂x. We note the important commutation
relations [∂x,J ] = 1, [L,J ] = 0. We also have

J = U(t)xU(−t). (3.2.2)

We set α(t, ξ) = F
[
U(−t)u(t, ·)

]
(ξ) for the solution u to (3.1.1). Ac-

cording to the previous works ([12], [19], [66], etc.), we already know the
following estimates.

Lemma 3.2.2. Let ε = ∥ϕ∥H3∩H2,1 be suitably small. Assume that (3.1.3)
and (A) are fulfilled. Then, the solution u to (3.1.1) satisfies

|α(t, ξ)| ≤ Cε

⟨ξ⟩2
(3.2.3)

for t ≥ 0, ξ ∈ R, and

∥u(t)∥H3 + ∥J u(t)∥H2 ≤ Cε(1 + t)γ (3.2.4)

for t ≥ 0, where 0 < γ < 1/12.

The following lemma has been obtained in [66] (see also [12]). We write
α(ζ)(t, ξ) = α(t, ξ/ζ) for ζ ∈ R\{0}.
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Lemma 3.2.3. Under the assumption (3.1.3), we have

FU(−t)(1− ∂2x)N(u, ux) =(1 + ξ2)
ν(ξ)

t
|α|2α+

ξei
t
3
ξ2

t
µ1(ξ)α

3
(3)

+
ξei

2t
3
ξ2

t
µ2(ξ)

(
α(−3)

)3
+
ξeitξ

2

t
µ3(ξ)|α(−1)|2α(−1) +R, (3.2.5)

where ν(ξ) is given by (3.1.5), µ1(ξ), µ2(ξ), µ3(ξ) are polynomials in ξ of
degree at most 4, and R(t, ξ) satisfies

|R(t, ξ)| ≤ C

t5/4
(
∥u(t)∥H3 + ∥J u(t)∥H2

)3
(3.2.6)

for t ≥ 1, ξ ∈ R.

For the proof, see Lemma 4.3 in [66]. By (3.2.4) and (3.2.6), we have

|R(t, ξ)| ≤ Cε3

t1+κ
(3.2.7)

for t ≥ 1, ξ ∈ R, where κ = 1/4 − 3γ > 0. This indicates that R can be
regarded as a remainder in (3.2.5). We also observe that one ξ pops up in
front of the oscillating factors in (3.2.5). This is the point where (3.1.3)
plays a crucial role. As for the role of ν(ξ), the first term of the right-hand
side in (3.2.5) tells us that ν(ξ) is responsible for the contribution from the
gauge-invariant part in N .

Step 3: We are going to make some reductions. The goal in this step is to
derive the ordinary differential equation (3.2.10) (with ξ ∈ R regarded as a
parameter).

Let t ≥ 2 from now on. By the relation L = U(t)i∂tU(−t) and Lemma 3.2.3,
we have

i∂tα(t, ξ) = FU(−t)Lu
= ⟨ξ⟩−2FU(−t)(1− ∂2x)N(u, ux)

=
ν(ξ)

t
|α(t, ξ)|2α(t, ξ) + η(t, ξ) + ⟨ξ⟩−2R(t, ξ), (3.2.8)

where

η(t, ξ) =
ξeitξ

2/3

t

µ1(ξ)

⟨ξ⟩2
α3
(3)+

ξei2tξ
2/3

t

µ2(ξ)

⟨ξ⟩2
α(−3)

3+
ξeitξ

2

t

µ3(ξ)

⟨ξ⟩2
|α(−1)|2α(−1).

It follows from (3.2.3), (3.2.7) and (3.2.8) that

|∂tα(t, ξ)| ≤
C⟨ξ⟩3

t

(
Cε

⟨ξ⟩2

)3

+
Cε3

t1+κ⟨ξ⟩2
≤ Cε3

t⟨ξ⟩2
.
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Also, by using the identity

ξeiωtξ
2

t
f(t, ξ) =

ξ∂t(te
iωtξ2)

t(1 + iωtξ2)
f(t, ξ)

= i∂t

(
−iξeiωtξ2

1 + iωtξ2
f(t, ξ)

)
− teiωtξ

2
∂t

(
ξf(t, ξ)

t(1 + iωtξ2)

)
and the inequality

sup
ξ∈R

|ξ|a

|1 + iωtξ2|
≤ C

(|ω|t)a/2

for 0 ≤ a ≤ 2, we see that η(t, ξ) can be split into

η = i∂tσ1 + σ2; |σ1(t, ξ)| ≤
Cε3

t1/2⟨ξ⟩4
, |σ2(t, ξ)| ≤

Cε3

t3/2⟨ξ⟩4
. (3.2.9)

With this σ1, we set β(t, ξ) = α(t, ξ)− σ1(t, ξ). Then it follows from (3.2.8)
that

i∂tβ(t, ξ) =
ν(ξ)

t
|β(t, ξ)|2β(t, ξ) + ρ(t, ξ), (3.2.10)

where

ρ(t, ξ) =
ν(ξ)

t

(
|α|2α− |β|2β

)
+ σ2 + ⟨ξ⟩−2R

=
ν(ξ)

t

(
2|α|2σ1 + α2σ1 − 2α|σ1|2 − ασ21 + |σ1|2σ1

)
+ σ2 + ⟨ξ⟩−2R.

By (3.2.3), (3.2.7) and (3.2.9), we have

|ρ(t, ξ)| ≤ C⟨ξ⟩3

t

(
Cε

⟨ξ⟩2
+

Cε3

t1/2⟨ξ⟩4

)2
Cε3

t1/2⟨ξ⟩4
+

Cε3

t3/2⟨ξ⟩4
+

Cε3

t1+κ⟨ξ⟩2

≤ Cε3

t1+κ⟨ξ⟩2
.

Remember that 0 < κ < 1/4.
Roughly speaking, what we have seen so far is that the solution u to

(3.1.1) under (3.1.3) can be expressed as

u = U(t)F−1β + · · ·

with

i∂tβ =
ν(ξ)

t
|β|2β + · · · ,

where the terms “+ · · · ” are expected to be harmless. By this reason it
would be fair to call (3.2.10) the profile equation associated with (3.1.1)
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under (3.1.3). The original idea of this reduction is due to Hayashi–Naumkin
[11].

Final step: We set Φ(t, ξ) = p(ξ)|β(t, ξ)|2 with p(ξ) = − Im ν(ξ). Note that
Φ(t, ξ) ≥ 0 by (A). It follows from (3.2.10) that

∂tΦ(t, ξ) = 2p(ξ) Im
(
β(t, ξ)i∂tβ(t, ξ)

)
= 2p(ξ)

(
Im ν(ξ)

t
|β(t, ξ)|4 + Im

(
β(t, ξ)ρ(t, ξ)

))
≤ −2p(ξ)2

t
|β(t, ξ)|4 + C⟨ξ⟩3 Cε

⟨ξ⟩2
Cε3

t1+κ⟨ξ⟩2

≤ −2

t
Φ(t, ξ)2 +

Cε4

t1+κ⟨ξ⟩
,

where κ ∈ (0, 1/4). We also note that (3.2.3) yields

Φ(2, ξ) ≤ C⟨ξ⟩3
(
Cε

⟨ξ⟩2

)2

≤ Cε2

⟨ξ⟩
.

Therefore we can apply Lemma 2.4.2 with q = 2 and s = 1 + κ to obtain

0 ≤ Φ(t, ξ) ≤ C

log t
,

whence

|α(t, ξ)| ≤

√
Φ(t, ξ)

p(ξ)
+ |σ1(t, ξ)|

≤ C√
p(ξ) log t

(
1 + ε3

√
p(ξ)

⟨ξ⟩4

√
log t

t

)

≤ Cε√
p(ξ)ε2 log t

.

Interpolating this with (3.2.3), we deduce that

|α(t, ξ)| ≤ Cε

(ε2 log t)θ/2
1

p(ξ)θ/2⟨ξ⟩2−2θ

for θ ∈ [0, 1]. By the L2-unitarity of U(t) and F , we have

∥u(t)∥2L2 = ∥α(t)∥2L2 ≤ Cε2

(ε2 log t)θ
Iθ (3.2.11)

for 0 ≤ θ < 1
2 , where Iθ is given by (3.2.1). Therefore we can take θ =

1/2− 2δ with δ > 0 to see that

∥u(t)∥L2 ≤ Cε

(ε2 log t)1/4−δ
.
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Also we obtain ∥u(t)∥L2 ≤ Cε by taking θ = 0 in (3.2.11). Piecing them
together, we arrive at the desired estimate.

Remark 3.2.1. If we assume (3.1.3) and the stronger condition (A+), we
can choose θ = 3/4−2δ in (3.2.11) because (A+) implies (b) in Lemma 3.2.1
and thus the admissible range for θ in (3.2.11) becomes 0 ≤ θ < 3

4 . That is

the reason why ∥u(t)∥L2 decays like O((log t)−3/8+δ) under (A+). It is not
certain whether this rate is the best or not. Indeed, it is possible to improve
the exponent from −3/8 + δ to −1/2 if there exists a positive constant C∗
such that

Im ν(ξ) ≤ −C∗⟨ξ⟩2, ξ ∈ R (A++)

(cf. Theorem 2.3 in [51]). A typical example of N satisfying (A++) is
−i|u+ ∂xu|2u.

It may be an interesting problem to specify the optimal L2-decay rates
for the solutions to (3.1.1) under (3.1.3) and (A) (with or without (A+)).

3.3 Preliminaries for Theorems 3.1.2, 3.1.3 and
3.1.4

In this section, we collect several inequalities and basic estimates which are
useful in the proof of Theorems 3.1.2, 3.1.3 and 3.1.4.

3.3.1 Basic estimates

Let u = (u1, u2) be a smooth solution to (3.1.6)–(3.1.7) on [0,∞) × R. We
define α = (α1, α2) by

αj(t, ξ) = F
[
U(−t)uj(t, ·)

]
(ξ) (3.3.1)

for j = 1, 2. Then it follows from (3.1.6) that

∂tα1 = −iFU(−t)Lu1 = −FU(−t)(|u2|2u1) = −1

t
|α2|2α1 +R1, (3.3.2)

where

R1 =
1

t
|α2|2α1 −FU(−t)

[
|u2|2u1

]
.

Similarly we have

∂tα2 = −1

t
|α1|2α2 +R2, (3.3.3)
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where

R2 =
1

t
|α1|2α2 −FU(−t)

[
|u1|2u2

]
.

Concerning estimates for R = (R1, R2), we have the following estimate.

Lemma 3.3.1. Let R be as above. For t ≥ 1, we have

|R(t, ξ)| ≤ C

t5/4⟨ξ⟩
(
∥u(t)∥H1 + ∥J u(t)∥H1

)3
.

This estimate is not a new one (see e.g. Lemma 5.2 in [51]). For the
convenience, we will prove it in Subsection 3.3.2, below.

Next we review the basic estimates for global solutions u to (3.1.6)–
(3.1.7). From the argument of [51], we already know the following result.

Lemma 3.3.2. Let 0 < γ < 1/12. Suppose that ε = ∥ϕ0∥H2∩H1,1 is suitably
small. Then the solution u to (3.1.6)–(3.1.7) satisfies

∥u(t)∥H2 + ∥J u(t)∥H1 ≤ Cε⟨t⟩γ , (3.3.4)

∥u(t)∥L∞ ≤ Cε⟨t⟩−1/2 (3.3.5)

for t ≥ 0 and

|α(t, ξ)| ≤ Cε⟨ξ⟩−1 (3.3.6)

for t ≥ 0, ξ ∈ R, where α is given by (3.3.1).

It follows from Lemmas 3.3.1 and 3.3.2 that we obtain

|R(t, ξ)| ≤ Cε3

t5/4−3γ⟨ξ⟩
(3.3.7)

for t ≥ 1. Roughly speaking, this means that the evolution of α = (α1, α2)
could be characterized by

∂tα1 = −1

t
|α2|2α1, ∂tα2 = −1

t
|α1|2α2

up to the harmless remainders. We also note that u(t) = U(t)F−1α(t). This
point of view, whose original idea goes back to Hayashi–Naumkin [11], is the
key of our approach.

3.3.2 Proof of Lemma 3.3.1

We give a proof of Lemma 3.3.1. For this purpose, we introduce some
notations. We define the operators M(t), D(t) and W(t) by(
M(t)φ

)
(x) = ei

x2

2t φ(x),
(
D(t)φ

)
(x) = (it)−1/2φ

(x
t

)
,W(t)φ = FM(t)F−1φ,

46



so that U(t) = exp(i t2∂
2
x) is decomposed into

U(t) = M(t)D(t)FM(t) = M(t)D(t)W(t)F . (3.3.8)

An important estimate is

∥(W(t)− 1)φ∥L∞ + ∥(W(t)−1 − 1)φ∥L∞ ≤ Ct−1/4∥φ∥H1 , (3.3.9)

which comes from the Gagliardo-Nirenberg inequality

∥φ∥L∞ ≤ C∥φ∥1/2
L2 ∥∂xφ∥

1/2
L2

and the inequality

|eiθ − 1| ≤ C|θ|σ (θ ∈ R, 0 ≤ σ ≤ 1) (3.3.10)

with θ = x2/(2t), σ = 1/2. Note also that

∥W(t)FU(−t)φ∥H1 + ∥W(t)−1FU(−t)φ∥H1 ≤ C(∥φ∥L2 + ∥J φ∥L2)
(3.3.11)

and

∥FU(−t)[φ1φ2φ3]∥L∞ ≤ C∥φ1∥L2∥φ2∥L2∥φ3∥L∞ , (3.3.12)

where the constant C is independent of t (see e.g., [51] for the proof). In
what follows, we will occasionally omit “(t)” from M(t), D(t), W(t) if it
causes no confusion.

Let α be given by (3.3.1). By (3.3.8), we have

FU(−t)
[
|u2|2u1

]
= W−1D−1M−1

[
|MDWα2|2MDWα1

]
=

1

t
W−1

[
|Wα2|2Wα1

]
,

whence

R1 =
1

t

(
|α2|2α1 −W−1

[
|Wα2|2Wα1

])
=

1

t
(1−W−1)

[
|Wα2|2Wα1

]
+

1

t
|Wα2|2(1−W)α1

+
1

t
(Wα2)((1−W)α2)α1 +

1

t
((1−W)α2)α2α1.

Therefore (3.3.9), (3.3.11), (3.3.12) and the Sobolev imbedding H1(R) ↪→
L∞(R) lead to

|R1(t, ξ)| ≤ Ct−5/4(∥u∥L2 + ∥J u∥L2)3. (3.3.13)
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Next we observe that

iξR1 =
iξ

t
|α2|2α1 −FU(−t)

[
∂x
(
|u2|2u1

)]
=

1

t

(
α
(1)
2 α2α1 −W−1

[
(Wα

(1)
2 )(Wα2)Wα1

])
+

1

t

(
α2α

(1)
2 α1 −W−1

[
(Wα2)(Wα

(1)
2 )Wα1

])
+

1

t

(
α2α2α

(1)
1 −W−1

[
(Wα2)(Wα2)Wα

(1)
1

])
,

where α
(1)
j = iξαj . Then we see as before that

|ξR1(t, ξ)| ≤ Ct−5/4(∥u∥H1 + ∥J u∥H1)3. (3.3.14)

The desired estimate for R1 follows immediately from (3.3.13) and (3.3.14).
The estimate for R2 can be shown in the same way.

3.4 Proof of Theorem 3.1.2

In this section, we will prove Theorem 3.1.2. The main step of the proof is
to show the following.

Proposition 3.4.1. Let α = (α1(t, ξ), α2(t, ξ)) be given by (3.3.1) for the
solution u = (u1, u2) to (3.1.6) satisfying the assumptions of Theorem 3.1.2.
There exists α+ = (α+

1 (ξ), α
+
2 (ξ)) ∈ L2 ∩ L∞ such that

lim
t→+∞

∥αj(t)− α+
j ∥L2 = 0 (3.4.1)

for j = 1, 2. Moreover we have α+
1 (ξ) · α

+
2 (ξ) = 0 for ξ ∈ R.

Once this proposition is obtained, we can derive Theorem 3.1.2 immedi-
ately by setting ϕ+

j = F−1α+
j . Indeed we have

∥uj(t)− U(t)ϕ+
j ∥L2 = ∥F(U(−t)uj(t)− ϕ+

j )∥L2 = ∥αj(t)− α+
j ∥L2 → 0

as t→ +∞.
In the rest of this section, we will prove Proposition 3.4.1. Note that

many parts of the arguments below are similar to those in Subsection 2.5.1,
though we need several modifications to fit for the present situation.
Proof of Proposition 3.4.1. We first show the pointwise convergence of α(t, ξ)
as t→ +∞. We fix ξ ∈ R and introduce

ρ(t, ξ) = 2Re
[
α1(t, ξ)R1(t, ξ)− α2(t, ξ)R2(t, ξ)

]
.

Then it follows from (3.3.2) and (3.3.3) that

∂t

(
|α1(t, ξ)|2 − |α2(t, ξ)|2

)
= 2Re

[
α1∂tα1 − α2∂tα2

]
= ρ(t, ξ).
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Also (3.3.6) and (3.3.7) lead to∫ ∞

2
|ρ(τ, ξ)| dτ ≤ C

∫ ∞

2
|α(t, ξ)||R(t, ξ)| dτ

≤ C

∫ ∞

2
ε4⟨ξ⟩−2τ3γ−5/4 dτ

≤ Cε4⟨ξ⟩−2

for 0 < γ < 1/12. Therefore we obtain

|α1(t, ξ)|2 − |α2(t, ξ)|2 = |α1(2, ξ)|2 − |α2(2, ξ)|2 +
∫ t

2
ρ(τ, ξ) dτ

= m(ξ)− r(t, ξ), (3.4.2)

where

m(ξ) = |α1(2, ξ)|2 − |α2(2, ξ)|2 +
∫ ∞

2
ρ(τ, ξ) dτ (3.4.3)

and

r(t, ξ) =

∫ ∞

t
ρ(τ, ξ) dτ

for t ≥ 2. Note that

|m(ξ)| ≤ |α(2, ξ)|2 +
∫ ∞

2
|ρ(τ, ξ)| dτ ≤ Cε2⟨ξ⟩−2

and

|r(t, ξ)| ≤
∫ ∞

t
|ρ(τ, ξ)| dτ ≤ Cε4⟨ξ⟩−2t3γ−1/4 (3.4.4)

for 0 < γ < 1/12. Now we divide the argument into three cases according
to the sign of m(ξ) as follows.
Case 1: m(ξ) > 0.

First we focus on the asymptotics for α2. By (3.4.2), we can rewrite
(3.3.3) as

∂tα2(t, ξ) = −1

t
|α2(t, ξ)|2α2(t, ξ)−

m(ξ)

t
α2(t, ξ) +

r(t, ξ)

t
α2(t, ξ) +R2(t, ξ)

for t ≥ 2. So we have

∂t
(
|α2(t, ξ)|2

)
= 2Re

(
α2∂tα2

)
≤ −2m(ξ)

t
|α2(t, ξ)|2 + Cε4⟨ξ⟩−2t3γ−5/4

for t ≥ 2, whence

∂t

(
t2m(ξ)|α2(t, ξ)|2

)
≤ Cε4⟨ξ⟩−2t3γ+2m(ξ)−5/4.
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Now we choose ε > 0 so small that

m(ξ) ≤ Cε2 ≤ 1

16
(1− 12γ)

is satisfied. Then we have

3γ + 2m(ξ)− 5

4
≤ −1− 3

2

(
1

12
− γ

)
< −1.

Hence integration in t leads to

t2m(ξ)|α2(t, ξ)|2 − 22m(ξ)|α2(2, ξ)|2 ≤ Cε4⟨ξ⟩−2

∫ t

2
τ3γ+2m(ξ)−5/4dτ

≤ Cε4⟨ξ⟩−2

for t ≥ 2. Therefore we see that

|α2(t, ξ)| ≤ Cε⟨ξ⟩−1t−m(ξ). (3.4.5)

In particular, α2(t, ξ) → 0 as t → +∞. Next we turn our attentions to the
asymptotics for α1. Since (3.3.2) can be viewed as

∂tα1(t) = λ(t)α1(t) +Q(t)

with λ(t) = −|α2(t, ξ)|2/t and Q(t) = R1(t, ξ), we can apply Lemma 2.5.1
to obtain

|α1(t, ξ)− β+1 (ξ)| ≤ C

∫ ∞

t

(
|β+1 (ξ)||α2(τ, ξ)|2

τ
+ |R1(τ, ξ)|

)
dτ

for t ≥ 2, where

β+1 (ξ) = α1(2, ξ)e
−

∫∞
2 |α2(τ,ξ)|2 dτ

τ +

∫ ∞

2
R1(s, ξ)e

−
∫∞
s |α2(τ,ξ)|2 dτ

τ ds.

By (3.3.6), (3.3.7) and (3.4.5), we have

|β+1 (ξ)| ≤ |α1(2, ξ)|+
∫ ∞

2
|R1(s, ξ)|ds ≤ Cε⟨ξ⟩−1 (3.4.6)

and∫ ∞

t

(
|β+1 (ξ)||α2(τ, ξ)|2

τ
+ |R1(τ, ξ)|

)
dτ ≤ C

∫ ∞

t

(
ε3⟨ξ⟩−3

τ1+2m(ξ)
+
ε3⟨ξ⟩−1

τ5/4−3γ

)
dτ

≤ Cε3⟨ξ⟩−3

2m(ξ)t2m(ξ)
+
Cε3⟨ξ⟩−1

t1/4−3γ

for t ≥ 2. Therefore we conclude that α1(t, ξ) → β+1 (ξ) as t→ +∞.
Case 2: m(ξ) < 0.
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Similarly to the previous case, we have

lim
t→+∞

|α1(t, ξ)| = 0, lim
t→+∞

|α2(t, ξ)− β+2 (ξ)| = 0

for each fixed ξ ∈ R, where

β+2 (ξ) = α2(2, ξ)e
−

∫∞
2 |α1(τ,ξ)|2 dτ

τ +

∫ ∞

2
R2(s, ξ)e

−
∫∞
s |α1(τ,ξ)|2 dτ

τ ds.

Remark that |β+2 (ξ)| ≤ Cε⟨ξ⟩−1.
Case 3: m(ξ) = 0.

By (3.3.2), (3.3.6), (3.3.7), (3.4.2) and (3.4.4), we have

∂t
(
|α1(t, ξ)|2

)
≤ −2

t
|α1(t, ξ)|4 −

2r(t, ξ)

t
|α1(t, ξ)|2 + 2|α1(t, ξ)||R1(t, ξ)|

≤ −2

t
|α1(t, ξ)|4 + Cε4⟨ξ⟩−2t3γ−5/4

for t ≥ 2, and 0 < γ < 1/12. Thus we can apply Lemma 2.4.2 with
Φ(t) = |α1(t, ξ)|2 to obtain

|α1(t, ξ)| ≤
C

(log t)1/2
→ 0 (t→ +∞).

Also (3.4.2) gives us |α2(t, ξ)| =
√

|α1(t, ξ)|2 + r(t, ξ) → 0 as t→ +∞.
Summing up the three cases above, we deduce that α(t, ξ) converges as

t→ +∞ for each fixed ξ ∈ R. To obtain (3.4.1), we set

α+
1 (ξ) :=

{
β+1 (ξ) (m(ξ) > 0) ,

0 (m(ξ) ≤ 0) ,
α+
2 (ξ) :=

{
0 (m(ξ) ≥ 0) ,

β+2 (ξ) (m(ξ) < 0) ,

and α+(ξ) = (α+
1 (ξ), α

+
2 (ξ)) for ξ ∈ R, where β+1 (ξ) and β

+
2 (ξ) are shown in

Cases 1 and 2, respectively. Then it is obvious that α+
1 (ξ) · α

+
2 (ξ) = 0 for

ξ ∈ R. Also, by virtue of (3.4.6), we have α+ ∈ L2 ∩ L∞(R) and∣∣α(t, ξ)− α+(ξ)
∣∣2 ≤ Cε2⟨ξ⟩−2 ∈ L1(R)

for t ≥ 2. Moreover, it holds that

lim
t→+∞

∣∣α(t, ξ)− α+(ξ)
∣∣2 = 0

for each fixed ξ ∈ R. Therefore Lebesgue’s dominated convergence theorem
yields (3.4.1).
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3.5 Proof of Theorems 3.1.3 and 3.1.4

In this section, we are going to prove Theorems 3.1.3 and 3.1.4. From the
proof of Proposition 3.4.1, vanishing of the scattering state ϕ+ = (ϕ+

1 , ϕ
+
2 )

can be characterized by the sign of the function m(ξ). Let us summarize it
as follows.

Proposition 3.5.1. We put ϕ+
j = lim

t→+∞
U(−t)uj(t) in L2, j = 1, 2, for the

global solution u = (u1, u2) to (3.1.6)–(3.1.7), whose existence is guaranteed
by Theorem 3.1.2. Let m be the function defined by (3.4.3). Then the
followings hold for each ξ ∈ R:

� m(ξ) > 0 implies ϕ̂+
1 (ξ) ̸= 0 and ϕ̂+

2 (ξ) = 0;

� m(ξ) < 0 implies ϕ̂+
1 (ξ) = 0 and ϕ̂+

2 (ξ) ̸= 0;

� m(ξ) = 0 implies ϕ̂+
1 (ξ) = ϕ̂+

2 (ξ) = 0.

Proposition 3.5.1 gives us more precise information than (3.1.8) and the
function m(ξ) plays an important role in it. This indicates that better un-
derstanding of m(ξ) will bring us more precise information on the scattering
state.

3.5.1 Leading term of m(ξ)

The key of our proof of Theorems 3.1.3 and 3.1.4 is the following lemma,
which specifies the leading term of m(ξ) for sufficiently small initial data.

Lemma 3.5.1. Let m be the function given by (3.4.3) with the initial con-
dition (3.1.7) replaced by (3.1.9). We have

m(ξ) = ε2
(
|ψ̂1(ξ)|2 − |ψ̂2(ξ)|2

)
+O(ε4)

as ε→ +0 uniformly in ξ ∈ R.

Proof. By (3.4.3) and (3.4.4), we have

sup
ξ∈R

∣∣∣m(ξ)−
(
|α1(2, ξ)|2 − |α2(2, ξ)|2

)∣∣∣ ≤ Cε4.

Therefore, it suffices to show

αj(2, ξ) = εψ̂j(ξ) +O(ε3) (3.5.1)

as ε→ +0, uniformly in ξ ∈ R for j = 1, 2.
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We put N1(u) = |u2|2u1 and N2(u) = |u1|2u2. Then it follows from
(3.2.2), (3.3.4), (3.3.5), the relation L = U(t)i∂tU(−t) and the Sobolev em-
bedding that

sup
ξ∈R

∣∣αj(2, ξ)− εψ̂j(ξ)
∣∣ ≤ C

∥∥U(−2)uj(2, ·)− uj(0, ·)
∥∥
H0,1

≤ C

∫ 2

0
∥U(−τ)Nj(u(τ))∥H0,1 dτ

≤ C

∫ 2

0
∥u(τ)∥2L∞

(
∥u(τ)∥L2 + ∥J u(τ)∥L2

)
dτ

≤ Cε3

as desired.

3.5.2 Proof of Theorem 3.1.3

We put V = {ξ ∈ R | |ψ̂1(ξ)| > |ψ̂2(ξ)|}. By (3.1.10), we see that V is a
non-empty open set. Now we take r > 0 so small that the closed interval
I = [ξ∗ − r, ξ∗ + r] is included in V , and we put

C1 = min
ξ∈I

(
|ψ̂1(ξ)|2 − |ψ̂2(ξ)|2

)
.

Then we have C1 > 0, and Lemma 3.5.1 gives us

m(ξ) ≥ C1ε
2 − Cε4 > 0

for ξ ∈ I, if ε > 0 is small enough. By Proposition 3.5.1, we have ϕ̂+
1 (ξ) ̸= 0

for ξ ∈ I. Therefore we obtain

∥ϕ+
1 ∥L2 ≥ ∥ϕ̂+

1 ∥L2(I) > 0.

Similarly, (3.1.11) yields ∥ϕ+
2 ∥L2 > 0.

3.5.3 Proof of Theorem 3.1.4

Let χ : R → R be a cut-off function satisfying χ(ξ) = 1 (|ξ| ≤ 1) and
χ(ξ) = 0 (|ξ| ≥ 2). For given δ > 0, we can choose q ≥ 1 so large that
∥(1− χq)ϕ̂

+
2 ∥L2 < δ, where χq(ξ) = χ(ξ/q). With this q, we put

C2 = min
|ξ|≤2q

(
|ψ̂1(ξ)|2 − |ψ̂2(ξ)|2

)
.

Then we have C2 > 0, because of (3.1.12). So it follows from Lemma 3.5.1
that

m(ξ) ≥ C2ε
2 − Cε4 > 0
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for |ξ| ≤ 2q, if ε > 0 is small enough. By Proposition 3.5.1, we deduce that
χq(ξ)ϕ̂

+
2 (ξ) = 0 for all ξ ∈ R. Therefore

∥ϕ+
2 ∥L2 = ∥(1− χq)ϕ̂

+
2 ∥L2 < δ.

Since δ can be taken arbitrarily small, this means that ϕ+
2 vanishes almost

everywhere on R.

3.6 Final state problem for (3.1.6)

To complement Remark 3.1.2, we give two auxiliary results on the final state
problem for (3.1.6), that is, finding a solution u = (u1, u2) to (3.1.6) which
satisfies

lim
t→+∞

∥uj(t)− U(t)ψ+
j ∥L2 = 0, j = 1, 2, (3.6.1)

for a prescribed final state ψ+ = (ψ+
1 , ψ

+
2 ). Roughly speaking, the proposi-

tions below imply that (3.6.1) holds if and only if

ψ̂+
1 (ξ) · ψ̂

+
2 (ξ) = 0, ξ ∈ R. (3.6.2)

This indicates that our problem must be distinguished from the usual short-
range situation, because (3.6.1) should hold in the short-range case regard-
less of whether (3.6.2) is true or not (see e.g. [10]).

The precise statements are as follows.

Proposition 3.6.1. Let T0 ≥ 1 be given, and let u be a solution to (3.1.6)
for t ≥ T0 satisfying

sup
t≥T0

(
t−γ∥U(−t)u(t)∥H1,1 + ∥FU(−t)u(t)∥L∞

)
<∞ (3.6.3)

with some γ ∈ (0, 1/12). If there exists ψ+ ∈ L2 with ψ̂+ ∈ L∞ such that
(3.6.1) holds, then we must have (3.6.2).

Proposition 3.6.2. Suppose that ψ+ satisfies ψ̂+ ∈ H0,s ∩ L∞ with some
s > 1, and that δ = ∥ψ̂+∥L∞ is suitably small. If (3.6.2) holds, then there
exist T ≥ 1 and a unique solution u to (3.1.6) for t ≥ T satisfying U(−t)u ∈
C([T,∞);H0,1) and (3.6.1).

We are going to give a proof of them. Note that the arguments below are
essentially the same as those given in Section 5 of [50]. We also remark that
the regularity assumptions in these propositions are certainly not optimal.
It may be possible to relax them (see e.g. [15]), but that is out of the present
purpose.
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Proof of Proposition 3.6.1. In what follows, we writeN1(v) = |v2|2v1, N2(v) =
|v1|2v2 and N(v) = (N1(v), N2(v)) for v = (v1, v2). Let α be given by (3.3.1)
for the solution u to (3.1.6). Then, similarly to (3.3.2), we have

∂tαj(t, ξ) = −1

t
Nj(ψ̂

+(ξ)) + Sj(t, ξ) +Rj(t, ξ), j = 1, 2,

where

Sj(t, ξ) =
1

t

(
Nj(ψ̂

+(ξ))−Nj(α(t, ξ))
)

and

Rj(t, ξ) =
1

t
Nj(α(t, ξ))−F

[
U(−t)Nj(u(t, ·))

]
(ξ).

Now we shall argue by contradiction. If (3.6.2) is not true, then we can take
η > 0 such that ∥Nj(ψ̂

+)∥L2 ≥ η for j = 1, 2. By (3.6.3) and Lemma 3.3.1,
we have ∥Rj(t)∥L2 ≤ Ct−5/4+3γ for t ≥ T0. We also note that

∥Sj(t)∥L2 =
1

t
∥Nj(ψ̂

+)−Nj(FU(−t)u(t))∥L2

≤ C

t

(
∥ψ̂∥2L∞ + ∥FU(−t)u(t)∥2L∞

)
∥F(ψ+ − U(−t)u(t))∥L2

≤ C

t
∥U(t)ψ+ − u(t)∥L2 ,

whence, by (3.6.1), we can take T ∗ ≥ T0 such that ∥Sj(t)∥L2 ≤ η/(2t) for
t ≥ T ∗. Summing up, we obtain

∥U(−2t)uj(2t)− U(−t)uj(t)∥L2

=∥αj(2t)− αj(t)∥L2

≥η
∫ 2t

t

dτ

τ
−
∫ 2t

t
∥Sj(τ)∥L2 dτ −

∫ 2t

t
∥Rj(τ)∥L2 dτ

≥η
2
log 2− Ct−1/4+3γ

for t ≥ T ∗. Letting t→ ∞, we have

0 = ∥ψ+
j − ψ+

j ∥L2 ≥ η

2
log 2 > 0,

which is the desired contradiction.

Proof of Proposition 3.6.2. With T ≥ 1 to be fixed, let us introduce the
function space

XT =
{
φ = (φ1(t, x), φ2(t, x))

∣∣∣ U(−t)φ(t, ·) ∈ C([T,∞);H0,1)
}

and the norm

∥φ∥XT
= sup

t∈[T,∞)

(
tµ+1/2∥φ(t)∥L2 + tµ∥J φ(t)∥L2

)
,
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where 0 < µ < (s0 − 1)/2 and s0 = min{2, s}. For v = (v1, v2) ∈ XT , we set

Φj [v](t) = U(t)ψ+
j −

∫ ∞

t
U(t− τ)Nj(v(τ)) dτ, j = 1, 2, (3.6.4)

and Φ[v] = (Φ1[v],Φ2[v]). We also put w♯(t) = M(t)D(t)Fψ+, w♭(t) =
U(t)ψ+ − w♯(t), κ = ∥ψ+∥H0,s0 and

YT =
{
φ ∈ XT

∣∣∣ ∥φ− w♯∥XT
≤ κ

}
.

Since (3.6.2) yields N(ψ̂+) = 0, it follows from (3.3.8) that

U(−τ)N(w♯(τ)) =
1

τ
M(τ)−1F−1N(ψ̂+) = 0. (3.6.5)

We observe the basic estimates for w♯(t) and w♭(t):

∥w♯(t)∥L∞ = t−1/2∥ψ̂+∥L∞ = δt−1/2,

∥w♯(t)∥L2 = ∥ψ+∥L2 ≤ κ,

∥w♭(t)∥L2 ≤ ∥(M(t)− 1)ψ+∥L2 ≤ Ct−s0/2∥ψ+∥H0,s0 ≤ Cκt−s0/2,

∥Jw♯(t)∥L2 = ∥xψ+∥L2 ≤ κ,

∥Jw♭(t)∥L2 ≤ ∥x(M(t)− 1)ψ+∥L2 ≤ Ct−(s0−1)/2∥ψ+∥H0,s0 ≤ Cκt−(s0−1)/2,

where we have used (3.2.2), (3.3.8) and (3.3.10) with σ = s0/2 or (s0−1)/2.
Now we are going to show that Φ is a contraction mapping on YT by

choosing δ and T appropriately. Let v ∈ YT . By using (3.6.5), we rewrite
(3.6.4) as

Φ[v](t)− w♯(t) = −
∫ ∞

t
U(t− τ)

(
N(v(τ))−N(w♯(τ))

)
dτ + w♭(t).

It follows from the inequality ∥φ∥L∞ ≤ Ct−1/2∥φ∥1/2
L2 ∥J φ∥

1/2
L2 that

∥v(t)−w♯(t)∥L∞ ≤ Ct−1/2∥v(t)−w♯(t)∥1/2
L2 ∥J (v(t)−w♯(t))∥1/2

L2 ≤ Cκt−3/4−µ.

So we have

∥v(t)∥L∞ ≤ ∥w♯(t)∥L∞ + ∥v(t)− w♯(t)∥L∞ ≤ C(δ + κT−1/4−µ)t−1/2.

Therefore

∥Φ[v](t)− w♯(t)∥L2

≤C
∫ ∞

t
(∥v(τ)∥2L∞ + ∥w♯(τ)∥2L∞)∥v(τ)− w♯(τ)∥L2 dτ + Cκt−s0/2

≤C(δ + κT−1/4−µ)2κ

∫ ∞

t

dτ

τ3/2+µ
+ CκT−(s0−1)/2+µt−1/2−µ

≤C(δ2 + κ2T−1/2−2µ + T−(s0−1)/2+µ)κt−1/2−µ. (3.6.6)
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Also, because of the estimate

∥J (N(v(t))−N(w♯(t)))∥L2

≤C(∥v∥2L∞ + ∥w♯∥2L∞)∥J (v − w♯)∥L2

+ C(∥v∥L∞ + ∥w♯∥L∞)(∥J v∥L2 + ∥Jw♯∥L2)∥v − w♯∥L∞

≤C(δ2 + κ2T−1/2−2µ)κt−1−µ

+ C(δ + κT−1/4−µ)t−1/2 · C(κt−µ + κ) · Cκt−3/4−µ

≤C(δ2 + κ2T−1/2−µ + δκT−1/4)κt−1−µ,

we obtain

∥J (Φ[v](t)− w♯(t))∥L2

≤
∫ ∞

t
∥J (N(v(τ))−N(w♯(τ)))∥L2 dτ + Cκt−(s0−1)/2

≤C(δ2 + κ2T−1/2−µ + δκT−1/4)κ

∫ ∞

t

dτ

τ1+µ
+ CκT−(s0−1)/2+µt−µ

=C(δ2 + κ2T−1/2−µ + δκT−1/4 + T−(s0−1)/2+µ)κt−µ. (3.6.7)

Combining (3.6.6) and (3.6.7), we arrive at

∥Φ[v]− w♯∥XT
≤ C(δ2 + κ2T−1/2−µ + δκT−1/4 + T−(s0−1)/2+µ)︸ ︷︷ ︸

(∗)

κ.

Hence we have Φ[v] ∈ YT if we choose δ so small and T so large that the
term (∗) does not exceed 1. Next we take v, ṽ ∈ YT . Then we have

Φ[v](t)− Φ[ṽ](t) = −
∫ ∞

t
U(t− τ)

(
N(v(τ))−N(ṽ(τ))

)
dτ

and we can see as before that

∥Φ[v]− Φ[ṽ]∥XT
≤ 1

2
∥v − ṽ∥XT

by choosing δ and T suitably. Therefore Φ : YT → YT is a contraction
mapping, and thus, admits a unique fixed point. In other words, there
exists u ∈ YT such that

u(t) = U(t)ψ+ −
∫ ∞

t
U(t− τ)N(u(τ)) dτ,

which gives the desired solution to (3.1.6) for t ≥ T . Moreover we have

∥u(t)− U(t)ψ+∥L2 ≤ ∥u(t)− w♯(t)∥L2 + ∥w♭(t)∥L2

≤ κt−1/2−µ + Cκt−s0/2

→ 0

as t→ +∞. This completes the proof of Proposition 3.6.2.
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