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Abstract

The monomer-dimer models in two and three dimensions: Tensor
renormalization group study

by Takahiro OTSUKA

The dimer problem is a problem of counting the number of ways to arrange diatomic
molecules (dimers) on a plane, when overlapping dimers is prohibited. The dimer
problem can be defined on the lattice as a pure dimer model (PDM), and analytical
solutions are known for the two-dimensional model. PDM is one of the simplest model
and is therefore widely studied because it is associated with a variety of physics. For
example, PDM shows critical phenomena on bipartite lattices such as square and
honeycomb lattices, and there is a one-to-one correspondence between the PDM and
the Ising model. PDM can be extended to the monomer-dimer model (MDM), which
contains not only diatomic molecules but also monoatomic molecule (monomers).
Unlike PDM, there is no analytical solution in MDM even if it is two-dimensional.
Therefore, it is efficient to perform numerical calculations to analyze the properties of
MDM or high-dimensional PDM or MDM.

In this thesis, we study the critical behavior of MDM on 2D and 3D lattices
using DMRG and Higher Order Tensor Renormalization Group (HOTRG), which is
one of the tensor network calculations based on the singular value decomposition.
Criticality is reflected in physical quantities such as entropy and monomer density
as a deviation from the power. By analyzing this behavior, we clarify the criticality
of MDM and classify MDM by determining the critical exponent. Simultaneously
through the applying HOTRG to a several systems, we optimize the algorithm for
high-dimensional systems and study the spectrum of HOTRG.

First, we study the critical behavior of 2D MDM using DMRG and HOTRG.
Although there may be a correspondence between MDM and the Ising model with
magnetic field, it has not been discussed in terms of the universality class. Therefore,
by determining the critical behavior appearing in the monomer density and its critical
exponent, we show that the universality class of MDM and Ising model are different.

Next, we investigate the critical behavior of 3D MDM. We analyze two main
models: the finite layer model and the infinite system. For finite layer bipartite models
with a small number of layers, DMRG is used to show that the two-layer model is
non-critical and the three-layer model is critical. For the 3D infinite system, we first
optimize the 3D HOTRG to reduce the memory cost by changing the order of tensor
contractions and introducing an algorithm to assign the tensor components to different
cores (we call parallel computation method). Using these algorithms of HOTRG, we
calculate the residual entropy of PDM and analyze the critical behavior of MDM. The
accuracy of the residual entropy values is higher than previous TN calculations, but
our calculation is not accurate enough to determine the critical exponents.

Finally, we analyze the asymptotic behavior of the spectrum (singular values) of
HOTRG based on the Baxter’s CTM picture. Comparing the asymptotic behavior of
spectrum of HOTRG and that of DMRG, we derived the relation that holds for the
integrable models.
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Chapter 1

Introduction

1.1 Critical phenomena in Statistical physics

The physical phenomena around us are physics on a large scale, appearing as a group
of microscopic freedoms at the atomic level. Statistical physics is the study of physics
on such a large scale. Phase transition and critical phenomena have been studied as
a main topic of statistical physics for a long time. The study of critical phenomena
allows us not only to analyze the properties of matter, but also to classify physical
phenomena on a large scale by the concept of "universality". Universality means that
physics on a large scale does not depend on the details of matter. This property of
universality allows us to understand the nature of critical phenomena in matter by
constructing a simple model. The monomer-dimer system that we focus on in our
thesis is one of the simplest models, and this simplicity expands the range of ap-
plications through the concept of universality. Due to the universality, the critical
phenomena can be quantitatively characterized by critical exponents. Therefore, the
critical group to which a model belongs is classified by the value of the critical ex-
ponent, and calculating the critical exponent of a material or model is an important
goal of statistical physics. For this purpose, various computational methods such as
exact solutions, effective theory, Monte Carlo simulations, and tensor renormalization
groups have been developed to calculate the critical exponents. In this section, we
will review the basic concepts of critical phenomena and statistical physics|1].

We introduce the Ising model, which is the simplest model that describes magnetic
materials. Hamiltonian of the Ising model is given as

N
H=-J) S8iS;—h>_ S, (1.1)
(i.d) i=1

where S; represents a spin at lattice site ¢ and takes +1 depending on the spin direction.
J is the interaction between adjacent spins, and h is the position-independent magnetic
field. The Ising models represent the ferromagnetism at J > 0 and antiferromagnetism
at J < 0. Here, we assume J > 0.

In magnetic materials, the system is characterized by the magnetization defined
as

m = ;Z(sg, (1.2)
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which represents how well the spins are aligned. The magnetization is a conjugate
thermodynamic quantity of the magnetic field h:

__of

-, (1.3)

where f is the free energy of the system. The magnetic susceptibility is defined as

_om  O%f

X=3n = Tane (14)

Materials, including the magnetic materials introduced above, take various states
depending on the surrounding environment. A phase is defined as a state in which the
macroscopic properties of a material are uniform. In the case of magnetic materials,
depending on the temperature 7" and magnetic field h, there is a paramagnetic phase
where m = 0 and a ferromagnetic phase where m is a finite value. The discontinu-
ous of m from zero to a finite value is called a phase transition, and the condition
where the phase transition occurs is called a transition point. The phase transition
appears as a singularity in the free energy and are classified according to the type of
specificity. If the first-order derivative is discontinuous at the transition point, this
phase transition is called a first-order phase transition. On the other hand, if the
second-order derivative or higher is discontinuous at the transition point, this phase
transition is called a continuous phase transition. The point where the continuous
transition occurs is called a critical point.

The state of the system and the position of the phase transition are represented
as a phase diagram in the parameter space of temperature and magnetic field. The
phase diagram of the Ising model in (T, h) space is shown in Fig.1.1. We also show the
behavior of the magnetization when he parameters are moved along two different lines
on the phase diagram. For T' < T, when h is changed from negative to positive, the

FIGURE 1.1: Phase diagram of the Ising model. The bold line repre-
sents the first-order phase transition line and the round symbol repre-
sents the critical point.

sign of m changes discontinuously, which is the first-order phase transition (Fig.1.2
(a)). The remaining finite magnetization in the limit of |h| — 0 is called spontaneous
magnetization. On the other hand, when T is reduced to T, with h fixed near 0,
a continuous transition appears in which m changes continuously from 0 to positive
values (Fig.1.2 (b)).
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m m

/— h—>0_|_

T < T,

) — (v) e 7

FIGURE 1.2: (a) First-order transition of the magnetization to mag-
netic field at T < T,. (b) Continuous transition of magnetization
versus temperature in the vicinity of h = 0.

Finally, we describe the critical behavior, which is the main theme of this the-
sis. With approaching the critical point, some physical quantities diverge. Phase
transitions are characterized by this critical behavior, and the critical behavior is
quantitatively characterized by the critical exponent, which expresses the degree of
divergence. We define the critical exponents in the case of magnetic materials below.

e Magnetic susceptibility

T-T.
X o< |t|77 (T # T¢.) where t = T (1.5)
e Specific heat
C o [t (T £T.), (1.6)
e Magnetization
m o [t| 7P (T < T,), (1.7)
m o b5 (T =T,), (1.8)
e Correlation function of the spin : G(r) = (S;Si1r).
G(r) « rTe € (T #1T,), (1.9)
o |t|™ (T # Te), (1.10)
G(r) oc 4270 (T = T)). (1.11)

The power behavior of the correlation function at the critical point (1.11) is due to
the divergence of the correlation length.

For example of the 2D Ising model, the critical exponents are determined by using
exact solution derived by Onsager|2| (Tab.1.1).
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TABLE 1.1: Critical exponents of two-dimensional ising model.

Critical exponents values

« 0
8 5
. z
) 15
v 1
n i

1.2 Monomer-dimer problem

The dimer problem is a problem of counting the number of ways to arrange diatomic
molecules (dimers) on a plane, when overlapping dimers is prohibited. The dimer
problem can be defined on a lattice as a pure dimer model (PDM). In the PDM
(Fig.1.3 (a)), the diatomic molecule occupies a pair of adjacent lattice sites. The
history of PDM goes back at least to Robert’s experimental consideration of it in
1935[3|. Robert’s experiment considers the adsorption of an oxygen molecule onto a
tungsten surface and estimates how the molecule finds and adsorbs an unoccupied
tungsten atom. To tackle dimer problem, Robert uses Monte-Carlo methods|3-5] and
Bethe approximation|6|. After such an efforts, the analytical solution for PDM on a
square lattice was derived by Kasteleyn, Temperley and Fisher by the Pfaffian method
(this is discussed in Sec.2.2)[7-9]. PDM solutions correspond to the graph-theoretic
concept of "matching," and analytical solutions to PDM are also important in the
field of mathematics.

(a) (b)

FIGURE 1.3: (a) Pure dimer model. (b) Monomer-dimer model.

The dimer model can be extended to a monomer-dimer problem which contains
not only diatomic molecules but also monoatomic molecule (monomers). This prob-
lem is defined as a monomer-dimer model (MDM) on the lattice as shown in Fig.1.3
(b). MDM is introduced by Fowler and Rushbrooke in 1947[10]. However, an analyt-
ical solution of MDM in general case has not been discovered except for the limited
circumstances where a single monomer was included|11, 12]. Therefore, to study the
properties of MDM generally, we should use the approximation methods or the nu-
merical calculations. At the time this model was introduced, MDM was studied by
various approximation method, such as Bethe approximation[13-16] and the transfer
matrix method[17] as PDM.
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As discussed above, the dimer model (containing MDM) has a long history. Al-
though the history of the dimer model is old, it is still being studied today from various
aspects because of its simplicity. For example, in the context of liquid crystals (LCs),
the dimer model is important. LC is an intermediate phase of the material between
an isotropic liquid and a crystalline solid, where the molecules have an orientation
order but no perfect positional order. One candidate for the shape of a molecule with
LC phase is a rod-shaped molecule (Fig.1.4).

FIGURE 1.4: LC phase of the rod-shaped molecules[18]. (a) Isotropic

phase. (b) Nematic LC phase. It is characterized by a long-range

orientation order but no long-range translational order. (c) Smetic

LC phase. It has both long range translational order and long range
orientational order.

The lattice model, in which rod-shaped molecules of arbitrary length k are ar-
ranged without allowing overlap, was introduced as the rod model[19] as shown in
Fig.1.5. Even the model of hard-core interaction has been shown to have an L.C phase
when the rod length is longer than a certain length[20, 21]. Dimer model is an exam-
ple of rod models, corresponding to k = 2. As for the dimer model, it can be LC by
including an interaction that aligns the orientation|22].

L @ @ @ L J
FIGURE 1.5: Example of a rod model with a finite density of vacancies

(k = 4).

While the study of LC is progressing, there are still some unanswered questions
about fundamental aspects of the dimer model. We indicate some important topics
of the dimer model as follows.

Residual entropy

Residual entropy is defined as a finite entropy at T' = 0. According to the third law
of thermodynamics advocated by Nernst, the entropy at 7' = 0 is zero. However,
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there are also systems that have residual entropy due to a macroscopically degenerate
ground state and violate the third law. An famous example of the system with residual
entropy is the frustrated one such as anti-ferromagnetic model on the triangular lattice
shown as Fig.1.6. In this frustrated system, the orientation of the third spin must
be down to minimize the energy with the first spin, but up to minimize the energy
with the second spin|23]. According to the definition of frustrated systems, the state
that minimizes the energy of the entire system is not uniquely determined. Therefore,
frustrated systems are in a macroscopically degenerate ground state and consequently
have residual entropy.

F—Torl

FIGURE 1.6: Anti-ferromagnetic model on the triangular lattice as

example of frustrated system. If we determine the orientation of the

spins at the two vertices of the triangle at first, the orientation of the
remaining spin can not be determined uniquely.

In the pure dimer model, temperature is not defined, but it has a degenerate ground
state, and in the ground state it has a finite entropy. Therefore, we can say that the
PDM has a so-called residual entropy. In the two-dimensional PDM, residual entropy
is calculated by using the analytical solution. However, since no analytical solution is
known for high-dimensional systems, it is important to calculate the residual entropy
of such systems by numerical simulations.

Criticality

For some lattices, such as square and honeycomb lattices, PDM is critical|24, 25].
PDM is a special case of MDM, and its no-monomer point corresponds to a critical
point in terms of the monomer-dimer framework. On the other hand, there are non-
critical model, such as triangular and kagome lattices, where the correlators decay
exponentially[26-29]. Only in the two-dimensional case, the criticality of the PDM on
a given lattice has been determined analytically or numerically. In higher dimensions,
it is difficult to investigate critical properties by such a direct approach, and research
to clarify critical properties is needed.

Correspondence with Ising model

The PDM and MDM can be related to various models. The most important example
is Ising model with zero magnetic field, which has a one-to-one correspondence with
the PDM]|24, 26, 30]. This correspondence can be explained by mapping the diagram
of high temperature expansion in Ising model onto the dimer configuration on the de-
formed lattice. In 1971, Heilmann and Lieb suggest that this method can be extended
to Isimg model with non-zero magnetic fields and has a one-to-one correspondence
with MDM][31]. However, it has not been discussed whether the Ising model with
magnetic field and MDM belong to the same universality class.
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Central charge of conformal field theory

The scaling limit of the critical system is described by a conformal field theory (CFT).
The universality class is characterized by the value of the central charge ¢ defined
by CFT. Dimer model has also been studied in terms of CFT, but there has been
confusions whether the dimer model has the value of ¢ = 1 or ¢ = —2. This confusion
can be attributed to the fact that the distinction between PDM and MDM is not
clearly separated[32].

The central charge is related to the finite-size corrections to the critical free energy.
The detailed study of the finite-size corrections was started with Ref.|33| for PDM, and
subsequent studies have been done for various geometries and boundary conditions|34—
39]. These studies suggest that PDM has ¢ = —2. Additionally, the Abelian sandpie
model that is equivalent to PDM is classified as ¢ = —2[40-44]. On the other hand, the
central charge of MDM is determined as ¢ = 1 by calculating the correlation function
of monomers on the boundary[45]. According to the above result, the central charge
is considered to be ¢ = —2 for PDM and ¢ = 1 for MDM. However, the equivalent
Gaussian field theory to PDM or MDM is ¢ = 1[46], and there is still a question as to
which framework Gaussian field theory should be classified as, PDM or MDM.

1.3 Tensor renormalization group

Tensor Networks (TNs) is a framework for representing partition functions as con-
tractions of tensors corresponding to local weights. TN has been applied not only
to statistical mechanics, but also to various other physics such as quantum infor-
mation and quantum gravity. So, TNs are being studied vigorously and developed
rapidly, both in terms of theory and practical computation. Tensor renormalization
group (TRG), which we mainly study and use in this thesis, are also included in the
category of TNs simulations. Precise analysis of high-dimensional systems, such as
3D classical systems and 2D quantum systems, has long been a major goal in the
field of statistics. However, DMRG, one of the prototypes of TNs, was not effective
for high-dimensional systems, but TNs simulation and TRG are considered to be ef-
fective computational tools for high-dimensional systems. In order to establish this
method, it is necessary to study the practical application of TN and TRG and their
fundamental aspects.

The essence of TNs is to extract the essential effective degrees of freedom from
the huge number of degrees of freedom in a many-body system. A powerful tool for
extracting important degrees of freedom is a technique called singular value decom-
position (SVD), which is used to extract the important basis of a state. In 1992,
White developed the density matrix renormalization group (DMRG) as an algorithm
that combines SVD and real space RG.[47, 48]. The origin of the term RG lies in the
restriction of degrees of freedom, but DMRG differs from RG strictly in that it does
not redefine the length scale in the iterative process. DMRG corresponds to the vari-
ational method for MPS (Matrix Product State)[49], where MPS is a one-dimensional
TN that gives an accurate approximation of the state. Therefore, DMRG is a strong
method for 1D quantum systems and 2D classical systems, but is difficult to extend
to higher dimensional systems. After DMRG, projected entangled pair state (PEPS)
was established as a higher dimensional analysis[50-53]. PEPS is a variational method
based on the tensor product state (TPS), where TPS is a high-dimensional extension
of MPS. Recently, several optimization algorithms in PEPS have been widely used for
the analysis of 2D quantum and 3D classical systems. On the other hand, the RG
based algorithm has been developed, such as multi-scale renormalization ansatz|54,
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55] and tensor renormalization group (TRG)[56]. In addition, a TRG-based method
combined with higher-order SVD (HOSVD), called HOTRG, was developed|[57]. It is
not easy to generalize conventional TRG to higher dimensions because the shape of
lattice is changed under the renormalization process. However, since HOSVD does not
change the shape of the lattice during the renormalization process, it can be applied
to higher dimensions, and HOTRG has attracted a great deal of interest in the field
of lattice gauge theory[58, 59]. The accuracy of HOTRG has been improved over tra-
ditional RG-based methods. Actually, the transition temperature of 3D Ising model
calculated by HOTRG is comparable with recent Monte Carlo simulations|60].

HOTRG is expected to be established as a next generation method applicable to
higher dimensions because of its simple algorithm and the absence of sign problems
that appear in quantum Monte Carlo simulations. Since HOTRG is a relatively new
method and there are few examples of its application, the range of systems to which
it can be applied is not known. In addition, HOTRG has a large memory cost, which
makes it difficult to use for high-precision calculations. Therefore, we show the analysis
of dimer problem as a practical application examples and develop the new algorithm
to lower the memory cost in this thesis.

1.4 Purpose of this Thesis and Outline of this thesis

In Sec.1.2 and 1.3, we showed the issues of the monomer-dimer problem and TRG
from various aspects. In this section, after referring to previous studies using the
Monte Carlo calculations (MC), we will mention what kind of problem we will deal
with and how we will approach it in this thesis.

In the society of the MC calculation, various correlation function based studies
have been conducted. For models with only hard-core interactions, correlation func-
tions have been calculated for PDM and MDM in 2D|28] and PDM in 3D[61] to
determine whether their behavior is exponential decay or power law. On the other
hand, models with an interaction aligning the orientation have also been vigorously
studied for 2D[62], two-layer models[63], and 3D[64-66]. In contrast to the many
studies of finite temperature phase diagrams, there are few studies based on the cal-
culation of entropy at finite monomer density. This is probably because it is difficult
(not impossible) to set up hard-core conditions and entropy calculations are not strong
point in MC calculations. Therefore, we will apply DMRG and HOTRG, which can
directly calculate the entropy at infinite system size, to the dimer model and pursue
the following properties.

e (Critical behavior of two-dimensional MDM
MDM has a critical point at the no-monomer point depending on the lattice
geometry. However, there are few studies that discuss how the criticality is re-
flected in the thermal quantity at the vicinity of the no-monomer point. There-
fore, we carry out numerical calculations in the region of finite monomers, where
no analytical solution exists, to analyze the critical behavior of entropy and
monomer density, and to determine the critical exponent of monomer density.

e Correspondence between MDM and the Ising model with a magnetic field
Heilmann and Lieb suggest that the Ising model with non-zero magnetic fields
has a one-to-one correspondence with MDM in two-dimensions[31]. But they
do not mention the relationship of criticality property between them. Based on
the results of our analysis of the critical behavior of the MDM, we show that
the MDM belongs to a different universality class from the Ising model.
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Comparing the accuracy of HOTRG with that of DMRG in 2D calculation

We analyze the critical behavior of two-dimensional MDM by using both HOTRG
and DMRG, keeping the extension of HOTRG to three-dimensions in mind. By
comparing HOTRG with DMRG, a well-established two-dimensional analysis
method, the critical behavior of MDM and its applicability to high-dimensional
analysis will be pursued.

Development of an optimal algorithm to lower the memory cost of HOTRG
HOTRG is an algorithm that can be easily extended to higher dimensions, but
it incurs a large memory cost for high-precision calculations. To avoid the upper
limit of computer memory, we developed the HOTRG algorithm to reduce the
memory cost by focusing on the order of tensor contraction and the paralleliza-
tion of tensor components.

Residual entropy of 3D PDM

As well as 2D PDM, 3D PDM has a macroscopically degenerate ground state.
However, 3D PDM has no analytical solution. Therefore, we calculate the resid-
ual entropy of PDM on a cubic lattice and compare it with the value calculated
by PEPS and asymptotic expansion.

Comprehensive understanding of the higher dimensional MDM

The criticality of 3D MDM is known for several lattice geometries. However,
the critical behavior of 3D MDM has not clarified. We study three-dimensional
properties by two approaches. First, we analyze a finite number of layer mod-
els, such as two or three layers, that DMRG can use. Finite layer models are
classified as 3D systems, but they exhibit critical behaviors that are unique to
finite layer systems. Second, we analyze the cubic lattice model by HOTRG.
As a result, we compare the layer lattice model with the cubic lattice model
to obtain a comprehensive understanding of the three-dimensional system. In
particular, we recognize the cubic lattice as a layer model with infinite layers,
and discuss the connection from the critical properties of finite layers to the
critical properties of infinite systems.

Asymptotic behavior of the spectrum of HOTRG

In renormalization process of HOTRG calculation, the finite number of ba-
sis is retained depending on the importance of eigenvalues (singular values) in
HOSVD. Therefore, to understand the applicable of HOTRG, it is important to
know the behavior of the eigenvalues of HOTRG. Ref.|67] show that the struc-
ture of the spectrum of HOTRG can be described by the picture based on the
corner transfer matrix. Using this picture, we study the asymptotic behavior of
the spectrum of HOTRG. In particular, we derive an asymptotic spectral rela-
tion between the HOTRG and DMRG that is valid only for integrable models.

This Thesis is organized as follows. Chapter 2 outlines the important properties
of PDM and MDM, such as the existence of analytical solutions, correspondence with
the Ising model, and criticality.

In Chapter 3, after reviewing the DMRG and HOTRG algorithms used in this
study, we introduce a new algorithm for HOTRG that can reduce the memory cost.

In Chapter 4, we propose the critical behavior of the monomer density as our
conjecture, and we verify the conjecture numerically by using DMRG and HOTRG.
Furthermore, the relationship between the Ising model and MDM will be discussed
from the perspective of critical behavior.



10 Chapter 1. Introduction

In Chapter 5, we analyze the critical behavior of MDM on finite layer lattices such
as two- or three layer model by DMRG. The two layer model and the three layer model
show different criticalities. For the two-layer model, calculations are also performed
by varying the dimer activity on the edge perpendicular to the layer surface. From this
analysis, we show that there is a transition point where criticality seems to change.

In Chapter 6, we calculate the residual entropy and analyze critical behavior of
the 3D MDM by using HOTRG. In this HOTRG calculation, we use our parallel
computation method which is introduced in Sec.3.2. We will see to what extent
HOTRG can determine the critical behavior of 3D MDM.

In Chapter 7, we analyze the asymptotic behavior of the spectrum of HOTRG.
First, we theoretically determine the asymptotic form of the integrable model. In
particular, we compare the distributions of the asymptotic spectra of HOTRG and
DMRG and clarify the relationship between them. Next, we show numerically that
this relationship holds for integrable models and does not hold for non-integrable
models.
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Chapter 2

(zeneral introduction to the
monomer-dimer model

In this chapter, we introduce the pure dimer model (PDM) and the monomer-dimer
model (MDM) and show several basic properties of each model. Throughout this
thesis we discuss only classical rigid models, which have no interaction other than
hard core infinite repulsive forces. PDM and MDM are able to be extended to include
more physical circumstances such as interactions, thermal effects and quantum effects.
PDM and MDM means classical rigid models except where we mention it.

2.1 Definition of the monomer-dimer model

2.1.1 Pure dimer model

PDM is a model defined on a fully packed lattice with only dimers occupying adjacent
pairs of lattice sites (Fig.2.1).

FIGURE 2.1: Graphical representation of the pure dimer model defined
on a square lattice.

Given a model with no interactions between dimers, the thermodynamic properties
of this system can be determined from the number of ways in which the dimers are
arranged. If we indicate the number of ways to arrange Ny horizontal dimers and N,
dimers on m x n square lattice by gmn(Na, N3), the grand partition function is given
as

Zon(@,9) = Y Gmn(No, Np)z2y s, (2.1)
{N27Né}

where the sum runs over all configurations where Ny, N} satisfies 2(No + Nb) = mn,
and x, y denote the activity of dimer in horizontal and vertical directions, respectively.
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The entropy in the thermodynamic limit is

f(z,y) = lim ilomen(av,y). (2.2)

n,m—oo Mmmn,

For the symmetric activity of dimer, i.e. x =y =1, (2.1) reduces to

Zonn = Zmn(1,1) = Y gmn(Na, NG, (2.3)
{N27Né}

and this is the case we will consider in this thesis.

2.1.2 Monomer-dimer model

MDM is a more general model, with not only dimers, but also monomers (vacant
lattice sites) are present(Fig.2.2).

FIGURE 2.2: Graphical representation of the monomer-dimer model
defined on a square lattice. Black bars occupying two sites represent
dimers, and red circles represent monomers.

In MDM the lattice is not completely filled by dimers, which complicates the
problem, and properties such as the solution of the free energy and phase transitions
are very different from those in PDM. The grand partition function of MDM is defined
as follows same as PDM:

Emn(z) = Zwmn(s)zs, (2.4)
s=0

where z is a monomer activity and wy,, (s) is the number of ways to arrange (mn —2s)
dimers on m x n lattice sites (we assume that mn is even). The entropy in the
thermodynamic limit is given as follows:

1
P(z) = lim —logE,n(2). (2.5)
In the limit of z — 0, that is, in the absence monomer, MDM is reduced to PDM:

lim =, (2) = Wnn(0) = Zinn. (2.6)

z—0
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Since our study contains the criticality of monomer density, we introduce the
monomer density depending on z here:

prn(2) = =— 3 = ()5, (2.7)

(2.7) can be written as the differentiation of the entropy about z:

d z
Pmn(2) = zw’;z() (2.8)
We notate the monomer density in the thermodynamic limit as p(z):
p(z) = lim pn(2). (2.9

m,n—00

2.2 Analytical solution for the pure dimer model

The partition function of the 2d PDM on the square lattice can be solved analytically
by the Pfaffian method|7-9]. Analytical representations of partition functions on
various lattices such as honeycomb|68|, triangular[69], and kagome|70], as well as
square lattices, have been discovered. On the other hand, in general 2d MDM, there
is no analytical solution, but a limited situation where the monomer is doped at a
specific position[11, 12]. In this section, we review the analytic solution on the 2d
square lattice following Ref.|7].

We will give an analytic representation of (2.1) and (2.2) when |y| < |z| and m is
even. The proposition to be shown is as follows.

1 1 1
flz,y) := lm —IlogZyn(z,y) = iloga: + —Ay <g> , (2.10)
T x

m,n—o0 Mn

Ag(u) LQ(ZU) LQ(—ZU)] (2.11)

/ds log (1 — s). (2.12)

We divide the process of the proof into several steps.

First, let us represent the partition function (2.1) in a Pfaffian form, which is an
algebraic quantity of matrices defined for PDM. Assign p1,ps2,- - , Pmn t0 each site,
and denote the dimer occupying sites p;, p; as |p;;pj|. To make the relationship be-
tween the configuration and the index unique, the following definitions and conditions
are given:

p = (j — 1)m + i for the coordinate (i, j), (2.13)
PL<DP2;p3 < Pai 3 Pmn—1 < Pmns (2.14)
P1<p3<ps <-- < Pmp-1- (215)

The conditions (2.14) and (2.15) are included in the definition of a Pfaffian. The
Pfaffian is defined for a triangular array of components a(k;k’) of N x N matrix
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(k=1,--- ,N;k'=1,--- ,N;k <K', N: even):

Pf{a(k; k')} = dpalks; ky)alks; ka) - - a(kn_1; k), (2.16)
P

k1 <koyks <kgy - kny_1<kn, k1 <ks<ks<---<kn_1, (2.17)

where ¥, is summation through the all permutation obeying (2.17) and dp is sign for
the permutation. By analogy between the definition of the Pfaffian and the conditions
of configurations, we can find the matrix D(p;p’) that satisfies

Zmn(2,2") = PHD(p; p) }- (2.18)

Since the partition function of PDM is the number of ways to arrange the dimers, we
should determine the D where 0pD(p1;p2)D(ps; pa) - - - D(Pmn—1; Pmn) takes the value
+1(> 0) for a given configuration. To satisfy this condition, we give the matrix D the
following properties.

e D(p;p') = 0 if there is no dimer between sites p and p'.

z| (horizontal dimer exist between p and p’),
-Dmm——mmm—?'< p and p)

ly| (vertical dimer exist between p and p’).

e Determine the sign of D(p;p’) by arrows along the edges of the lattice (the rules
for placing the arrows are described below):

D(p;p') >0 (if an arrow points from p to p’),
D(p;p’) <0 (if an arrow points from p’ to p).

To describe the rule of arrangement of arrows, we introduce the standard con figuration
shown as Fig.2.3:

—t -
<
—_—
FIGURE 2.3: Standard FIGURE 2.4: Polygon
configuration. constructed from the

standard configuration.

An arbitrary configuration of the dimer can be represented as an assembly of
polygons, and a polygon is constructed from a standard configuration by shifting all
dimers clockwise or counter-clockwise one step(see Fig.2.3 and Fig.2.3). Since the
number of permutations to construct the polygon from the standard configuration
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is odd (the proof is given in Ref.[7]), D(p1;p2)D(p3;p4) -+ D(Pmn—1;Pmn) must be
negative for dpD(p1;p2)D(p3; pa) -+ D(Pmn—1; Pmn) to be positive. To achieve such a
condition, the parity of the number of edges facing either direction (we call orientation
parity) should be odd for all cycles of even length. The choice of the directions of
arrows is shown in Fig.2.5, so the matrix element of D is determined as follows:

D(i,jsi+1,j) =2 (1<i<m—1,1<j<n), (2.20)
D(i,j;i,j+1) =y (1<i<m,1<j<n-—1), (2.21)
D(i,j;i',7") = 0 (otherwise). (2.22)
A 4 > A > A4 » JL# -------- ’-J#
v 4} v A A
» » Pt P em >-
> > NS N >-

FIGURE 2.5: Orientation parity.

From the above discussion, we get the matrix D which satisfies Z,,,(2,2') =

PEH{D(p;p)}-
As a next step, we show the calculation of the Pfaffian of matrix D. Since D is
skew-symmetric matrix,

Z2 (z,y) = {PfD}? = detD. (2.23)

D can be transformed to D by unitary transformation:

~ . km ) I
D(k,l;K',1") = 2ixdy, 4011 cos <m+1> — 260kt m4101,1 COS (7”L+1> (2.24)

Thus the determinant of D is calculated as

1

_ 2 24z cos (k—“) —2iy cos (
detD = detD = H mJlrl ' i
km11=1 |~ 21y cOS (nfl) —2ix cos (Tﬂ)
93mn Hk ' Hz t {x cos.2 (JL) + y? cos? (%)} , (n:even)

23m(n=lyzm Hk 1 Hz ! [x cos? (nfil
Using the identity which holds only for even m

sm P . - [u + (1+u2)%]m+1 —[u-— (1+u2>%]m+1
H4[ " (m )] a 2(1 + u2)2  (220)
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(2.25) becomes

[3n] _1
1 I 2
Zn(z,y) = [ 272 (1 + €2 cos? <>)
=1 n+l

19 m+1
X lgcos <nl:1> + <1 + €2 cos? <nl:z 1>> 2]
I I 17 m+1
- [{COS (nil> — (1 + €2 cos? <n+7T1>> ] ) (2.27)

where £ = y/x and [n/2] =n/2 or (n—1)/2 for n is even or odd. In the limit m — oo,

1
~ i tm — ot e cos (L 202 (7))
Zn(x,y)_ég%o{Zmn(x,y)} =z [5005 <n+1>+<1+§ cos (n—{—l)) ]

(2.28)
In the limit n, m — o0, Zm, can be expressed in an integral form as follows:
Z(x,y) = exp [log < lim Zn(m,y))}
n—oo
n/2 1
= z2 exp nh_glo; Elog [fcos (7”H-1) + (1 + £“ cos <n+1>> ]
1 1 (2 2 2 1

=z22exp{ — dw log [fcosw—i-(l—i-{ cos w)2] . (2.29)

T Jo

When |z| > |y|, the integrand can be expand in terms of &, and Z(z,y) is expressed
as a simple form:

1

! - 1) = g25+]
— Dlogz + SAs(e) (2.30)
= 5 logz + —As(¢). :
In special case of x =y =1 (£ = 1),
1
f(1,1) =log Z(1,1) = —A2(1) = 0.291560904030818 - - - , (2.31)
T

where G = A3(1) is called a Catalan’s constant.
The exact solutions of the zero-point entropy on various two-dimensional lattices
are summarized as Table2.1.
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TABLE 2.1: Analytical solution of the zero-point entropy per-site on
various two-dimensional lattices. These values are based on Ref.[7-9,

29, 68-70).
Geometry H entropy at z =0 : ¥(0) ‘
square 0.291560904030818. ..
honeycomb 0.161532973609725. . .
triangular 0.428594537464958. . .
kagome 0.231049060. . .
triangular-kagome 0.231049060. . .

2.3 Correspondence between the dimer model and Ising
model

In 1963, Kasteleyn showed that the Ising model on a square lattice is equivalent to
PDM on a cluster lattice, which is a non-planar lattice[24]. It was then generally shown
that the Ising model can be mapped to a PDM on a deformed planar lattice[26]. In
this section, we review the correspondence relation between the Ising model and PDM
on the cluster lattice.

In the high temperature expansion, the Ising model is expressed as a bond graph,
where the edges represent the interactions between nearest neighbor sites. In the bond
graph, the only terms that contribute to the partition function are loop diagrams where
every vertex has 0, 2 or 4 bonds (Fig.2.6).

(a) (b) (c)

FIGURE 2.6: Three types of vertices that contribute to Ising partition
function in the high temperature expansion.

The edge of the high temperature expansion in the Ising model appears to cor-
respond to the dimer in PDM. However, overlapping of dimers at the same site is
prohibited in PDM, and the bond of the Ising model does not directly correspond to
a dimer. Then, by transforming the vertices into a cluster lattice as shown in Fig.2.7,
we can project the Ising model on the square lattice (Q) to the PDM defined on the
cluster lattice (Q').

Q Q'
AN
NN

FIGURE 2.7: The construction of the cluster lattice.
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After the projection of the Ising model to the dimer model on the cluster lattice,
the partition function of the Ising model can be evaluated using the Pfaffian method.
However, in the process of placing the arrows on the edges, it must be noted that the
projections of the vertices to the cluster lattice do not have a one-to-one correspon-
dence. As shown in Fig.2.8, a vertex with two or four bonds has only one counterpart,
while a vertex with no bonds has three counterparts.

(a) ‘ (a1) (a2) (a3) l
(b) I (c) | I

FIGURE 2.8: The construction of the cluster lattice.

However, this one-to-three correspondence does not affect the counting of diagrams
in the high temperature expansion of the Ising model. We can arrange the arrows on
the lattice )" so that the orientation parity of all even cycles that do not self-intersect
is odd (Fig.2.9). Therefore, a vertex (a) or (b) is contributed to the counting of

FIGURE 2.9: The construction of the cluster lattice.

configurations as before. For (a), (al) and (a2) is counted as +1, while (a3) is counted
as (—1), since the translation from (al) or (a2) to (a3) needs odd permutations of sites
and even shifts of arrows. As a result, the contribution in (a) is (+1) 4 (+1) — (+1) =
+1, and the perturbation function of the Ising model can be evaluated by applying
the conventional orientation rule to the PDM on the cluster lattice Q.

The correspondence between PDM and the Ising model at high temperature ex-
pansion can be extended to correspondence between MDM and the Ising model with
magnetic fields[31].
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2.4 Ciriticality of monomer-dimer model

Depending on the geometry of a lattice, MDM exhibits the critical phenomena. For
example, in MDM on a square lattice, when monomer activity z is taken as a pa-
rameter, there is a critical point (CP) at the no-monomer point z = 0 (Fig.2.10)[24,
31].

-

PF | z
0

monomer activity 00
FI1GURE 2.10: Critical point at the no-monomer point.

The criticality of PDM is defined as the appearance of power-law of the monomer-
monomer correlator or the dimer-dimer correlator. The definitions of these correlation
functions will be presented, as well as an explanation of the key concept of criticality:
the confinement of monomer pairs.

We introduce the configuration expectation:

(A) = number of conﬁguratig?j En(;i)er the constraint of A7 (2.32)

A = composite operator of d;(r) or m(r),

(2.33)

where d;(r) represents the creation of dimer on the edge between site r and r + e;
and m(r) represents the creation of monomer at site . By using the configuration
expectation (2.32), the correlation functions are defined as follows:

- dimer-dimer correlation function

Cij(r1,m2) := (di(r1)d;(r2)),. = (di(r1)d;(r2)) — (di(r1)) (ds(r2)), (2.34)
- Imonomer-monomer Correlation function
M(ri,7r9) == (M(r1)M(r2)),.. (2.35)
For example, in PDM on the square lattice[25, 71],
Cii(r) ~ 172, M(r) ~7r72, (2.36)

Next, we define a confinement of monomers. Confinement is a concept that
describes whether or not two inserted monomers can be infinitely separated from
each other. The free energy of two inserted monomers separated at the distance
r:=|ry — ra| is defined as

F(r) = —1logE® (ry,1r9), (2.37)

where 2 (ry,75) is the partition function of dimer system with two monomers at
r1 and ry. Using (2.37), we defined a phase in which F'(r) increases with separation
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as "confined" and one in which it does not as "deconfined". The criticality and
confinement depend on the geometry of the lattice, and these properties are shown in
Table2.2 for several examples of PDM on 2d and 3d lattices.

TABLE 2.2: Criticality and confinement for various lattice. These all
take into account the case where the monomer activity is isotropic.

Geometry H criticality ‘ confinement

two dimensions|29]

square critical confined

honeycomb critical confined
triangular non-critical deconfined
kagome non-critical deconfined
triangular-kagome || non-critical deconfined

three dimensions|61]

cubic critical deconfined
fee non-critical deconfined
3d Fisher non-critical | confined and deconfined

2.5 Mapping to a bosonic field theory

The monomer-dimer systems defined on the bipartite lattice can be mapped to a
bosonic field theory using height representations|72|. This framework allows us to
access the properties of MDM, such as criticality and confinement, as a bosonic field
theory. In this framework, PDM is mapped to the free Gaussian theory, and MDM
is mapped to the Gaussian theory with a dual field. In this section, we refer to the
review section of the height representation of dimers in Ref.[73].

2.5.1 Height representation of the pure dimer model

First, we map the dimers on the bipartite lattice to the "magnetic field". A bipartite
lattice is defined as the lattice in which sites are divided into two sets, such that one
site and its neighbors always belong to different groups (Fig.2.11). A non-bipartite
lattice is defined as any lattice other then a bipartite lattice. By definition of a

OB o W o/
mcph

FIGURE 2.11: Graphic representation of bipartite lattice. The site

represented by the round symbol and its neighboring site represented

by the square symbol always belong to different groups A and B, re-
spectively.

bipartite lattice, each dimer touches one site on each sublattice. Using a sign factor
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€r, the field variables are defined from the dimer variables n;(7):

1
i) = e (milr) 7). (239
where ¢ is coordination number that is the number of edges of one site, and n;(r)
satisfies following relation:

ns(r) = 1 (the edse between r and r + e; is occupied by a dimer); (2.39)
0 (otherwise).
In case of PDM, the close-packed hard core condition
Z(m(r) +ni(r —e;)) =1 for all site r (2.40)

i

is satisfied at each site. (2.40) means that the number of dimers touching one site
must be one. From (2.40), B;(r) satisfies the lattice divergence-free condition:

> (Bi(r) + Bi(r —e;)) =0 for all site r. (2.41)

%

According to (2.38) and (2.41), PDM on a bipartite lattice can be mapped to a
divergence-free magnetic field theory. Above discussion can always be applied to the
bipartite lattice, regardless of the dimension.

In two-dimensions, (2.41) is solved by introducing the scalar height function h
defined on the dual lattice|74]:

BZ(’I") = EijAjh, (242)

where ¢;; is Levi-Civita symbol and A; represents lattice derivative. According to
(2.42), the height function can be constructed by following rules|75].

(1) Chose one dual lattice site @ and set the height function at this site to zero :
he = 0.

(2) Moving anticlockwise around the sites, we change the height function by

+ (1 — l) when an edge occupied by a dimer is crossed;
{ 4 86 oeeupied by (2.43)

F % when an empty edge is crossed,

where the sign corresponds to the type of the sublattice. An example of the height
representation for a square lattice is shown in Fig.2.12. To study the long-wavelength
properties, we construct the continuum field theory by replacing the magnetic field
and the height function on the lattice by coarse-grained field B(r) and h(r) obeying
Bi(r) = €;;0;h(r) . The action for PDM in the height representation regime is given
as

SPDM Z/d2T;’B|2 :/dzrglsza (2.44)

where k is the stiffness. In the case of non-interacting dimers on square lattice, the
stiffness is determined to be k = 7 by comparing the observed values in the continuum
regime with the exact results in PDM using the Pfaffian method|25].
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| =
= | Ot

| =
B~ =

0 0

Alw NP sl w ] o=
Bl [N =] WD W

FIGURE 2.12: An example of the height representation for the dimer
model on the square lattice.

2.5.2 Height representation of the monomer-dimer model

PDM is mapped to the free Gaussian theory. On the other hand, MDM can be mapped
to the Gaussian theory with the dual field. The monomer is seen as a defect on the
lattice. Therefore, at the lattice site where a monomer exists, the condition for dimer
variables n;(r) is given as

> (ni(r) + ni(r — €;)) = 0. (2.45)

)

From (2.45), the divergence of the magnetic field at the site where a monomer exists
becomes

2
Z(Bi(r) + Bi(r —¢;)) = Z €r <n,(r) +ni(r —e;) — q)

% %

= —€p = Qp. (2.46)

(2.46) represents that a monomer corresponds to a monopole whose charge is Q. As
an example, we consider the MDM with two monomers exist at r4 and r_. In the
case of the bipartite lattice, each monomer is on a different sublattice and the sign
of each monopole charge is opposite. To construct the continuum theory, (2.46) is
coarse-grained as

V-B=Q(r), Qr)=~KLylr—ry)—Kylr—r_), (2.47)
where Ky, is a coarse-grained kernel with width w and satisfies normalization
/dzrle(r —7r)=1. (2.48)
The general solution for (2.47) is [76]

B, =—-0;0+ Gz'jajh, (2.49)
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where h is height function of divergence-free theory, and ¢ is a dual field obeying
Poisson equation V2¢ = —Q(r). The action for MDM in the continuum field regime
is

Suvulo.hl = [ 5 (V0P + VA, (2.50)

Integrating out the degree of freedom for h in (2.50), we get the monomer distribution
function as follows:

Gm(R) - ;\/'Dh(’l‘)e_SMDMW’h}

_ effdzT%\WbIQ’ (2.51)
where Z is the partition function of PDM and R = r; — r_. Here we consider the
case where the two monomers are far enough apart that they can be regarded as

point charges on each other : |R| > w. In this problem-setting, the Poisson equation
becomes

V2 =Q(r) =6 (r —ry) -6 (r—r), (2.52)
and (2.51) can be calculated easily as

K _ K
G (R) = exp [—%bg\R@ = |R|"%. (2.53)

This expression was gotten by the fact that the solution for (2.52) is given as

o(r) = /d2rG(r —rHQ(r") (2.54)
V2G(r) = -3 (r), (2.55)

and the solution for (2.55) is G(r) = —(27) " !log|r|.

From (2.53), the long-distance behavior of the monomer-monomer correlation
shows power-law Gy, (|R|) ~ |R|~*/?™ and suggests that PDM on the two-dimensional
non-bipartite lattice is critical. In case of a square lattice, the stiffness is kK = 7, so
Gm(|R|) ~ |R|7'/2, and this behavior is consistent with (2.36). Conversely speak-
ing, K can also be determined by comparing with the independent calculation of the
monomer-monomer correlation. The potential (free energy) is defined as

—log Gy (R) ~ log | R, (2.56)

and this behavior indicates that monomers are confined.
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Chapter 3

Numerical method

In this chapter, we introduce numerical methods to calculate the partition function and
expectation values. Classical DMRG is a very powerful tool only in two-dimensional
lattice, while HOTRG is extended to three or higher-dimensional lattice. However,
as the dimension of the lattice increases, the dimension of the tensor also increases
exponentially. Therefore, we devised a parallel computation algorithm to circumvent
the memory limit of the 3D lattice (explained in Chap.3.2).

3.1 Higher-order tensor renormalization group (HOTRG)

3.1.1 Basic algorithms

We review the basic algorithm of HOTRG following Ref.[57] using an example of 2d
MDM on a square lattice. The procedure for the honeycomb lattice and triangular
lattice is shown in Appendix A.1. The partition function of MDM is

N
En(2) :ZwN(s)zs, (3.1)
s=0

where N is the number of sites on the square lattice and w(s) is the number of ways
to arrange (N — s)/2 dimers and s monomers. In order to represent the partition
function as a contraction of a tensor, it is necessary to determine the tensor defined
at each site (called local tensor). In case of MDM, the tensor network representation
of partition function and the local tensor is given as follows:

En(z) = TrHme;yiy;, xi, Ty, ys € {0,1} (3.2)
i
z faxj=a,=y =y, =0;
Tyiatyiy = 1 if only one index is 1; (3.3)

0 otherwise,

where ¢ runs over all lattice sites and Tr is to sum over all indices of local tensors T
Virtual bond "1" means that the lattice site having a hand for covalent bond with
an adjacent atom, while "0" corresponds to no hand. If all indices are "0", there is a
monomer on the lattice site and it contributes to the partition function with number
weight of z (Fig.3.1).

The goal of HOTRG is to compute Zy for a sufficiently large system where the
partition function as accurately as possible. To get such a large lattice system, we sum
up the several adjacent tensors iteratively as a renormalization coarse-grained process.
However, the number of components of the contracted tensor increase exponentially
in the coarse-grained process. In HOTRG, to reduce computational costs, through
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0
Tt 0
® ® ® 1
Yi 0
!
o o Lig (b)
T
Y; 0
® ' ®
01 0
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(a) (c)

FIGURE 3.1: (a) Tensor representation for 2D square lattice. (b) and
(c) Example of a local tensor representing the site where dimer and
monomer exists respectively.

the higher-order singular value decomposition (HOSVD), the contracted tensor is
trancated into a lower rank tensor. The details of these process are as follows.
First, we contract the vertically adjacent sites (Fig.3.2):

MXX/U?J' - Z z1x)Yya xgx ay’» (3.4)

where X = 21 @z, X' = 2] @ 5. After this contraction, the dimension of horizontal
bond become the square of the original.

I Ol — ‘000’

/ .@ / 7 N7 7 7 \\
L/

\ \

(a) (b)

FIGURE 3.2: (a) Contraction of two local tensors. (b) Whole picture
of vertical contraction.

Next, we use HOSVD to truncate the contracted tensor M to a lower rank tensor.
HOSVD is an extension of the matrix singular value decomposition (SVD) to general
higher-order tensors|77]:

Mx xryy = Z SimU% U U U, (35)
ijkl

where each U represents the unitary matrix and S;jx is called the core tensor. Sjj
has the following two properties:

(1) orthogonality,

Z SisktSiy =0, if J#J, (3.6)
ikl
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(2) ordered norm,

||SZ,J7:,:H > HS:,J’,:,:Hu it J < Jl; (37)
||S:,J,:,:|| = Z(S“ch)2' (3.8)
a,b,c

The norm ||S. s..|| plays the same role as the singular value of a matrix. Using
these two properties, we can arrange the components of the tensor in order of im-
portance, that is, in order of the norm of the core tensor. Technically, we construct
a projection matrix to reduce the components of the tensor from dimX to Dbond,
which is the number of components to keep.

e Diagonalization in one direction

> MMy = [ULAL(UL)T} 0 (3.9)
j7k7l
where A = ||S;.. .||? and the eigenvalue of matrix M MT. So, singular value ||S; .. .||?
can be gotten by applying a diagonalization algorithm for M M.
e Comparison of left and right singular values

If Mxxry,y is not symmetrical with respect to X and X', compare € and €g to
determine which component on the left or right should be truncated:

€L = Z ||Si,:,:,: y €R = Z ||S:,j,:,:”- (3.10)

Z‘>Dbond j>Dbond

If €;, < eg, we truncate the left components. Otherwise, we truncate the right com-
ponents. Dypong represents the number of retained basis. In the case of MDM, the
horizontal component of the contraction tensor is symmetric, so there is no need to
consider the above discussion.

e Construction of the projection matrix

We consider the case of €7, < er. Same discussion can be applied to the case of e <
€r,. Arranging the Dyonq eigenvectors in order of the singular values, the projection
matrices are constructed as

(PYYir = (U} )ir. (3.11)

Uy, is constructed by keeping the first columns in U, and dim(i) = Dyonq, dim(1) =
dim(zy) - dim(z2).

e Projection

Projecting P* to Mx x1yyr, we get the new renormalized local tensor (Fig.3.3):

Tg?;vy)f = Z PxLXPf’X/MXX’yy" (3.12)
XX’

The four steps above illustrate the case of vertical coarse-graining. The same pro-
cess should be followed for horizontal coarse-graining, and the coarse-graining should
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Y

T(new)
> T x’

/

Y

FIGURE 3.3: Trancation of two local tensors. Triangular symbols
represent the projectors.

be repeated in turn until the partition function converges. This operation can be di-
rectly extended to higher dimensional systems by increasing the number of directions.
The strength of HOTRG is that it can be easily made higher dimensional in this way.

I’ll comment on the errors that appear in HOTRG. The truncation error in one
direction is given as

S (Ay)?
doimi (M)

This error is equivalent to the the deviation between the tensor T and the truncated

truncated . . . e
tensor T( Kl ) when focusing on a certain component. Therefore, if we minimize

the error in each direction, we can minimize the deviation

d
Tkt — Z]t;zmcate )\ (3.14)

Conversely, by imposing this condition, HOSVD appears naturally.

Finally, we will discuss the larger component of the contraction tensor in iterative
process. As the local tensor is contracted, its components grow larger and exceed the
capacity of the number of digits the computer can handle. Therefore, to avoid such
restrictions, we normalize the components of the contraction tensor at each iteration
with characteristic values, e.g., the largest eigenvalue of MM or the largest compo-
nent of 7("%)  The transition of the partition function =y in iterative process can be
represented as follows:

[1]

N N/2
N = Tr{HTO} =} [[7p 27
=1 i=1
= =TT, AN AYE N (3.15)

where ); is the largest eigenvalue of MM or the largest component of (%) In the

large limit of N, each factor )\,LN/ s infinitely large. So, we convert the =y to the

1/N

value per-site Zy " with each iteration. The entropy per-site expressed as

14

log=En 1 1
s=—y = Z o log \; + o7 log Tr{T, }, (3.16)
i=1

and we extract the first term and record it in each iteration.
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For a local operator O, its expectation value can be calculated in the framework
of HOTRG. The expectation value is expressed in terms of the tensor network as

P 10 ) S 0 i i U TR
Tr{Hi]il To} TI‘{HfV:/f T} cT,,’ )

where Sy is a local tensor which contains the corrections of the local operator O to Ty
(Fig.3.4). As can be seen from (3.17), the expected value is determined by the ratio
of the renormalized S,, to the renormalized local tensor 7T,,. This algorithm is called
the impurity tensor method.

FIGURE 3.4: Tensor network representation of expectation value using
impurity tensor.

3.1.2 Calculation of an expectation value using the environmental
tensor

HOTRG and other tensor network approaches are optimization methods that mini-
mize the truncation error of contracted tensor M defined in (3.4). In other words,
HOTRG can optimize M locally, but it cannot optimize the entire partition function.
As pointed out in Ref.[78], we need to consider the effect of the environment including
all lattice sites except the two sites where M exists (Fig.3.5). TRG which includes
the influence of environment is called Second Renormalization Group (SRG), and
HOTRG which includes such an effect is nemed as Higher-Order SRG (HOSRG)[79].

To include the influence of environment, the environment tensor is introduced. In

FI1GURE 3.5: Environment tensor. The inner ellipse represents the

vertically contracted tensor M, which is composed of two local tensors.

Tensor E between inner and outer ellipse represents the environment
tensor.

this section, we will focus on the construction of environment tensors, rather than the
SRG process, and introduce the method we have developed for calculating expectation
values using environment tensors.
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Environment tensors are constructed by the backward iteration of HOTRG shown
as Fig.3.6, where E(™, T(™ and P(™ represent the environment tensor, local tensor,
and projector in nth iteration, respectively. The relationship between E™) and B0+

,——-I-~~~
[

FIGURE 3.6: Relationship between nth and (n + 1)th environment
tensors.

is given as

(n+1) (n) (n)
uxllrl - Z Eudlr llrlxd})l,lz,hpigg,?"l‘ (318)

l,r,d,la,rs

So, the first step in obtaining the environment tensor is to do a HOTRG and stack
the renormalized local tensors T and projections at each iteration step (n indicates
the nth iterarion). After the forward iteration, we prepare the initial environment
tensor E(™¥) and perform backward iterations until we get E(®). Since E(©) is an
environment tensor at the initial scale, we can calculate the expectation value by
contracting this tensor with Sy defined in (3.17) (Fig.3.7):

(0) = Tr{E(j) So}

When calculating the monomer density, it is necessary to determine Sy, which rep-

(3.19)

—
—

FI1GURE 3.7: Calculation of the expectation value based on the envi-
ronment tensor method.

resents the monomer number operator:

So=Sm=14" if o =2 =y =y =0; (3.20)
" 0 otherwise. '
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3.2 Parallel computation method of HOTRG for three-
dimensional analysis

HOTRG can be straightforwardly extended from a two-dimensional algorithm to a
three-dimensional algorithm. However, in 3D, components of the local tensor increases
in orders of magnitude, so the memory usage becomes massive. Therefore, even
large computers with hundreds of gigabytes of memory capacity do not have sufficient
computational power to accurately analyze the critical behavior. In this section, we
give efficient algorithms to avoid the too large consumption of memory. We denote
the number of retained components Dyonq as D throughout this section.

3.2.1 Conventional three-dimensional algorithm of HOTRG

We review the conventional three-dimensional HOTRG[57]| and identify bottlenecks
in the algorithm that use large amounts of memory.

The change in extension from 2D to 3D is the increase in the number of projection
directions, as shown in Fig3.8. The HOTRG process is divided into two steps. (1)
construction of the projection tensor using HOSVD as in 3.5, and (2) construction
of the renormalized local tensor by truncation using projection. We will count the
memory usage, i.e. the number of components of tensor in each steps.

ya <

T(n)_Yi V(")y/
T 4 xll
Y1 Y — T M !
/ U(n)
Io /T(") Ty ”
Y2 / /
Z Z

FIGURE 3.8: Renormalization in three-dimensional HOTRG. As an
example, the contraction of local tensors in z direction is shown. In
this case, projections for x and y direction need to be constructed.

(1) The contraction of two local tensors in z direction are given as:

(n) _ (n) (n)
MXX'YY/ZZ/ o Z z1xi Y1y 2t xexhy2yhiz!’ (3'21)

i
where X =21 @ uo, X' =2/ @24, Y = y1 @ y2, and Y’ = ¢} ® y4. The contracted
matrix that we perform diagonalization to get x-direction projector is

(M) 1 = Z MixryyroMpxryy: .. (3.22)
XYY 22!

(3.22) is an extension from (3.9), as is M,_, and the definition of the x and y directions.
The memory costs for M) and Méﬁ)x
and the latter is D*.

(2) Truncation of x and y components is given as

are shown in Fig.3.9, and the former is D'°

n+1 n n n n n
Tagx’yygzz’ = Z Ua(tX? U:)E’;("/y(Y) Vy(’Yz’Mg())(’YY/zz” (323)
X, XYY’
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c O O
M(n) = Mz(ﬁ):c - //I

®

o
‘Xm
i

o
1 4
D' D
FIGURE 3.9: Graphical representation of memory costs for construct-
ing M(™ and MZU_’)J Red circles represent the components that need
to be retained in computer memory, and black rectangles represent the

contracted components. The number of components of one red circle
corresponds to D.

which is extended from (3.23). The graphical representation of (3.23) is shown as
Fig.3.10, and we can see the maximum value of the memory cost is DS. From discus-

1 A Nk
M™) — 03; 2 — T(n+1)

Z 1)
DlO D6

F1GURE 3.10: Graphical representation of memory cost of performing
a projection.

sion of (1) and (2), the bottleneck of consumption of memory is construction of M (™
whose memory cost is D10,

3.2.2 Order of contraction to lower the memory costs

By changing the order of contractions, we can avoid the large amount of memory
consumption that occurs in the construction of M. As in Sec.3.2.1, we show the
new algorithms for steps (1) and (2) respectively.

€ goal o 1S step 1S 1O construc _ O ge € projectors. CONSIStS
1) The goal of this step is t truct M to get the projectors. M\™). consist

z—x
of a graph of two M overlapped on each other, as shown in the right panel of the
Fig.3.9. However, the initial construction of M) consumes a large memory D0
Therefore, we construct the overlapped local tensor which is a half part of M Z(ﬁ)x at
first shown as Fig.3.11. This mathematical expression is

(m,(zri)z)lllzdldz = Z ﬂ(li?fbudlj}(zt?fbudg' (3.24)
T7f7b’u

M Z(’i{c can be constructed by contracting upper and lower part:

M) = (M) henuen = Y (M) htserms (M) 11210 (3.25)

1,72
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Ly /

dyf|de
CO

D4

FIGURE 3.11: Graphical representation of half of Mz(n)x This figure

(Me2—w)tiladidy = &F

is the upper part of MZ(T_L)_T, but the lower part can be constructed in
the same way.

where the memory usage is D*. As a result, the graphical representation of (3.25) is
the same as the right figure in Fig.3.9. By taking the above steps, we can reduce the
memory cost of obtaining M ii)z, or the projection, from D0 to D?.

(2) The memory cost of constructing the projection operator could be reduced to
D*, but as shown in Fig.3.10, the memory cost required to perform the projection
in the original process is still D0, Therefore, we need to improve the projection
algorithm in order to maximize the memory cost reduction in process (1). By changing
the order of projection, we can reduce the memory cost to D® shown as Fig.3.12.

(:Q/I/@o (:_)q)@/;/ (3) o

o
D" D® D®

FIGURE 3.12: Order of the projection to reduce the memory cost.

By following steps (1) and (2), the memory usage limit of the entire process can
be reduced to D®, and memory can be saved in each process as well.
3.2.3 Double-leg parallel computation method

In Sec.3.2.2, we introduced an algorithm to reduce the maximum memory cost to D3
by changing the order of contraction. However, the memory usage of D? is still too
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large for high-precision analysis of critical behavior. In this section, we introduce a
new parallel computation algorithm to significantly reduce the memory cost.

As we saw in Sec.3.2.2, the memory cost of step (1) is D*, but the memory cost
of step (2) is D®, which is still large. Therefore, we developed a parallel computation
method to distribute the two components that are not projected to different cores of
the computer (called the double-leg algorithm). In the example of contraction in the z
direction, the fifth (z) and sixth (z’) components of M)(;l))(,yy,zz, in (3.21) have nothing
to do with projection, so there is no problem storing these components separately.

First, enumerate M )(? ))(,Yy, ., S0 that the components (z, 2') are in the order of the

dictionary expression like as (1,1),(1,2),---,(1,D),--- ,(D, D), and define each as a
(2,2")

new tensor My x/yy:

(2,2") (
mX XYy = MX:”))(’YY’zz" (3.26)

Next, perform the projection to M(**") on different cores, respectively:

22 = N USRS VRV mEE (3.27)
X, XYY"
(n+1) (2,2") .
Finally, reconstruct the T, Ly 22! , by collecting all tm Ty that is
T =t forz, 2 =1, D. (3.28)

The above process, including the details of the order of contraction and the memory
cost, is illustrated using a figure shown as Fig.3.13. The maximum memory cost in
the process of projection is reduced to D7 from DS.
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(1)
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N (2)

J

N -— L .

J

-

coe[ 1|2 |-+ [---[D] Li |
(1,2)

index (1,1) (z,2") (D, D)

=
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1 (4

T(new) — G 5
D6

FI1GURE 3.13: Graphical representation of the double-leg parallel com-

putation algorithm. (1) Distribute the components in two direction of

local tensors to different cores of the computer. (2-4) Perform projec-

tions in order of the algorithm introduced in Sec.3.2.2. (5) Collect all

the components of the truncated tensor of each core to build a new
renormalized tensor.
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3.3 Density matrix renormalization group (DMRG)

In this section, we describe density renormalization group (DMRG) as an another
numerical tool[47, 48, 80]. DMRG is a predecessor tool of tensor network methods, and
is a powerful tool to analyze one-dimensional quantum systems and two-dimensional
classical systems. We use DMRG for 2D MDM to calculate high accuracy and compare
it with the accuracy of HOTRG.

3.3.1 Basic algorithm

DMRG for transfer-matrix diagonalizaton is based on the power method for obtaining
the largest-eigenvalue eigenvector of a matrix.

First, we represent the partition function as a trace of local tensors as a tensor
network:

Zyn = Te{TN*MY, (3.29)

where M and N denote the number of lattice sites in the vertical and horizontal
directions, respectively. In terms of a single matrix 7, called the transfer matrix,
Zy,n in the limit of M — oo is determined by the largest eigenvalue of 7. The
largest-eigenvalue eigenstate |Apmax) can be gotten by operating 7 many times to any
state |[Ag) (JAo) must not be an orthogonal state to |Amax)):

Amax) o< T | Ao) (M — o). (3.30)
In the case of MDM, the transfer matrix is defined as

N
,T{U'}{U} = Z HTViVHlU{HUi? (3'31)

V1,V2, VNS VN1 1=1

where Tyivisr0,,0, 1S & local tensor of MDM in (3.3) (Fig.3.14).
oy o) o4 ohN_1 On
2 ‘ 2 ‘ V3 ‘ ‘ VN ‘ UN+1
01 02 03 ON ON+1

FIGURE 3.14: Graphical representation of the transfer matrix.

Next, we consider the thermodynamic limit N, M — oo. As the system expands,
we must reduce the dimension of the matrix by selecting only the important bases
of the transfer matrix to avoid an explosion in the number of basis. We describe the
basis truncation algorithm as follows. Here, our discussion is restricted to the case
of the real symmetric transfer matrix. The algorithm for the triangular lattice as an
example of the non-symmetric transfer matrix is shown in Appendix A.2.

(1) Initial preparation of the maximum eigenstate.

Construct maximum eigenstate ¥max of T in 2Mj system size by using exact diago-
nalization, where 2Mj should be small enough to be handled by the finite memory of
the computer. The obtained state is denoted as ¥max(01,02, -+, 022,) and is shown
in the graph in Fig.3.15. After constructing the maximum eigenstate, reserve the
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g1 02 O My OMy+1 02M,

Vmax

FIGURE 3.15: Maximum eigenstate of transfer matrix. Lines represent
the components of the eigenstate.

important basis and discard the remaining basis. Divide the entire system in half and
trace out the left(right) system to construct the density matrix (Fig.3.16):

wmax

VMO
V1 V9 VM,

Vmax

FIGURE 3.16: Density matrix for right half system.

pright(yla T, VM0|V17 T, V}M@)
= Z wmax(alag%"' yOMos V1, - - 7VM0)wmax(O—170—27"' 7UM())V{>"' 7”5\40)'
01,02, ,01,

(3.32)
Diagonalize the prigh; and calculate the eigenvalues and eigenstates. Arrange the
eigenstates in order of increasing eigenvalue as A\ > Ao > -+ > Ay > Appg1 > -+

and reserve m basis |A1), - - [A\m). We define these basis as block basis:
la) =[Xa), (@=1,---,m). (3.33)

By doing the same for the left half of the system, we get the block base for the left
half of the system.

This number of m controls the accuracy of the calculation. The finite bond di-
mension m gives an additional length scale, as does the finite size scaling, and the
large-small relation between this and the finite size scaling is important|81] (details
are given in Appendix B).

(2) Enlargement of the system.

Add the two lattice sites to the center of the entire system and update the transfer
matrices. We denote the new right transfer matrix as

7;li/ght (O-/) O/fUa Oé), (334)
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where v is the left component, o and ¢’ are additional components, and a and o/ are
block basis of original system (Fig.3.17).

/ /
o 04
| |
) —
I —
o 0%

FIGURE 3.17: Transfer matrix for the right half system .

In the same way, the left transfer matrix can be constructed, and by combining
the left and right matrices, a new entire transfer matrix can be constructed (Fig.3.18).

[ | | | 1

L1 1 I B

FIGURE 3.18: New transfer matrix for the entire system.

(3) The maximum eigenstate of enlarged system.
Diagonalize a new transfer matrix and get the maximum eigenstate (¢max )new (', o', o, )
(Fig.3.19).

<¢max ) new

FIGURE 3.19: Maximum eigenstate of the new state.

Construct the density matrix of the half system using (¥max)new (¢, 0’ 0, ) and
diagonalize it to get new block basis {|3)}.

(4) Transformation matrix from the old basis {|a)} to the new basis {|3)}.
Transformation matrix for the right half of the system Agr(8|o, ) can be defined as

18) = > Ar(Blo,a) |o) @ a). (3.35)

o,a

This definition is the same for the left half of the system. These transformation
matrices are shown as Fig.3.20.
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o (87 « o

| [ 1]

[ 1 1
B B

FIGURE 3.20: Transformation matrices from the old basis to the new
basis.

Update the transfer matrix by letting the transformation matrix act on the old
transfer matrix of half of the system (Fig.3.21).

| ew S
right —

A\
Y

FiGUuRE 3.21: Update of the transfer matrix of the half of the system.
Iterate process of (2)~(4) until the eigenstates converges.

3.3.2 Calculation of the expectation value

We introduce the method to calculate an expectation value. In DMRG terms the
expectation value of local operatpr O is written as

A <wmax|é|¢max>
Oy = — =2
< > <¢max W}max> 7

where [t)max) 18 the converged maximum eigenstate. The essence of the calculation is
the same as in the case of HOTRG in Sec.3.1.2, and what we should do is to contract
the local tensor with information about a local operator Sy defined in (3.17) with
the all local tensors except single site. At first, construct [¢max) by the process in
Sec.3.3.1. Next, add Sy to the transfer matrix for the right half of the system and add
the Tg to the transfer matrix for the left half of the system in the process of update of
the transfer matrix. Finally, combine the left and right matrices and sandwich them
between |max) (Fig.3.22).

(3.36)
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wmax

FIGURE 3.22: Graphical representation of the calculation of the ex-
pectation value by DMRG.

3.3.3 Calculation of the correlation length

Since the correlation length is expressed as the ratio of the largest eigenvalue of the
transfer matrix to the second largest eigenvalue, it can be calculated by DMRG. These
facts and the DMRG algorithm are explained below.

The correlation function for local operator O is defined as

(9|0:0,|9)

(0:05) = ) (3.37)

where index ¢ represents the site where O; exists and we impose j > i. The denomi-
nator of (3.37) satisfies ,in the limit where the system size is large M — oo,

(@|®) ~ (Ymax|¥max) = Aoy (3.38)

On the other hand, denoting the local tensor at site ¢ as Tl and that with O;as T g},
the numerator is transformed as follows:

(®]0;0,|®) = Tr {T[”T[Q] e T[i—l]Tg]T[iH] e T[J'—l]Tg]T[jH] ..oM]
— Ty {Tg}T(j—i—nTgJT(M—j)—(i—l)}
= > (WalT5 ) (Wl TU D) (0, |TE hs) (sl TH T+ Dgi)

a,B,y,0
= 3" WalT§ ) A7 (51T [ipa) AM 4D, (3.39)
o,B
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Therefore,

M:Z (ol T ) < Ag >j_i‘1 (sl T8 [a) ( A )L‘jﬂ"l
)

<(I)‘(I)> B Amax Amax Amax max
(Gl TS |05) 5 i1 (5| TE e NP
- zﬁ: PR P b
_ <¢maX‘Tg]‘wmax> ) <¢max’Tg]‘wmax> <¢max’T([;}W}B> ) <wﬁ|Tg]‘wmax>
)\max )\max AI‘ﬂaX )\maX
B<max
= (00) (05) + > ca(Xp), (3.40)

where r = j — 4 — 1 represents the distance between site ¢ and j, and cg is the factor
in front of 5\5 in the summation. So, the connected correlation function at large r is
determined by the ratio of the largest eigenvalue of the transfer matrix to the second
largest eigenvalue :\max_l as

(0:0;), = (0,05) — (03) (Oy)

= > csg)
B<max

— Cmax—1(Amax—1)" (r = 00). (3.41)

If we define the correlation length £ by assuming following exponential form except
constant factor:

<Oin>c ~ exp <—2>, (3.42)
& can be written as
1
= 3.43
g log )\max—l ( )

Since DMRG is based on the power law, we can obtain the second largest eigenvalue
and use the relation (3.43) to calculate the correlation length. At first, construct the
converged transfer matrix 7pp at fixed point by the process in Sec.3.3.1. If we operate
Trp to any state |1g), |[tbo) approaches |t)mayx) slightly. Then, subtracting the direction
of Trp |to) from |1hg), and operating Tpp to them, the remaining state approaches
second largest eigenstate. These process is represented as a following calculation.
The subtracted state is

169) = [v0) — ((Yolv)) [¥1) s |¥1) = Tep [¢bo) (3.44)

and Tpp |d7)) is the state that is approaching the second largest eigenstate. By repeat-
ing the above process until |d1)) converges, the second largest eigenstate is obtained.

Gyt
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Chapter 4

Critical behavior of the
monomer-dimer model on
two-dimensional lattices

The role of monomers in MDM is similar to the role of magnetic fields in Ising model, as
discussed in Ref.[31]. In Ising model at critical temperature, the criticality is reflected
in the dependence of magnetization on magnetic fields1.8. From the analogy with Ising
model, we can assume that the criticality is reflected in physical quantities related to
the monomer, such as the monomer density in MDM. In this chapter, we propose a
critical behavior of monomer density, confirm that this form is correct, and determine
the critical exponent numerically. With the results, we discuss the relationship and
differences between Ising model and MDM in terms of critical behavior. We note that
the dimension discussed in this chapter is restricted to two-dimension.

4.1 Our conjecture for the critical behavior of the monomer
density

Our assertion is that the critical behavior of the monomer density is given as
p(z) ~ P (z ~0). (4.1)

J is defined to play the same role as the critical exponent appearing in m(h) ~ hs of
Ising model, that is, J is related to the critical exponent of the correlation function 7
through the scaling relation:

d+2—n
= - 7 4.2
g d—2+n’ (4.2)
M(ri,v;) = (M(r)M(r;)), ~ |1 — 7| =420 (4.3)

where M (7;) is a proper field introduced in (2.35) as the monomer creation operator.
The form of (4.1) is predicted from following discussion focused on the determination
of the proper field. We introduce the monomer occupation variable P; with values of
0 and 1 corresponding to the case where the monomer occupies the site ¢ or not. We
note that P; is not necessarily the same as M (r;). Using P;, the partition function
can be represented as

=(z) = 3 25 Pru({PY), (4.4)
{r}
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where w({P}) represents the number of ways to arrange dimers that satisfy the con-
straints by {P}, and the summation is taken over all possible case of Py. M (r;, ;)
is defined as the ratio of the number of configurations with the two monomers to the
number without them as (2.32). Therefore, by using {P;}, M (r;, ;) can be written
as

1
=(0)

On the other hand, the expectation value of P;j/z - P;/z is

(2= (5) (3) =
-5 > b PP, (4.6

M(ri,rj) = w(P=1,P=1,P=0(k#1.7j)). (4.5)

In the limit of z — 0, since only P, = 0 (k # 4,j) survives, the expression (4.6)
matches the definition of M(7;,r;) in (4.5). So proper field of monomer M (r;) is
identified as P;/z. Comparing the scaling relation for magnetization in Ising model
(s(x)) = m ~ h'/? and identifying z as h, we get (4.1):

=

ey =2 =2

2 (4.7)

4.2 Numerical result

In this section, we verify that our conjecture of critical behavior of p(z) (4.1) is cor-
rect or not numerically, and determine critical exponent §. DMRG is a high-accuracy
method in two-dimensional system, so we use not only HOTRG, but also DMRG.
First, we compare the accuracy of HOTRG and DMRG using the exact solution of
entropy at z = 0. As we will show in Sec.4.2.1, there is a slight difference between
the numerical value of HOTRG and DMRG, and when compared to the exact solu-
tion, DMRG seems to be more accurate than HOTRG. So, we determine the critical
properties by using DMRG as accurately as possible, while we also make calculations
by HOTRG as a test to confirm whether HOTRG has enough accuracy to discuss
the critical behavior of two or higher dimensional models. We note that the parallel
computation method introduced in Sec.3.2 is not used for two-dimensional calculation
in this section. As concrete examples, we will consider square and honeycomb lattices
for critical systems, and triangular lattices for non-critical systems.

4.2.1 Calculation of the residual entropy

We calculate the residual entropy 1(0) defined as (2.5) by using HOTRG and DMRG
(Table4.1). Here, the number of retained basis of HOTRG (bond dimension) Dpong
defined in (3.10) is 40, and that of DMRG ”m” defined in (3.33) is 400. From these
results, DMRG is more accurate than HOTRG in both critical and non-critical cases.
For DMRG, the accuracy in the non-critical system is much higher than that in the
critical system, and the numerical results are very close to the exact solution. However,
in HOTRG, the accuracy in a non-critical system is supposed to be higher than that
in a critical system, but in reality, both are the same. This is because the required
number of dimensions of the initial local tensor of a triangular lattice is larger than
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that of a square lattice, and the effective number of retained bases of a triangular
lattice is smaller (see Appendix A.1.2).

TABLE 4

.1: The free energy at z = 0 from HOTRG and DMRG
versus exact solutions shown in Table2.1. The calculations are done
by HOTRG with D = 40, and DMRG with m = 400.

Geometry H Exact solution DMRG HOTRG
Critical system
square 0.291560904030818. . . 0.29156042. .. 0.291599. ..
honeycomb || 0.161532973609725. .. 0.161528. .. 0.161525. ..

Non-critical system

triangular H 0.428594537464958. .. | 0.428594537464982. .. | 0.428574. ..

4.2.2 Critical models

We analyze the dependence on z of the entropy and the monomer density in square and
honeycomb lattice as critical systems. The entropy is shown in Fig.4.1. z-dependence
is not linear, reflecting the criticality. At the level visible in the graph, the HOTRG
and DMRG data are in agreement.

0.195 e HOTRG

0.190t |—— DMRG

0.185
—
2 0.180
= 0.175
0.170
0.165
0.160

0.00 0.02

0.04 0.06 0.08
z

0.320
0.315
0310
2
70305
0.300
0.295

—— DMRG

HOTRG

0.00

0.02 0.04

FIGURE 4.1: (Left) Entropy on the square lattice as a function of the
monomer weight z. The plots are extracted from HOTRG, and DMRG
method. In HOTRG the bond dimension is truncated at D = 40, and
in DMRG the number of retained basis m is 200 (m is 400 only at
(Right) The same function is plotted for the honeycomb

z = 0).

lattice.

0.06

Next, we discuss the behavior of the monomer density of the critical system. z-
dependence of the monomer density calculated by DMRG based on the method in
Sec.3.3.2 is shown in Fig.4.2. Since the monomer density is defined as the derivative
of the entropy with respect to z as (2.8), it reflects criticality as well as entropy, and
the z-dependence is not linear. To verify the critical behavior of p(z) as (4.1) and
determine the critical exponent §, we take two different approaches.

0.08
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FIGURE 4.2: (a) Monomer density on the square lattice as a function
of the monomer weight z. The plots are extracted from DMRG with
m = 200 (m = 400 only at z = 0). (b) The same function is plotted
for the honeycomb lattice.
(1) Fitting approach.
Taking logarithmic of both sides of (4.1), it becomes
p(2) 1
log | —= ) ~ < log z. 4.8
g < . > 5 lo8 (4.8)

The plots of log (p(z)/z) about z are shown as an one-logarithmic graph Fig.4.3.
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FIGURE 4.3: (a) The log of the monomer density over the monomer

weight on the square lattice as a function of monomer weight z. The

horizontal axis is log scale. (b) The same plots for the honeycomb
lattice.

We can see that our assertion (4.1) is correct, as it is plotted on a straight line as
shown in Fig.4.3. From the slope of fitting function, the critical exponent is read as
0 = 7.014 for the square lattice and 7.021 for the honeycomb lattice.

(2) Integral approach.
We also show another way of calculating the critical exponent using the exact solution
of z =0, which can avoid the low-precision point z = 0. Integrating (4.1) from 0 to z

/0 ") _ )~ w(0), (4.9)

Z,

and the left hand side can be transformed as

z /

p(z') Loyl 1

dz' ~ 5 ~ 4.10
/0 Y 1+%Z p(7) (4.10)

near the z = 0. From (4.9) and (4.10),

~1
p(z) ]
5~ [ 1] . (4.11)
¥(z) —4(0)

Therefore, using exact solutions (2.1) as 1(0) and numerical results as p(z) and ¢ (z)
in (4.11), the critical exponent can be determined more precisely. In this method,
p(z) and v(z) are calculated by both HOTRG and DMRG. The results are shown in
Table4.2 combining the result from method (1).
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TABLE 4.2: (2) Critical exponent calculated using formula (4.11) from

HOTRG and DMRG. In HOTRG the expectation value of monomer

density at z = 0.005 with D = 42 is used, and in DMRG the value

of at z = 0.00002 with m = 400 is used. (1) The data calculated by
method (1).

Geometry | (2) HOTRG | (2) DMRG | (1) DMRG |

square 7.000104... | 7.00014... 7.014. ..
honeycomb 7.026. .. 7.00098. .. 7.021. ..

From above analysis, we conclude § = 7. On the other hand, the power-law behav-
ior of the correlation function with critical exponent 7 = 1/2 has been calculated for
the square lattice as (2.36). Our result § = 7 agrees with n = 1/2 if we assume scaling
relation(4.2), so § = 7 is reasonable value. As in 1.1, since the critical exponents of
the 2D Ising model is 6 = 15 and n = 1/4, MDM on square lattice and MDM on
honeycomb lattice are classified into different criticality class from 2D Ising model.
This may be attributed to the fact that the correspondence between the Ising model
and the MDM is not for lattices of the same shape in terms of bipartiteness.

The value of 7 is also important for the mapping of MDM to the bosonic Gaussian
theory to determine the coupling constant. Gaussian theory is classified as ¢ = 1
CFT, and the value of central charge ¢ = 1 is confirmed by analyzing the finite size
effect[82]. By calculating the ¢, we can further confirm the value of n = 1/2, and this
result supports the discussion to conclude that ¢ = 1 in Ref.[82].

4.2.3 Non-critical models

In this section, we consider the triangular lattice which is one of the non-critical lattice
models. The entropy calculated from HOTRG and DMRG is shown as Fig.4.4, and the
monomer density calculated from DMRG is shown as Fig.4.5. The linear dependence
on z of the entropy and the monomer density are shown in Fig.4.4 and Fig.4.5, and
these results reflect the non-criticality of MDM on triangular lattice.

0.4651— HOTRG

0.46071| — pDMRG
0.455

73 04501
0.445
0.440
0.4351
0.430

0.00 0.02 0.04 0.06 0.08
z

FIGURE 4.4: Entropy on the triangular lattice as a function of the
monomer weight z. The plots are calculated from HOTRG with D =
40, and DMRG with m = 200.
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FIGURE 4.5: The monomer density on the triangular lattice as a func-

tion of monomer weight z, and the linear fitting for them. The plot

is calculated from DMRG with m = 200 and their dependence on z is
linear (m is 400 only at z = 0).

From the above calculations for the critical and non-critical models, it is found that
the accuracy of HOTRG is close to that of DMRG in the calculation of thermodynamic
quantities and critical exponents. This fact indicates that HOTRG may be effective
in analyzing thermodynamic quantities and critical behaviors of three-dimensional
systems.

4.3 Comparison with the Gaunt’s conjecture

In 1969, Gaunt studied the behavior of monomer density near the critical point.[83].
Using the series expansion method introduced in Nagle[84] and the Padé approxima-
tion, they found that the monomer density has a common form in different lattices.
They do not mention the critical exponent of monomer density and its universality
class, but the resulting form can be compared with our results. In this section, we
briefly review the Gaunt results and show that our numerical results are consistent
with the Gaunt results. Note that to avoid confusion with the quantity of monomer,
x represents the "dimer" activity and pg represents the "dimer" density.

The grand partition function per-site in thermodynamic limit can be expanded for
dimer activity = as

(1]

o
. - L s
(@) = Jim En(a)F =143 g’ (4.12)
Determining the first few terms of (4.12) corresponds to the expansion for low dimer
density. Gaunt uses the correspondence between MDM and Ising model with magnetic
field to determine the coefficients {gs} for small s. By applying Padé approximation
to {gs} for small s, the properties in the region of high dimer density can be obtained.
According to above process, they get the asymptotic form near the critical point as

= —pd(w) - T 00
x_A<1 pd(oo)> (z — o), (4.13)

where A is constant. Here, the py(z) is defined as the number of sites occupied
by dimers over the number of whole sites. Therefore, pg(co0) = 1 in (4.13). Gaunt
computes the exponents « numerically and conjectures v as a rational number close
to the numerical value (Table4.3).
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TABLE 4.3: Values of exponent v in (4.13) conjectured by Gaunt based
on their numerical calculation[83]. Ounly the value of the honeycomb
lattice is a conjecture and is not based on numerical calculations.

’ Geometry H square ‘ honeycomb ‘ triangular ‘ cubic ‘ bce ‘ fcc ‘

oy [ e ] ma ] 2 195 [195] 2 |

They also mention the possibility of the exponent + being classified into some sort
of lattice group. First, they classify lattices into two groups: loose-packed lattice and
close-packed lattice. Loose-packed lattice is defined as a lattice containing only poly-
gons with an even number of lines, while close-packed lattice is defined as a lattice
containing polygons with an odd and even number of lines. Next, their prediction for
~ is shown below. Two-dimensional loose-packed lattices such as square and honey-
comb lattice have commonly have the value v = 7/4. Three-dimensional loose-packed
lattices such as cubic and bcc lattice have commonly have the value v = 1.95. For
loose-packed lattice, the values of v are commonly determined depending on the di-
mension of the lattice. On the other hand, close-packed lattices have commonly have
the value v = 2 not depending on the dimension of the lattice.

Finally, we compare the our assertion of critical behavior (4.1) and the numerical
results for critical exponent § with Gaunt’s work. The relationship between dimer
activity x and monomer activity z is

z=ua" 2, (4.14)

D=

and the relationship between dimer density py(x) and monomer density p(z) is

p(z) = 1= palw(2)). (4.15)

By using (4.14) and (4.15), (4.13) can be represented in terms of the quantity of
monomer:

plz) = (\/‘%f ~ 27 (2= 0). (4.16)

This form is the same as (4.1), and the relationship between 7 and ¢ is given as

2

- 4.17
1+4 (4.17)

~

Applying our numerical results to the Eq.(4.17), we obtain v = 7/4 from § = 7 for
square and honeycomb lattice, and v = 2 from § = oo for triangular lattice. The
values of v obtained by this correspondence are matched Gaunt’s results in Table4.3,
and thus our numerical results strongly support their conjecture.
We suggest the new conjecture about two-dimensional MDM as a updated version
of Gaunt’s argument (4.13) as follows:
1+1 . . . .
z"s, 60=T (bipartite lattice
o)~ Z 00 =T (biar ) (1.18)
z (non-bipartite lattice).
Bipartite and non-bipartite are definitions that are similar in meaning to loose-packed

lattices and close-packed lattices, respectively. There are some papers on the relation-
ship between bipartiteness and criticality in MDM, such as [29, 61|, but our argument
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(4.18) is new in that it mentions even the universality class.

4.4 Correspondence of the monomer density in the Ising
model

Ref.[31] states that there is a correspondence relation between the monomer in MDM
and the magnetlc field. However, critical behavior of magnetlzatlon at T = T, is
m(h) ~ hs, and our result for the monomer density is p(z) ~ 25
do not match. Therefore, we investigate the counterparts of the monomer density in
the Ising model, where the form of the exponent is 1+% at T' = T,. Heilmann and Lieb
used the high-temperature expansion for Ising model with magnetic fields to prove
the correspondence between the partition function in MDM and the partition function
in Ising model with magnetic fields[31]. We will also peform the high-temperature
expansion for Ising model with field using some part of their discussion, and show
that the "odd vertex density" corresponds to the monomer density. We denote Ising
model with fields as Ising model simply throughout this section.

so the two forms

4.4.1 High-temperature expansion of the Ising model with magnetic
fields

The partition function for Ising model is

v=) e (4.19)

{c}
=—BJ Z o0 — BhZaz (4.20)
<i,j>
Zn can be expanded for 5 as
Zxn = (cosh B.J)NE (cosh,Bh)NZ H (1+voioy) H (14 zoy), (4.21)
o <ij> k

where where N and Np are the number of sites and edges, and v = tanh 5J,z =
tanh Sh. In the summation in (4.21), only terms with an even number of spins on
each site survive shown as Fig.4.6 (a, b). We call the contributing vertices that have
odd number of bonds such as Fig4.6 (b) "odd vertex". Thus, the contributing term is

(a) (b) (c) (d)

FIGURE 4.6: Diagram of the vertices that can contribute to the terms

included in the high-temperature expansion. A round symbol rep-

resents the magnetic field at a site, and a rod-shaped symbol rep-

resents the magnetic field between adjacent sites. (a) and (b) are

examples of contributing vertices, while (c) and (d) are examples of
non-contributing vertices.

represented as a diagram consisting only of vertices with even spins and characterized
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by a pair (n,l) of vertex and bond numbers (Fig.4.7). Introducing the number of

FIGURE 4.7: An example of diagram characterized by (n,l) = (4, 8).

diagrams with (n,[) notated as W,,;, Zn can be transformed to

Zxn = (cosh B.J)VE (cosh Sh)N Sy, (4.22)
Sy = Z Z"UZWn,l. (4.23)
n,l

4.4.2 The correspondence between the odd vertex density and the
monomer density

In high-temperature expansion of Ising model, we define odd vertex density poqq(z)
as the number density of the odd vertices:

1
Podd(2) = NSNl > Wy, | (4.24)
n,l

We show that the form of critical behavior of poqq(2) near z = 0 at T' = T is the same
as that of the monomer density (4.1) by using the critical behavior of magnetization
m(h) ~ hs (of course, § is not the same value). By using (4.24), the magnetization is
represented as follows:

4.25
* cosh 8.J sinh ﬁJ'OOdd(Z) (4.25)

Therefore, poqq(z) is represented as

Podd(z) = cosh BJ sinh BJ - (m — 2)

~ z(z% —z)~ zl+%, (4.26)

where in the last line of the transformation, we use m(h) ~ hs ~ 25 and cosh BJ ~1
(z — 0). (4.26) is the same form as the critical behavior of the monomer density (4.1).

Finally, we show the numerical calculation of the critical behavior of poqq(z) by
DMRG to confirm (4.26). In high-temperature expansion, the partition function is
represented as a combination of the graph consisting vertices with weight z and bonds
with weight v. So, the local tensor of Ising model with high-temperature expansion
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can be constructed by extending the case of MDM:

1 ifi=j=k=101=0;

z-v if only one index is 1;
(Ising)

Tija ?

if two indices arel , and the other two are 0 (4.27)

v
z-v> if only one index is 0;
v

Lifi=j=k=1=1,

where the index "1" means that the vertex has a bond, and weight z is multiplied if
the vertex has an odd number of bonds. The plots of log(poqq(2)/2) about z are shown
as an one-logarithmic graph Fig.4.8. The linear dependence on z in Fig.4.8 indicates

~0.56
~0.58
—~—0.60
21,-0.62
~0.64
N—
2066
~0.68
-0.70

e DMRG
log fit

Podd

10 10+
z

F1GURE 4.8: The log of the odd vertex density over the z on the
square lattice as a function of z. The horizontal axis is log scale, and
the plots are calculated by DMRG with m = 150.

that the form (4.26) is correct. From the slope of fitting linear function, the critical
exponent is read as § = 15.04 and its value matches the exact value of Ising model
shown in Tablel.1. We again conclude that the role of monomers in monomer-dimer
model is similar to the role of magnetization in Ising model, but that the models do
not correspond in terms of critical properties.
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Chapter 5

Critical behavior of the
monomer-dimer model on
multilayer lattices

In this chapter, we consider MDM on the multilayer lattices. Although multilayer lat-
tices belong to a three-dimensional system, a numerical framework for two-dimensional
is possible when the number of layers is small. In this sense, a series of multilayer
models serves as a bridge between two and three dimensions. Not only that, but
each multilayer model shows the properties specific to the layered structures. For the
two- and three-layer models, we will perform numerical analysis using DMRG. On
the other hand, for the multilayer model, we construct a bosonic field theory as an
extension from 2D. For the two-layer model, numerical analysis is also performed by
varying the interlayer dimer activity.

5.1 Critical behavior of multilayer bipartite lattice models

We consider the case where the constituent layers are a bipartite lattice such as a
square lattice or a honeycomb lattice. In this case, the whole system is also bipartite
lattice. From the insights of two-dimensional MDM, we can propose some simple
hypothesis about critical properties of multilayer bipartite models.

(A) Multilayer bipartite models are critical because of their bipartiteness.

(B) The multilayer bipartite model is non-critical, because the interlayer dimers
can be regarded as monomers on each layer plane as shown in Fig.5.1, and
the dimer system with monomers is non-critical. Therefore, z-dependence of
monomer density is expected to be linear.

Sl O L
L L 7

~ 7
S

FIGURE 5.1: Schematic representation of the correspondence between
a two-layer PDM and two 2D MDMs.

The conclusion is that neither hypothesis is correct. To be precise, the critical
properties are not common to each multilayer model, at least not to the two- and
three-layer models. There are unique properties of the layered structure that cannot be
explained by two-dimensional knowledge alone. We show such properties by analyzing
two- and three-layer bipartite lattice models.
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5.1.1 Two-layer models
We study MDM on square and honeycomb two-layer lattices by DMRG (Fig.5.2).

FIGURE 5.2: Two-layer lattice in which the constituent layers are
square in shape.

In order to treat the two-layer model as a two-dimensional system, the local tensors
defined in each layer are contracted in the vertical direction of the layer to construct
a compressed initial local tensor. The construction of the local tensor is illustrated
with an example of a square layer lattice. This method is the same for honeycomb
layer lattices and other layer lattices, so the details are omitted. The procedure is as
follows.

(1) Define the local tensor on the constituent layers (Fig.5.3). The components of the

FIGURE 5.3: Local tensor for each constituent layer. 74 and T
represent the local tensors on the lower and upper lattices, respectively.

local tensor in the planar direction are the same as in the 2D case, but one component
is added for the vertical edges because of the presence of dimers:

z ifl=r=f=b=x=0; z ifl=r=f=b=x=0;
Téf?bx = ¢ 1 if only one index is 1; ﬂ(ﬁ})bx = ¢ 1 if only one index is 1;
0 otherwise, 0 otherwise,
(5.1)

where the fifth index represents the upper (lower) direction of the lower (upper) layer.
(2) Compress the upper and lower local tensors (Fig.5.4):

(2layer) (d) (u)
TLRFB - Z 11[17"1f1b11'71lg7"2f252.’27 (52)

x

where large letter on the left side represents the tensor product of the indices of each
tensor on the right side, e.g. L =11 ® ls.

We show the numerical results of the entropy and the monomer density calcu-
lated by DMRG using local tensor TL(%?’ET). The entropy of square layer model and
honeycomb layer model is shown as Fig.5.5, where the curvilinear behavior can be
seen.
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FIGURE 5.4: Compression of the upper and lower local tensors.
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FIGURE 5.5: (Left) Entropy of square layer model as a function of the
monomer weight z. The plot is computed by DMRG with m = 200.
(Right) The same function is plotted for honeycomb layer model.

A similar curvilinear behavior can be seen for the monomer density shown in
Fig.5.6. From the plots in Fig.5.6, z-dependence of the monomer density near z = 0 is
p(z) ~ z2. To investigate the detail behavior near z = 0, we show the graph of p(z)/2>
in Fig.5.7. From Fig.5.7, the slope approaches the constant value as z approaches zero.
Therefore, the relation p(z) ~ 22 is considered to be valid in the vicinity of z = 0.
According to the dependence of powers of an integer of the monomer density, two-layer
bipartite models are considered to be non-critical.
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FIGURE 5.6: (a) Monomer density of the square layer model as a

function of the monomer weight z. The plot is computed by DMRG

calculations, using base numbers of m = 500 for z < 9.0 x 1075 and

m = 200 for z > 9.0 x 107°. The line represents a fitting function of

the form Az2. (b) The same functions are plotted for the honeycomb
layer model.
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FIGURE 5.7: (Left) Monomer density over z? of the square layer
model. (b) The same function for the honeycomb layer model.

We show the correlation length data of the monomer-monomer correlation function
as a supplementary evidence of non-criticality in Fig.5.8. Fig.5.8 shows that &~}
approaches a non-zero value as z approaches 0, i.e., £ is not diverge at z = 0.
On the other hand, Fig.5.9 shows that ¢! approaches 0 at z = 0 (¢ diverges at
z = 0) in two-dimensional square lattice that is classified as a critical system. Even
by comparing the behavior of the correlation length of the two-layer bipartite lattice
with that of square lattice, the two-layer bipartite model considered to be non-critical
and this result is consistent with Ref.[63].
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FIGURE 5.8: (Left) z-dependence of inverse of correlation length of

the square layer model calculated from DMRG with m = 200 by the

method introduced in Sec.3.3.3. (b) The same functions are plotted
for the honeycomb layer model.
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FIGURE 5.9: z-dependence of inverse of the correlation length of the
two-dimensional square model.

In summary, in the two-layer bipartite model, p(z) ~ 2%(z ~ 0) and this model is
non-critical. This result does not apply to either hypothesis (A) or (B) above for the
following two aspects:

e In spite of the bipartiteness, the two-layer bipartite model is non-critical.
e z-dependence of p(z) is not linear but z2.

As an illustration of these properties, we propose that PDM on the the two-layer
lattice can be identified as a system of two stacked MDMs on a two-dimensional
lattice. The mapping from PDM to MDM comes from the fact that the interlayer
dimers are recognized as two monomers on each layer. Based on this hypothesis, the
non-criticality of PDM on a two-layer lattice is due to the fact that it is essentially
MDM. Therefore, unlike the Ising model|85], the extension from two dimensions to
two layers essentially change the critical properties of PDM. On the other hand, the 22
dependence of p(z) represents the confinement of monomers such that the monomers
exist in pairs, and the confinement is due to the inherited properties of two-dimensional
square and honeycomb lattices. These properties suggest that the two-layer model
strongly inherits the lattice properties of the 2D constituent layers.
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5.1.2 Three-layer models

In this section, MDM on square and honeycomb three-layer lattices (Fig.5.10). The
three-layer model is a simple extension of the two-layer model system, but the three-
layer system exhibits a completely different behavior of thermodynamic quantities
than the two-layer system.

FIGURE 5.10: Three-layer lattice in which the constituent layers are
square in shape.

Construction of the local tensor of square three-layer model is performed in the
same way as the two-layer model. The process of compression of the local tensor from
three-layer to two-dimensions is as follows.

(1) Define the local tensor on the constituent layers (Fig.5.11). The local tensors on

T| ¢ f
7@ 1 I/?“ T

L
) [ I/?“T(u)_l r

m —_—
rfbud

rfbxr lrfobx —
4 A\ 71,

FIGURE 5.11: Local tensor for each constituent layer. T(# and T
represent the local tensors on the lower and upper edge layer, respec-
tively. T0™ represents the local tensor on the middle layer.

the edge layer are defined as in the two-layer case, but the local tensor of the middle
layer has components that connects the upper and lower layers:

[z ifl=r=f=b=2=0; z fl=r=f=b=2=0;
1}(:?633 =41 if only one index is 1; Tl(;})bx =<1 if only one index is 1;
0 otherwise, 0 otherwise,
(5.3)
z ifl=r=f=b=u=d=0;
Tlg}%ud = ¢ 1 if only one index is 1; (5.4)

0 otherwise,

where the last two indices of the ™) represents the components that connect upper
and lower layers.
(2) Compress the upper, middle and lower tensors (Fig.5.12):

(3layer) (d) (m) (u)
TLR?’% - Z 7}17‘1flblUj—‘lQTQbeQUdI—‘l;igfgbgd’ (55)
xX

where large letter on the left side represents the tensor product of the indices of each
tensor on the right side, e.g. L =11 ® lo ® I3.
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~

FIGURE 5.12: Compression of the upper, middle and lower local ten-
sors.

We show the numerical results of the entropy and the monomer density calculated
by DMRG using local tensor T éﬁ?’g). Fig.5.13 shows the entropy and linear fitting
functions for a square three-layer lattice and a honeycomb three-layer lattice. At first
glance, the plot is on a linear function, but if you look closely at the plot, you can see

the deviation from the linear function.

0.401351| ¢ DMRG ¢ DMRG

linear fit 0.31130)| linear fit
0.40130
. __0.31125
R 0.40125 X
= = 0.31120
0.40120

0.31115
0.40115
0.0000 0.0002 0.0004 0.0006 0.0008 0.0000 0.0002  0.0004 0.0006  0.0008
z z

FIGURE 5.13: (Left) Entropy of square three-layer model as a function

of the monomer weight z and the linear fitting function for it. In order

to clearly show the deviation from linear behavior, a linear fitting

function is displayed. The plots are extracted from DMRG with m =

250. (Right) The same function is plotted for honeycomb three-layer
model (m = 200).

The same deviation from the linear function is shown in the monomer density in
Fig.5.14. To confirm whether this deviations are caused by criticality, we plot p(z)/z
versus z in Fig.5.15 based on the assumption of p(z) ~ 45 at 2 ~ 0. In Fig.5.15,
the plots are on the linear straight line, therefore square three-layer and honeycomb
three-layer lattice models are considered to be critical. According to the slope of the
linear fitting function, the critical exponent is 6 = 15.611 for the square three-layer
model and § = 11.416 for the honeycomb three-layer model. We have not clarified
the reason for the difference in the value of § between the square three-layer model
and the honeycomb three-layer model. This difference may be due to the fact that
the lattice geometry is isotropic or not to the bottom and sides.
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We show the correlation length data of the monomer-monomer correlation function
as a supplementary evidence of criticality in Fig.5.16. Fig.5.16 shows that £ diverges
at z = 0 because ¢! approaches 0 as z approaches 0. Therefore square three-layer
model and honeycomb three-layer model are critical, and three-layer bipartite lattice
models are considered to be critical. This result seems to be consistent with hypothesis
(A). In contrast to the two-layer case, the three-layer model reflects the characteristics
of a bipartite 3D model, rather than a stack of 2D models.
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—~ N
R 150 g
v [ 0015
w
100 . 0.010
50 . . . . 0.005f ,
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FIGURE 5.16: (a), (b) z-dependence of the correlation length and

inverse of correlation length of the square three-layer model calculated

from DMRG with m = 200. (c), (d) The same plots for the honeycomb
three-layer lattice.

5.1.3 Discussion for multilayer bipartite lattice models

From the above analysis, we can see that the two-layer model is non-critical, while
the three-layer model is critical. As a result, two hypotheses about the criticality of
the multi-layer model can be naturally constructed.

1. Criticality depends on the oddness of the number of layers.

2. Only the two-layer model is a special system and is non-critical, while the multi-
layer model other than the two-layer model is critical.

In order to confirm which hypothesis is correct, it is necessary to perform the analysis
on a system with a larger number of layers. So, as a test, we perform calculations
for the four-layer model. We show the z-dependence of the entropy by HOTRG in
Fig.5.17. From the deviation of the entropy from the linear fitting function, the four-
layer model seems to be critical. However, the accuracy of this calculation is not
sufficient to determine criticality, but it does suggest that Hypothesis 2 is correct at
this stage.
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FIGURE 5.17: Entropy of the four-layer square model as a function of
the monomer weight z and the linear fitting function for it. The plots
are calculated using HOTRG with Dyong = 100.

5.2 Criticality of multilayer non-bipartite lattice models

We analyze MDM on a two-layer triangular lattice as an example of two-layer non-
bipartite model. Since two-layer triangular lattice is non-bipartite, this model consid-
ered to be non-critical. Actually, non-criticality is reflected in the linear behavior of
the entropy (Fig.5.18) and the monomer density (Fig.5.19).
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FIGURE 5.18: Entropy of the two-layer triangular model as a function
of the monomer weight z and the linear fitting function for it. The
plots are calculated using DMRG with m = 180.
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FIGURE 5.19: Monomer density of the two-layer triangular model as
a function of the monomer weight z and the linear fitting function for
it.

From the analogy of the two-layer triangular model, we guess multilayer non-
bipartite lattice models are non-critical.

5.3 Description of the confinement and criticality in mul-
tilayer bipartite models based on a bosonic field the-
ory.

In this section, we prepare a theoretical approach to the multilayer model in order
to comprehensively understand its layered nature. Following Sec.2.5, dimers on a
bipartite lattice can be described as magnetic fields and monomers are recognized as
monopoles. With the goal of being able to explain confinement and criticality, we will
extend the bosonization mapping introduced in Sec.2.5 to multilayer models.

To study long-distance behavior, coarse-graining the multilayer structure, MDM
on the multilayer lattice corresponds to the magnetic field system of finite thickness
(Fig.5.20). The direction perpendicular to the layer is the z-axis, and the layer is
assumed to lie in the z-y plane. Also, the length of the thickness is L and the z-y
plane is assumed to be infinite.

L

FIGURE 5.20: Magnetic field system of finite thickness.

In this setting, the field generated by a monopole (monomer) is given as the Green
function of the Laplace equation:

~ABPG(>r) = 6P (). (5.6)
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For simplicity, we impose periodic boundary condition and solve equation (5.6). Using
Fourier expansion, G(r) is given as follows:

dk 1 1 i(kzx+kyyt+k.z
/ /2nLZk2+k2+k2e( e

4 Z ik 2 = ikamthyy)
27r k2 + k2 + k2
-1 Zei’maz(p, ko), =22+ g, (5.7)
k-

where Ga(p, m) is defined as

/ 1 - . (chaﬁJrkyy)7 (5.8)

27T k2 + k2 +m?
and it is the Green function of the 2D Helmholtz equation:
(A®) —m?)¢ =0. (5.9)

The Green function of (5.9) is represented by using the Hankel function:

] )
Galp,m) = L Hy' (imp), (5.10)
where H, ,51) is defined as
—inv/2  poo
ngl)<x) _ 62/ ezzcosht—utdt_ (5_11)
71- —o0

Therefore, the behavior of Ga(p, m) for m # 0 in the limit of p — oo is

1 [ ;
Ga(p,m) = / e meoshlgy oM, (5.12)

4 J_ o

In the last transformation, the integrals were evaluated using the saddle point method.
On the other hand, zero mode Ga(p,m = 0) corresponds to the 2D case. In this
boundary condition, the zero mode exists and the long-range behavior is determined
by the zero mode:

Go(r) ~ Ga(p,0), (r — oc0). (5.13)

From the behavior of the Green function, the property of the confinement and criti-
cality of multilayer models are attributed to that of 2D bipartite model. Therefore,
multilayer models are considered to be basically critical and confined. However, since
the existence of zero modes depends on the boundary condition, the confinement and
criticality also depend on the boundary condition. It can be seen from (5.7) and (5.12)
that the monomer field decays exponentially in the long-range limit when we choose
a boundary condition where there are no zero modes.

Even if we could relate the numerical setting to the boundary condition of the
bosonic theory, the numerical results of the difference in criticality between the two-
and three-layer models in Sec.5.1 cannot be explained in this framework. It is not
clear at this stage, but if our numerical calculations correspond to the free boundary
condition, then the confinement and criticality maps are shown in Fig.5.21. As for
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the two-layer system, it is thought that the unique properties of the lattice model,
which cannot be incorporated in the continuous field theory, are at work. For example,
interlayer dimers cannot move in the z direction in the two-layer lattice model, but
this effect is not reflected in the continuous field theory.

Number of layers

00— Deconfined Critical

Y2

Critical
Confined

\____/
3 —\. J i Critical

2+ Confined Non-critical
14— Confined Critical

FI1GURE 5.21: Classification diagram of criticality and confinement of
the MDM on the multilayer bipartite lattice. The area enclosed by the
square is the result of the bosonic theory.

5.4 Effect of the anisotropic dimer weight on the multi-
layer square lattice model

We also investigate the criticality of PDM in the two-layer square lattice model when
the interlayer "dimer" activity (denoted by x,) is varied. In Sec.5.1, we studied the
case of x, = 1, and discovered that two-layer bipartite model is non-critical. Even
when z, is changed, the criticality appears to remain unchanged (non-critical).

The local tensor of each constituent layer introduced as (5.1) is redefined as

z ifl=r=f=b=x=0;

plud) _ /Z, if only x is 1;

= 5.14
Irfbx 1 if the index of one of I,r, f, or bis 1; (5.14)

0 otherwise.

For z, > 1.0, the behavior of p(z) ~ 22 appears in the region of the order of
z ~ 1073 (Fig.5.22, 5.23). The two-layer MDM at x, > 1.0 is also considered to
be non-critical because it has the same z?>-dependence as the behavior at x, = 1.0
described in Sec.5.1.
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FIGURE 5.22: z-dependence of monomer density for different values
of x,(x, > 1). The plots are calculated from DMRG with m = 400.
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FIGURE 5.23: (Left) Monomer density over z for z, = 1.5 calculated
from DMRG with m = 600. The straight line represents linear fitting
function. (Right) The same plots for z, = 2.0.

For z,, > 0.6, the behavior of p(z) ~ 2% does not appear in the region of the order
of 2z ~ 1073 but appears in the region of the order of z ~ 1075 (Fig.5.24).
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FIGURE 5.24: (Left) Monomer density over z for x, = 0.7 calculated
from DMRG with m = 600. The straight line represents linear fitting
function. (Right) The same plots for z, = 0.6.

For x, < 0.4, z2-dependence of p(z) does not still appear as shown in Fig.5.25.
From the analysis of the correlation length in Fig.5.26, the correlation length does
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not diverge near z = 0 and two-layer MDM is considered to be non-critical both for
z, = 0.1 and x, = 0.4.
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FIGURE 5.25: (Left) Monomer density over z for z, = 0.4 calculated
from DMRG with m = 500. The straight line represents linear fitting
function. (Right) The same plots for =, = 0.1.
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FIGURE 5.26: (Left) z-dependence of correlation length for x, = 0.4
calculated from DMRG with m = 500. (Right) The same plots for
x, = 0.1.

Here, we refer to Ref.[63] as a comparison, which also studies the criticality of two-
layer PDM varying x, by renormalization group approach. The authors consider the
interaction between dimers on different layers, and shows that there is a Kosterlitz-
Thouless (KT) transition in the presence of finite repulsive interaction (Fig.5.27).
They conclude that in region of small x, at non-interacting case V' =0 (in our case),
there seems to be critical region, but it only reflects the long crossover from the finite
interaction region and is non-critical.
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FIGURE 5.27: Phase diagram in terms of the strength of interaction

and the dimer activity on the edge perpendicular to the layer surface

from Ref.[63]. The phase boundary represents the location where the

KT transition from the critical Bilayer Coulomb phase to the non-
critical disordered phase occurs.

According to Ref.[63], since the two-layer PDM is non-critical for all z,(# 0), our
calculations varying x, is consistent in terms of the criticality. As an explanation for
the behavior in 2, < 0.4, we guess that the region of z where p(2) ~ 22 is valid becomes
smaller as x, approaches x, = 0. This is because two-layer system approaches two
decomposed one-layer square lattice as x,, — 0, and the criticality of the square lattice
probably affects the behavior of p(z). Future work requires analysis in the region close
to z = 0, and clarification of the relationship between p(z) and z,,.
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Chapter 6

Analysis of the monomer-dimer
model on a three-dimensional
lattice

Numerical analysis in three dimensions is one of the important goals of HOTRG.
However, in the ordinary algorithm of HOTRG, the memory cost is too large in three
dimensions to perform highly accurate calculations. Therefore, in this section, we
analyze three-dimensional PDM and MDM using our parallel computation method
introduced in Sec.3.2. The criticality of three-dimensional model is known for sev-
eral lattice geometry|61], but the critical behavior of the thermal quantities is not
understood. Therefore, we analyzed the monomer activity dependence of the residual
entropy of PDM and the entropy of MDM.

6.1 Numerical calculation of the residual entropy of the
pure dimer model

As well as 2D PDM, 3D PDM has a finite residual entropy due to the degenerate
ground state. However, unlike the two-dimensional case, the three-dimensional PDM
does not have an analytical solution. Therefore, a numerical approach is necessary.
In this section, we calculate the residual entropy by HOTRG. Additionally, we will
validate the accuracy of HOTRG in three dimensions by comparing it with previous
studies.

As shown in Fig.6.1, we calculate the residual entropy of the PDM by varying
the number of retained basis Dyonq. For comparison, the values calculated by the
asymptotic expansion [84] and one of the TN methods, PEPS[86] are also shown. On
a two-dimensional square lattice, the value of Zpersite by the asymptotic expansio-
nis slightly smaller than the exact value, but is consistent within the third minority
(£0.0001)[84]. Therefore, we can assume that the value of the asymptotic expansion
is in the neighborhood of the exact value, even for a 3D lattice. From Fig.6.1, it can
be seen that our calculated values asymptotically approach slightly above the value
of the asymptotic expansion and are closer to the value of PEPS. In conclusion, the
optimization of the contraction order done in Sec.3.2.2 and the parallel computation
method done in Sec.3.2 allowed us to calculate the residual entropy of PDM on a cubic
lattice with higher accuracy than the previous PEPS|86].
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value calculated by PEPS|[86].

6.2 Critical behavior of the entropy

The criticality of 3D PDM is known for the several lattice geometry, such as the
cubic, fce and Fisher lattice as shown in Table2.2[61]. However, the critical behavior
of thermal function and the universality class are not known. Therefore, we analyze z-
dependence of entropy in MDM on the cubic lattice, and try to determine the critical
exponent § defined as Eq.4.1.

z-dependence of the entropy is shown as Fig.6.2. In the neighborhood of z = 0,
the behavior of entropy is not linear, but curvilinear. This is the behavior that reflects
the criticality.
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FIGURE 6.2: z-dependence of the entropy of MDM on the cubic lattice
calculated by HOTRG with Dyong = 18.

Next, we will determine the the critical exponent ¢ by fitting approach. In order
to construct a fitting function, we extract plots of regions with significant curvilinear
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behavior. We assume the critical form of fitting function of the entropy as
U(z) =a+b- %5, 2~ 0 (6.1)

which comes from the critical behavior of p(z) (4.1) and the relation between 1(z)
and p(z) (2.8). Here, we identify the value of a as ¥(0) calculated from HOTRG.
6 can then be determined by calculating the slope of the log fitting of the following
equation:

log (Y4(2) — 1(0)) = log b + (1 + (1$> log z. (6.2)

The plots of (6.2) is shown in Fig.6.3, and the plots are on the straight line. From
this plots, the critical exponent is calculated as & = 7.632629. However, the value
of § varies depending on the choice of plot. Therefore, the accuracy of the present
calculation is not sufficient to determine the critical exponent.
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FIGURE 6.3: The log of the entropy on the cubic lattice as a function
of z. The horizontal axis is log scale.

6.3 Singular value distribution of the three-dimensional

HOTRG

In Sec.6.2, we could not determine the critical exponent § by HOTRG with Dypgng =
18. On the other hand, some critical exponents of the three-dimensional Ising model
can be precisely determined by HOTRG with Dygng = 14[57]. Therefore, in this
section, we discuss whether Dyonq was appropriate for the HOTRG calculation of
the monomer-dimer system in this study by analyzing the distribution of singular
values (eigenvalues of M MT) defined by (3.10). In particular, we compare the singular
value distributions of the monomer-dimer system with those of the Ising model. The
comparison of Dyng-dependence of the singular value of 3D MDM and the 3D Ising
model at the critical point is shown as Fig.6.4. Fig.6.4 shows that the singular value
of the 3D Ising model decays rapidly around Dpong = 11, while that of 3D MDM
does not decay even after Dyonq = 20. Therefore, Dyong was sufficient for HOTRG
calculation of the 3D Ising model in Ref.3.8, but the value of Dyonq that we set is not
considered to be sufficient for analyzing the critical behavior of 3D MDM precisely.
Furthermore, the degeneracy of the large singular values of 3D MDM is larger than
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that of the 3D Ising model, and this degeneracy prevents the singular values from

decreasing.
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FIGURE 6.4: (Left) Dyona-dependence of singular values of 3D MDM

The value of the singular value is a ratio to the

maximum singular value, starting from the value of the second largest
singular value. (Right) Same plots for the 3D Ising model.

at z = 1.0 x 1077

As shown in Fig.6.5, the degenerate structure and the behavior of singular values
of 3D MDM do not change even after leaving the critical point. Therefore, we believe
that our HOTRG calculations for the region where critical behavior appears, as well
as the critical point, are not accurate enough to determine the critical exponent.
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FIGURE 6.5: Dypong-dependence of singular values of 3D MDM for
various values of z.

To summarize our current status, HOTRG analysis in 3D monomer-dimer sys-
tem is efficient for calculating residual entropy of PDM. For a discussion of critical
phenomena, although we can not determine the critical exponent precisely, we can
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capture the critical behavior that appears in the entropy. From the comparison of the
singular value distributions of the 3D MDM and the 3D Ising model, the degeneracy
of the singular values and the delay in decay are considered to be the cause of the
reduced accuracy of HOTRG calculation of MDM. In particular, the high degree of
degeneracy is thought to be specific to MDM, but the reason for this has not been
clarified. Therefore, the next task is to identify the causes of the difficulties and de-
velop ways to deal with them. We then need to set Dyonq appropriately, which is
sufficient to determine the critical exponent of 3D MDM.
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Chapter 7

Asymptotic spectrum distribution
of HOTRG: Relationship to the
corner transfer matrix

In this chapter, we analyze the asymptotic behavior of the spectrum of MM?' in
HOTRG. For the integrable models at off-critical region, MM spectrum can be de-
scribed by the eigenvalue of the Baxter’s corner transfer matrix (CTM)[67]. Therefore,
we derive the asymptotic form of M MT spectrum of HOTRG based on the CTM rep-
resentation and check this form by HOTRG calculation at Dyonq = 240. Furthermore,
we compare the spectra of the density matrix in DMRG to show that there is some
relationship between DMRG and HOTRG in the asymptotic behavior of the spectrum.

7.1 Review of the corner double line representation of ver-
tex weights in HOTRG

We consider the vertex weight of the HOTRG in the off-critical region at a fixed point
where the correlation length of the system is finite. When the system size is much
larger than the correlation length: L > £, the link variables around different corners
are disentangled in the square lattice model. Therefore, the vertex tensor at a fixed
point W* is decomposed into four tensors corresponding to the CTM, and such a
picture is called a corner double line (CDL) picture[56, 87].

In 2D HOTRG, the renormalization of two adjacent vertex weights (local tensors)
is given as

(n) _ (n) (n)
anﬂ«“b%%yay{) - Z Wxaxgyaywszgyyg’ (7 ].)
)

which corresponds to (3.4). To calculate singular values by HOSRG, we diagonalize
a following kind of density matrix

(n) (n) (n)
= M M, (7.2)
alpr Talh aZTpTq Ty YalYb aZpTa Ty YalYb
To Ty Yalp

which corresponds to MM appearing in (3.9).
At the fixed point, the link variables of the vertex weight W* around different
corners are disentangled, so W* is decomposed into four CTM as shown in Fig.7.1:

W; oy — HAMlVlAHQVQA i A ,Vé’ (73)

M H1V17 "2
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where  is a normalization factor and A, is normalized CTM (dim(u) = v/2"). Here,
W* is assumed to be isotropic. CTM is defined as a transfer matrix that transfers an
element on a semi-infinite horizontal line to an element on a semi-infinite vertical line
(Fig.7.2).

(a) L (b)

S O O Y N O

..... e CTM

FIGURE 7.1: Decomposition of the vertex weight into CTMs (The
figure refers to Ref.[88]). (a) Renormalized vertex weight with system
size L. (b) When L > &, the link variables of the vertex weight around
different corners are disentangled and the vertex weight decomposed
into four patches. (c¢) Correspondence of each patch to CTM. (d)
Diagram of vertex weights by CTM correspondence. This double line
diagram is called corner double line (CDL) representation.

3

r e o o I

{v}<

~

FIGURE 7.2: Graphical representation of corner transfer matrix
(CTM): A,
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Substituting CDL representation of the vertex weight (7.3) into (7.2), p* can be
expressed using CTM:

x _ 2 2 2 2
Pty ey = a(A )mui(A Juzps (A )uéu’g (4 )uguu (7.4)
where a = k*(Tr[A%])?, pa = p1 @ po, iy = i3 @ pua, py = p @ b, and gy, = ply @ p.
Next, we diagonalize p*. However, (A?),,,, and (A?) ubuty i (7.4) are each represented

as a tensor product of two vectors, with rank 1 and eigenvalues of 1. Therefore, each
does not contribute the eigenvalues of p* and only aA? ® A2 need to be considered.
So, the eigenvalues of p* (spectrum of M M) is given as[67]

(P )diag = (A?)diag © (A%)diag- (7.5)

7.2 Asymptotic form of the M M' spectrum

In this section, we introduce the asymptotic form of MM spectrum (eigenvalues of
p*) by using the asymptotic behavior of CTM and CDL representation of p* in (7.5).
In case of the integrable model at off-critical region, the diagonalized form of CTM in
the thermodynamic limit is given as the form of infinite tensor product[89]:

(A)ains = Q) (; 0) (7.6)

n=1

where we have imposed normalization condition that the maximum eigenvalue is 1,
and z(0 < z < 1) is some parameter that characterizes the family of integrable models
(we omitted this index in the last section). ¢, is a model-dependent parameter and
for example of the Ising model, the value of ¢, is as follows:

. :{n (T <T,) (7.7
" l2n-1 (T >T). '

From (7.6),
A2(z) = AG), (78)
and substituting this relation into (7.5), (p*)diag can be represented as

(p")diag(2) = (A*(2))diag ® (A%(2))diag (7.9)
= (A(ZQ))diag & (A(ZQ))diag

o )86 ) e

n=1
where we impose the normalization that the maximum eigenvalue is 1 on both sides.
Therefore, the eigenvalues of p* is given as the power-law form of z. However, since
each eigenvalue has a degeneracy, we need to calculate the degeneracy to associate
the eigenvalue number with the eigenvalue.
First, we evaluate the degeneracy of the eigenvalue z". According to Ref.[90], the
degeneracy of eigenvalue ¢" of CTM (A(q)) is determined by a coefficient r(n) of the
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generating function f(q):

=TI gy (7.11)

=14 r(n)q", (7.12)

where a, is a sequence depending on c¢,. According to Meinardus’s theorem, the
asymptotic form of r(n) in the limit of n — oo is given as|[91]

r(n) ~ Cn¥ exp [Bno‘/(l'm)}, (7.13)
D0)—1-¢
k=—t 2 14
l+a 7 (7.14)
B= (1 + 1) AV B(a), (7.15)
a

where « is the pole of

D(s)=Y" %” (7.16)

n=1

and A is the fraction at pole a.
Similarly, the generating function for A(q) ® A(q) can be constructed as follows:

Tr[A(q) ® A(q)] = (TrA(q))(TrA(q))
=[f(q))?

(1—qg™)2. (7.17)

3

n=1

(7.17) is equivalent to (7.11) with a, replaced by 2a,. Therefore, the corresponding
series D(s) is just doubled. As a result, the position of the poles, «, remains the
same, and the residue doubles to the value 2A. Therefore, the exponential part of the
asymptotic form of the degeneracy r(n) is modified as follows:

exp {Bno‘/(l"'o‘)} — exp [21/(1+°‘)Bn0‘/(1+0‘)}. (7.18)

Here, we consider the case of @ = 1, which corresponds to the case where the value
of ¢, is given as (7.7). Then, (7.18) becomes

exp [Bv/n] — exp [\@B\/ﬁ] (7.19)
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The eigenvalue number m taking the degeneracy into consideration is
n
m=>Y r(l). (7.20)
=1
Changing the summation in (7.20) into the integration, we obtain
n
m e~ / zF exp [\/ﬁB\/E} dx
1
Jn
=2 / 2+ exp [\/iBt} dt (Vz=t, dk=2tdt)
1

~ /2 exp [\/§B\/ﬁ} . (7.21)

Taking the log of both sides, we get

1
logm ~ V2By/n + <l<:+ 2) logn

~ V2By/n, (7.22)
and from this,
B2
n ~ 7(log m)2. (7.23)

This is the degeneracy of the eigenvalue ¢" of A(q) ® A(q).
Next, we derive the asymptotic form of the m-th eigenvalue of A(q)® A(q), denoted
by Q,(q). By definition of ©,,(¢)(= ¢"),

n = 108 8n(0) (7.24)

log q
Combining (7.23) and (7.24), we get

BZ

Qm(q) ~ exp [lz()gq(log m)Q] (7.25)

According to (7.10), the asymptotic form of p* is given as
Qi (2%) ~ exp [(B*log 2)(log m)?]. (7.26)
On the other hand, the asymptotic form of m-th eigenvalue of CTM (A(z2)) is
wm(z) ~ exp [(B2 log z)(log m)Z], (7.27)
and this is equivalent to that of p* (7.26):
Qun (2%) ~ wim(2). (7.28)

Finally, we relate the asymptotic behavior of the eigenvalues of p* in HOTRG to
the asymptotic behavior of the eigenvalues of the density matrix in DMRG defined as
(3.32). Since the density matrix of DMRG is equivalent to four CTMs|92]:

DM = A(2) ® A(2) ® A(2) ® A(z2), (7.29)
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the eigenvalues of the density matrix in DMRG {\,,(z)} is related to the eigenvalues
of CTM asypmtotically as follows:

A (2) ~ [wm ()] (7.30)

Combining (7.28) and (7.30), we obtain the relation of the asymptotic spectrum for
the integrable models between HOTRG and DMRG:

Qi (22) ~ A (2)]M2. (7.31)

7.3 Numerical result of asymptotic behavior of the M MT
spectrum

In this section, we confirm numerically establishment of the relation of the asymptotic
spectrum between HOTRG and DMRG (7.31). We analyze the eigenvalue distribution
of the specific models using both DMRG and HOTRG. For HOTRG, we use the
parallel computation method which is introduced in Sec.3.2 to preform calculation at
large number of retained basis Dponq = 240. For example, we analyze the 2D Ising
model at high temperature phase as an integrable model, and 2D MDM and the 2D
Ising model at the critical temperature with a magnetic field as non-integrable models.

7.3.1 Integrable models
From (7.26), asymptotic form of the spectrum of HOTRG is

log Q,,(2%) ~ [(B2 log z)(log m)2] , (7.32)
while from this relation and (7.31), that of DMRG is given as
log (Am(2)1) ~ [(B?log 2)(logm)?] . (7.33)

Therefore, the dependence of the asymptotic form of the spectrum on the number
of eigenvalues (logm)? is the same for log (€2,,(2%))* of HOTRG and log (A, (2)) of
DMRG. The establishment of this relation is seen from Fig.7.3. We conclude that
relation (7.31) is valid for integrable models.
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FIGURE 7.3: Eigenvalue distribution for (logm)? of Ising model at

high temperature phase. The value of the vertical axis is log (2, (22))*

for HOTRG and log (A, (%)) for DMRG. This calculation is performed

using high-temperature expansion. The number of retained basis is
Mpase = 240 for DMRG and Dygnq = 240 for HOTRG.

7.3.2 Non-integrable models

In this section, we also calculate the asymptotic spectral for non-integrable models
such as 2D MDM and 2D Ising model with a magnetic field. We show the eigenvalue
distribution of 2D Ising model with a magnetic field in Fig.7.4 and 2D MDM in Fig.7.5,
respectively. Both graphs show a difference in the behavior of the eigenvalues between
HOTRG and DMRG. Consequently, relation (7.31) is not valid for the non-integrable
models. Thus, we propose that an effective way to determine whether a system is
integrable or not is to examine the difference between whether (7.31) holds or fails.

of -
, - HOTRG
—20r  Ctel - DMRG
_40’ .: 2, .
_60,
780,
~100}
0 5 10 15 20 25 30
(logm)*

FIGURE 7.4: Eigenvalue distribution for (logm)? of Ising model with

a magnetic field at T' = T,., where the strength of magnetic filed is

tanh (Bh) = 0.01 . The value of the vertical axis is log (Qy,(22))* for

HOTRG and log (A, (2)) for DMRG. The number of retained basis is
Miase = 240 for DMRG and Dyong = 240 for HOTRG.



Chapter 7. Asymptotic spectrum distribution of HOTRG: Relationship to the

84 .
corner transfer matrix

of -
:. - HOTRG

—10t i, . DMRG
—20t : '::::-::::::‘
_30 L
_4() L
_50 L

0 5 10 15 20 25 30

(logmn)?

FIGURE 7.5: Eigenvalue distribution for (logm)? of 2D MDM with

monomer activity z = 0.01. The value of the vertical axis is

log (2, (2%))* for HOTRG and log (A, (2)) for DMRG. The number

of retained basis is Mpase = 240 for DMRG and Dyong = 240 for
HOTRG.
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Chapter 8

Summary and Outlook

In this thesis, we investigated the critical behavior of the monomer-dimer model
(MDM) on the various lattices by HOTRG and DMRG calculations. In two-dimensions,
the critical behavior of MDM was determined by HOTRG and DMRG, and it was
found that the universality class of MDM is different from that of the Ising model with
a magnetic field. In three dimensions, two major analyses were performed. One is a
layer system with a finite number of layers, and the other is a cubic lattice, which is an
infinite three-dimensional system. In MDM on the layer lattice, we showed that there
is the critical behavior that is specific to the layer system. In analysis for MDM in
the cubic lattice, first of all, we constructed the parallel computation-like algorithm of
HOTRG to reduce the memory cost. Using our HOTRG algorithm, we calculated the
residual entropy with higher accuracy than previous studies and analyzed the critical
behavior. Thanks to the ability to perform HOTRG calculations with a large number
of retained bases, we were able to analyze the asymptotic behavior of the HOTRG
spectrum and derive relations that hold for integrable models.

In Chapter 3, we reduced a memory cost of HOTRG by focusing on the order of
tensor contraction and the storage of each component of the tensor. The components
of the tensor that are not contracted need to be stored in the computer’s memory.
Therefore, it is necessary to pay attention to the components that require memory
storage not only before and after the contraction process, but also during the contrac-
tion process. First, by devising the order in which contractions are taken, we reduce
the number of components that are not contracted during the contraction process.
Next, by storing components in directions not related to the contraction operation in
a separate memory, it is possible to handle tensors with the number of components
exceeding the memory limit of one node.

In Chapter 4, we proposed a conjecture that the critical behavior of monomer
density is p(z) ~ S5 Using HOTRG and DMRG, we confirmed that this form is
correct and determined that the critical exponent of the monomer density is § = 7 for
bipartite 2D lattices such as square and honeycomb lattices. Our results showed that
the value of § is consistent with the Gaunt’s expectation based on the asymptotic
expansion[83]. On the other hand, 2D MDM is considered to be equivalent to the
Ising model with a magnetic field by associating monomers with the magnetic field.
However, since the critical exponent is § = 7 for 2D MDM and § = 15 for Ising
model, we concluded that the universality classes of the 2D MDM and Ising model
are different.

In Chapter 5, we studied MDM on the finite layer lattices for both the bipartite
and non-bipartite constituent layer cases. Using DMRG, we analyzed two-layer tri-
angular lattice as a non-bipartite lattice and two- and three- layer lattices of square
and honeycomb geometry as bipartite lattices. From these analyses, it was found
that the non-bipartite layer model is non-critical and the bipartite layer model varies
in criticality with the number of layers. For the bipartite layer model, we showed
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that the 2-layer model is non-critical and the 3-layer model is critical. This can be
attributed to the fact that the two-layer PDM can be identified as a stacked system
of two MDMSs on a two-dimensional lattice, whereas the three-layer PDM has a three-
dimensionality that allows the interlayer dimers to move in the z direction. In order
to comprehensively understand systems with a large number of layers, we attempted
to map MDM to a bosonic theory. According to this correspondence, the presence
or absence of zero modes depends on the boundary conditions, and the confinement
and criticality are determined accordingly. Only for two-layer systems, we studied
the criticality of the PDM on the two-layer square lattice model when the interlayer
dimer activity was varied. As a result, it was found that the model is non-critical at
least in x, > 0.1. On the other hand, in the region of x, > 0.6, the model showed the
same behavior as the two-layer model at x, = 1, but in z, < 0.4, a deviation from
p(z) ~ 22 appeared.

In Chapter 6, we analyzed the infinite 3D system by using the parallel computation
algorithm of HOTRG introduced in Chap.3. We calculated the residual entropy of
PDM on the cubic lattice and, obtained the behavior of convergence with respect to the
increase in the number of reserved bases. The result was more accurate than the PEPS
value of previous study. Furthermore, we analyzed the behavior of monomer density
in the vicinity of critical point and tried to determine the critical exponent. However,
the value of the exponent varied depending on the choice of the region that constituted
the fitting function. At present, the accuracy of the HOTRG calculations performed
in this paper was not sufficient to accurately determine the critical exponents.

In chapter 7, we analyzed the asymptotic behavior of the spectrum of HOTRG
based on the CTM picture. Comparing the asymptotic behavior of spectrum of
HOTRG and that of DMRG, we derived the relation that holds for the integrable
models. We also numerically confirmed that the establishment of the relation by
HOTRG and DMRG calculation with the large number of retained basis.

We mention about the future work and the outlook. In our studies about layer
models and general 3D models, there are unfinished parts, so these issues are listed as
future tasks. In Chapter 5, we showed that p ~ 22
a deviation from p ~ 22 in x, < 0.4 in the range of the order of z ~ 1075. However,
we conjecture that z?-dependence is also valid for z, < 0.4 very close to z = 0. So,
we should analyze the region of the order less than z ~ 1076,

In Chapter 6, we could not determine the critical exponent of the cubic MDM,
which is one of the infinite 3D model. Checking the distribution of the eigenvalues
of the tensor degenerated by HOTRG, we can see that the number of bases Dpong
retained may not be sufficient for accurate analysis. So, HOTRG calculation with high
Dbond is required. On the other hand, the degeneracy of the eigenvalues also appears,
which may reduce the accuracy of the HOTRG calculation. As the degeneracy appears
even away from the vicinity of the critical point, this degeneracy may be specific to
MDM. Therefore, it is necessary to specify the source of the degeneracy.

Finally, we propose the outlook.

was valid in z, >, but there was

e Understanding the finite temperature phase diagram of MDM

MDM can be extended to include the interactions between dimers at finite tem-
perature. In the case of the square lattice, PDM with interactions favoring dimer
alignment exhibit the Berezinski-Kosterlitz-Thouless (BKT) transition[62, 93],
and similar studies have been performed in two-layer|63| and three-dimensional
systems|64—66]. Therefore, it would be interesting to study the phase diagram
at finite temperature for general multilayer systems and investigate the charac-
teristics depending on the number of layers.
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e HOTRG calculations for various higher dimensional models
It can be said that our parallel computation method of HOTRG has opened the
door to the analysis of high dimensional models. Not only PDM and MDM,
but also 3D classical models, 2D quantum models, and many other systems can
be analyzed. In the future, it is necessary to understand the advantages and
disadvantages of HOTRG and the limitations of its application through these
analyses.

e New method of determining the criticality based on the spectrum distribution
In this thesis, we showed that relation (7.31) is valid only for the integrable mod-
els. On the other hand, in the non-critical region where the CDL decoupling is
established, (7.9) holds for both integrable and non-integrable models. There-
fore, by analyzing whether or not (7.9) holds, we can determine the criticality of
the model. Although this method requires a large amount of computation, it is
expected to be more accurate in determining the criticality than the calculation
of the correlation length by DMRG.






89

Appendix A

Numerical setup for various lattice
models

A.1 Construction of the local tensors in HOTRG

This section describes the process of constructing the local tensor. Both honeycomb
and triangular lattices are transformed into square lattices, which HOTRG can be
applied to.

A.1.1 Honeycomb lattice
On the honeycomb lattice, the initial local tensor has three components:
z ifi=j=k=0;
™ =01 it only one index is 1; (A.1)

igk —
0 otherwise.

By contracting adjacent local tensors, a honeycomb lattice is deformed into a square
lattice as shown in Fig.A.1.

FIGURE A.1: Deformation of honeycomb lattice into square lattice.

A.1.2 Triangular lattice

On the honeycomb lattice, the initial local tensor has six components:

z fi=j=k=l=m=n=0
Tz‘(;lZlmn = ¢ 1 if only one index is 1; (A.2)

0 otherwise.
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The triangular lattice can be deform into a honeycomb lattice[94]. At first, we de-
compose the initial local tensor into four tensors by SVD as shown in Fig.A.2(a):

T = > (Ta)xv2(Sa)ijx (Sp)ay (Sa)mnz- (A.3)
XY, Z

Next, by crushing the triangle emerging through SVD into one point (Fig.A.2(c)), the
triangular lattice is deformed into the honeycomb lattice (Fig.A.2(b)):

(Ty)xyz = Z(Sa)caX(Sb)abY(Sa)ch (A.4)

a,b,c

FIGURE A.2: Deformation of honeycomb lattice into square lattice.

Finally, contracting T, and T} as well as the honeycomb lattice case in Sec.A.1.1,
the honeycomb lattice is deformed into the square lattice. Note that the number
of components of the final local tensor in the deformed square lattice is 4 in the
honeycomb lattice and 8 in the triangular lattice, and the effective number of retained
bases is smaller than in the square lattice.

A.2 Calculation algorithm for the triangular lattice in
DMRG

We show a procedure of DMRG calculation for the triangular lattice. First, we rec-
ognize the triangular lattice as the square lattice with a diagonal line as shown in
Fig.A.3. Under this setup, we recognize a local tensor which has six components as a
block shown in Fig.A 4.
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AVAVES
AVAVA

F1GURE A.3: Recognition the triangular lattice as the square lattice
with a diagonal line.

M= 4

FIGURE A.4: Block of components.

From the construction of a constituent block, we need to operate two types of
transfer matrices alternately (Fig.A.5).

FIGURE A.5: Operation of block of components to a state.
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Appendix B

Additional length scale that
appears in calculations with finite
bond dimensions

The accuracy of numerical results extracted from DMRG is affected by the finite bond
dimension m. In Ref.[81], it is shown that a finite bond dimension introduces another
length scale "effective correlation length". Comparing the effective correlation length
and the characteristic length scale of a finite system, we can discuss the validity of the
approximation. Furthermore, from the crossover that emerges from the combination
of the two scales, we can also obtain information on the critical exponents. This
two scaling problem has been developed in modern times, for example in quantum
mechanics|95| and field theories[96]. In this chapter, we review the two scale problem
according to Ref.[81].

In this chapter, we consider the corner transfer matrix renormalization group
(CTMRG)[97]. CTMRG is a development of the DMRG based on CTM introduced
in Eq.(7.3) and the approximation error is characterized by the eigenvalues of CTM.

The first length scale is the characteristic length of the finite size system &, which
is defined as

(B.1)

where Ag(IN,m) and Aj(N,m) are the largest and second-largest eigenvalue of CTM
with system size N and bond dimension m, respectively. Finite bond dimension
induces an additional length scale (effective length scale) £(m):

Ao (00, m)

& (m) = log (B.2)

Ai(oco,m)’

These two length scale determine the accuracy of the calculation. If {n < &(m),
the calculation is good approximation. However, if &y > £(m), the approximated
partition function will be much smaller than the exact value. The relationship between
the size of these two length scales causes a crossover, and the critical exponent can be
accessed from the discussion of the scaling.
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