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Chapter 1

Introduction

This thesis is concerned with two types of nonlinear partial differential equa-
tions.

We first consider the large-time behavior of small solutions to the Cauchy
problem for semilinear wave equations

0?u — Au = F(0u), (t,z) € (0,00) x R2,

u(0,2) = ef(x), (1.0.1)
(0. 2) — eg(x), L RS

where u = u(t, x) is a R-valued unknown function, F'(Ju) is a nonlinearity,
Ou = (Oyu, Oy, u, Oy, u). The initial data f, g are compactly-supported C>°-
functions and € > 0 is a small parameter. To begin with, let us review the
free wave equation 9?u — Au = 0 (i.e., F = 0). It is well known that the
following estimates hold for the free solution u(t):

lu(t, z)| < Ce(1 +1)~Y/2, t>0, zeR? (1.0.2)
lu@[e = [lu(0)l|&, t >0,
where the energy norm || - ||g is defined by

1 2
h=z Dad(t, x)|* da.
1601 =5 [, 3 0not.0)P

Next, we consider (1.0.1) in the case F(0u) = O(|0u|P) near du = 0, where
p > 1. For the small amplitude solution, we may expect the nonlinearity
can be treated as a perturbation and the solutions behave like free solutions
if p is large enough. If we assume that (1.0.2) and (1.0.3) are valid in this
case, we have

/ |F(0u)(7) || p dr < CeP / (14 7)- D2 gr < e
0 R



when p > 3. Therefore we may expect that there exists an unique global
solution to (1.0.1) in nonlinear case when p > 3. Indeed, if p > 3, the small
data global existence (which we refer as SDGE in what follows) holds for
(1.0.1), that is, (1.0.1) admits a unique global C*°-solution for suitably small
€. Moreover, there exists a solution u™ to the free wave equation Dut = 0
such that

lim [[u(t) —u™(t)||g = 0.

t—o00

In other wards, the global solution u(t) is asymptotically free in the sense of
the energy. In contrast, for the case p < 3, the global existence does not hold
in general even if ¢ is arbitrarily small. Furthermore, even if there exists the
global solution to (1.0.1), it does not behave like free solutions in general.
In the sense, p = 3 is one of the critical situations. Thus, we need some
structural conditions to conclude that the SDGE holds and the solution is
asymptotically free. One of the most famous conditions is so called null con-
dition which was first introduced by Klainerman [48] and Christodoulou [6]
for the quasilinear wave equations in three space dimensions, and developed
by many researchers later. We will give a review on the detail of the null
condition in Section 2.1 below. Recently, weaker conditions than the null
condition are studied. The Agemi-type condition introduced in [39] is one of
them. This condition includes the dissipative structure such as cubic non-
linear damping Ov = —(dv)? in addition to the cubic null condition. Under
the Agemi-type condition, the SDGE holds for (1.0.1). However, there are a
lot of unsolved problems in the asymptotic behavior of solutions under the
Agemi-type condition.

The second equations which we are interested in are the nonlinear Schrédinger
equations. Let us consider the Cauchy problem
, 1
{ 10 + iagu = N(u,0zu), (t,z)€ (0,00) xR, (1.0.4)

u(0,z) = p(x), z €R,

where i = /=1, u = u(t,z) is a C-valued unknown function and the non-
linear term N (u,d,u) is a cubic homogeneous polynomial in (u, @, Oyu, Oy u)
with complex coefficients. The initial data ¢(x) is suitably small, smooth
and decay fast as |z| — co. For the free Schrédinger equation idyu+ 302u =
0, the properties of the solutions

ey < CA+DT2 0 [ul®)ll2@) = [u(0)] 2m),

for t > 0 is well-known. By these properties and the similar argument
as above, the cubic nonlinearities for the nonlinear Schrédinger equations
in one space dimension cause a situation similar to two-dimensional cubic
semilinear wave equations. Therefore it would be natural to expect that the
structure corresponding to semilinear wave equations may exist for nonlinear



Schrodinger equations. From this point of view, the condition introduced in
[51] can be regarded as an NLS-analog of the Agemi-type condition. This
condition guarantees the SDGE for (1.0.4), but, as is the case with the
Agemi-type condition, the asymptotics for the global solutions are not well
understood.

The purpose of this thesis is two-fold: The first one is to develop the un-
derstanding for asymptotic behavior of solutions to (1.0.1) under the Agemi-
type condition. In particular, we focus on the energy of the solutions and
make clear whether the energy decay occurs likewise the nonlinear damp-
ing or another kind of phenomenon occurs. The second is to consider these
analogs in the Schrodinger case (1.0.4) with a suitable dissipative condition.

This thesis is organized as follows. In Chapter 2, we consider the asymp-
totic behavior of the solution u to (1.0.1) under the Agemi-type condition.
For the single case, we prove the energy decay occurs unless the null con-
dition and we give an upper bound estimate for ||u(t)||z. We also study a
two-component system of semilinear wave equations with cubic nonlinearity
satisfying the Agemi-type condition. We show that small amplitude solu-
tions of this system behave like free solutions as ¢ — +oo. Furthermore,
we give a criterion for large time non-decay of the energy for small am-
plitude solutions in terms of the radiation fields associated with the initial
data. This chapter is based on [63], [64] and [62]. Chapter 3 deals with the
Cauchy problem for (1.0.4). Under a suitable weakly dissipative condition
on the nonlinearity, we show that the small data solution has a logarithmic
time decay in L? for the single case. For a two-component system case, we
show each component of the solutions are asymptotically free in the large
time and that the scattering states have a non-trivial restricted condition.
We also provide criteria for large time decay or non-decay in L? of the small
amplitude solutions in terms of the Fourier transforms of the initial data.
This part is based on [53], [54] and [55].

Before closing this chapter, we introduce some notations and function
spaces. We denote by Cgo(Rd) the set of compactly-supported C'*° functions
on R%. For 1 < p < oo, we denote the Lebesgue space on R? by LP(R?) and
its norm by || - [| Lp(ray- For m € Nand 1 < p < oo, we denote by WmP(RY)

the LP(R?)-based Sobolev space of order m
W™P(RY) = {f € LP(RY) ; 85 f € LP(RY), o € Z%, |o| < m}
equipped with the norm
Héf)HWmm(Rd) = Z HangLp(Rd)a

laj<m

where Z, := NU {0}. We write H™(R?) = W™2(R9). For m, s € Z,, we
denote by H*™(R?) the (L?(R%)-based) weighted Sobolev space

H™(R?) == {f € H"(R?) ; (-)°f € H"(R")}



equipped with the norm
||f||HmvS(]Rd) = [|{- )SfHHm(]Rd)»

where (z) = /1 + |z|2. We will occasionally omit “(R?)” if it causes no
confusion. The Fourier transform of ¢ is defined by

. 1 .
(FO)©) = 6(0) = o= [ e ota)dn,  eeR
and the inverse Fourier transform of ¢ is defined by
1 .
(o)) = = [ ood, wer

We denote several positive constants by the same letter C', which may be
different from one line to another.



Chapter 2

Asymptotic behavior of
solutions to semilinear wave
equations with weakly
dissipative structure

2.1 Introduction and results

This chapter is based on the joint works [63] with Hideaki Sunagawa, [64]
with Hideaki Sunagawa and Hiroki Terashita, and the author’s work [62]. We
consider large-time asymptotic behavior of the solution v = (u;(¢,x))1<j<n
to the Cauchy problem

Ou; = Fj(0u), (t,x) € (0,00) x R?, (2.1.1)
with the initial condition
u;(0,2) = efj(z), Owu;(0,z) = eg;(z), r € R?, (2.1.2)

for 1 <j < N, where 0=02 —A =09~ (0?+03), 0y = 0y = 0/0t, 0, =
9/0z1, 9o = 8/0xa, € > 0 is a small parameter and f;, g; € C§°(R?). We
suppose that the nonlinearity F' = (F})1<j<y is a RV-valued C*°-function
given by

Fj(0u) = F}{(0u) + F5 (Ou) + O(|0ul*)



near Ju = 0, where the quadratic homogeneous part Ff(@u) and the cubic
homogeneous part Ff(du) are given by

Z Z kl 8 uk 6bul)

k,l=1a,b,c=0

N
Fon = 3> o (@he) O Pr).
k,l,m=1 a,b,c=0
with some real constants B;l,l;l and C]“,?lcm, respectively.

To explain the backgrounds, we consider (2.1.1)-(2.1.2) in R% and assume
that F vanishes of order p > 2 in a neighborhood of 0 € RV *(1+4) for a while.
If p>1+2/(d—1), it is well known that the SDGE holds. Moreover, the
solution behaves like a solution to the free wave equation as t — co. On the
other hands, if p < 142/(d—1), global existence fails to hold in general even
when € > 0 is arbitrarily small. (see [29], [8], etc). In this sense, the power
pe(d) := 1+ 2/(d — 1) is a critical exponent for nonlinear perturbation.
Note that p.(2) = 3 and p.(3) = 2. On the other hand, the small data
global existence can hold for some class of nonlinearity of the critical power.
One of the most famous example is the so called null condition, which has
been originally introduced by Christodoulou[6] and Klainerman([48] in three
dimensional case. Its counterparts for two dimensional case are developed
later by several authors (see [8], [24], [33], [2] etc.). In what follows S!
stands for the unit circle in R?. We say that the quadratic (resp. cubic) null
condition is satisfied if and only if F9*d(w,Y") (resp. F"4(w,Y)) vanishes
identically on Stx RN where Fared — (Fq’red)lgjgj\[, Fored — (ch,red)lngN
are defined by

d
FqJe (U Y Z Z klwawak’i/lv
k,l,m=1a,b=0

N 2
c,red b
F} (w,Y) = g E C?kfmwawbchkY}Ym
k,l,m=1 a,b,c=0

for Y = (Yj)i1<j<n € RY and w = (w1,ws) € S! with the convention wy =
—1. When d = 2, if both the quadratic null condition and the cubic null
condition are satisfied, then the SDGE holds for (2.1.1)—(2.1.2). Moreover
the global solution u under the null condition is asymptotically free in the
sense of the energy. Note that we need only the quadratic null condition to
conclude the same in three space dimensions case. We also remark that if
only the quadratic null condition is assumed, it is shown by Godin [8] that



the following estimate for the lifespan 7 holds for the single case (N = 1):
1

sup [~ FOr w0, 1)(0, Fol . g)(0, )]
(o,.w)ERxS!

liminf €% log T. >
migfelosts 2

with the convention 1/0 = 400, where Fy[f, g] is the radiation field associ-
ated with the initial data. To be more specific, Fo[f,g] =: R x S — R is
defined by

Folf, gl(o,w) == =8, Ra[f](0,w) + Ralg](o,w), (2.1.3)
where

Rafol(ow) = 5= [ A as Riol(s,) = [ sty as,,

for ¢ € C§°(R?). More information on the detailed lifespan estimates and
the related topics can be found in [1], [3], [7], [22], [23], [25], [30], [31], [34],
[66], [70], etc., and the references cited therein.

Recently, a lot of efforts have been made for the study on weaker struc-
tural conditions than the null condition mentioned above which ensure the
small data global existence (see e.g., [56], [57], [58], [59], [2], [4], [5], [26],
[49], [36], [40], [38], [39], [34], [35], [20], [21], [26], etc). It should be empha-
sized that the situation becomes much more complicated because long-range
nonlinear effects must be taken into account. In [39], the following condition
has been introduced:

(Ag) There exists an N x N-matrix valued continuous function A = A(w)
on S', which is a positive-definite symmetric matrix for each w € S*,
such that

Y AW)F*Yw,Y) >0, (w,Y)eS xRY,
where the symbol - denotes the standard inner product in RV,

After the partial results [49], [26], [40], it has been shown in [39] that the
quadratic null condition and (Ag) imply the small data global existence for
(2.1.1)-(2.1.2) in two space dimensions. (see also [38] for the quadratic non-
linearities in three space dimensions case). It is obvious that (Ag) is weaker
than the cubic null condition. We note that this condition is motivated by
works of Rentaro Agemi in the late 1990’s. He tried to find a structural
condition which covers not only the standard null condition but also the
wave equations with cubic nonlinear damping. Therefore it would be fair
to call this the Agemi-type condition. As for the asymptotic behavior of the
global solutions under (Ag), many interesting problems seem left unsolved.
To the author’s knowledge, only the following two cases (Ag, ) and (Ag)
are well-understood:

10



(Ags) There exist an A(w) as in (Ag) and a positive constant C' such that

Y - Aw)Fw, V) > ClY ]}, (w,Y) e St xRY.

Under (Agy), the total energy ||u(t)|z decays like O((logt)~1/4+%) as t —
+00, where § > 0 can be arbitrarily small. See [39] for the detail. A typical
example of F°(Ou) satisfying (Ag,) is the cubic damping term —(dyu)3.
Note also that the energy decay of this kind never occur under the cubic
null condition unless f = g = 0 (see e.g., Chapter 9 in [34] for the detail).
Therefore it will be fair to say that (Ag, ) yields dissipative structure.

(Ago) There exists an A(w) as in (Ag) such that

Y AW)FYw,Y) =0, (w,Y)eS xRV,

Note that (Agy) is stronger than (Ag) if F is cubic (while it is equivalent to
(Ag) in the quadratic case). Roughly speaking, it holds under (Ag) that

Ou(t,x) ~ |a| 7 2a(2)V (t; 2| - t. 2/ z])

as t — oo, where w(z) = (—1,z1/|x|, z2/|z|), and V(¢; 0,w) solves
1
oV = ;Q(w, v

with a suitable skew-symmetric matrix ) depending on (w, V). In contrast
to (Ag,), decay of the total energy never occurs under (Ag,) except for
the trivial solution. Typical example satisfying (Agg) is

Oup = —(Opuq)?Opus,
\:‘UQ = (8tU1)3.

For more details on (Ag), see [38], [35] and Chapter 10 in [34].

However, there is a gap between (Ag) and (Ag, ), (Agy). Now we come
to a following question naturally: If the quadratic null condition and (Ag)
is satisfied but the cubic null condition, (Ag,) and (Agy) are violated, how
does the solution to (2.1.1)—(2.1.2) behave as t — +oo? In particular, does
the energy decay occur? To the authors’ knowledge, there are no previous
works which address this question. The aim of this chapter is to give answers
to this question.

Let us start with the single case (N = 1) of (2.1.1)-(2.1.2), that is,

Ou = F(0u), (t,x) € (0,00) x R?,

u(0,7) = ef(x),
(0, 2) — eg(x), RS

(2.1.4)

11



where u = u(t, ) is R-valued unknown function and f, g € C5°(R?). In this
case, cubic part of the nonlinearity F¢(0u) and its reduced form F4(w,Y")
can be written as the forms

2
FO(Ou) = Y C™(9qu)(dpu)(Deu)

a,b,c=0

and

2
Fored(uy) = Z CY e Y3,
a,b,c=0

We put P(w) = F&"d(w, 1), then (Ag) is equivalent to P(w) > 0 on S! and
(Ag,) is equivalent to P(w) > 0 on S'. We also note that (Agg) holds if
and only if the cubic null condition is satisfied. Therefore, for the single
case, we are interested in the case in which (Ag) is satisfied but the cubic
null condition and (Ag, ) are violated.

The first result, which concerns the single case, is as follows.

Theorem 2.1.1. Let N = 1. Assume that quadratic null condition and
(Ag) are satisfied but the cubic null condition is violated. For the global
solution u to (2.1.4), there exist positive constants C' and \ such that

Ce

Hu(t)HE < (1+62 log(t+2))’\

fort >0, provided that ¢ is sufficiently small.

Remark 2.1.1. We give some examples of F.(0u) which satisfy (Ag) but
violate the cubic null condition and (Ag_):

—(01u)? Oy, —(01u)? (Dpu + Do), —(Opu 4 Au)®.

The corresponding P(w)’s are w?, w}(1—ws), (1 —ws)?3, respectively. We will

give more precise estimates of A for these three cases in Subsection 2.4.4,
below.

Theorem 2.1.1 says that the energy decay occurs under (Ag) for the
single case unless the cubic null condition. It may be natural to ask what
happens in the system case. We next address this point. Let us consider
the following two-component system:

{ Ouy = —(Opuz)*pur,

2

The system (2.1.5) satisfies (Ag) with A(w) being 2 x 2 identity matrix.
Indeed we have Y - Fo™d(w, V') = 2Y2Y2. This expression tells us that both

12



(Ag,) and (Agp) are violated. Note also that the system (2.1.5) possesses
two conservation laws

G (0 + @) = =2 [ (@) @uatta)) do (216

and

& (Il I~ ua(0) 1) = 0. (2.1.7)

However, these are not enough to say something about the large-time asymp-
totics for w(t), and this is not trivial at all. Our next aim is to clarify the
asymptotic behavior of the solution u(t) to (2.1.5)—(2.1.2). The second result
is as follows.

Theorem 2.1.2. Assume that f, g € C§°(R?) and ¢ is suitably small. Then
the global solution u(t) to (2.1.5)—(2.1.2) is asymptotically free.

Remark 2.1.2. If we consider the case (f1,91) = (f2,92), the system (2.1.5)
can be reduced to the single euation Ov = —(9;v)3. Therefore we can adapt
the result of [40], [39] (or Theorem 2.1.1) to see that the total energy ||u(t)| &
decays like O((logt)~"/4*9) as t — +oo.

We note that the total energy decay stated in Remark 2.1.2 is an ex-
ceptional case. Indeed, it follows from the conservation law (2.1.7) that
at least one component u; or us tends to a non-trivial free solution if
|u1(0)||z # ||ua(0)| & It is far from obvious whether both u] and u3 do not
vanish in a certain case. We reveal a criterion for the energy non-decay in
the terms of the radiation fields associated with the initial data as follows.
This is our third result.

Theorem 2.1.3. Let Fj(o,w) = Folfj,9;l(o,w) for j = 1,2, where Fy
is defined by (2.1.3). Suppose that there exist (0*,w*), (0x,wsx) € R x S!
satisfying

|0, F1 (0", w*)| > |05 F2(c™,w")| (2.1.8)
and
|06 F1 (04, wi)| < |05 Fa(0s, i)l

respectively. Then we have lims_s 4o ||u1(t)|| g > 0 and limi—,4 o ||uz(t)||g >
0 for suitably small €.

Remark 2.1.3. From Theorem 2.1.3, we can construct the solution u =
(u1,u2) to (2.1.5)-(2.1.2) with energy of each component does not decay.
Consequently, if we choose a suitable (f, g), both u1(t) and us(t) can behave
like non-trivial free solutions as t — +o0.

13



Remark 2.1.4. Our proof of Theorems 2.1.2 and 2.1.3 below do not rely
on the conservation laws (2.1.6) and (2.1.7) at all. For example, the same
proof is valid for the system

{ Ouy = —|Vayuz|?Ou,
Oug = —|Vuq |*Opus,

or more generally, any cubic satisfying the quadratic or cubic null conditions
can be added to the right-hand side of it.

Remark 2.1.5. Theorems 2.1.2 and 2.1.3 concern only the forward Cauchy
problem (i.e., for ¢ > 0). For the backward Cauchy problem, we can con-
struct a blowing-up solution with arbitrary small € > 0 and a suitable choice
of f, g based on the idea of [8]. This should be contrasted with the behavior
of solutions under (Agp).

2.2 Preliminaries

In this section, we collect several notations and estimates which will be used
in the subsequent sections.

We define S := t0;+x101+ 2202, L1 := tO01+x10s, Lo := tOo+x20%, ) :=
1‘182 — :L’gal, and we set I' = (FJ)OSJ'SG == (S, L1,L2,Q,80,81,62). For a
multi-index a = (g, a1, , ) € ZZL, we write |a| = oo+ a1 + -+ + ag
and I'* =TG- - Tg°. We define | - |, || - ||s by

ot 2)ls = Y Pt 2)l, ot )ls = D Tt )| 2e2)s

laf<s |laf<s

respectively. For z € RQ\{O} we write r == |z|, w = (w1,w2) = z/|z|,
wt = (Wi, wy) = (—wa,w1), O := w101 +wade, and Oy := 9;+0,. Following
relations will play an important roll in the reduction argument of Section 2.3:

dL0_(r'2¢) = r'/20¢ + 3/2 (402 + 1), (2.2.1)
(t+7)(05 — wior) =wj (Q+wily —woly),  j=1,2, (2.2.2)
(t + 7’)6+ =S+ wili+wslo, (2.2.3)

and 04 + 0_ =209, 0+ — O0— = 20,.
Next we review several estimates relevant to the free wave equation

O¢ =0, (t,x) € (0,00) x R?,
¢(0) = do, 2 (2.2.4)
2u9(0) = o1, T

14



Lemma 2.2.1. For ¢g,¢1 € C°(R?) and a € Z3, there is a positive con-
stant C'= Cq(¢o, ¢1) such that the smooth solution ¢ to (2.2.4) satisfies

0°%(t,2)| < Ot + |y~ (t — ||y 11712 (2.2.5)
for (t,z) € [0,00) x R2.

Lemma 2.2.2. For ¢g,¢1 € C(R?), there is a positive constant C =
C(¢o, ¢1) such that the smooth solution ¢ to (2.2.4) satisfies

2| 20¢(t, z) — & () (s Foldo, $1]) (x| — t,w)| < Clt + |z|) 1t — |z])~ /2
(2.2.6)
for (t,) € [0,00) x B2\ {0}, where &(x) = (=1, 21/ |z], 22/ |z]).

Lemma 2.2.3. For ¢o,¢1 € C°(R?), there is a positive constant C =
C(¢o, 1) such that

105 Fo[¢o, ¢1](0,w)| < C{o) ™2 (2.2.7)
for (o,w) € R x St.

For the proof of Lemmas 2.2.1, 2.2.2 and 2.2.3, see Section 3 in [34].

We close this section with the basic estimates for the global small am-
plitude solution u to (2.1.1)—(2.1.2) under (Ag). According to Section 3 in
[39], we already know the following estimates.

Lemma 2.2.4. Let k> 4,0< pu<1/10 and 0 < 8k +7)v < p. Ife >0
is suitably small, then the solution u to (2.1.1)—(2.1.2) satisfies

lu(t, z)|jpr < Celt + |x]) "2+, (2.2.8)
|Ou(t,z)| < Celt + |2|) V2t — |z )*, (2.2.9)
|Bu(t, z)|p < Celt + |z|) "2 (t — |z )P, (2.2.10)

for (t,x) € [0,00) x R? and
|Ou(t)||x < Ce(1+ )" (2.2.11)

fort > 0, where C is a positive constant independent of €.

2.3 The John—Hormander reduction

In this section, we are going to make reductions of the problem to along
the approach exploited in [40], [38], [39], [35]. The essential idea is based
on John[30] and Hormander [22] concerning detailed lifespan estimates for
quadratic quasilinear wave equations in three space dimensions.
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Let v = (u;)1<j<n be a smooth solution to (2.1.1)-(2.1.2) on [0,00) x
R2. Since f and g are compactly-supported, we can take R > 0 such that
supp f U suppg C {z € R? |z| < R}. Then, by the finite propagation
property, we have

suppu(t,-) C {z € R?% |z| < t+ R} (2.3.1)

for t > 0. We define U = (U;(t,x))1<j<n by U;(t,x) = D(|z|*/?u;(t, z)),
1<j<N,D=-2"'9_. We also introduce H = (H;(t,x))1<j<n by

1

L - 1 c,red 1/2 2 .
H]—2<tF (w,U) —r*F(0u) _8T3/2(4Q + 1)u;.
By (2.2.1), we have
—1
Oy Uj(t,x) = — FO"Yw, U(t, x)) + Hj(t, x). (2.3.2)

2t
We introduce the following lemmas associated with U and H:

Lemma 2.3.1. There exists a positive constant C' such that
[ 20u(t, &) — &(2)U (1, 2)| < C(t + )~ ?|u(t, z) s

for (t,x) € Ao == {(t,7) € [0,00) x R?; |z| > t/2 > 1}.

It follows from (2.2.2) and (2.2.3). See Corollary 3.3 in [40] for more
detail of the proof.

Lemma 2.3.2. Under the quadratic null condition and (2.3.1), there exists
a positive constant C which may depend on R such that

|H(t,2)| < Ct 2 (0] + (¢ + 2)) " ul) 2 ul + CE32luls (23.3)
for (t,x) € Ao r == {(t,2) € Ao ; 2| <t + R}.

For the proof, see Lemma 2.8 in [39].

These lemmas tell us that @U can be regarded as a good approximation
of 7/20u and H can be regarded as a remainder if v decays fast near the
light cone. From (2.2.8), (2.2.9), (2.3.3) and Lemma 2.3.1, we obtain

Ut )] < |[of20u(t, 2)| + ||| 20u(t, 2) - 2U ¢, 2)
< Celt — |z|)* 1 (2.3.4)
and

|H(t,2)| < Ce2t™ V2t + x|yt — &))" + Cet ™2 (t + |a|)P—1/2
< Cet?=3/2(f — |g])=H=1/2 (2.3.5)
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for (t,2) € Asor- Note that the weights |x|~1, t=1, (14+¢)7L, (¢ + |x|)~! are
equivalent to each other on A g. Indeed we have

) <)t <2 <31 +1) T <3(RH2) (4 |2) L
Now we make the final reduction. We set
Y ={(t,x) € [0,00) x R% |z| > t/2=1or |z| =t/2 > 1}

and t9, = max{2, —20}. Then, since the half line {(¢, (t + o)w) ; t > 0}
meets 3 at the point (¢4, (to, + 0)w) for each (o,w) € R x S!, we can see
that

Aoo,R = U { (t’ (t + U)W) ;v 2 tO,U}'
(o,w)€(—o00,R] xSt

We also note that there exists a positive constant ¢y depending only on R
such that

¢y o) < toe < colo) (2.3.6)
for o € (—o0,R]. We set Vj(t;o,w) = Uj(t,(t + o0)w) and K;(t;o,w) =

H;(t, (t + o)w) for (t;0,w) € [tor,00) x R x S, 1 < j < N. Then we can
rewrite (2.3.2) as

V(1) = %ijd(w, V) + K, (1), (2.3.7)
which we call the profile equation. It follows from (2.3.4) and (2.3.5) that
V(t;0,w)| < Celo)? (2.3.8)
and

K (t;0,w)| < Celo)~h1/221=3/2 (2.3.9)

for (t,0,w) € [to.s, 0) X (—o0, R] x St.

2.4 Proof of Theorem 2.1.1

In this section, we are going to prove Theorem 2.1.1. We always assume
that the quadratic null condition and (Ag) are satisfied but the cubic null
condition is violated in this section.

17



2.4.1 A detailed pointwise estimate under (Ag) for single
case

This subsection is devoted to a detailed pointwise estimate for the solution
to (2.1.4) under the quadratic null condition and (Ag). The goal of this
subsection is the following lemma.

Lemma 2.4.1. Let 0 < u < 1/10. Assume that the quadratic null condition
and (Ag) are satisfied. If € is suitably small, there exists a positive constant
C, not depending on €, such that the solution u to (2.1.4) satisfies

Ce . 1 1
|Ou(t, rw)| < i min { Pyt (=) } (2.4.1)

for (t,r,w) € [2,00) x [0,00) x St.

Proof. By the definition of P(w), we have F©™4(w,Y) = P(w)Y?. In virtue

of (2.3.7), we see that (2.1.4) is reduced to

P(w)
2t

AV (t) = — V(t)? + K(t). (2.4.2)

To investigate the asymptotics for V(¢), let us also recall the following
useful lemma due to Matsumura.

Lemma 2.4.2. Let Cp >0, C1 >0, p>1, g > 1 and tg > 2. Suppose that
a function ®(t) satisfies

d® Cy
t Ot —
2w <~ e+
fort > ty. Then we have
Co
O(t) < —————
() < (log t)r*—1

for t > to, where p* is the Hélder conjugate of p (i.e., 1/p+1/p* =1), and

L ((logto)”" ®(t) +C/ Md L (EZ o
log 2 gto 0 ! Cop '

For the proof, see Lemma 4.1 of [39].
Let (o,w) € (—o0, R] x St be fixed, and we set ®(t) = ®(t;0,w) =
P(w)V (t;0,w)? for t > tg,. It follows from (2.3.8), (2.3.9) and (2.4.2) that

Cy =

0p@(t) = 2P(w)V (1) 8V (1)

_ _P(:’)Qv( )+ 2P(w)V (£ K (t)
< _Lp(t)? + C.c”

- ¢ t3/2—2,u<0>3/2
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with some C, > 0 not depending on o, w and €. Therefore we can apply
Lemma 2.4.2 with p =2, ¢ = 3/2 — 2p and tg = tp» to obtain

M(o,w)

0 < ®(¢ <
—_ <7U7w) lOgt

1 Cye? [ (logT)?
M(o,w) = Tog2 <(1ogt0,g)2P(w)V(to7g;a,w)2 + EE /2 (73/2—2)ud7> +1.

By virtue of (2.3.6) and (2.3.8), we see that M (o,w) can be dominated by
a positive constant not depending on o, w and . Therefore we deduce that

O(t;0,w) < C
Pw) — /P(w)logt

for (t,0,w) € [to,0) X (—00, R] xS!. By Lemma 2.3.1 and (2.2.8), we have

V(tio,w)| <

r1/2]8u(t,rw)\ < \/§|V

—~

tir —t,w)| + ‘7‘1/28u(t, rw) —oU(t, rw)‘
Ce

+ -
P(w)logt (t+m)t=+

Q

<

for (t,rw) € Ao, g, whence

C <1+ 5 P(w)logt) < Ce 1

ou(t,rw)| < < -
Gut, 7o) rP(w)logt i Vit \/P(w)e2logt

for (t,rw) € A r. Piecing together this with (2.2.9), we arrive at the
desired estimate (2.4.1) in the case of (t,7w) € Ao g. It is much easier
to derive the bound for |Ou(t,rw)| in the case of (t,rw) ¢ As g (indeed it
follows from (2.2.9) only), so we skip it here. O

2.4.2 Key lemmas

This subsection is devoted to two important lemmas which play key roles
in our analysis. Throughout this subsection, we suppose that V() is a
real-valued function on [0, 2] which can be written as a (finite) linear com-
bination of the terms cosP! 8 sin?? 6 with py, p2 € Z>o.

Lemma 2.4.3. If ¥(6) > 0 for all 6 € [0,27], then we have either of the
following three assertions:

(a) ¥(0) =0 for all 0 € [0, 27].
(b) W(0) > 0 for all 6 € [0, 27].
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(c) There exist positive integers m, vi,...,Vm, points 01, ...,0n, € [0,27],
and positive constants ci,...,Cmn such that

e U(0) >0 for6c[0,2n]\{01,...,0m},
o U(0)=(0—0;)*(c;+0(1)) as 6§ — 6; for each j=1,...,m.

Proof. Let N be the set of zeros of ¥ on [0,27]. It is easy to see that the
case N = () corresponds to the case (b) in the statement. Next we consider
the case of #N = oo. It follows from the Bolzano-Weierstrass theorem
that A has an accumulation point. This is impossible unless ¥ vanishes
identically on [0, 27| since W is a trigonometric polynomial. (Indeed, through
the standard identification of S! with C := {2 € C; |2| = 1}, we may regard
V() as a function 1(z) in the form Zé:—L arz® on C, which is analytic in
a neighborhood of C in C. Then the identity theorem implies ¢(z) vanishes
identically on C, so does ¥(f) on [0,27].) Therefore we have (a). What
remains is the case where 0 < A/ < oo. In this case we can write N as
{01,...,0} with m = $N. Note that ¥(0) > 0 for 6 € [0, 27]\N. Now let
us focus on local behavior of ¥(#) near the point 6;. We observe that we
can take kj € Zsq such that W) (6;) = 0 for I < k; — 1 and T(%)(6;) #£ 0.
By the Taylor expansion, we have

(o,
w0 =3 =000 o0 - 000
I<k;

:w—ﬂﬂ%<wwﬂ@”+ou0

/ij!

as 0 — 0;. By the assumption that ¥ is non-negative, we see that x; must
be an even integer and \IJ(“J')(HJ-) must be strictly positive. Therefore we
arrive at the case (c) by setting ¢; = W) (6;)/(x;!) and v; = /2. O

Lemma 2.4.4. Assume that U satisfies (c). We set v = max{vy,...,vn}.
Then, for 0 <y < 1/(2v), we have

/271' d@ _
o WOy~

Proof. We consider only the case where 0; # 0, 27 for j = 1,...,m. The
other case can be also shown by minor modifications. We take positive
constants d; (j =1,...,m) so small that the intervals J; = (0; —6;,0; + 9;)
satisfy

JiNnJy=0 for 1<j<k<m

and o
w@zéw—@Weree@
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We also set

m

K =1[0,2x]\ | J;.

j=1

Since K is compact, we can take M > 0 such that U(0) > M for # € K. So

it follows that
/ 7d0 < 2—7T < 00
x Y(O) — M7 .

On the other hand, since 2yv; < 2y < 1, we have

[ < (2) [
5, w0y = \e) |y 102

for j =1,...,m. Summing up, we arrive at
46 do “ do
= + < 00,
|, oy = Jwor ;Aww
as desired.

2.4.3 Proof of Theorem 2.1.1

Now we are ready to prove Theorem 2.1.1. As mentioned in Section 2.1,
we already know that the conclusion is true under (Ay). Since we as-
sume that the quadratic null condition and (Ag) are satisfied but the cubic
null condition is violated, we see that the case (a) in Lemma 2.4.3 is ex-

cluded by ¥(#) = P(cos#f,sin#), whence it satisfies (b) or (c).

by Lemma 2.4.4, there exists 0 < A < 1/4 such that

/-271' de e
o P(cosf,sin )2 '

With this A, we choose u such that

0y [ L 1=
=M T 9 Tan [

Let t > 2 from now on. By Lemma 2.4.1, we have

2\
Ce 1 1 1=2
|8U(t, Y’OJ)| < % ( P(w)€2 10gt> <<t _ T>1“>

B Ce 1 1
©(elogt)r P(w)* Vit — r)(1-m(-2))

21
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A
for (t,7,w) € [2,00) x (0,00) x S!. Next we set p(t) = (2 logt)lzim. For
small € > 0, we have 0 < p(t) < t, and thus 0 <t+ R — p(t) <t+ R. Then
we can split

2ut)|[3 = / u(t, o) Pde + / u(t, 2)Pde
jo|<t-+R—p(t) t+R—p(t)<[al <t+R

=t Li(t) + Lx(1).
We also note that
r/t<(t+R)/t<1+R/2 for 0<r<t+R,
and
0<pt)<R+t—r<(1+R){t—r) for 0<r<t+R-—pt).

By using the polar coordinates, we deduce from (2.4.1) and (2.4.3) that

27 t+R—p(t 2
/ / < Ce ) rdrdf
Vit —r)l-n

_ 052 /t+R p(t) rdr
- 0 £

t— )22
t+R—p(t)
< 082/ dr
0 (R+1t—r)22m
< Ce?
T op(t)t

and

5(t) < Ce? /27r df /t+R rdr
2= (log ) \ Sy Pleost,sind)2 ) \ Sy g t(t — r)20-m0-23

< Ce? do
- (62 logt)Z)\ R <0.>2(17,u)(172)\)’

respectively. Since 2(1 — p)(1 — 2X\) > 1, we see that the integral in the last
line converges. Eventually we obtain
()% < Ce? . Ce? < Ce?
u
P p)i2 7 (2 log ) T (2 log(t + 2))

We also have

t+R
9 9 rdr do 9
||U(t)||E§CE /0 m_cg /R<O'>2_2“§C€

by (2.4.1). Summing up, we arrive at the desired estimate. O
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2.4.4 Remarks on the decay rates

It is worthwhile to mention the exponent A appearing in Theorem 2.1.1. In
view of the argument in Subsection 2.4.3, we can see that A is determined by
v coming from Lemma 2.4.4. To be more precise, we can take A = 1/(4v)—46
with arbitrarily small § > 0, and 2v is the maximum of the vanishing order
of zeros of ¥(0) = P(cosf,sinb).

Now, let us compute v for the examples of F°(0u) raised in Remark 2.1.1.

(1) We first focus on F(0u) = —(01u)?dyu. Since ¥(f) = cos? 6, we can
check that
() =(0—7/2*(1+0(1) (60— 7/2),
T(0) = (0 —31/2)*(1 +o(1)) (0 — 37/2),
and W(#) > 0 when 0 # 7/2, 37/2. These tell us that v = 1, and thus

we have ||u(t)||z = O((logt)~"/4*9) as t — oo, where § > 0 can be
arbitrarily small.

(2) In the case of F¢(du) = —(d1u)?(Opu + Gou), we see that W(0) =
cos?f(1 — sin#), and its zeros are §# = 7/2 and 37/2. Near these
points, we have

T(0) = (0 —7/2)*(1/2+0(1)) (0 — 7/2)

and
W) = (0 —31/2)%2+0(1)) (§— 37/2).

Hence v = max{2,1} = 2, from which it follows that ||u(t)||z decays
like O((logt)~1/8%9) as t — co with arbitrarily small § > 0.

(3) For F¢(0u) = —(Oyu+0au)3, we have ¥(f) = (1—sin #)3. This vanishes
only when 6 = 7/2, and it holds that

T(0) = (0 —7/2)%(1/8 +o(1)) (0 — 7/2).

Therefore v = 3, and this implies that ||u(t)||z = O((logt)~/12+%) as
t — oo with 0 < 6 < 1/12.

Remark 2.4.1. It is not certain whether these decay rates are the best or
not. It may be an interesting problem to specify the optimal rates for the
energy decay.

2.5 Proof of Theorems 2.1.2 and 2.1.3

In this section, we prove Theorems 2.1.2 and 2.1.3. The key of our proof is
to specify the asymptotic behavior of solutions to the profile equation (2.3.7)
in the case of (2.1.5)
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2.5.1 Asymptotics of solutions to the profile equation for a
system case

We focus on large-time behavior of solutions to the profile equation associ-
ated with (2.1.5). In virtue of (2.3.7), we can rewrite (2.1.5) as

OVA() = oy VA(OVa(0) + K (),
- (2.5.1)
A Va(t) = Ttvl(t)QVﬂt) + Ko (t).

The goal of this subsection is to show the following.

Proposition 2.5.1. Let V = (Vj(t;0,w))j=1,2 be the solutions to (2.5.1).
There exists VT = (Vf(a,w))j:lg € L*(R x S') such that

lim / ’Xt(O')V(t; o,w) — V+(U,w)‘2 dS,do =0, (2.5.2)
R JS!

t—o00

where x¢ : R = R is a bump function satisfying x¢(o) = 1 for o > —t and
Xxt(o) =0 for o < —t.

Before we start the proof of Proposition 2.5.1, we introduce a following
lemma on ODE which is used in our proof.

Lemma 2.5.1. Let tg > 0 be given. For A\, Q € C N LY([tg,0)), assume
that y(t) satisfies

dy
dt
fort > ty. Then we have

() = A()y(t) + Q1)

y(t) -y < O / T (W I+ Q) dr

Cl = exp </t:o \)\(T)|d7>

y" = ylto)eho XD [ Q(s)elT AT g,
to

O(t; s) = exp < / t A7) dT>

for s, t € [to, 00]. Then we see that

for t > tg, where
and

Proof. Put

(e e

y(t) = ®(t;t0)y(to) +/ B(t;5)Q(s) ds = B(t; 00)y™ —/ D(t;5)Q(s) ds.

to t

24



We also note that |®(s;t)| < C3 and that
B(tio0) -1 <o [ ol dr
Therefore we obtain
i) = o' < [0(600) ~ Ul |+ [ a9l ds
<aly'l [ poldrcs [Tl

as desired. n

Proof of Proposition 2.5.1. We first show the pointwise convergence of V' (¢; o, w)
as t — +oo. We note that (2.3.1) implies V(t;0,w) = 0 if 0 > R. In what
follows, we fix (0,w) € (—oo, R] x S! and introduce

p(t) = p(t;o,w) := Vi(t;o,w) K1 (t; 0,w) — Va(t; o,w) Ko (t; 0, w)
so that
S0 (A0 — ((0)?) = Vi(OaVi(6) ~ Va)Valt) = pl0).

It follows from (2.3.8) and (2.3.9) that

2
o) <D |Vj(750,w)K;(T50,w)]
j=1
< Ce? (o) 322302, (2.5.3)

Thus, by (2.3.6) and (2.5.3), we have

/ lp(T;0,w)| dr < Ce2<a>_3/272"_3/2 dr

t()’g tO,cr
< 062 <O’>_3/2(7507U)2M_1/2
< Ce¥(o)? 2.
Therefore we obtain
Vi(t0,w))* = (Va(t; 0,w))?
t
= Vi(to,o; a,w))2 — (Va(too; U,w))2 + 2/ p(t;0,w)dr

t0,0’

=m(o,w) —r(t;o,w) (2.5.4)
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for t >ty », where

m(o,w) = (Vi(toe; 0,w))? = (Va(toe; 0,w))° + 2/00 p(T;0,w)dr (2.5.5)

to,o
and
r(t) =r(t;o,w) == Q/too p(T;0,w)dr.
Note that
m| < |V (too)* +C too lp(7)] dr < Ce*(o) 72
0,0
and
()| < C /t T ()] dr < O (o) 32212, (2.5.6)

Now we divide the argument into three cases according to the sign of m(o, w)
as follows.

Case 1: m(o,w) > 0. First we focus on the asymptotics for Va(t). By
(2.3.8), (2.3.9), (2.5.1), (2.5.4) and (2.5.6), we have

—1 t
oa(t) = S0 — Tva(t) + T va(e) + ()
-1 5 m e .
< _m 1—1/2,20-3/2
< SIVAt — TVa(t) + Celo) 2,

whence
1
500 (E"Va(0)%) = 1"Va(t) (Va(0) + 5 Va())
-1
< pm <2t‘/2(t)4 + CEQ<U>—3/2t2u—3/2>
< O€2<0,>73/2t2,u+m73/2‘

Integration in ¢ leads to

t
thQ(t)2 - (tO,a)mVQ(tO,U)Q < CEQ<U>_3/2/ 7_2;1-&-m—3/2d7_

tO,o’

< 062 <U>_3/2(t0 g)2u+m—1/2

)

< 082 <O_>2,u,+m—2
for t > tg . Therefore we deduce that

Va(t)| < Celg)rtm/2=1g=m/2, (2.5.7)
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In particular, Vo(t) — 0 as t — +o00. Next we turn our attentions to the
asymptotics for Vi(t). Since Vi(t) solves 9,Vi(t) = A(t)Vi(t) + Q(t) with

At) = —Va(t)?/t and Q(t) = Ki(t;0,w), we can apply Lemma 2.5.1
Vi(t). Then we have

v -wil<c [~ (PO L o) a

where
— [ Tow)2dT
Wfr = Wfr(a,w) = Vi(toe;0,w)e ftova Va(miow)™
+ Ki(s;0,w)e” ) Va(mow)® T s,
t0,0'
By (2.3.8), (2.3.9) and (2.5.7), we have
Wi < [Vi(too)| + / K1 (5)|ds < Ce (o)1 25,
tO,a

and

(Wi [ Va(7)? g)3tm=3  e(g)n1/2
/t < - + |Ki(1)| )dr < C 7'1+m + 82

< >3,u+m 3 C€<O'>_“_1/2

- mtm t1/2—2p

Therefore we conclude that Vi (t) — W;" as t — +o0.
Case 2: m(o,w) < 0. Similarly to the previous case, we have

lim |V (t;0,w)| =0, lim |Va(t;0,w) — W;(a,w)| =0,
t—o0 t—ro0

where

— [ Vi(riow)24T
W;(O’,w) = ‘/2(750,0'; mw)e fto’o_ 1(7’ Uw) T
[e¢)

+ Ks(s;0,w)e” JEVimow)? S g

tO,d

Remark that |[W,"| < Ce(o)#1

to

8)

)dT

Case 3: m(o,w) =0. By (2.3.7), (2.3.8), (2.3.9), (2.5.4) and (2.5.6), we

have

Oy (Vl(t) ) = %1‘/1@) — T(tt)‘/l(t)2 LoV (D)KL (8)
- W (t))4 + C€2<J>73/2t2/t*3/2
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for t > t9,. Thus we can apply Lemma 2.4.2 with ®(¢) = V;(t)? to obtain

C
i) < — —0 t— .
Vi(®)] < Tost (t — +o0)
Also (2.5.4) gives us |Va(t)| = /Vi(t)2 +7(t) = 0 as t — oo.

Summing up the three cases above, we deduce that V (¢;0,w) converges
as t — +oo for each fixed (0,w) € R x S'. In order to show (2.5.2), we set

o w) = W+(an) (m(aaw)>0)a
Vit (o) { Y0 (mlow) <0).

_ 0 (m(o,w) > 0),
Wy (0,w) := { Wi (o0,w) (m(o,w) <0),

and VT (o,w) = (V;r(o,w))j:l,g for (o0,w) € R x S!. Then, by virtue of
(2.5.8), we have V*+ € L?(R x S') and

Ixe(0)V (£ 0,w) — VHo,w)|” < Ce2(0)22 € LNR x §1)
for all t > to . Moreover, it holds that
lim [xi(@)V(to,w) = VH(o,w)|* =0

for each fixed (o,w) € R x S'. Consequently, Lebesgue’s dominated conver-
gence theorem yields (2.5.2). O

2.5.2 Proof of Theorem 2.1.2

We are going to prove Theorem 2.1.2. First we recall the following useful
lemma.

Lemma 2.5.2 ([32] Theorem 2.1). For¢ € C ([O, 00); H1>OC'1 ([0, 00); L?),

the following two assertions (1) and (ii) are equivalent:
(i) There exists (¢F,¢7) € H (R?) x L*(R?) such that
Tim [l6(6) — 6+ (Bl = .
where ¢+ € C ([O,OO);HI(RZ)) N C! ([0,00); L*(R?)) is a unique so-
lution to D¢+ = 0, 6% (0) = ¢, 96*(0) = o] .
(ii) There exists ® = ®(o,w) € L*(R x S') such that
Tim 06(t,) — ()P (E, )2y = 0.

where ®(t, z) = |z|~V2®(|x| — t,z/|z]).
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By virtue of this lemma, to prove that uj is asymptotically free, it is
sufficient to show

lm [|Dus(t, ) = o)Vt )| 22y = 0 (2.5.9)
for V" (0, w) obtained in Proposition 2.5.1. To prove (2.5.9), we split
10us(t, ) = @IV I 2 ey
=/ O (t, ) — () |22V (|| — t, 2/ |]) P da
R2
<2 [ jouto) - (el Vit [a] ~ ta/fal) da
R2\ Aco
w2 [ Joun(t.a) - a(@)el Vit ol ~ b/ lo]) de
Ao
+ 2/ @ (rw)Vi(t;r — t,w) — @(rw) Vit (r — t,w)[* dS,dr
0o Jst
::Jl(t) + Jz(t) + Jg(t).

To show the decay for J1(t), we note that (t + |z|) < C{t —|z|) on R?\ A.
Then (2.2.9) and (2.3.8) imply

Ji(t) < Ce? /

oea (€= Lol Jay o fal 7 = [ol) %) o

SCEQ/ 7Lt + [2])2 da
R2\ Ao

< Ce? /OO /1(1 +t 4 7)2 248, dr
< 052(10+ t)szﬂfl.
As for Jy(t), we see from Lemma 2.3.1 and (2.2.8) that
Jo(t) = z/A 2|~ ‘|x|1/28u1(t,a:) — &(2)D (]:c|1/2u1(t,x)) ‘2 dz
< [ el el Mutha) o

gc&/ 7Lt + [2])2 da
]RQ

< C(1 4t
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Finally, we note that
J3(t) SC/OOO 8 }Vl(t;r—t,(,u)—Vl"'(?“—t,c,u)|2 dS,dr
gC/io Sl}V}(t;a,w)—Vﬁ(a,w)‘Q dS.do
< C/R . ‘Xt(a)Vl(t; o,w) — Vf"(a,w)‘2 dS,do.

Then, by using Lebesgue’s dominated convergence theorem, it follows from
(2.5.2) that we obtain lim; ,~ J3(t) = 0.
Piecing them together, we arrive at (2.5.9). Similarly we have

Jim [[Quz(t, ) = @IVt )l ez = 0,

where V2Jr is from Proposition 2.5.1. With the aid of Lemma 2.5.2, we
conclude that us is also asymptotically free. O

2.5.3 Leading term of m(o,w)

According to Subsection 2.5.1, the function m(o,w) is closely related to the
vanishing of the scattering state. We summarize the result in the proof of
Proposition 2.5.1 as following lemma.

Lemma 2.5.3. Let V* = (V;",V,") be in Proposition 2.5.1 and m =
m(o,w) be the function defined by (2.5.5). Then the following holds for
each (o,w) € R x St:

e m(o,w) > 0 implies V" (o,w) # 0 and Vy (o,w) = 0;
e m(o,w) <0 implies V" (o,w) =0 and V4 (o,w) # 0;
e m(o,w) =0 implies V| (o,w) = V, (o,w) = 0.

From this lemma, it is natural to expect that the better understanding of
m(o,w) bring us more precise information on the energy decay. Therefore,
we focus on m(o,w) to prove Theorem 2.1.3. In the rest of this subsection,
we are going to specify the leading term of m(o,w).

Lemma 2.5.4. Let 0 < p < 1/10. Then we have
m(o,w) = & ((8gf1(a,w))2 - (30]:2(0,w))2> + O/

uniformly in (o,w) € R x St as ¢ — +0.
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Proof. First we note that ¢, in (2.5.5) can be replaced by t1 , := max{e~!, 20}
since we have

(Vi(t1,0)? = Va(t1,0)?) — (Vi(toe)? — Va(tor)?)

_ / T VA (ROVA(r) — Va(r)OWVa(r) dr

tO,a‘

tl,a
= 2/ p(T;0,w)dr. (2.5.10)

t0,0'
It follows from (2.5.3), we also obtain

[ i

tl,a

< Ce (o) 3/ /OO T2H=3/2 g

e—1

< O, (2.5.11)
From (2.5.5), (2.5.10) and (2.5.11), we get
Im(o,w) — (Vi(t1,0:0,0))* — (Va(tr,o; 0,w))?)| < Ce¥/2720
for (o0,w) € R x S'. Thus, to prove Lemma 2.5.4, it suffices to show
Vj(t1,0;0,w) = €05 Fj(0,w) + O(e* ™) (2.5.12)

as € — +0 uniformly in (o,w) € R x S! for j = 1,2. The rest part of this
subsection is devoted to the proof of (2.5.12). We divide the argument into
the following two cases.

Case 1: 0 < —1/(2¢). If we assume |z| <t/2 and t > ¢!, we have e 7! <
t < (t+|z|) < C({t—|z|). It follows from (2.2.8) and (2.2.9) that

Ut 2)] < Clal V2 ult, 2)] + Cla] /2 |0u(t, )|
< Cela| V2t + [al) T+ Cela| 2t + |al) T2t — |2
< Qe

for |z| <t/2 and t > =1, Then we obtain
V(t;o,w)| = |U(t, (t + o)w)| < Ce*H (2.5.13)

fort+o <t/2andt > e~!. In the case e ! < —20, we have tio+o =t /2
and t1 , > e~ 1. Therefore, from (2.2.7), (2.5.13) and |o| > 1/(2¢), we get

’Vj(tl,ff;avw) - a&,]—"j(a,wﬂ < “G(t170307w)’ +€|8U‘Fj(a7w)’
< Ce>™H 4 Celo)™3/?
< Ce? ™,
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Case 2: 0 > —1/(2¢). For j =1,2, let u? = u?(t,m) be the solution to the
free wave equation Ouf = 0 with the initial data u$(0) = f;, du}(0) = g;
and we put ujl-(t,x) =u;(t,x) — au?(t,ac), so that u]1 solves

Dujl-(t, x) = F;(0u), (t,x) € (0,00) x R?
1 1 2
u;(0,7) = 0u;(0,2) =0, = €R"

We also define Ul(t, z) = D(|z|"/?ul(t,z)) and Vi(t; 0,w) := UL, (t + o)w),
for 1 =0, 1, respectively. It follows from (2.2.5) and (2.2.6) that

U7 (t, ) = 0oF;(|z] — t,2/|x])|

2
1 1
Sg Z IIx\I/zc?au?(t,w) — w0 Fj(|z] — t,w)| + W’U?(taxﬂ
a=0
<O+ [a) 71t = |2) 72+ Cla V2 + ) V2t — )72
<Ce
for |x| > 1/(2¢). Hence we get
’Vjo(t; o,w) — 85 F;(0,w)| < Ce (2.5.14)

for t+0 > 1/(2¢). We next consider the estimate for V1. Note that we have

(126, 9T)|i=0 € (C§°(R?))” and [[T2¢(0)] Loz, |0TG(0)] po(e2) =
O(e3) for a € ZT if ¢(t,z) satisfies Op = N(d¢) with a cubic nonlinear

term N(9¢) and (¢, ¢)|=o € (C3°(R2))*. By using (2.2.10), (2.2.11) and
the standard energy method for I'*u! with |a| < 2, we obtain

t
|8 (£)]]2 < Ce* + C/O ou(r, )| 0u(r)ll2 dr
-1

< Ced+ 053/ (14 7)1t ar
0

<CS+ 031+ Hrtv
< QedHv

for 0 <t < e~!. Then, by the Klainerman-Sobolev inequality, we get
(t +|z|)Y2|oul (t,z)| < Ce3HY (2.5.15)
for 0 <t <e ! 2 € R2 It follows from (2.2.5) and (2.2.8) that
712 [ul (8, @) ] < fe 7Y (Jult, 2)| +elu’(t, 2)])
< Jof 72 (Cet + [al) 72 + Celt + o) T2t — Jal)7H2)
< Cerr (2.5.16)
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for |x| > 1/(2¢). From (2.5.15) and (2.5.16), we get

U (t,2)| < Cla|' (0w (8, 2)| + Cla| 2 [u (£, )]
< CePHV 4 O
< Ot
for |z| > 1/(2¢), 0 <t < e~ Therefore, we obtain
’Vl(t;a,w)| < Cetr (2.5.17)

fort +0>1/(2),0 <t <e'. When ¢! > —20, we have l,o = e~ and
t1o +0 >11,/2=1/(2¢). Thus, by (2.5.14) and (2.5.17), we get

|Vj(t1,6;0,w) — €0, Fj(0,w)|
§|V}1(t1,cr; g, w)| + €|V}Q(t1,0; g, (d) - aa]:j(o-a w)|
<Ce’M,

Combining the two cases above, we arrive at the desired expression (2.5.12).
This completes the proof of Lemma 2.5.4. O

2.5.4 Proof of Theorem 2.1.3
Now we are ready to prove Theorem 2.1.3. We put
E ={(0,w) € R x SY|0,F1(0,w)| > |0, Fa(o,w)|}.

By (2.1.8), E is a non-empty open set. Hence we can take a bounded open
set M in R and an open set A in S! such that o* € M, w* € N and
M x N C E, where M x N denotes the closure of M x A in R x S'. Now
we put F' = M x N and

Ci= min, ((80.7:1(0,@)2 - (80]:2(0,w))2> .

Then we see that F' is compact, and thus C; > 0. By Lemma 2.5.4, we have
m(o,w) > Cre? — C>272 > 0

for (o,w) € F, if ¢ > 0 is small enough. Thus Lemma 2.5.3 implies
Vit (o,w) # 0 for (0,w) € F, whence ||[V{"[|12(py > 0. By virtue of (2.5.9),
we can take 77 > 0 such that

N 1
Oy (t,-) — @)V (e, M2z < 72”V1+HL2(F)

V2
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for t > T;. Therefore we have

1/2
lun(®)lls = (; /R \a@)vﬁ#(t,x)\?dx)

1 1/2
(5 [ ot - av# o) o
2 Jr2
1 .
= v # (e, M2 w2y — EH@ul(t, )=o)V, M2 r2)
1
> Vi llp2er) — §”V1+HL2(F)
1
= §HV1+HL2(F)

for t > T7. Consequently, we arrive at the desired estimate

. A
tl}-rgloo [vi@)e > §HV1 HLQ(F) > 0.

Interchanging the roles of u; and ug, we also have limy;_, ;  ||u2(t)||g > 0.
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Chapter 3

Asymptotic behavior of
solutions to nonlinear
Schrodinger equations with
weakly dissipative structure

3.1 Introduction and results

This chapter is based on the joint works [53], [54] and [55] with Chunhua Li,
Yuji Sagawa and Hideaki Sunagawa. In this chapter, we deal with cubic
nonlinear Schrédinger equations. We first study the initial value problem

Lu= N(u,0zu), t>0, z€R, (3.1.1)
u(0,z) = p(z), z€eR, .
where £ := i0; + 192, u = (u(t,z)) is a C-valued unknown function on

[0,00) x R. ¢ is a prescribed C-valued function on R which belongs to
suitable weighted Sobolev space and is suitably small in its norm. We assume
that the nonlinear term N(u,0yu) is a cubic homogeneous polynomial in
(u, W, Opu, Opu) with complex coefficients.

First of all, let us summarize the backgrounds briefly. As is well-known,
cubic nonlinearity gives a critical situation when we consider large time
behavior of solutions to the nonlinear Schrodinger equation in R. In general,
cubic nonlinearity should be regarded as a long-range perturbation. For
example, according to Hayashi-Naumkin [11], the small data solution u(¢, x)
to

Lu = Nu|?u (3.1.2)
with A € R\{0} behaves like

1 22
u(t, l‘) _ ﬁaﬂ:(w/t)ez{?t—/\mi(z/t)\Zlogt} + O(t—1/2) in LOO(Rx)
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as t — 400, where ot is a suitable C-valued function on R. An important

consequence of this asymptotic expression is that the solution to (3.1.2)
decays like O(|t|~*/?) uniformly in = € R, while it does not behave like
the free solution (unless A = 0). In other words, the additional logarithmic
correction in the phase reflects a typical long-range character of the cubic
nonlinear Schrodinger equations in one space dimension. If A € C in (3.1.2),
another kind of long-range effect can be observed. For instance, according
to [68] (see also [47], [28], [9], etc.), the small data solution u(t, z) to (3.1.2)
decays like O(t~*/2(logt)~/?) in L™(R,) as t — +oo if Im A < 0. This gain
of additional logarithmic time decay should be interpreted as another kind
of long-range effect. There are various extensions of these results. In the
previous works [51] and [52], several structural conditions on the nonlinearity
have been introduced under which the small data global existence holds for a
class of cubic nonlinear Schrodinger systems in R, and large time asymptotic
behavior of the global solutions have also been investigated (see also [42],
[67], [41] and the references cited therein for related works).

What we can expect for general cubic nonlinear Schrédinger equations
in R is the lower estimate for the lifespan 7% in the form T. > exp(c/e?)
with some ¢ > 0, and this is best possible in general (see [44] for an example
of small data blow-up). More precise information on the lower bound is
available under the restriction

N(?,0)=e“N(1,0), 6#eR. (3.1.3)

According to [66] (see also [70]), if we assume (3.1.3) and the initial condition
in (3.1.1) is replaced by u(0,z) = ey(x) with ¢» € H3> N H*!, then it holds
that

1
liminf 2 log T. > 3
e5+40 22u£(|]:w(£)| Imv(£))
€

(3.1.4)

with the convention 1/0 = 400, where the function v : R — C is defined by

1 dz
= — N(z,1€2)—. 3.1.5
Note that (3.1.3) excludes just the worst terms u3, |u|?%, 3. As pointed

out in [13], [14], [16], [17], [18], [60], [61], etc., these three terms make the
situation much more complicated. We do not intend to pursue this case
here. We always assume (3.1.3) in what follows.

In view of the right-hand side in (3.1.4), it may be natural to expect
that the sign of Imv(&) has something to do with global behavior of small
data solutions to (3.1.1). In fact, it has been pointed out in [66] that typical
results on small data global existence and large-time asymptotic behavior
for (3.1.1) under (3.1.3) can be summarized in terms of Im (&) as follows.
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(i) The small data global existence holds in H3N H?! under the condition

Impr(§) <0, £eR. (A)

(ii) If the inequality in (A) is replaced by the equality, i.e.,
Imu(g) = Oa f € Rv (AO)

then the solution has a logarithmic phase correction in the asymptotic
profile, i.e., it holds that

fa) = —at(a/t I ot (/)2 Rew(a /1) logt ) +o(t-1/2
ults) = Joat ey (g~ il (/0P Rev(e/o)loge ) o(t~1/)

as t — +oo uniformly in z € R, where at(£) is a suitable C-valued
function of £ € R.

(iii) If the inequality in (A) is strict, i.e.,

supImv (&) <0, (AL)
£eR

then the solution gains an additional logarithmic time decay ||u(t)| L =
O((tlogt)~1/?).

For more details on each case, see the references cited in Section 1 of [66].
As for the large time behavior in the sense of L2 under (A), it is not dif-
ficult to see that (A.) implies tli]Jrrn |lu(t)||z2 = 0, whereas (Ap) implies
—+o0

tlier ||u(t)|| 2 # O for generic initial data of small amplitude. However, it
—+o00

is not clear whether L2-decay occurs or not in the other cases (even for a
simple example such as N (u, Oyu) = —i|0,u|?(u + Opu) + O, (u?), for which
we have

1 2 ; 2 N 02 | 3
V(f):% ‘Z|:1(—Zf (1 +i&)|z|"z + i€z );:—Zf +£
and Imv(§) = —¢€2). Despite the recent progress of studies on dissipative

nonlinear Schrédinger equations ([9], [19], [27], [28], [37], [42], [45], [46], [47],
[51], [52], [68], etc.), questions on decay/non-decay in L2 without (A ;) have
not been addressed in the previous works. The first aim of this chapter is to
fill in the missing piece between (A ) and (Ag), that is, to investigate L>-
decay property of global solutions to (3.1.1) under (3.1.3) and (A) without
(A4) and (Ap). The first result in this chapter is as follows.

Theorem 3.1.1. Suppose that e = ||| g3nm21 is sufficiently small. Assume
that (3.1.3) and (A) are satisfied but (Ag) is violated. Then, for any 6 > 0,
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there exists a positive constant C' such that the global solution u to (3.1.1)
satisfies

Ce
(1+ e log(t + 2))/43

[u(®)]lz2 <

fort>0.

Remark 3.1.1. Under (3.1.3) and (A ), we can show the global solution to
(3.1.1) has the stronger L2-decay of order O((logt)~%/8%9) with arbitrarily
small § > 0 by the same method. However, the decay order O((logt)3/8+9)
is certainly not optimal. For the detail, see Remark 3.2.1 below.

Our second target in this chapter is a system of cubic nonlinear Schrodinger
equations which can be comparable to (2.1.5). Let us focus on

ﬁul = —i|uQ\2u1,
{ Cus = —ilus Pus, (t,z) € (0,00) X R, (3.1.6)
with the initial condition
u;j(0,2) = gog-)(x), z€eR, j=1,2, (3.1.7)

where ¥ = (¢9(z),Y(x)) is a given C2-valued function of x € R which
belongs to an appropriate weighted Sobolev space and satisfies a suitable
smallness condition.

There are various extensions of the conditions (A), (A4) and (Ap) for
the system case (see e.g. [51], [52], [42], [67], [41]). In the previous works
[51] and [52], several structural conditions on the nonlinearity have been
introduced under which the small data global existence holds for a class
of cubic nonlinear Schrodinger systems in R, and large time asymptotic
behavior of the global solutions have also been investigated (see also [42],
[67], [41] and the references cited therein for related works). We do not
state these conditions here, but we only point out that the small data global
existence for (3.1.6) follows from the results of [51] and [42] but the large
time asymptotic behavior of solutions is not covered by these results.

We note that the system (3.1.6) possesses two conservation laws

(@ + ea@)Ez) = =4 [ fust,) Pluat ) da

and

(013 ~ lua()]3:) = 0.

However, these are not enough to say something about the large time asymp-
totics for u(t), and this is not trivial at all. To the author’s knowledge, there
are no previous results which cover the asymptotic behavior of solutions to
(3.1.6)—(3.1.7). From the viewpoint of conservation laws, there are a lot of
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similarities between (3.1.6) and (2.1.5). It has been shown in the previous
chapter that global solutions to (2.1.5) with small data behaves like solutions
to the free wave equations, but there is a strong restriction in the profiles.
Although the approach of the previous chapter does not use the conservation
laws directly, it may be natural to expect that an analogous phenomenon
can be observed for solutions to (3.1.6). We are going to reveal it.

Before stating the results, let us introduce a notation. We set U(t) =
exp(i£02), so that U(t)¢ =: w(t) solves the free Schrodinger equation Lw =
0 with w(0) = ¢.

Theorem 3.1.2. Suppose that o° = (o, p3) € H*NHY! and e = ||¢°|| g2nmin
is suitably small. Let u = (u1,us) € C([0,00); H> N HY) be the solu-
tion to (3.1.6)~(3.1.7). Then there exists pT = (o], ¢5) € L? with pT =
(67, ¢3) € L* such that

lim luj(t) = U@} |2 =0, j=1,2.

t—+o00

Moreover we have

P1(6) - 93(6) =0, E€R (3.1.8)

Remark 3.1.2. We emphasize that (3.1.8) should be regarded as a conse-
quence of non-trivial long-range nonlinear interactions because such a phe-
nomenon does not occur in the usual short-range situation. To complement
this point, we will give auxiliary results on the final state problem for (3.1.6)
in Section 3.6.

To investigate more precise information on ¢+, we put a small parameter
¢ in front of the initial data to distinguish information on the amplitude from
the others, that is, we replace the initial condition (3.1.7) by

u;(0,2) = ej(x), j=1,2, (3.1.9)

where ; € H 2N HY! is independent of . We have following criteria for
(non-)triviality of the scattering state ¢ = (o], 5 ) for (3.1.6)—(3.1.9).

Theorem 3.1.3. We put <p;r :tligl U(—t)u;(t) in L?, j = 1,2, for the
— 100

global solution w = (u1,u2) to (3.1.6)~(3.1.9), whose existence is guaranteed
by Theorem 3.1.2. Assume that there exist points £ € R and & € R such
that

[D1(E)] > [a(€7)) (3.1.10)

and

[1(&)] < [da(&)], (3.1.11)

respectively. Then, we have |7 ||z2 > 0 and ||¢5||z2 > O for sufficiently
small €.
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Theorem 3.1.4. Assume that

[91(8)] > [¢ha () (3.1.12)

for all € € R. Then, for sufficiently small e, @3 vanishes almost everywhere
on R, while ||¢} |2 > 0.

It follows from Theorems 3.1.2 and 3.1.3 that both u; (t) and us(t) behave
like non-trivial free solutions as ¢ — +oo. In particular, we see that L2
decay does not occur for u;(t) and wug(t) under (3.1.10) and (3.1.11). To the
contrary, Theorem 3.1.4 tells us that only the second component wus(t) is
dissipated as t — oo in the sense of L? under (3.1.12). We emphasize again
that such phenomena do not occur in the usual short-range settings. In this
sense, the dynamics for the system (3.1.6) is much more delicate than that
for the single Schrodinger equation with dissipative cubic nonlinear terms.

Remark 3.1.3. It is worthwhile to note that the presence of —i in the right-
hand sides of (3.1.6) is essential for our result. Indeed, if we drop —i from
the right-hand sides of (3.1.6) (that is, Lu; = |us|?u; and Lus = |u1|?uz),
we can show that the solutions have logarithmic phase corrections as in the
single case (3.1.2) with A € R\{0} (see e.g. [71] for detail).

Remark 3.1.4. Theorems 3.1.2, 3.1.3 and 3.1.4 concern only the forward
Cauchy problem (i.e., for ¢ > 0). In the backward case, the small data global
existence may fail in general. See [65] and the references cited therein for
more information and the related works on this issue.

3.2 Proof of Theorem 3.1.1

This section is devoted to the proof of Theorem 3.1.1. The argument will
be divided into four steps.

Step 1: We begin with the following elementary lemma, whose proof is
skipped.

Lemma 3.2.1. Let p(§) be a real polynomial with degp < 3. If p(§) > 0 for
all £ € R, then we have either of the following three assertions.

(a) p(§) vanishes identically on R.

(b) sigﬂfgp(é) > 0.

(c) There exist co > 0 and & € R such that p(&) = co(€ — &)
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For v(§) given by (3.1.5), we put p(§) = —Imr(§). Since we assume that
(A) is satisfied but (Ap) is violated, we see that the case (a) in Lemma 3.2.1
is excluded. Note also that (b) is equivalent to (Ay). Now, let us turn our
attentions to the admissible range of the parameter 6 for convergence of the
integral

B d
fo= /Rp<£>9<e>440

under (c) or (b). In the case (c), we have

0 d§
fo=¢ /Rf—€0|29<5>440 =

for 8 < 1/2. In the case (b), we have

(3.2.1)

_ d
Iy < (inf p(§)) 9/R<§>f49<oo

£eR

for 0 < 3/4.

Step 2: Next we summarize the basic estimates for the global solution u to
(3.1.1). First we write J = x + itd,. We note the important commutation
relations [0, J| =1, [£, J] = 0. We also have

J =U(t)aU(-t). (3.2.2)
We set a(t,&) = F[U(—t)u(t,)](£) for the solution u to (3.1.1). Ac-
cording to the previous Works ([ 2], [ 9], [66], etc.), we already know the

following estimates.

Lemma 3.2.2. Let € = ||¢| gsnp21 be suitably small. Assume that (3.1.3)
and (A) are fulfilled. Then, the solution u to (3.1.1) satisfies

la(t, §)] < g; (3.2.3)
fort >0, €eR, and
[u(®)llgs + [[Tu(t)|[g2 < Ce(1+1)? (3.2.4)

fort >0, where 0 < v < 1/12.

The following lemma has been obtained in [66] (see also [12]). We write

a0 (t:€) = alt, £/¢) for ¢ € R\{0}.
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Lemma 3.2.3. Under the assumption (3.1.3), we have
v(§)
t

-2t 2
ge's ¢ 3
n Ma(f)(a(fs))
é-eit§2

ite?
e's
aPa+ S (o

FU(=t)(1 = )N (u, uz) =(1 + &)

+

+ us(€)la oy + R, (3.2.5)

where v(§) is given by (3.1.5), u1(§), pe(&), us(&) are polynomials in & of
degree at most 4, and R(t,&) satisfies

C 3
|R(t,€)] < iggzi(Hlt(t)H113 + | Tu() || 2) (3.2.6)
fort>1,£eR.
For the proof, see Lemma 4.3 in [66]. By (3.2.4) and (3.2.6), we have

C 3
[R(t,€)] < tl% (3.2.7)

for t > 1, £ € R, where kK = 1/4 — 3y > 0. This indicates that R can be
regarded as a remainder in (3.2.5). We also observe that one £ pops up in
front of the oscillating factors in (3.2.5). This is the point where (3.1.3)
plays a crucial role. As for the role of v(), the first term of the right-hand
side in (3.2.5) tells us that v() is responsible for the contribution from the
gauge-invariant part in V.

Step 3: We are going to make some reductions. The goal in this step is to
derive the ordinary differential equation (3.2.10) (with £ € R regarded as a
parameter).

Let t > 2 from now on. By the relation £ = U(t)iod(—t) and Lemma 3.2.3,
we have

i0wa(t, &) = FU(—t)Lu
= (&) FU(—t)(1 = )N (u, uz)
v(§)

= = la(t,OPa(t, &) +n(t.§) + (O T*R(LE),  (328)

where

€ (6) 4 €M ()

5 £ (9
n(t,§) = m <§>2 a(3)+ n <§>2

2
A T e ey,

It follows from (3.2.3), (3.2.7) and (3.2.8) that

cEd [ce\*  ce? Ce?
t <<§>2> TR S e

|0cax(t, )] <
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Also, by using the identity
feiwt§2
t

B fat(teth£2)
= mf(taf)

_ o [ g ey [ EF(5E)
=10, <1_Hwt£2f(taf)> — te' O (75(1_1_%52)>

ft,6)

and the inequality
sup g ¢
ccR |1 + iwt§2| - (\w|t)a/2

for 0 < a < 2, we see that n(t,&) can be split into

. Ce3 Ce3
n=i0o1 + 025 |o1(t,§)] < R |o2(t,§)] < B (3.2.9)
With this o1, we set B(t,§) = a(t,&) — o1(¢,&). Then it follows from (3.2.8)
that

06,6 = " ia(e.e)P80.6) + (1.6), (3.2.10)
where
p(t,€) :V(f) (!aPa — Wﬁ) +o2+ (&) R
=%§(%m%u+a%1—mmnﬁ—aﬁ+mmﬁm>+ar+@r%a

By (3.2.3), (3.2.7) and (3.2.9), we have

C(&)? ( Ce cet \° Ced Ce? Ce?
p(t, )l = —, (<£>2 + t1/2<§>4> t1/2(g)4 + t3/2(¢)* i LR (€)?
TG

Remember that 0 < x < 1/4.
Roughly speaking, what we have seen so far is that the solution u to
(3.1.1) under (3.1.3) can be expressed as

u=ULF B+
with
10,8 = l/(f)lﬁ\2ﬁ+--- :

”

where the terms “+4---” are expected to be harmless. By this reason it
would be fair to call (3.2.10) the profile equation associated with (3.1.1)
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under (3.1.3). The original idea of this reduction is due to Hayashi-Naumkin
[11].

Final step: We set ®(t,£) = p(€)|B(¢, €)|? with p(¢) = —Im v(¢). Note that
O(t,€) > 0 by (A). It follows from (3.2.10) that

RN P —
—2p<5>( 1B(4,©) +Im(6(t,£)p(t,§))>
(

t
2p(€)* 1 3 Ce Ce
< —— BT+ CL) GEELGE

Cet
te(g)’
where x € (0,1/4). We also note that (3.2.3) yields
2 2
Cg) i
(€) (€
Therefore we can apply Lemma 2.4.2 with ¢ = 2 and s = 1 4+ k to obtain

C
< < —

<2067+

8(2,6) < C(e)? (

whence

(1)
p(§)

¢ 5Vp(§) [logt
= p(€)logt <1+5 (©* t>

Ce
< —
p(§)e? log't
Interpolating this with (3.2.3), we deduce that
Ce 1
(€2 log t)%/2 p(€)0/2(€)2~20
for 6 € [0,1]. By the L%-unitarity of ¢(t) and F, we have

Ce?
(e2logt)?

|t §)] <

+ lou(£,€)]

la(t,§)] <

lu(®)lIZ: = llo() 72 < Iy (3.2.11)

for 0 < @ < %, where Ij is given by (3.2.1). Therefore we can take § =

1/2 — 26 with 6 > 0 to see that

Ce

[u(®)llp2 < W-
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Also we obtain ||u(t)||zz < Ce by taking # = 0 in (3.2.11). Piecing them
together, we arrive at the desired estimate. O

Remark 3.2.1. If we assume (3.1.3) and the stronger condition (A} ), we
can choose § = 3/4—26 in (3.2.11) because (A ) implies (b) in Lemma 3.2.1
and thus the admissible range for 6 in (3.2.11) becomes 0 < 6 < %. That is
the reason why ||u(t)||z2 decays like O((logt)~3/8t9) under (A). It is not
certain whether this rate is the best or not. Indeed, it is possible to improve
the exponent from —3/8 4+ ¢ to —1/2 if there exists a positive constant C,
such that

Imv(§) < ~Ci(§)*, €€R (Ary)
(cf. Theorem 2.3 in [51]). A typical example of N satisfying (Ayy) is
—i|u + Opul?u.

It may be an interesting problem to specify the optimal L?-decay rates
for the solutions to (3.1.1) under (3.1.3) and (A) (with or without (A4)).

3.3 Preliminaries for Theorems 3.1.2, 3.1.3 and
3.1.4

In this section, we collect several inequalities and basic estimates which are
useful in the proof of Theorems 3.1.2, 3.1.3 and 3.1.4.

3.3.1 Basic estimates

Let u = (u1,u2) be a smooth solution to (3.1.6)—(3.1.7) on [0,00) x R. We
define a = (a1, a) by

0j(t,€) = F|U(=Dus(t,)] (&) (33.1)
for j = 1,2. Then it follows from (3.1.6) that
Oy = —iFU(—t)Luy = —FU(—t)(Juguy) = —%|042|2041 + Ry, (3.3.2)
where
Ry = %|a2\20¢1 — FUC—t) [Jus]Pu].
Similarly we have

1
Dyvg = —;\oq!?ag + Ry, (3.3.3)
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where
1
R2 = E|O¢1‘2042 — M(—t) [|u1|2u2] .

Concerning estimates for R = (R1, R2), we have the following estimate.
Lemma 3.3.1. Let R be as above. Fort > 1, we have

C
t5/4(E)

This estimate is not a new one (see e.g. Lemma 5.2 in [51]). For the
convenience, we will prove it in Subsection 3.3.2, below.

Next we review the basic estimates for global solutions u to (3.1.6)—
(3.1.7). From the argument of [51], we already know the following result.

[R(t, €] < (le@® i + [ Tu@)lm)*.

Lemma 3.3.2. Let 0 < vy < 1/12. Suppose that € = ||| g2npa is suitably
small. Then the solution u to (3.1.6)—(3.1.7) satisfies

w2 + [ Tu)|m < Ce(t)?, (3.3.4)
u(t)]| e < Celty™/? (3.3.5)

fort >0 and
ot )] < Ce() ™ (3.3.6)

fort >0, £ € R, where a is given by (3.3.1).

It follows from Lemmas 3.3.1 and 3.3.2 that we obtain

Cce?
< Z=
|R(t7 6)’ — t5/4_37<£>
for t > 1. Roughly speaking, this means that the evolution of o = (o, ag)
could be characterized by

(3.3.7)

1 1
Oron = —Z|Oé2\20417 Oy = —E|041|2042
up to the harmless remainders. We also note that u(t) = U(t)F ~La(t). This

point of view, whose original idea goes back to Hayashi-Naumkin [11], is the
key of our approach.

3.3.2 Proof of Lemma 3.3.1

We give a proof of Lemma 3.3.1. For this purpose, we introduce some
notations. We define the operators M(t), D(t) and W(t) by

(M(0)6) (@) = ¢ p(), (DW)6) (@) = (it) 2 (7). W(t)6 = FM()F o,
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so that U(t) = exp(i£9?2) is decomposed into
U(t) = M(t)D(t)FM(t) = M(t)D(E)WV(t)F.

An important estimate is

IOV(E) = Dgllze + [V () = D]l < CE|6] 1,
which comes from the Gagliardo-Nirenberg inequality

Il < ClOIL" 10:8],
and the inequality
e —1]<Cl)°  (BeR 0<o<1)

with 0 = 22/(2t),o = 1/2. Note also that

(3.3.8)

(3.3.9)

(3.3.10)

IWOFU Gl + (WO T FU S < CI0N 2 + 1Tl 12)

and

[FU(=t)[d102¢3]l[ L < Cligall 2l 2]l L2l 93]l e,

(3.3.11)

(3.3.12)

where the constant C' is independent of ¢ (see e.g., [51] for the proof). In
what follows, we will occasionally omit “(t)” from M(t), D(t), W(t) if it

causes no confusion.
Let a be given by (3.3.1). By (3.3.8), we have

FU(—t) [Juo|*ur] = WD M [|MDWasPMDWay |

_ %W’l [WasPWan],

whence
R = 2 (jaafas = W [WaalPWan))
- %(1 — W [Was Wai ] + %|WO¢2|2(1 —W)ay
+ L W) T Wamas + H(1 - Wyaayazan.

Therefore (3.3.9), (3.3.11), (3.3.12) and the Sobolev imbedding H!(R) —

L>(R) lead to

|[B1(t,6)] < O (Jlull 2 + | Tull 12)*.
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Next we observe that

i€Ry = %|a2|2a1 — FU(—1) [am(|uQ\2u1)}

1 -
== (agl)ngoq —wt [(Waél))(Wozg)Wole

1 -
+ ; (agagl)al — Wil [(Wag)(Waél))Wal])

1 _
+ (a@agﬂ -l [(Wa2)(vva2)vva§1)]),

(1)

where a; 7 = i€a;. Then we see as before that

€RL(8,€)] < CE A (Jull g + 1Tl ). (3.3.14)

The desired estimate for R; follows immediately from (3.3.13) and (3.3.14).
The estimate for Ry can be shown in the same way. O

3.4 Proof of Theorem 3.1.2

In this section, we will prove Theorem 3.1.2. The main step of the proof is
to show the following.

Proposition 3.4.1. Let o = (a1(t,€), aa(t,€)) be given by (3.3.1) for the
solution u = (u1,u2) to (3.1.6) satisfying the assumptions of Theorem 3.1.2.
There exists o™ = (af (€), a3 (£)) € L? N L% such that

Jimlag(t) — af 2 = 0 (3.4.1)

for j =1,2. Moreover we have af(f) . a;(f) =0 for§ €R.

Once this proposition is obtained, we can derive Theorem 3.1.2 immedi-
ately by setting go;r =F _1a;r. Indeed we have

luj(t) = U ) 2 = [FUt)u;(t) — )2 = llog(t) — o[22 = 0

as t — +o0.

In the rest of this section, we will prove Proposition 3.4.1. Note that
many parts of the arguments below are similar to those in Subsection 2.5.1,
though we need several modifications to fit for the present situation.

Proof of Proposition 3.4.1. We first show the pointwise convergence of a(t, &)
as t — +o0o. We fix £ € R and introduce

p(t.€) = 2Re|ar (£, R (t, ) — aal(t, O Ralt,€)|.
Then it follows from (3.3.2) and (3.3.3) that

O (lon (4, O ~ laa(t, ©)) = 2Re |ar0r01 — a3dhaz| = p(t,€).
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Also (3.3.6) and (3.3.7) lead to

/ p(r.€ |dT<c/ ot ©)||R(,€)| dr
2
< C/ 27'37_5/4 dr
<Cs

for 0 < v < 1/12. Therefore we obtain

GO ~ laalt, OF = o 2.9 ~lea(2.08 + [ ot €)dr
=m(§) —r(t,5), (3.4.2)
where
m©) =l @OF ~ @Ol + [ prgdr (343
and
)= [ redr

for ¢ > 2. Note that

m(©)] < a2, ) + / o, )] dr < C=2(€)~?
2
and
r(1,6)] < / o6 dr < CeHg) 21 (3.4.4)
t

for 0 < v < 1/12. Now we divide the argument into three cases according
to the sign of m(¢) as follows.
Case 1: m(§) > 0.

First we focus on the asymptotics for as. By (3.4.2), we can rewrite
(3.3.3) as

m(§)

(t)

D (t,€) =~ Jaa(t, )P (t,) -

for t > 2. So we have

as(t,€) + ag(t,€) + Ra(t,€)

01 (oa(t. )2) = 2Re(m00) < ~ 220y, )2 1 (g 205/
for t > 2, whence

at <t2m(§)|a2(t,£)|2> < C€4<€>—2t3’y+2m(§)—5/4.
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Now we choose € > 0 so small that
1
m(€) < 02" < =-(1 —127)
is satisfied. Then we have

5 3/1
— < -]l == — = —1.
3y +2m(&) 1S 1 5 <12 ’y) < -1

Hence integration in ¢ leads to

P Olau, OF — 2" Olay(2, O < Oete) > [ Oty
< Celg)~? 2
for t > 2. Therefore we see that
jaa(t, €)] < Ce(g) "1, (3-4.5)

In particular, as(t,£) — 0 as t — +o0o. Next we turn our attentions to the
asymptotics for ap. Since (3.3.2) can be viewed as

Oran (t) = A(t)aa(t) + Q(2)

with A\(t) = —|aa(t,€)|?/t and Q(t) = Ri(t,€), we can apply Lemma 2.5.1
to obtain

(\BT(&)HO@(T,&)I

(&%) 2
lon(t,€) — B (6)] < C /t + |R1(T,£)]) ir

for t > 2, where
BE(€) = a1(2,&)e o leamOP S +/ Ruls, )e I s E g0
2
By (3.3.6), (3.3.7) and (3.4.5), we have

1B5()] < Jar(2,6)] + / T IRu(s.)lds < Cele) (3.46)

and

[ <|ﬁf(§)llaz(ﬂ€)l2 cming) <o [ <Tef’+<€>‘3 +e3<s>-1> .

= 2m(@) 7543
. CRe oS
— 2m(£)t2m(€) t1/4—3'y

for t > 2. Therefore we conclude that aq(t, &) — B;(€) as t — +o0.
Case 2: m(§) < 0.
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Similarly to the previous case, we have
: _ . _pt _
tlg_noo |a1 (ta £)| - 07 t—lggloo |042 (t7 5) 62 (£)| 0
for each fixed £ € R, where

B () = as(2, €)™ F" I rOP T +/ Ra(s, €)e= I lea (o2 4o
2

Remark that |85 (&) < Ce(€)~L.
Case 3: m(§) =0.
By (3.3.2), (3.3.6), (3.3.7), (3.4.2) and (3.4.4), we have

20(t,€)
)it = S0

0 (Jon(1,6)) < o (1,€ o (1.&) + 2lon (1.1 (1.6)

~Zlan(t, )+ O (g) 25/

IA

for t > 2, and 0 < v < 1/12. Thus we can apply Lemma 2.4.2 with
O(t) = |1 (t,€)|? to obtain

C

a1 (t, )] < (log )72 —

0 (t = 400).

Also (3.4.2) gives us |az(t, &) = /]a1(t,&)> +r(t,€) — 0 as t — +o0.
Summing up the three cases above, we deduce that «(t,&) converges as
t — 400 for each fixed £ € R. To obtain (3.4.1), we set

[ BHEO (m(&)>0), {0 (m©>0),
“m)"{ 0 (m(§) <o), “;(ﬁ)“{ﬂm (m(€) <0

and ot (€) = (af (€), a5 (€)) for € € R, where 8, (£) and 55 (€) are shown in
Cases 1 and 2, respectively. Then it is obvious that af (€) - a3 (¢) = 0 for
¢ € R. Also, by virtue of (3.4.6), we have a™ € L? N L*°(R) and

~—

)

la(t,€) — ot (&)|° < Ce2(6) % € LY(R)

for t > 2. Moreover, it holds that

lim |a(t,€) — a™(€)]* =0

t—+o00

for each fixed £ € R. Therefore Lebesgue’s dominated convergence theorem
yields (3.4.1). O
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3.5 Proof of Theorems 3.1.3 and 3.1.4

In this section, we are going to prove Theorems 3.1.3 and 3.1.4. From the
proof of Proposition 3.4.1, vanishing of the scattering state o™ = (¢], 7))
can be characterized by the sign of the function m(§). Let us summarize it
as follows.

Proposition 3.5.1. We put go;L =, ligl U(—t)u;(t) in L?, j = 1,2, for the
— 00

global solution u = (uy,u2) to (3.1.6)~(3.1.7), whose existence is guaranteed
by Theorem 3.1.2. Let m be the function defined by (3.4.3). Then the
followings hold for each & € R:

e m(£) > 0 implies $7(€) # 0 and 5 (€) = 0;
o m(&) < 0 implies p7(€) =0 and Hp3 (&) # 0;
o m(¢) =0 implies ¢7 () = ¢ (€) =0.

Proposition 3.5.1 gives us more precise information than (3.1.8) and the
function m(§) plays an important role in it. This indicates that better un-
derstanding of m(&) will bring us more precise information on the scattering
state.

3.5.1 Leading term of m(¢)

The key of our proof of Theorems 3.1.3 and 3.1.4 is the following lemma,
which specifies the leading term of m(§) for sufficiently small initial data.

Lemma 3.5.1. Let m be the function given by (3.4.3) with the initial con-
dition (3.1.7) replaced by (3.1.9). We have

m(€) = &2 ([0 (€)1” = [42(&)*) + O
as € = +0 uniformly in & € R.

Proof. By (3.4.3) and (3.4.4), we have

sup|m(€) — (Jor (2, O — |aa(2.§) )| < C=1,
£eR

Therefore, it suffices to show

j(2,€) = e;(§) + O(°) (3.5.1)

as € = +0, uniformly in £ € R for j = 1,2.
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We put Ni(u) = |ug|?u; and Na(u) = |ui|?us. Then it follows from
(3.2.2), (3.3.4), (3.3.5), the relation £ = U(t)idU(—t) and the Sobolev em-
bedding that

Egg\ag‘(?,&) — e (&)] < OU(=2)uj (2, ) = ui(0,-)]| o
2
<c /0 JU(=7)N; () 0. dr

2
< C/ ()| Zoe (™)l 22 + | Tw(r) | r2) dr
0
< (g3

as desired. 0

3.5.2 Proof of Theorem 3.1.3

We put V = {& € R||1(€)] > |¥2(6)]}. By (3.1.10), we see that V is a
non-empty open set. Now we take r > 0 so small that the closed interval

I=[¢—r & +r]is included in V', and we put
Cy = min(|¢1 (&> — [¢2(£)]?).
el
Then we have C7 > 0, and Lemma 3.5.1 gives us
m(&) > C1e? — Cet >0

for ¢ € I, if ¢ > 0 is small enough. By Proposition 3.5.1, we have ¢] (€) # 0
for £ € I. Therefore we obtain

le e = 187 [lz2(ry > 0.

Similarly, (3.1.11) yields |¢3 ||z2 > 0. O

3.5.3 Proof of Theorem 3.1.4

Let x : R — R be a cut-off function satisfying x(§) = 1 (|¢] < 1) and
x(€) = 0 (|¢| > 2). For given § > 0, we can choose ¢ > 1 so large that

(1 = Xq)@3 [l 22 < 8, where x4(&) = x(&/q). With this ¢, we put

Cy = min (|1 ()% = [da(€)[?).

1€]1<2q

Then we have Cy > 0, because of (3.1.12). So it follows from Lemma 3.5.1
that
m(€) > Coe? — Cet >0
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for |£| < 2q, if € > 0 is small enough. By Proposition 3.5.1, we deduce that
Xq(&)@3 (&) = 0 for all £ € R. Therefore

les 1z = 11 = xq) @3 llz2 < 0.

Since § can be taken arbitrarily small, this means that gpgr vanishes almost
everywhere on R. O

3.6 Final state problem for (3.1.6)

To complement Remark 3.1.2, we give two auxiliary results on the final state
problem for (3.1.6), that is, finding a solution u = (u1, u2) to (3.1.6) which
satisfies
: (1) ., — .
dim (1)~ U 2 =0, G =12, (3.6.1)

for a prescribed final state ™ = (wf , 1/1; ). Roughly speaking, the proposi-
tions below imply that (3.6.1) holds if and only if

UF(€) - PF(§) =0, EeR. (3.6.2)

This indicates that our problem must be distinguished from the usual short-
range situation, because (3.6.1) should hold in the short-range case regard-
less of whether (3.6.2) is true or not (see e.g. [10]).

The precise statements are as follows.

Proposition 3.6.1. Let Ty > 1 be given, and let u be a solution to (3.1.6)
for t > Ty satisfying

sup (t_7||u(—t)u(t)HH1,1 n H]—"Z/l(—t)u(t)HLoo) < o0 (3.6.3)
t>To

with some v € (0,1/12). If there exists ™ € L? with T € L such that
(3.6.1) holds, then we must have (3.6.2).

Proposition 3.6.2. Suppose that ¥ satisfies v € H% N L with some
s> 1, and that § = ||t || is suitably small. If (3.6.2) holds, then there
exist T > 1 and a unique solution u to (3.1.6) fort > T satisfying U(—t)u €
C([T,00); H*') and (3.6.1).

We are going to give a proof of them. Note that the arguments below are
essentially the same as those given in Section 5 of [50]. We also remark that
the regularity assumptions in these propositions are certainly not optimal.
It may be possible to relax them (see e.g. [15]), but that is out of the present
purpose.
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Proof of Proposition 3.6.1. In what follows, we write N1 (v) = |va|?v1, Na(v) =
|v1|?ve and N (v) = (N1(v), No(v)) for v = (v1,vs). Let a be given by (3.3.1)
for the solution u to (3.1.6). Then, similarly to (3.3.2), we have

010y (1,€) = ~ T Ny (0 (€) + S)(1,6) + Ry(1,6), j=1.2

where

Sj(ta 5) =

~+ | =

(Ni(5+(€) - Nyla(t,9)))
and
Ry(t,€) = 7 Ny(a(t,€)) — F [U(-H)N;(u(t, )] (©)

Now we shall argue by contradiction. If (3.6.2) is not true, then we can take
n > 0 such that | N;(¢)")||zz > n for j = 1,2. By (3.6.3) and Lemma 3.3.1,
we have ||R;(t)||2 < Ct~%/4F37 for t > Tp. We also note that

150 = TN 5) - Ny (FU(-)u(e)
O 1918 + 1 FU (Do) |F (5 — U(—t)u(t))]] 2

et (v = u(®)] e,

whence, by (3.6.1), we can take T > Ty such that ||S;(¢)| 2 < n/(2t) for
t > T*. Summing up, we obtain

<

IA
| Q|

U (=2t)u; (2t) — U(=t)u;(0)]] 2
=lla;(2t) — e (®)]l 2

2 g 2t 2t
20 [T = [ IS0 ldr = [ IRy 12 dr
t T t t

Zg log2 — Ct~ /4437

for t > T*. Letting t — 0o, we have
Ui
0=y — ¢ llz2 = 5 log2 >0,

which is the desired contradiction. O

Proof of Proposition 3.6.2. With T > 1 to be fixed, let us introduce the
function space

xr = {6 = (61(t.2). 6a(t,2)) | U(-0)9(t.-) € C((T.00): HO) }
and the norm

ol = sup (#*F216(0)]] 12 + 4| TS(1)] 2),

te[T,00)
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where 0 < pu < (sp — 1)/2 and sy = min{2, s}. For v = (v1,v2) € X, we set
B0 =u) — [ Ut-nN ) G=12 (304)
t

and ®[v] = (®y[v], Po[v]). We also put wi(t) = M(t)D(t)Fyt, w’(t) =
Ut —wh(t), k= [[¥7F | o.so and

Vr = {0 €2 | 6wz, <}

Since (3.6.2) yields N(¢+) = 0, it follows from (3.3.8) that

U-IN (7)) = M) FNET) =0, (5.6.5)

We observe the basic estimates for w#(t) and w’(t):

(Ol =t 21 | poe = 58712,

Ollzz = 147 Iz < &,

[’ ()]l 2 < NM(E) = )iz < O [[F | o.sy < Crt =072,

ITwH ()| 2 = Nzl < &,

17w )2 < [l2(M(E) = Dotz < CE DR[| oy < Crtm 07D/,

where we have used (3.2.2), (3.3.8) and (3.3.10) with o = s¢/2 or (sp—1)/2.
Now we are going to show that ® is a contraction mapping on 27 by

choosing ¢ and T appropriately. Let v € Yp. By using (3.6.5), we rewrite
(3.6.4) as

D] (1) — wh(t) = - /toou@ — ) (N(w(r) - Nw(r)) dr +w’(0)

w?
:

[w

(
(

It follows from the inequality |||/ < Ct_1/2\|q5||1L/22H.7¢H1L/22 that

ot (0)] [z < Ot o(t)—wb (D21 (wt)—wf () |2 < Crt /0

So we have
[0t e < k()| + |J0(t) — w(£)|| oo < C(8 + KT~ HATHY1/2,
Therefore
1@ 0)(t) — wh(t)]| 22
< [T U0 + ) — ) b+ Ot

® dr
—1/4—pu\2 —(so—1)/24pp—1/2—
<C(0 + KT ") n/t pr Ve CrT (%0 it p

<C(6% 4 R2T Y2721 o p(s0= D)/ 24wy gy =1/2=0, (3.6.6)
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Also, because of the estimate

IT (N (v(t)) = N (wh (1)) 2

<C([[oll7ee + w7 1T (v = w)l| 2
+ C(|[vllzoe + o) (1T vl 2 + [ Twh| £2) [0 — wh]| Lo

<C(6% 4 K*T~ 1/2- 20yt~ 1H
+ C(6 + T YA Y2 Okt 4 k) - Okt 3/4H

<C(6% 4 K271 4 TVt~ 11,

we obtain
1T (@[0](t) — wh(t)) ] 2
< [T 0) - N ) dr -+ Ot oD

_(30—1)/2+Nt—ﬂ

<C(6% 4 K2T121 4 5/$T_1/4)/£/too TCZ
=C (0% + 2T V21 4 g4 4 7= (s0= D/ 24wy oy =, (3.6.7)
Combining (3.6.6) and (3.6.7), we arrive at
1@[0] — |z, < C(6° + K2T V2 4 oI~ 4 T (o= D/2Hm g
=)
Hence we have ®[v] € Q7 if we choose ¢ so small and T so large that the
term (x) does not exceed 1. Next we take v, ¥ € Q7. Then we have

@[o](t) — D[3)() = — / Ut - ) (N () - N@(r) ) dr
and we can see as before that

- 1 -
12[o] = 2[e]llzr < 5llv = ollxy

by choosing ¢ and T suitably. Therefore ® : Yr — Yr is a contraction
mapping, and thus, admits a unique fixed point. In other words, there
exists u € Yr such that

oo
u(t) =U(vw" - [ (e~ N ) dr,
t
which gives the desired solution to (3.1.6) for t > T". Moreover we have

u(t) — US|z < lult) — w ()| 12 + W ()] 12
< gtV 4 Opto0/?
— 0

as t — +o0o. This completes the proof of Proposition 3.6.2. O
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