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Abstract

Lattice gauge theory is a non-perturbative and gauge-invariant formulation of gauge
theory defined on a discrete spacetime. With the overlap fermion which satisfies the
Ginsparg-Wilson relation, the Atiyah-Singer (AS) index theorem, in which the chiral sym-
metry plays a central role, can be formulated even with a finite lattice spacing. However,
the Atiyah-Patodi-Singer (APS) index theorem which is an extension of the AS index
theorem to a manifold with boundaries was not formulated in lattice gauge theory. The
difficulty lies in the nontrivial boundary condition of the APS, which is incompatible with
the Ginsparg-Wilson relation.

In this thesis, we propose a non-perturbative formulation of the APS index in lattice
gauge theory in four dimensions, discretizing a massive reformulation of the index recently
proposed in continuum theory. The formulation is given by the so-called eta invariant of
the domain-wall fermion Dirac operator, to which we do not impose any nonlocal boundary
condition. Our proposal does not require the chiral symmetry via the Ginsparg-Wilson
relation, either. To verify this proposal, we show perturbatively in the classical continuum
limit that the eta invariant of the lattice domain-wall Dirac operator coincides with the
APS index formula. We find in the continuum limit that the standard curvature term in
the APS index appears as the contribution from the massive bulk extended modes, while
the boundary eta invariant comes entirely from the massless edge-localized modes. Since
the eta invariant of the lattice domain-wall fermion is guaranteed to be an integer by its
definition, it can rigorously describe the anomaly inflow mechanism in the lattice gauge
theory.
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1 Introduction

Lattice gauge theory [1] is a non-perturbative and gauge-invariant formulation of gauge theory
defined on a discrete spacetime. However, chiral symmetry and its associated topological
charge have been a difficult challenge due to the doubling problem [2,3] of the fermion action.
On a periodic lattice, this issue was positively solved by the overlap fermion Dirac operator
[4,5], which guarantees a modified chiral symmetry [6] on the lattice through the Ginsparg-
Wilson relation [7]. It was found in [8] that the Atiyah-Singer (AS) index theorem [9-13] can
be formulated even with a finite lattice spacing. However, the topological properties of the
lattice gauge theory in the presence of a boundary have not been studied so far.

Recently, physical systems with boundaries have been actively studied. One of such sys-
tems is the symmetry-protected topological (SPT) phases of matter [14] in condensed matter
physics. In topological insulators, for example, the so-called bulk-edge correspondence is
known, which relates the properties of the conducting electrons at the surface (edge) and
those inside the bulk.

In [15], it was pointed out that the anomaly inflow mechanism [16] is a key to understanding
the bulk-edge correspondence. The anomaly inflow indicates that the anomaly in the edge
fermion partition function must be canceled by that in bulk for protecting the symmetry. As
the anomaly arises only for massless fermions, in general, the inflow assures the existence of
the edge-localized massless modes on the surface.

For a system with even-dimensional bulk and odd-dimensional edge, the parity anomaly
or time-reversal (T) anomaly is described by the Atiyah-Patodi-Singer (APS) index theorem
[17-19], which is an extension of the AS index theorem to a manifold with boundaries. On a
four-dimensional flat manifold X with a flat boundary Y, the APS index theorem is given by

1

Ny —N—- = -——~
32772 X

d*ze P tr Fy Fpy — %n(iDy), (1)
where 7(iDy ) is the eta invariant of the boundary Dirac operator iDy .

The first term of the right-hand side (RHS) is an integral of the instanton number density
and is the effective action of the massive bulk fermion, which appears in the phase of the
partition function. Unlike closed manifolds, it is not an integer on a manifold with boundaries.
Since the instanton number density is odd under parity or 7', the bulk fermion alone is not
invariant under the symmetry transformation. The second term of the RHS is the contribution
from the three-dimensional massless fermion theory at the boundary, which also appears in
the phase of the partition function. The boundary eta invariant is also odd under parity or T’
symmetry, and the boundary theory alone is anomalous under this transformation. The APS
index theorem guarantees that the sum of the two terms is an integer, which implies that
the parity or T symmetry of the partition function of the entire system of the bulk and the
boundary is preserved. Thus, the APS index describes the anomaly inflow mechanism, where
the edge anomaly is canceled by the contribution from the bulk.

The left-hand side (LHS) of the APS index theorem is, however, somewhat puzzling. It is
defined by the zero modes of a massless Dirac operator on a whole system, while our physics
target described by the RHS of the theorem is a gapped or massive fermion. In fact, in order
to preserve the chirality operator, we must impose a non-local condition known as the APS
boundary condition by hand, which is unlikely to be realized in nature.
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A unified reformulation of the index theorems was proposed in the continuum theory
in [20-22]. They considered a domain-wall fermion on a closed manifold X, where the positive
and negative mass regions are separated by a thin co-dimension one domain-wall. Then they
found that the eta invariant of the domain-wall fermion Dirac operator on a closed manifold
X coincides with the APS index defined in the negative mass region of X. When the positive
mass region is absent, it corresponds to the AS index on X. The new formulation does not
require chiral symmetry at all. Moreover, a local and physically sensible boundary condition
is automatically imposed on the fermions. The eta invariant can be easily separated into the
bulk and edge contributions so that their anomaly inflow is manifest.

Interestingly, the reformulation of the AS index by the eta invariant of the massive Dirac
operator matches with the index theorem on a lattice. The AS index on the lattice is formu-
lated using the overlap fermion, where we have a sign function of the massive Wilson Dirac
operator. When we substitute the definition of the overlap Dirac operator into the index
formula, we obtain the n invariant of the massive Wilson Dirac operator. This fact is encour-
aging in that the index can be defined without the Ginsparg-Wilson relation, and it is natural
to assume that the formula should be valid even when we have a domain-wall structure in the
mass term.

In this thesis, we give a non-perturbative formulation of the Atiyah-Patodi-Singer index
in the lattice gauge theory in four dimensions. We actually show that the eta invariant of
the domain-wall fermion Dirac operator on the lattice coincides with the APS index formula
in the classical continuum limit. In a similar way to the continuum study [20-22], we can
naturally separate the bulk and edge contributions and manifestly show the anomaly inflow
of them. Using the eigenmode set of the square of the free domain-wall fermion, We find
in the continuum limit that the standard curvature term in the APS index appears as the
contribution from the massive bulk extended modes, while the boundary eta invariant comes
entirely from the massless edge-localized modes. Since the eta invariant of the domain-wall
fermion at a finite lattice spacing is guaranteed to be integers by its definition, the APS index
on the lattice can rigorously describe the anomaly inflow mechanism in the lattice gauge
theory.

This thesis is organized as follows.
In section 2, we introduce a basic review of lattice fermions. We start with a naive discretiza-
tion of the fermion action and review some formulations of the lattice fermions. We also
present a realization of chiral symmetry as well as the AS index theorem on a lattice.
In section 3, we present the APS index theorem in continuum theory and its physicist-friendly
reformulation. We discuss the difficulties of the non-local boundary condition introduced in
the original setup and then present the new formulation of the APS index using the domain-
wall fermion.
In section 4, we introduce a unified view of the AS and APS index theorems.
In section 5, we formulate the Atiyah-Patodi-Singer index non-perturbatively in the frame-
work of the lattice gauge theory in four dimensions.
Conclusions and outlooks are given in section 6.

This thesis is based on the following papers:

e H. Fukaya, N. Kawai, Y. Matsuki, M. Mori, K. Nakayama, T. Onogi and S. Yam-
aguchi, “The Atiyah—Patodi-Singer index on a lattice,” PTEP 2020, no.4, 043B04
(2020) doi:10.1093/ptep/ptaa031 [arXiv:1910.09675 [hep-lat]] [23].
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e H. Fukaya, N. Kawai, Y. Matsuki, M. Mori, K. Nakayama, T. Onogi and S. Yamaguchi,
“A lattice formulation of the Atiyah-Patodi-Singer index,” PoS LATTICE2019, 149
(2019) doi:10.22323/1.363.0149 [arXiv:2001.03319 [hep-lat]] [24].
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2 Fermions and Chiral symmetry on a lattice

This section will review the formulations of the lattice fermions and their chiral symmetry
to understand how the index theorem on the four-dimensional torus was established in the
previous works.

Starting from the naive fermion and its doubling problem, we will discuss the Wilson
fermion. Then we review how the chiral symmetry is realized in the domain-wall fermion and
the overlap fermion. We will see that the Atiyah-Singer index theorem can be formulated
even when the lattice spacing is finite.

2.1 Naive discretization and fermion doubling problem

First of all, we review how to construct fermion fields on a lattice and its difficulty. To see
the problem of the naive discretization, let us consider the Dirac fermion for one flavor in the
4-dimensional Euclidean spacetime and treat the gauge field A, as a background field,

Sp = / () (D — m) (), (2)

where D = (0, + iA,) and 7" matrices are the one given in Appendix.A. The lattice
regularization of the theory is made by replacing derivatives with differences and integrals
with sums. We discretize the four-dimensional Euclidean spacetime R* to

L* = {z, = anyn, € z*'}, (3)

where a is the lattice spacing. Also, we place the fermion field ¥ (x) on the site z and treat
the gauge field as a link variable U, (z) that lives on the link {z, u}.
Let us discretize the action (2) in a naive way:

S =at Z Y(x) [Z %7“ (Uu(ar)w(x +af) — U/];(:C —ap)(x — a,&)) — mw(x)]
= a42w V' Du(U) —m] (), (4)

where fi is the unit vector in the y direction and U,(x) is the link variable. D,(U) is the
lattice Dirac operator defined by

1

D,U)= 5

[Vu(U) + VL(U)], (5)
where V,(U) and V7, (U) are the covariant forward and backward difference operators respec-
tively.

To see the problem with a naive discretization of the Dirac fermion, we consider the free
case for simplicity. (In other words, we put YU, (x) = 1.)

_ a4zw |: ZE +alu’)2a¢(x — a:&) _ mz/z(a:) ) (6)
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With the Fourier transformation,

we obtain

=&

Then the propagator of the free field is given by

£500) | 2 sinpa - ] G0 5)

_ 1  —YuSu —m
Glp) = ipsu(p) — s(p) +m?’ ®)

where s,(p) = % sinp,a.

The particle propagation is described by its poles, whose dispersion relation is
s%(p) +m? = 0. (10)
Near p = (0,0,0,0), the dispersion relation becomes
P +m?+ O(a) =0. (11)

On the other hand, if we consider the case that some momentum components are 7/a (e.g.
p = (7/a,0,0,0)) and the expansion around it as p, = p + p,, then the dispersion relation
becomes

P +m?+ O(a) = 0. (12)

This implies that in the continuum limit, not only the small momenta p ~ 0 but also those
at the cut-off scale p ~ 1/a contribute. The extra degrees of freedom are called doublers. In
four dimensions, we have unphysical 15 doubler modes.

Nielsen and Ninomiya proved that doublers could not be avoided if the lattice Dirac
operator satisfies the following five conditions [2,3]:

1. translational invariance on the lattice,
2. chiral symmetry,

3. Hermiticity,

4. bilinear form,

5. locality

This theorem is called the Nielsen-Ninomiya theorem. Therefore, to get away from the dou-
bling problem, we must give up at least one of them.
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2.2 Wilson fermion

Wilson introduced an O(a) term to the action, which does not affect the physical pole in the
continuum limit but eliminate the doublers [25],
ar

5 [ diai@D e

2t S 0(e) - (Ul + ai) + Ufe — apyole — af) — 20(x)] . (13)
T,

Sl

This term is called the Wilson term, and a parameter r is called the Wilson parameter. From
now on, we set r = 1 unless stated. After adding Wilson term, the lattice fermion action is

Sw=a* S () [Z oo [Untaita + ai) — Ul — ai(e — ai)] — mwx)]
x Ju

+at Y 0@)gs [Uu@)ote + o) + Ul — apb(e - af) — 20(@)]

=a") " 1j(x) [Dw — m] ¢(z), (14)
where Dyy is so-called the Wilson-Dirac operator defined by
1 a 1
Dw = 57" (VulU) + VL)) = 5 3 VLO)V.(O), (15)
pn=1

and this fermion is called as the Wilson fermion.
The free fermion action in momentum space is

4y - i "
Sw = / (;ZWI))4¢(Z?) [E 57“ sinpya — {m+ 2 E (1- COSPMQ)}] b (p)- (16)
0 p

The fermion propagator with the Wilson term is written by
=i, su(p) — M(p)

Gole) = == MG (7
where, M(p)=m+ 1 >, (1 —cospya), and the dispersion relation becomes
s(p)* + M(p)® = 0. (18)
In the continuum limit, we have
M(p) =m for p, ~(0,0,0,0) (19)
M(p) =m+O(1/a) for “p, =n/a, (20)

The Wilson fermion makes the doublers very massive and decoupled from the theory.
Finally, we comment on the Hermiticity of the Wilson-Dirac operator. The Wilson-Dirac
operator satisfies

¥sDwys = Dly, (21)

and this is called the v5-Hermiticity.
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2.3 Domain-wall fermion

In this section, we review the domain-wall fermion [16,26] which plays a central role in this
thesis. The domain-wall fermion is introduced by Kaplan [27] to formulate a lattice chiral
fermion. The domain-wall fermion is a five-dimensional massive fermion whose mass term
flips its sign on a four-dimensional surface, which is called domain-wall. It was found that a
massless Weyl fermion is exponentially localized at the domain-wall.

2.3.1 Domain-wall fermion in the continuum theory

Here, we introduce the domain-wall fermion and review how the chiral fermion is local-
ized around the kink in continuum five-dimensional space. Here we denote z as the four-
dimensional space coordinates and s as the fifth coordinate. The action of the free domain-wall
fermion is written by

[ 5

S:/d4xd51/_}(x,s) Zy“@ufm(s) P(z,s) (22)
_‘U’Zl
[ 4

:/d4xds¢(x,s) ny“@u—l—'ysas—m(s) P(x,s), (23)
_,u:l

where m(s) is a s-dependent mass term,

m(s) =me(s) (m >0) (24)
4+m s>0

=40 s = (25)
-m s <0.

The Dirac equation is given by

4
Z’Y”au +7°0s —m(s) | Y(x,s) = 0. (26)

p=1

To solve this equation, we assume a separable form ¢ (x,s) = ni(z)fi(s), where fi(s) is a
scalar function depending only on s and 74 (x) is a four-component spinor. We note that
~v* represents the chirality operator in the four-dimensional subspace. The subscript of 74
represents the eigenvalue of the four-dimensional chirality operator. The separated equations
are the massless Dirac equation on the s = 0 surface,

4
> Oune(x) =0, (27)
pn=1

and

{wwm = +n4 (),
105 f+(s) — m(s) f+(s) = 0.
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Note that only f_(s) has a normalizable solution
Y(x,s) =n_(x)exp [—/ ds'm(s’)} ) (29)
0
4
> AOum-(z) =0, () =-n_(2), (30)
pn=1

The factor exp[— [; ds'm(s’)] decays exponentially as |s| increases. Therefore, we have a
massless left-handed fermion localized at the kink s = 0. The right-handed fermion can be
put by changing the sign of the mass.

The surface mode or edge mode of the domain-wall fermion is stable even when introducing
gauge field connections. However, a single Weyl fermion should have a gauge anomaly, which
makes the theory inconsistent. The gauge symmetry is protected in the total five-dimensional
massive fermion theory. This means that the massive bulk modes precisely cancel the anomaly
of the edge modes, which is called the anomaly inflow mechanism [16].

2.3.2 Domain-wall fermion on a lattice

Next, we construct the domain-wall fermion on a lattice. Naively, all we have to do is to
discretize (22), eliminating fermion doublers. Since the formulation on a lattice is done in a
finite volume, it is necessary to impose some boundary conditions. The boundary conditions
are also required in the fifth dimension, and usually periodic boundary conditions are taken.
Let the period be L; and the periodic boundary condition for the mass m(s) is taken to be
m(s +2Ls) = m(s). For m > 0, we set

(31)

m(s) = {+m (0 < s < Ls),

-m (L5 <s < 2L5),

then there exists the kink at s = 0 and the anti-kink at s = Ls. 1, is localized at s = 0 and
g is localized at s = Ls. Note that the chiral symmetry is not exact until the Ls = oo limit
is taken.

The action for the domain-wall fermion on the lattice is given by,

Sow = a® Y () [D® — me(s)] () (32)
=d Z (@) Dy (@), (33)
where the domain-wall Dirac operato:is given by
DRy () = 37 (Vul0) + V) - § Z VL)V, (W)
57 (Vo) + V1) - SVHDVL(1) — me(s). (34)

Note here that the link variables in the 5-th direction are taken to be unity and those in the
other directions U, (x) are independent of s.
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2.3.3 Shamir-type domain-wall fermion

Shamir [28] (see also [29]) pointed out that to localize chiral fermion in domain-wall fermion
formulation, it is not necessarily for the mass term to have a kink structure. If we impose
Dirichlet boundary conditions on both ends of a finite fifth-dimensional direction and keep
the mass term constant, chiral fermions are localized at both ends.

The action of Shamir-type domain-wall fermion is given by

- 3o Lo [Zv vl + aj, )~ Uf(e — afble — o))
+v52(1/1(w7 sa) s - a)] Y i, 8)(r )

-5 ;W, 5) [Z (U)o + apys) + UG = apio(e — o) — 20(,5))

o
1
2 (0l 0) + (a5 — ) — 20(,0) (35)
x denotes the four-dimensional coordinate with periodic boundary condition and s € {1,2,---, N}
denotes the fifth dimensional coordinate with dirichlet boundary condition,
PY(x,s =0)=0, Y(xr,s=Ng+1)=0. (36)

In this formalism, the fifth coordinate s does not describe physical degrees of freedom
(d.o.f), and then the fifth dimension can be treated as an internal flavor space. The action is
rewritten by

= a® 3 S0 (Upainla + ai) — Ul — ais(z — o)

,[,S
+ Y ) [MPL+MTPR} ), (37)
Z,Y,8,t ’

where Pr = (14 75)/2 and P, = (1 — 75)/2, and the matrix M is the mass term for mixing
flavor s which is given by

(M)7Y =——Z( D)s(@ + afi) + Ul(w — ap)y(z — o) — 204 ()
Wi (@)  (2)) — i (2)
= —(AV@) ~ & (Wi (@) — @) — s (a), (38)
(MD220u(y) = ~(A)s(e) — © (s1(2) = Yal)) — mi(z). (39)

Concretely, we write down the matrix M,
W({U) -1/a 0
0 W(U) -1/a
M=1 g 0 W) : (40)
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W(U) 0 0
.| ve o wwy 0
M'=1 o —1/a W(U) : (41)

where W(U) = —-A+1/a—m
Let us consider the free case (Uy(x) = 1). After the Fourier transformation on the four-
dimensional physical space, the action is written by

Z/ 4% [iﬁ+(MPL+MTPR) Stwt(p), (42)

where p = > Vubu, Pp = ésinpﬂa and the mass matrix M is given by (40) with W(U =
1) =1/a—m+3_ (1 - cospya)/a. If matrices M or M have zero eigenvalues, i.e. there
exist left- and right-handed zero modes solutions vy, and upg such that

ZMstuLtp ) =0, Z tuRtp ) =0, (43)

and we set ¢ as

Ys(p) = Prur(s,p) + Prur(s,p), (44)

then 1 represents massless Dirac fermion.
We discuss the condition for having a zero mode solution.

1
> My = W = — a1 =0, (45)
t
then the solution of this equation is given by
¢s = (aW)* L. (46)
Due to the Dirichlet boundary condition ¢n,4+1 = 0, this solution implies
On 1 = (aW)Vogy = 0. (47)

Therefore when sW satisfies [aW| < 1, there exists a non-zero solution ¢, for infinitely large
Ns. In the same way, non—zero solution can exist only when |[aW| < 1 and infinitely large N
for another equation ) M, tgi)s =0.

Let us take a closer look at the condition for aW, |aW| < 1. We write this condition
concretely:

—1<1—ma+ Z(l —cosppa) < +1
m
& 0<ma-— Z(l —cospua) < 2. (48)
o
This relation leads to Table 1. This table implies that for physical mode p, = (0,0,0,0)
there exists zero mode solution only when 0 < ma < 2, and for p, = (7/a,0,0,0) only when

2 < ma < 4, and so on. In other words, if we take 0 < ma < 2 only physical mode has zero
mode solution, and fermion doublers are avoided.
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(pu) Condition for ma | # of poles
(0,0,0,0) 0 < ma <2 1
(r/a,0,0,0)--- 2<ma<4 4
(r/a,7/a,0,0)--- 4<ma<6 6
(w/a,7/a,m/a,0)--- 6 <ma<38 4
(r/a,7/a,7/a,7/a) 8 < ma < 10 1

Table 1: Condition for ma with several momenta

2.4 Chiral symmetry on the lattice

As mentioned above, the Nielsen-Ninomiya theorem claims that the construction of lattice
fermion without fermion doubler is difficult. In particular, the construction of the lattice
fermions described above, e.g., Wilson fermion, gave up the chiral symmetry to avoid doublers.

In 1982, Ginsparg and Wilson suggested avoiding doublers and preserving the consequences
of chiral symmetry. They allow small violations of the symmetry relation, which preserve
chiral symmetry relation under the block spin transformation. Due to their work, the chiral
fermion can be defined on the lattice, which approaches the chiral fermion in the continuum
theory under the continuum limit.

First, we will discuss the chiral symmetry in the continuum theory, and then we will
discuss the chiral symmetry on the lattice introduced by Ginsparg and Wilson. Finally, we
will mention the spectral properties of the lattice action with chiral symmetry.

2.4.1 Chiral symmetry in continuum theory

First, we discuss chiral symmetry for the simple case in the continuum theory. The action for
massless fermion is

S / 0429 ()7, Dyt ()
- / d42i () Do (x). (49)
This action is invariant under

Y(x) = 9 (2) = (@), () = ¢ (x) = P(a)e’™™ (50)

where « is a real parameter. This global symmetry is chiral symmetry. If a mass term is
introduced, this symmetry is broken since it transforms as

mp — mp'y’ = 2P, (51)

The essential property of this symmetry is the fact that the massless Dirac operator D anti-
commutes with the chirality operator s:

Dvys +vD = 0. (52)

In other words, the action with the Dirac operator satisfying this relation has chiral symmetry.
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2.4.2 Ginsparg-Wilson relation and chiral symmetry on a lattice

Based on a renormalization group analysis, Ginsparg and Wilson [7] insisted that the chiral
symmetric Dirac operator on the lattice should satisfy

Dvs + 45D = aDvsD. (53)

This relation is called Ginsparg-Wilson relaiton. In order to discuss the effect of the extra
term for the propagator, multiplying (53) with D~! from both sides we obtain

5Dy + Dy yvs = av500,y.- (54)

The chiral symmetry breaking for the propagator D! is a local O(a) effect. Therefore the
breaking effect does not contribute to the long-range physics and vanishes in the continuum
limit.

The action with Dirac operator satisfying Ginsparg-Wilson relation

S=a"y d(z)Dy(x), (55)
has the exact chiral symmetry [6]: it is invariant under
() = exp [m% <1 - ;wﬂ ne)
P(x) — P(x) exp [m (1 — ;aD> 75] : (56)

Next, we discuss the eigenvalue spectrum of the Dirac operator on a finite lattice. Let |\)
be an eigenstate of D with an eigenvalue A,

D)) =X\, MeC. (57)
Note that D is not a Hermitian operator and its conjugate is
(AIDT = ([N, (58)

where \* represents a complex conjugate of A. From the Ginsparg-Wilson relation, we have
D + D' = aD'D, which implies

A+ A = a\* . (59)

Writing the eigenvalue as A = x + iy, this relation turns into

<x—i>2+y2=<i>2. (60)

Therefore, the eigenvalue spectrum forms a circle in the complex plane with the center at
(1/a,0) and radius 1/a. The eigenvalues near the origin are the physical modes, while those
near 2/a are the doubler modes.



2 FERMIONS AND CHIRAL SYMMETRY ON A LATTICE 16

Let us introduce H = 5D and a new chiralilty operator on the lattice as
a
s = s (1 - 5D) . (61)

Due to the Ginsparg-Wilson relation, H anti-commutes with I's. This relation suggests that
if

HAg) =gl u),  (AalAm) =1, (62)

then
H(5[Ar)) = =Au (s |Au))- (63)
The eigenvalues of H are always paired (Ag,—Ap) except in the cases of Ay = 0 and

((Ar|T5)(T's |Amr)) = 0. In the latter case we obtain

CL2 a2
(Au|TsTs |Am) = (Am| <1 - 4H2> |Am)=1- ZA%I =0, (64)

then A\g = :l:%.
Finally we summarise the spectral properties of the Ginsparg-Wilson Dirac operator.

1. Zero-modes Ay =0
The eigenstates of H is chiral modes:

H|\g) =0 (65)
Y5 [Am) = £ 1) (66)
2. 0<[Ag| <2
HAg) = A [An), (67)
H (U5 [ u)) = —Au (Us [An)) - (68)
3. Ay =42
In this case
then,
2
HAy) = + IAm), 5 |Am) =+ AH), (70)
2
HAy) = - IAe), Y5 |AH) = — | H), (71)

positive and negative eigenvalues of H correspond to positive and negative eigenvalues
of Y5-

Using these spectral properties of H, we can prove the Atiyah-Singer index theorem, as
discussed later.
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2.5 Overlap fermion

An example of the lattice Dirac operator satisfying the GW relation is the overlap Dirac
operator [4,5] defined by

1 1
Doy = — <1 + X) (72)
a XTX

X =Dy —m, (73)

where Dy is the Wilson-Dirac operator and m is the cutoff scale mass (~ 1/a).
Next, we discuss how doubler modes are decoupled in the overlap Dirac operator. In the
free case, the Wilson-Dirac operator in the momentum space is given by

1 1
X ==Y s - -
- 2 Musinap, + . (1 —cosap,) —m, (74)
1 1
then we obtain
1
X'x = ESQ + M(p)?, (75)

where s = sinap, and M(p) = >_ (1 — cosap,) —m. For m = O(1) and a < 1, M(p) is
expanded as

M(p) = —m + O(a?) Vpu ~ 0, (76)
—m + Qné +0(a?) ®p,~7/a, n =4 of 7's.

For physical modes (Vpu ~ 0), the overlap Dirac operator becomes
1 YuPy — M 1
Doy = P [1 + 'uf:n] = %Wﬂpu‘ (77)

In this way, the overlap Dirac operator describes massless fermion. On the other hand, for
doubler modes, if we assume 0 < ma < 2, the overlap Dirac operator becomes

1 iy, m—m+2n/a 1 , 2
Doy = — |1 L = ~(2n — . 78
Y a [ * 2n/a —m ] 2n — ma [z’yﬂp“+a( n —ma) (78)

Thus, doubler modes have cut-off scale mass and do not contribute to low energy physics.

2.6 Atiyah-Singer index theorem on the lattice

Finally, we discuss the Atiyah-Singer (AS) index theorem [9-13]. In continuum theory, the
AS index theorem states that for an elliptic differential operator D on a manifold without
boundary, the analytical index related to the zero eigenvalues of D is equal to the topological
index on the manifold. The elliptic operator of our interest is the Dirac operator.

On a four-dimensional closed Euclidean manifold X with flat metric, the Atiyah-Singer
index theorem for the Dirac operator D asserts

index(D) = Qtop- (79)
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Here Qiop is the topological charge of the gauge field:

1

Qeop = 372

/ d* vy potrc FHY FP7 (80)
X

where F),, is the field strength of SU(N) or U(1) gauge fields and this quantity is called
the instanton number. Often it is useful to define a quantity called the topological charge
density giop(z) = ﬁewwtrcF # F'P9 - The instanton number is topological invariant under
continuous deformation of the gauge field. The analytical index index(D) counts the mismatch
of the left-handed modes and right-handed modes of fermions. It concretely holds index(D) =
ny —n_ and ny denotes the number of + chiral zero modes of the Dirac operator D.

The AS index theorem is closely related to physical phenomena and is well understood in
terms of physics, especially quantum field theory language. The topological charge density
is nothing but the axial U(1) anomaly [30,31]. The anomaly can be interpreted as arising
from the Jacobian of the path integral measure under the symmetry transformation, and the
method to derive the anomaly under this interpretation is called Fujikawa’s method [32]. The
index theorem can be easily derived by using Fujikawa’s method.

In the following, we will derive the AS index theorem from Fujikawa’s method for chiral
U(1) transformations for both continuum and lattice theories.

2.6.1 Atiyah-Singer index theorem in continuum theory

To derive the AS index theorem, we consider the Jacobian of the fermionic path integral
measure with respect to the chiral symmetry (52),

DyY/'Dyy = JDYD1p, (81)

where the Jacobian factor is given by

J = exp[—2ia hm Z:/d4¢]L )Y5Pn ()] (82)

This factor is divergent in general but can be calculated using a regularization that does not
break gauge symmetry, such as the heat kernel regularization. After a lengthy calculation,
the Jacobian becomes

1
J =exp {—%a/d4x327r26“”p"trCFWFpg} ) (83)

Using D75 + v5D = 0, it turns out that ys5¢,(x) is also the eigenfunction of iD with
opposite eigenvalue —\,

iDY50n(x) = —AnY50n (). (84)
Due to the Hermiticity of ¢D, the inner product becomes
(éns iDV5n) = / d*2},(x)iDYs¢n() = —An / d*z¢!(2)y50n (@)
= _)\n(¢n7 '75¢n)a (85)
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(¢ny iDY50n) = / d*z(iD) "¢} (z)y56n(2) = An / d*z ¢! (2)v50n(2)
== )\n((bm'%(bn)a (86)

it implies that

(O, V50Pn) = /d4$¢:g(x)'y5¢n(x) =0, for A\, # 0. (87)
For zero modes (A, = 0), the eigenfunctions satisfy
iD@O(z) =0, iDys¢0(x) =0, (88)
then it can also be treated as eigenfunction of chirality operator:
iD= fz'D<1 +75) ¢ (z) =0, (89)
'75¢n+ +¢n+a 75450_ = _¢O_. (90)

Then the Jacobian factor can be written as

> [ dél@naont) = [ EDICACIE
— [t S L @60 (e - / a3 6 (2)6l

=ny —n_, (91)
where ny is the number of zero modes with chirality =+.
Therefore, we obtain the Jacobian factor
— ; a, 1 pvpo
J=exp|-2ta [ d°x 27r26 treFy Foo
= exp[—2ia(ny —n_)]. (92)

This leads to the AS index theorem

1

5.7 A ze" Pty Fyy g (93)

ny —n— =

We could derive the AS index theorem physically through Fujikawa’s method.
According to the above discussion, the index of the Dirac operator is given by well-
regularized trace of the chirality operator 5, such as the heat kernel regularization:

index(D) = Trreg. 75,
J\/}igloo Tr'y5e_D2/M2. (94)
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2.6.2 Atiyah-Singer index theorem on the lattice

In the framework of the lattice field theory, the AS index theorem was established by the
seminal work by Hasenfratz et al. [8]'.

As in the continuum theory, the fermionic path integral measure is not invariant with
respect to the lattice chiral symmetry (56).

DYDY — JDYD1p, (95)

where the Jacobian factor is given by

J =exp [—QiaTrfyg) (1 - gD)}

= exp [—22’&@4 Ztr'yg, (1 — %D(x))

Note that D satisfies the Ginsparg-Wilson relation. Recalling the discussion in continuum
theory, we can see that the proof of the AS index theorem on the lattice is completed by
showing that the content of the Jacobian factor is equal to ny — n_ and the topological
charge.

First, using the spectral properties of the Ginsparg-Wilson-Dirac operator, we can prove
that the trace of the lattice chirality operator I's coincides with ny —n_:

= exp [—2iaTrT'5] . (96)

Trl's =ny —n_. (97)

The proof is straightforward,

Trl's = Trys (1 — gD) = Z M| s | Am)

2
Al
= QulTs e+ > QulTsPa)+ D alTs|Am),
Ag=0 0<| g |<2/a Ag=%2/a
= > QaulTs a),
Ag=0
:7’L+—n7, (98)

where in the second step, we use the spectral properties of the Ginsparg-Wilson Dirac operator.
Next, we will show that the trace of the lattice chirality operator coincides with the
topological charge in the continuum limit [33-37]%2. Using Trvys = 0 on a finite lattice®, we

can show that —gtrysD converges to the topological charge density q%%%(a:),

q};?)% = I(m,r) EuypatrcF,uqucr (z) + O(a). (99)

3272

'First, the index theorem was established using so-called Fixed Point action also satisfying the Ginsparg-
Wilson relation, introduced by Hasenfratz.

2Since this explicit computation is important in later discussion, we review the evaluation by [36] in the
Appendix C.

3The physical implications of Trys = 0 is analysed in [38,39)].
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[ 0<ma<2|2<ma<4|4<ma<6|6<ma<8|ma¢]|0,8]|
I(m,1) = | 1 | -3 | 3 | -1 | 0 |

Table 2: The dependence on m in I(m,r)

where I(m,r) is given by
I(m,r) =6(am/r) —40(am/r — 2) + 66(am/r — 4) — 46(am/r — 6) + O(am/r — 8), (100)

where 6(x) is a step function satisfying

o(z) = {1 (z z 0). (101)

3 Atiyah-Patodi-Singer index and domain-wall fermion

In the previous section, we discussed lattice discretization of fermions and showed that the
chiral symmetry as well as the Atiyah-Singer index theorem can be formulated even with a
finite lattice spacing. Now let us extend the discussion to a space-time with a boundary, where
it is known that the Atiyah-Patodi-Singer (APS) index theorem [17-19] holds. The original
formulation of APS index is, however, not very physicist-friendly in that a non-local boundary
condition is imposed. The non-locality is unacceptable in physics and an obstacle for the
lattice formulation as well. In this section, we review the APS index theorem in continuum
and its unphysical properties. Then we introduce a physicist-friendly reformulation of the
APS index recently proposed in [20,21] using the domain-wall fermion Dirac operator.

3.1 Atiyah-Patodi-Singer index theorem

Let us consider a flat four-dimensional closed Euclidean manifold X with boundary Y = 0.X.
The manifold X extends only in the region x4 > 0 for the z4-direction. The boundary Y
at £4 = 0 is a three-dimensional manifold with a flat metric Y. Atiyah, Patodi, and Singer
showed that the index for the Dirac operator D with imposing a nontrivial boundary condition
(APS boundary condition) is given by

1

IndAPS(D) = 32?

1
/ d*ze" P71 Fy Fpe — =1 (iD®P) (102)
x4>0 2

where iD3P is the Dirac operator on the three-dimensional manifold Y and n(H) is the so-
called APS eta invariant or simply eta invariant which is defined by the summation of sign
of the eigenvalues of the Hermitian operator H. The concrete formula, for example, using
(-function regularization is given by

s—0

, A
n(H) = lim ) DY + h, (103)
A£0
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where A is the nonzero eigenvalues of H, and h denotes the number of zero modes of H. In
general, 7 (iD?’D) does not take an integer value and n (iD3D) is equal to the Chern-Simons
term.

1 . _ap,  CS .
3" (iD°") = - mod integer, (104)
1 3 oo 24
CS=— | dxtr |77 | Ay0,As + S ALALAs || - (105)
47 Y 3

(105) is canceled out by the surface term of the first term in (102). Therefore, the total
contribution of the APS index is guaranteed to be an integer.

3.1.1 APS boundary condition

The massless Dirac operator for x4 > 0 with the A4 = 0 gauge is given by
D:"}/4 (84—|—B>, (106)

where B = 4 Z?:l 7' Dj is the three-dimensional operator on Y. Then we impose the follow-
ing conditions

(B + |B)¢las=0 =0, (B +[B[)Dplas=0 = 0, (107)

which is called the APS boundary condition. For simplicity, we assume that the operator B
has no zero eigenvalues. Since the APS boundary condition keeps the anti-Hermiticity of the
Dirac operator and chirality, the index can be defined by the chiral zero modes

indexaps(D) = Jim Tryse (DM | pg . (108)

as is explicitly shown below.

To perform the computation, we first need a complete set satisfying the APS boundary
condition when B has no x4-dependence (this corresponds to the leading order contribution
in adiabatic approximation, which assumes a slow x4-dependence.).

Using the chiral representation of the v-matrices, three-dimensional boundary operator B
can be written as

3 3 . . D
_ in —i0; O o iD3 0 _ 3D
B—m;sz—Zx 0 Z.Ui>Dz—< ,  _ipw) =T @iD®, (109)
where D3P = —g; D, is a three-dimensional massless Dirac operator. We use the eigenfunction

of (iD)? with eigenvalue A2,
(iD)%p(x, 24) = N2p(x, 24), (110)
and we can take the eigenfunction the following form

d(x,4) = ¢4 (14) ® DA (T), (111)
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where the subscript + denotes the chirality: m3¢% (z4) = £¢% (24), w is the momentum in
the z4-direction, and ¢y () is the eigenfunction of the three-dimensional Dirac operator i D3P
with the eigenvalue \: iD3P¢y(x) = A¢x(x). In this case, the APS boundary condition
corresponds to

¢i($4)‘$4 =0= 0, (84 — )\)(ﬁi(x4)|$4:0 = 0, for \ > 0, (112)
¢Q_}(CII4)‘J}4 =0=0, (84 + )\)(ﬁi(x4)’$4:0 =0, for A<O. (113)

The eigenfunction of (iD)? with above condition is given by, for A > 0 case

eiw:c4 _ e—iwz4 (ZOJ + )\)eiw:&; + (z'w _ )\)e—iwx4
Dlgy) = T ¥ (xy) = : 114
@5 (24) Nors ¢ (24) T D) (114)
and for A < 0 case
" eiwz4 o efiw:m " iw— \ ez’wm4 + iw + A efiw:m
8 (21) = §2 (g = W NED T U A TR g

V2T ’

Note that there is no edge-localized mode.
We compute the index with the APS boundary condition using the above complete set.
At the leading order (LO) of the adiabatic approximation, we obtain

21 (w? 4+ \?)

DY/

. e [ dw 20N 22
= ] d4 A A2/ 2/ 1 w? /M?42iwzy
im E}\ /95420 xsgn(A)e 5 + - i])\|e

lim T
et

1 .
=—3 Z/\: sgn(A) thnOO erfe(|\|/M)

1
=50 (iD™), (116)
where erfc(x) is the error function defined by
2 oo
erfe(x) = \/7?/:D dee™€, erfc(0) =0, erfc(oco) =0. (117)
From the next-to-leading order (NLO), we obtain, see [40] for detail derivation,
: iD)? /M? _ 4. Jpo
A}linoo Tr’y5e( )/ INLO = 3972 /zd et PItr Fy Fog. (118)

3.1.2 Difficulties of APS boundary conditon

Here, we discuss the necessity of the APS boundary condition and its difficulties in application
to physical systems.
When a manifold has a boundary, the Dirac operator in general loses anti-Hermiticity:

(61, Do) = /X d4w6] () Do)
_ /Y 2] (2)71602(2) |10 — (D1, 62) (119)



3 ATIYAH-PATODI-SINGER INDEX AND DOMAIN-WALL FERMION 24

unless we impose a boundary condition which satisfies

| #al@ritataleso = 0. (120)

The APS boundary condition is one of such conditions, since y4¢2 has a support only from
eigenfunction of B with opposite sign of eigenvalues to that of ¢; due to {y4, B} = 0.

The APS boundary condition also keeps the chirality of the fermion field since B commutes
with v5. Then it keeps the bulk fermion massless [41], and the index can be written by the
chiral zero modes, as usual: ng —n_.

However, the APS boundary condition cannot be directly imposed on the physical sys-
tems for the following reasons. First, it requires non-local information of the eigenfunctions
extended in the entire Y. Suppose that the eigenvalues of iD3P cross zero due to a change
in the local gauge field. This information must be immediately reflected in the whole region
of the boundary through the APS boundary condition. The desired boundary conditions for
physics are local and not given by hand.

Second, the APS boundary condition does not allow any edge-localized modes to exist.
For simplicity, we suppose that B has no x4-dependence. In this case, the zero mode localized
at the boundary can be written as

p(z) = gpre ™™, D¢ =0, (121)

where ¢, is an eigenfunction of B with the eigenvalue A. This solution is normalizable only
when A > 0 but it is prohibited by the APS boundary condition. As shown in Eq.(116),
the eta invariant of the boundary Dirac operator 7(iD3P) originates from the bulk extended
modes with a non-trivial singularity in the w integral.

Recently it was pointed out that the APS index theorem is a key to understand the bulk-
edge correspondence in symmetry-protected topological insulators [15,42]. Each term of the
APS index theorem corresponds to each phase of the edge and bulk fermion determinants,
representing the anomaly inflow of the time reversal (T') symmetry. The APS index gives a
mathematical guarantee that the total system is protected from the T-anomaly. However,
the original setup of the APS boundary condition discussed above is very different from that
of topological materials. With the APS boundary condition, the bulk Dirac operator is kept
massless and there is no edge-localized mode to produce the eta invariant.

Moreover, a manifold with boundaries is unnatural in physics. It is as if the world ends
beyond the boundary, but there is an outside of the boundary in actual physical systems. For
example, we can think of the outside of a topological insulator as being covered by a standard
insulator (vacuum). Therefore the desired set-up should be one that can also describe the
outside of the boundary.

In summary, the desired set-up is one in which there is a massive fermion as a bulk
fermion, a localized mode at the edge, naturally chosen boundary conditions, and a closed
system including the outside of the boundary. The domain-wall fermion discussed in 2.3
perfectly matches this set-up.
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3.2 APS index theorem from domain-wall Dirac operator

Now we discuss the physicist-friendly reformulation of the APS index theorem proposed in
[20,21], using the domain-wall fermion®.
The domain-wall fermion provides a natural set up for physical systems with boundaries.

The hermitian domain-wall Dirac operator is given by
Hpw = v5[D — Me(z4)], €(xq) = sign(xy), (122)

where the mass is positive M > 0. Unlike considering a manifold with boundary using the
APS boundary condition, x4 is defined on —oco < x4 < o0, so no boundary condition by
hand is needed. We will introduce the Pauli-Villars field to cancel out the contributions from
the bulk at x4 < 0. This domain-wall fermion gives a model for a fermion system where a
topological insulator is put in the region x4 > 0, while the outside or x4 < 0 part is a normal
insulator. The edge mode appears at x4 = 0, which plays an essential role in defining the
index.
New index Z is formally defined by a regularized eta invariant of (122):

1 reo. 1 1
= ——n (Hpw) = —5 (Hpw) + bY (Hpv), (123)

2
where the hermitian Pauli-Villars operator is Hpy = ~5[D + M]. As shown next, we can
verify that this new index definition coincides with the APS index formula:

1

1
—51 () =

1
393 / d*zet Pty Fy Fpy — 3" (iD*P) . (124)
x4>0

Here we slightly generalize the domain-wall fermion Dirac operator to have different ab-
solute masses in each domain:

Hapw = ")/5[D — M16<I‘4) + Mg], (125)

where D is the four-dimensional Dirac operator, and we take both M7 and My positive. To
evaluate the eta invariant of (125) we choose the eigenfunction set of the free domain-wall
Dirac operator squared (Hf{%ew)Q. The solution to

(=02 + M} + M3 + 2My746(x4) — 2M1 Mae(x4)) ¢ = A% (126)

has the form goi/ edge(m)@eip'“’, where the subscript & denotes the eigenvalue of 4. Depending

on the eigenvalue A, we have three types of solutions. For |A| < |M; — M|, we have edge-

localized solutions
M2Z2—-M2 _ _
edge(m) u_+/ e (My=Ma)za (1, > (), (127)

r— 7\[2 7\[2
M +M T
u— 17‘[ 2 6( 1 2) 4 ($4 < O)

where the eigenvalue is A2 = p? and u4 represent the spinor components y4u+ = +u+. The
edge mode appears only in the 74 = —1 sector. For |M; — M| < A < |M; + Ms|, we have

“The study of the index theorem with domain-wall structure has been done in [43,44].
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extended bulk modes only in the region x4 > 0:

y Tty L )T 4 (i — p)em ] (24 2 0),
QD:I:(:E4) = %iw Qx (128)
Uy ——2 s (g <)
SRV L O 4

where w = \/A2 —p?— (M — My)?, Q= \/—A2 + p? + (M1 + Ms)? and py = Q+2M;. For
| M1 + Ms| < A, we have plane wave solutions in the whole region:

ui(Aeiwlau 4 Be—iw1x4) (.T4 > 0)’

. . (129)
ug (Ce™2%4 4 De™ ™24 (g4 < 0),

% (z4) = {

where w; = \/A2 —p? — (M — M3)? and wy = \/A2 —p? — (M + M>)?, and the coefficients
satisfy A+ B =C + D and —iw;(A — B) +iws(C — D) £ 2M (A + B) = 0.
These solutions satisfy a nontrivial boundary condition,

— lim (902 (e) — 12/ (=€) ) £ 200162 (0) = 0. (130)

This condition respects SO(3) rotational symmetry on the surface.
When M; > M, the appropriate Pauli-Villars operator is given by

Hpvy = v5[D + My — Mae(z4)]. (131)

The total mass M; — Mae(x4) does not change its sign when z4 is changed, and therefore, the
edge localized mode does not appear.

The additional mass My does not break the ~5-hermiticity of the domain-wall Dirac op-
erator and the Pauli-Villars Dirac operator. Then the index can be defined as

. 1 1
indexaps(D) = *577(HADW) + QU(HPV)- (132)

In Ref. [20,21] it was shown that this index is independent of the additional mass Ms.

dindeXAps (D)

= 0. 133
i, (133)

Therefore, let us consider an extremal case, where the mass in the x4 < 0 region is infinitely
large so that all the wave functions are constrained to the x4 > 0 region, which corresponds
to the Shamir-type domain-wall fermion discussed in 2.3.3.

Such a situation is made by the limit of M; + My = oo, while M; — My = M is fixed. In
this limit, the asymmetric domain-wall Dirac operator and the Pauli-Villars operator become

Hapw —Hspw = 7v5(D — M), (134)
Hpy —Hgpy = v5(D + M). (135)

The boundary condition is locally given by

Pileico =0, (D1+M)p_|symo = 0. (136)
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In this case, only the eigenfunctions of type (i) and (ii) survive to form a complete set.
The edge mode becomes

8% (24) = uyV2Me M (137)

where A2 = p?. The bulk mode becomes

w U+ . T . —iwx
Y(zg) = w—M)e™™ + (iw+ M)e 4 138
¥ (14) 27r(w2+M2) [( ) ( ) ] ( )
and

U—

O (x4) = \/ﬁ[eiwﬁ4 — e*i‘”“], (139)

where A? = p? +w? + M?. These wave functions are defined only in x4 > 0 and zero in 24 < 0.
After a perturbative calculation, the result are summarized as

1 )
n(Hspw) = _32772/ d4xe“l’p"trcFWFpU + 77(2D3D), (140)
x4>0
1
n(Hspv) = 327‘_2/ g d4xeﬂup0trCFM,Fpg, (141)
T4

which confirms that Eq.(132) coincides with the APS index.

4 Index theorem from massive fermion

The original AS and APS indices require the exact chiral symmetry to define the chiral zero
modes in the continuum theory. However, in the previous section, we gave up the bulk
chiral symmetry and used the massive fermion to formulate the APS index theorem in the
physically natural set-up using the domain-wall fermion. In this section, we introduce a unified
perspective using massive fermions to fill the gap between the standard formulation and the
new formulation, which gives a hint for the lattice formulation of the APS index.

The original AS index theorem in the continuum is formulated for the massless Dirac
operator, and the analytical index is written by the chiral zero modes. The lattice AS index
by Hasenfratz et al. is formulated by the Dirac operator satisfying the Ginsparg-Wilson
relation, which realizes the lattice chiral symmetry. For the original APS index theorem, the
bulk chiral symmetry induced by the APS boundary condition plays an important role.

However, how to formulate the lattice version of the APS index has not been known. In the
lattice gauge theory, it is difficult to impose the APS boundary condition. The APS boundary
condition is imposed by separating the normal and tangent parts of the Dirac operator to the
boundary. For the overlap Dirac operator D, there is no simple way to separate the boundary
part of the operator. Moreover, even we managed to impose a physically sensible boundary
condition, it would be incompatible with the Ginsparg-Wilson relation [45]. Therefore, we
have to give up the lattice chiral symmetry in the formulation of the APS index. An important
hint is found in the lattice AS index and the continuum APS index using the domain-wall
fermion Dirac operator, which was discussed in the previous sections.
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continuum lattice
AS T1r’y5e(iD)2/]\/[2 Trvs(1 — aDoy/2)
APS | Tryse2)/M*  / APS b.c not known.

Table 3: The standard formulation of the index with massless Dirac operator

continuum lattice
AS —31(y5(D — M))™es —3n(vs(Dw — M))
APS | —3n(75(D — Me(x4)))™® | —3n(75(Dw — Me(x4)))

Table 4: The n-invariant of massive Dirac operator
First, let us go back to the AS index theorem on the four-dimensional periodic lattice. It
is given by
. a 1
indexag(Doy) = Trys (1 — §D0v) = f§Tr'y5aDov, (142)

where we use Trys = 0 which is justified by finite lattice, and D,y is the overlap Dirac operator

1 1 1 H
Dov = — <1+X > - - 1+75 W ) (143)
a Xix/) a (Hw)?

where Hyw = ~v5(Dw — m) is a Hermitian Wilson-Dirac operator. When we substitute this
formula to the index formula,

1 1 H
index(Doy) = —§Tr75aDOV = —§Tr'y5 (1 + 75(‘;\])2)
A%
1 H 1
= —Tr——Y = __y(Hy), (144)

2 (Hw)? 2

we see that the index of the overlap Dirac operator is equivalent to the eta invariant of the
massive Wilson-Dirac operator. It is interesting to note that the structure of the eta invariant
is naturally embedded in the index theorem with the overlap Dirac operator. This fact
suggests that the index may be defined by the massive fermion that has no chiral symmetry
or Ginsparg-Wilson relations at all. In fact, this possibility was known in [37,46]. However, it
has rarely been discussed that the eta invariant of the massive Dirac operator without chiral
symmetry is as important as the original index.

As a byproduct of the reformulation of the APS index in continuum theory, it has been
proposed that the AS index in the continuum can be formulated using the eta invariant of the
massive Dirac operator. The nonperturbative or mathematical proof that the new definition
of the AS index equals the original one is given in [22].

In Tab. 3 and 4, we summarize the massless and massive formulations of the indices. In
the massless formulation, we need special care to maintain the chiral symmetry. For the APS
index in continuum, we need a non-local boundary condition. For the lattice AS index, we
need a special type of Dirac operator satisfying the Ginsparg-Wilson relation.

The eta invariant of the massive Dirac operator on a closed manifold gives a unified view
of the index theorems. In the continuum, the APS index theorem is given by just adding a
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kink structure to the mass in the AS formula. For the lattice version of the AS index, we
only need the Wilson-Dirac operator. Therefore it is natural to assume that the eta invariant
of the Wilson Dirac operator with sign flipping mass, or namely, domain-wall fermion in
four-dimension should be the lattice version of the APS index:

indexaps(D) = f%n(%(pw ~ Me(a))). (145)

In the next section, we will prove this perturbatively.

5 Atiyah-Patodi-Singer index theorem on a lattice

In this section, we propose a non-perturbative formulation of the Atiyah-Patodi-Singer index
in four-dimensional lattice gauge theory [23,24]. We will show that the eta invariant of the
domain-wall fermion Dirac operator on a four-dimensional periodic lattice coincides with the
APS index in the negative mass region. In the computation of the eta invariant, we can
separate the bulk and edge contributions.

5.1 Main argument

Here, we assume a periodic boundary condition identifying x4 = L4 and x4 = — L4, setting
Ly/a an integer. In this system, two domain walls are located at x4 = —a/2 and x4 = Ly—a/2.
Note that we put the kink structure on the link, not on the site >. We use the periodic
boundary condition with the same periodicity L for the other three directions.

The domain-wall Dirac operator is given by

a a
Hpw =5 [DW — Mie <$4 + 5) € <L4 — 5 — .f(,'4) + Mg} . (146)
This four-dimensional operator should not be confused with the standard domain-wall fermion
in five dimensions that is used for numerical simulation of QCD. We assume M7 > My > 0.
Our goal is to show that the eta invariant of the domain-wall Dirac operator gives a non-
perturbative formulation of the APS index theorem on a lattice. Namely, we will show

1 1 1 1.
—5(Hpw) = A e P75, Py o — 510D oy + 51Dt (147)

= 2
327% Jo<us<Ly
in the continuum limit.
n(Hpw) is guaranteed to be an integer by definition, since Hpw is a Hermitian operator
on a finite-dimensional vector space. Moreover, its variation is always zero,

NI

DN |

n(Hpw) = Tr [5HDW(HDW)_ Hpw (Hpw)™ 2 (8 HpwHpw + HpwdHpw)
— 0. (148)

under the condition that no eigenvalues of Hpw crosses zero.

®In the lattice gauge theory, we have two choices for the location of the kink mass: on the sites or between
the sites. We find that putting the domain-wall between the sites (at the links) is convenient for solving the
difference equation.
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Then we take a hierarchical scaling limit |Aegge| < M < 1/a, where Aegqe denotes a typical
eigenvalue of low-lying edge-localized modes. The bulk modes have large energy in this limit,
and their correlations exponentially decay in every direction. Therefore, the density of the eta
invariant near x4 = 0 can be locally evaluated using a complete set of semi-infinite space-time
in z4 > 0, and simply interpolated to the result obtained near x4 = Ls. We also treat the
momenta in other directions as continuous for the same reason.

5.2 Free domain-wall fermion complete set

First let us consider the eigenproblem of aQH%W for the free fermion, taking the Ly = oo
limit. The free domain-wall Dirac operator is given by

HYy = 75 [D%V — Mye (x4 + g) + MQ} : (149)

where the free Wilson-Dirac operator D%V is written by
Dy, =~"0, + R°

= 20 V(1) + V)] - 53 V)V, (150)

We can assume a tensor-product form of the solutions,
O(a, 24) = (1) @ Yy (@), (151)

where wgD(w) = ¢P®/,/(2m)3 denotes the plane wave in the horizontal directions (z;—123)
with momentum p = (p1, p2, p3), having two-spinor components, and ¢(z4) that in the x4
direction.

The squared free domain-wall Dirac operator is expressed by

((LH]%W)2 = —(ad;)? + [aR? —aMe (l‘4 + %) + aM2:|2
- [1 +a (R? — Me <x4 + %) + Mgaﬂ a’V3;(1)V4(1)
+ 2Mia [Pyzy,—aSi — P-62,051 | (152)

where Py is a projection operator defined as Py = (1 + 4)/2, and Sff is a shift operator by
the unit lattice vector aji: Sff f(x) = f(z £ apr). The shift operator comes from the violation
of the Leibniz rule of the difference operators,

V(D) (f(@)g(@)) = (Vu(1)f(2))Srg(x) + f(@)(Vu(1)g(@)), (153)
V(W (f(@)g(@)) = (V,(1) ()5S, 9(x) + f(2)(V,,(1)g(x)). (154)
We also use the following facts for the sign function e(z + a/2),
aVy(1)e (:1:4 v g) = 267, —as (155)
aVi(1)e <x4 + g) = 28,,0. (156)

These terms correspond to the d-function-like potentials in the classical continuum limit.
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After applying the wave function in the x;—; 2 3 directions , (CLH]%W)2 is expressed as

(aHpw)? = 57 + 0(za + a/2){MF — (1 + M) (@’ Vi(1)Va(1))}
+0(—aa — a/2){M? — (1+ M_)(@®Vi(1)V4(1))}

+ 2Mia [Pz, —aSf — P-62,051 |, (157)
My= Y (1-¢)F M+ Ma, (158)
i=1,2,3

where 0(x) = (e(x) +1)/2 is the step function, and we denote s; = sin(p;a) and ¢; = cos(p;a).
Let us find the solution ¢(z4) for the equation

(aHpw)*p(z4) @ PP () = Ap(24) @ 4P (). (159)

We will have three types of eigenfunctions in the x4 direction: (i) edge-localized modes at
xq = 0, (ii)extended modes but only for x4 > 0, (iii) extended modes at any z4.

To simplify the computation, we consider the M; + My — oo limit with My — My = M
fixed as in Sec:3.2. In this limit, the domain-wall Dirac operator becomes

HDW =5 [DW — Mle(a: + a/2) + Mg] y

— 5 [DW — M] = HSDW, (160)
and M+ become
M, = Z (1 —-¢)— (Mia— Mza) — (1-¢)— Ma (161)
i=1,2,3 i=1,2,3
M_= Y (1-¢)+ (Ma+ Ma) — . (162)

i=1,2,3

The mass gap in the x4 < 0 region M_ is infinitely large, and all wave functions are constrained
to the x4 > 0 region. This is nothing but the Shamir-type domain-wall fermion discussed in
2.3.3. In the continuum theory, it is shown that the index with usual domain-wall set-up is
equivalent to the index with Shamir-type domain-wall set-up [21].

Under this limit, we can safely neglect the type (iii) of the eigensolutions. Only the
eigenmodes of types (i) and (ii) survive, forming a complete set. They coincide with those for
the Shamir domain-wall fermion on which the simple Dirichlet boundary condition ¢(x4) =0
for x4 < 0 is imposed. We have

(i) edge localized mode

¢e_dge($4) _ \/—M+(2 + M+)/ae—K~T47 (163)
e Ko =14 M,. (164)

(i) bulk modes
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1 ] —iw(zata
B2 an) = = [t el (165)
B9 (24) = —— [Cuoe™=t — Che~ima] (166)

V2T
(1 4 M+)eiwa -1

C, = A . 167
(L Mo — 1] (167)

in the region 4 < 0, where the subscript 4+ denotes the eigenvalue of 74 = +. For the
normalizability of the edge localized mode, we obtain the condition: |1+ M;| < 1. Here
we choose the fermion mass in the range 0 < Ma < 2. This choice is consistent with the
normalizability condition and eliminates the contribution from the doubler modes, which have

|p| ~ m/a. The edge mode can only exist 74 = —1 sector.
The eigenvalue of (aH3pw)? is
2 d
A2 — Sz (e ge)a (168)
(s 4+ M2 —2(1+ My )(coswa — 1)) (bulk).

With these eigenfunctions, we can separately evaluate the contributions from the bulk and
edge modes.

We can confirm that the above eigenfunctions form a complete set. The eigenmode set
satisfies the orthonormal condition,

@ 3 [o )] 6w = 1, (169
x4=0

a3 [0 @) 60s) = 60— ), (170)
x4=0

where the summation over x4 is taken for integer multiples of a. The orthonormality of the
bulk modes can be shown using the relations®

o0
az:ei“”C = md(w) + aP <1_1ewa) , (171)
=0
where P denotes the principal value. The eigenfunction set satisfies the completeness
w/a 1
2/0 dwug¢°;(ac4)¢‘;(xﬁl)Tug + u_qb(idge(u)(be,dge(xﬁl)fui = 55904%[2“, (172)
p

where ut and I>«2 are the eigenvectors and the 2 x 2 identity matrix in the eigenvector space
of ~4, respectively.

5This relation is a discretized version of the relation
> ; 1
/ dze"® = wo(w) +iP—,
o w

and (171) can be easily shown using Sato’s hyperfunction formula of the delta function

27T(5(w):lim{ U ]

e—0 |w+1ie  w— i€
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5.3 Evaluation of eta invariant of the domain-wall operator

In this subsection, we perturbatively evaluate the eta invariant of the domain-wall Dirac
operator and show that it agrees with the APS index in the classical continuum limit. Since
the complete set derived in the previous section can be separated into bulk and edge parts,
we can completely decompose the eta invariant into bulk and edge contributions.

Hspw
n(Hspw) = Z tr——— (%) 0 2 | g

iy ey dw/

x,14>0 s=1,] g=*%

Hspw

x tr | 2V (uy @ vg) [¢2 (@) (@)] [0 (2P (@) (ug  v,)'

\/ H§DW po—
« Z Z /71-/(1

x,x4>0 s=1,]

ot | DY (4 g 0,) [oy0 2] [68 (e)0P @) 0

\/HT P p
SDW r=x'
H H
4 Z tr—oPW SDW bulk 4 Z tr—oPW SDW )edge7 (173)

®,24>0 \/HSDW ®,14>0 \/HSDW

where we insert the completeness condition,

w/a
> Z/ * /,r (g @ v5) [0 )0 (@)] [0 P @) (g @ )]

s=tlg==%

> / © v) [0 (@)] [0 0P (@) (u )

1
= “10us,2,02.0 Laxa, (174)

where Iy 4 is the 4 x 4 identity matrix in the spinor space. In the rest of this subsection, we
evaluate each contribution. The bulk part is evaluated by expanding it in a lattice spacing
a, in a similar way on a periodic lattice studied in [36]. On the other hand, the edge part is
evaluated by an adiabatic approximation.

5.3.1 Bulk part contribution

For the bulk contribution, we consider the density of the eta invariant rather than its integral
form. Since every bulk mode has a larger energy than M_%, the density is expressed as a local
function. The analysis is similar to that of the AS index theorem for the periodic lattice
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studied in [36]. First we rewrite the density of the eta invariant as

1, H
— Ztr SDW ($)bulk

\/Hng
w/a
== Z Z/ dw/ d?
—7/a

STigi

(6% ()uP (@)] " (ug @ v,)' b, ASDW (ug ® vs) [0 (za)v" ()]

\V Hpy

1 m/a ma o 3D, 1t Hspw w 3D
9 Z dw d’p [¢5 (xa) by, ()] tr | Py Py | [65 (xa)dp (=)]  (175)
g=+"0 —n/a V Hipw
using the spinor properties 7. Here, the trace tr is taken over color and spinor indices and tr,
is taken over color index only.

Substituting the explicit forms of the domain-wall fermion complete set, the density of the
eta invariant becomes

1 w/a m/a
) /0 w /_ﬂ/a a*p 64 (@)} (@)

p,“sow _p +] [ (203 ()]

(aHspw)?
1 (™ Bpdw ioo(ata aHspw
—7/a (CLHSDW)Z
and the 4 = —1 sector

1 w/a w/a
— 2/ dw/ d3p [d)‘i(:m) 2D(:c)]Ttr
0 —7/a

P“HSW)P] (6% (20)2()]

(aHspw)?
1 w/a d3 d . f]
—_2/ 2p 21— 2Py | P22 p | (177)
—n/a (27) (aHspw)?

The dependence on the gauge link variables is perturbatively treated as

(aHspw)? = (aHw)? + A(aHspw ) (178)

"Spinor property

S (g @v) T(ug@v) = > (vf 0)p<%s)+ > (0 ”Z)F(i)

g=£s=1,1 s=T,4 s=1,1

=" (v} 0)PTPy (%) + (0 o) PPy (O)
s=1,0

s=1,{

+ > (o PFP_(>+Z IPFP_(O)

s=11 s=1,1
= tr, [P IPy] + trs [P-TP_],

where I' has arbitrary spinor structure and trs is taken over spinor index.
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2 ~ ~ ~ ~
A(aHspw)? = —% 3 Aty [DM,D,,] — Pt [D#,R} NI (179)
"%
where --- part includes no y*’s, which do not contribute to the index. We can express

- 1 ipua —ipua -

Du=5- [e P (U, () ST — 1) — e P (S# Ul (x) - 1)] : (180)
> 1 pua —ipua -
R:—Qazl [ep“ (Uu(x)S —1) + e Pn (Su U;ﬂ(a:)—lﬂ . (181)

M:

We denote the four-momentum by p, = (p1,p2,ps,w). Inside the bulk, (aﬁng)Z can be
expressed as

~ 2
(aHyw)? = si + {Ma - Z#(l - Cu)}
=52+ M2 —2(1+ My)(cs — 1) = A? (182)

then we can expand 1/+/(aHspw)? as if the operators were all commuting 8. Noting the
existence of 4 in the projection operator Py, and that of 75 and «* in the numerator, those
terms having three of four gamma matrices can survive the spinor trace (230). After some
lengthy but straightforward computations we find that only the first two terms in the following
expression are relevant .

tr | Py 2SOV p,
(aHspw)?
4 KAV AP~ ~ - ~ ~
S w2 5,.0,] [0, 5.] )] (a7
HV,p,0
3a* o AT A -
+tg Dt [’7527 So (VY + APy [DuaDu] [D,),R} (90)} (A%)75/7
wv,p,0
4o (183)

where M = M, + (1 — c4).
Substituting the explicit forms of the domain-wall fermion complete set, and using the
standard expansion U,(x) = exp(iaA,(z)),

[D,“ D,,} = icyc, Fl + O(a), (184)

D ] = e 0By + O(a), (185)

Note that near the boundary (aHSpw)? and A(aHspw)? do not commute essentially due to the boundary
effect. However, their commutator increases the order of a (by the derivatives), then the expansion is also valid
near the boundary.

9We can easily show that the first and second terms in the expansion vanish, due to the spinor trace, odd

function in the integral, and the Bianchi identity trce*”” [Du [D,, Dp]] =0
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where we use the abbreviations s, = sin(p,a) and ¢, = cos(p,a), we obtain

1 H 1
—?crﬂ(x)b‘ﬂk = (I(M) + 1PV (M, 24)) o5 P tr Fp Fpo, (186)

3272
V Hbw

up to O(a) corrections. The factors I(M) and IPWV (M, z4) are

4 pr/a _ M’ 2
I(M) = 3“/ dwd‘ngc# + ;52/; SV/CV’ (187)
m

 8n? —7/a

and

4 rr/a —M' 2 2 2iwa
IPW(M, z4) = 3;2/ / dwd?’pch + 152/2” Su/e <—CW +2€ 62’”4) . (188)
—T/a m

+ Contribution from (M)
The factor I(M) is explicitly evaluated in [36] (see Appendix. C), and we have
I(M) =60(Ma) —46(Ma —2) +60(Ma —4) —40(Ma — 6) + 6(Ma — 8). (189)
For our choice of the fermion mass 0 < Ma < 2, we obtain I(M) = 1 in the continuum limit.
- Contribution from IPW (M, x4)

First we note the phase factor e?“%4 (188), to which the singularity due to doublers gives
a contribution suppressed as e *4/¢. Therefore, we can take a naive continuum limit only
taking the physical poles into account, approximating s, ~ p,a and ¢, ~ 1. In this limit,
IPW (M, z4) becomes

o0 > d 1 i M 4
TRt o [0 ]
0 —00 27['(

p2+M2+w2)5/2 w— 1M

0o 82

_ oM / At (1, M, ), (190)
0
where we define
[e’e] dw 1 iM i

oM _ aw 2iwx4 . 191
I M, z4) /0027T(t+M2+w2)1/2 [w—iMe ] o

We can formally integrate J(t, M, x4), which consists of two terms:
J(t,M, 1'4) = Jl(t,M, 1'4) -+ Jg(t,M, .%‘4),

2M 1 M
J]_ (t, M, ,’,E4) = —76_2Mz4 |:M arccos <]\42t):| ; (192)
m ¥

oM z ,
Jalt, M, 2g) = == 2Mos [ / da,2M74 I (2\/M2 +mgﬂ , (193)

0
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where K, (z) denotes the modified Bessel function of the second kind. For Jy(t, M, z4), it is
not difficult to compute

> 0? 1
2M/0 dt\/iwjl(t,M,m) = —Ze—QM“. (194)
For Jy(t, M, x4), we take a partial integration
2M/ dt\f JQ(t M, xy)
= _4]7\32 [\/Ea {e_QM“ /0»’64 d:cﬁleQMxilKo (2 M? + tx&) H

o0

ot .

—M/ dt\[(%J2 (t, M, ). (195)

The first term is zero since v/ goes to zero faster than the ¢ derivative of K (2\/ M? + tmg)

and K <2\/ M? + tx&) is exponentially small at ¢ = co. We can also evaluate the second term
as

2M2672Mx4 T4 o K (2\/ M? + tlﬁ)
—M / a2 J2 tM,xy) = ——o—— / da!y !y M / dt
0 0

\[811, ™ \/Z1 /M2 +t
(196)
Combining these results, we obtain
1 2M2 00 K1 (2\/ M2 —i—t:vﬁl)
IPWV(M, ) = —e 2Mza | Z 4 / dxyz) 62M$4/ dt (197)
4 ™ Jo 0 VEVM? 4+t

Noting the fact that I°WV (M, z4) is negative at any x4, we have an inequality

‘/ d*a1PV (M, x4) M POt Fy F oo ()

o0
< |eMPOtr Fyy F oo | (:1:)/ dxy ‘IDW(M, z4)|
0
(198)

where |O™#*(z) is the absolute maximum of the function O(z) along the string at @ =
(21,2, x3) extending in the x4 direction. The z4 integral is analytically computable as follows:

L M Ky (VM2 + 1
/ dg | TP (M, a4)| = / dz / ar Xl - t)
0 8M 0

xf\/—
_1+M/ dt 1 4
C8M 7w Jo JiVMZ 1 t8(M2+t)
3

-3 (199)
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We have performed the integration in the order of x4, #;, and ¢, and have used the following
relations

/ dzx' 'K, (ax) = 224" T (,u ; V) r (’u —2'— V) (Rep > |Rev|,a > 0), (200)
0

o) xa—l 1
d = b . 201
/0 x(aaz +b)etl  @a®d (,a,6>0) (201)

Therefore, we can conclude that (M) + IPV (M, z4) = 1+ O(1/M) and the bulk contri-
bution is the standard curvature term:

1 H 1
——tr 2V (gybulk — oty B R, () + O(a, 1/M). (202)

2 ] 3277
HSQDW

5.3.2 Edge part contribution

Next, let us evaluate the contribution from the edge-localized mode. To this end, we reconsider
the eigenproblem for the edge modes with nontrivial gauge link variables, assuming its mild
x4 dependence compared to 1/M. Namely, we assume that the x4 dependence of the gauge
field is less steep than that of the edge wave function. This assumption is always valid since
no matter how violent the change in the gauge field is, it can be realized by decreasing the
lattice spacing (keeping Ma fixed).

Hpw¢(z) = Aj(x). (203)
More explicitly, we have, in the Uy = 1 gauge,

Hpw =5 [v'Di(z4) + 7" 04 + R(x) — M]
=5 [~ PaVa(1) + PAVi(1) + 7' Di(a) + My (2) /a], (204)

where D;(x4) is the symmetrized spatial covariant difference operator at a slice x4,

Di(x4) = 5 [Vi(U) + Vi (U)], (205)

1
2
and M, (z4)/a is

Mi(o)fa=—5- Y |Wil@)S} = 1)+ (70 @) - 1)| = . (206)
i=1,2,3

Note that D;(z4) depends on x4 through the link variables. M, (x) is also z, dependent

through the link variables. In the following, we assume that the eigenvalue A is low compared

to M and the mass of the doublers modes, where we can approximate M, (z)/a = —M +O(a)

and ignore the position dependence. Under this assumption, the domain-wall Dirac operator

is written by

Hpw = 75[~P-Va(1) + P4 Vi(1) + 7' Di(x4) — M + O(a)]. (207)

Since three-dimensional Dirac operator D;(x4) has still z4-dependence, the eigenvalues \(x4)
of ¥ D;(x4) depend also on x4.
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At the leading order of the adiabatic approximation, where z4-dependence is mild, we
have a solution of the form

¢(x) = Py (x) ® 6°°(z4), (208)
where qﬁi?o)(a:) is an eigenstate of io*D;(x4 = 0) with eigenvalue A\(0). Recalling the complete

set of the free domain-wall Dirac operator square, the edge localized mode only appears in
the vy = —1 sector: ¢°48°(zy) = P_¢°%°(24). Then the edge mode satisfies

(—P_V4(1) + Py V(1) P_¢™ 8 (24) = (M + O(a)) P_¢°% (z4). (209)
¢°%5°(24) has the form
¢°°(24) = /M (2 — Ma)e K*, (210)
where e=K = (1 — Ma)™°.

Employing the Dirac representation (228), for the edge modes, the domain-wall Dirac
operator acts as

Hpw () (@) @ 625 (z4)
= (157" P-) Di(w4) ¢35y () © 6% (24)

_ 0 i1y 0 o;iDi(z4)\ (0O 0 3D edge

0 0 edge
(o i) (o) © 0 (a) (11)
where iD3P = —io; D;(x4). Therefore, the eigenvalue A essentially equals to A(0).

In this evaluation, we use different eigenfunction set in the evaluations of the bulk and edge
modes. Therefore, the orthogonality is generally lost. Since K = M + O(a), the orthogonality
with the bulk modes which was given in terms of the free domain-wall fermion is guaranteed
in the continuum limit.

Let us consider the free bulk fermion mode ¢* (z4) and the edge mode ¢°%°(z4). Since the
nontrivial link-variable-dependent part is neglected, the edge mode wave function is slightly

10

(=P-Va(1) + Py V(1) P67 (24) = (M + O(a)) P65 ()
& —Va(1)6™5 (24) = (M + O(a))65 (22)

Suppose ¢ (z4) = Ae™ ¥4, then

1
a
o —le®* — 1] = Ma+ O(a?)

e f = (1 - Ma)

[Ae™ K(mata) _ ge=K=a) — (M 4 O(a)]Ae™ K"

From the normalization condition, A is written as A = /M (2 — Ma).
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different from the free case. The inner product is evaluated as

a Z ( edge ) ¢ (14)

x4=0
_ | M 1 — Ma) Z C o (K—iw)as _ C:Je—(KJriw)m}

x4=0
_ |M(1— Ma) 1 . 1
- 27 Cogz (1 — Ma)ewa Coiz (1— Ma)e wa | (212)

Note that C,, is proportional to (1 + M, )e™ —1 and 1 + M, = 1 — Ma + Aa?, where A
expresses the contribution from the Wilson term near the physical pole. Then

M(1— Ma) 1 (1—Ma+ Ada?)e* —1 (1 — Ma+ Aa?)e v —1
= Qa - - - -
27 |(1+ My)e™ — 1] 1—(1— Ma)ewe 1—(1—Ma)e iwa
B M(1— Ma) 1 Aqg?etva Aa?e~wa (213)
- ot |1+ My)ew — 1| [1— (1 - Ma)ews 1— (1— Ma)e a

which vanishes in the a — 0 limit.

In fact, the leading-order solution is enough to evaluate the edge mode part, as the ex-
ponential dumping of the eigenfunctions allows us to expand the operator in x4, and its
dependence is suppressed as

edge (S e n_— xT dn n
> (o (fc4)) o ch = (_12)n T _;m ~ /ML (214)

T4

For example, in the x4 expansion of 4/ D;(x4) in Hpyw, the linear contribution in 4 to the
. . Hpw .
eta invariant Treqge JHon is suppressed by

a Z ( cdgc )T $43x4’757iDi(904 = 0) ¢(fig0(x4)

2220 A0)?
_ aX(O) . a = T 672K‘T4_ CL)\/(O) o a 1 i = 672Kx4
- )\(0)2M(2 . )xgo ! N )‘(O)QM(z . )(_2) dK mz_:o
_ aN(0) 1 -2Ma+ (Ma)*> _ aX(0) N a)\(0) 1
= 'X0)2 2Ma — (Ma)? - VA0)2 /A0 2Ma — (Ma)?
aX(0) 1
~ )\(O)Zm (215)

where we have taken the a — 0 limit in the last step, and A (0) is the x4 derivative of the
eigenvalue at x4 = 0 in the adiabatic evaluation. Therefore, if we take M to be big enough
compared to the derivative of the gauge fields, the leading adiabatic evaluation is valid.
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The leading order of the edge mode’s contribution to the n-invariant is

1 dg 1 Hpw
) 40 = — 3T edge
277(HDW) |40 5 Ledge ———xs o 2
T A0
=3 >t Y [ @) @ 6] A [0 @) @ 6 (e
20) o (A(0))
=3 ngm (ZDSD)IM —o, (216)
>\(0)
where we use z'D3D¢§](30) () = A0 )qﬁ/\(o)(a:). Note, however, that the above approximation

does not hold for higher energy A\(0) ~ M where the bulk and edge modes mix. Therefore,
the edge mode part alone is not an integer, and it is difficult to separate the edge and bulk
contributions in such an energy region.

5.3.3 Main result and discussion

Let us consider the anti-domain-wall at z4 = L4 — a/2. In the discussion so far, we have
calculated under the fourth direction Ly = oo and neglected the finiteness of z4-direction.
Since the effect of the anti-domain-wall in bulk is suppressed by e=™%4_in the Aedge K M <
1/a scaling limit, we can safely interpolate our result to that with the anti-domain-wall. Our
final result is

1

- 577(HDW)

1

1 . 1
=— d4:ce“”””trCFm,Fp,,(x) — fn(zD3D)|x4:0 + —fn(zD?’D)|m4:L4 + O(a,1/M).
327 0<za<Ly 2 2

(217)

Let us take the variation with respect to the link variables. From (148), we have the
explicit “bulk-edge correspondence”

1 H 1 H
oW STr i — (218)

——==3
\ Hbw Hpy
where Tryyji/edge 15 the trace taken over the bulk/edge modes only. Thanks to the locality of

the gapped bulk modes, the right-hand side is much easier to perturbatively compute, leading
to

1 2i
=13 d3xdtr, [eoy,,a (A”BPA" + ;A”APA")} . (219)
s

Namely, the non-integer part of the edge-localized contribution is the Chern-Simons action,
except for some extra gauge-invariant and constant contributions. Thus, we can clearly see
in (218) the cancellation of the parity or 7" anomaly between the bulk and edge states.
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6 Conclusions and Outlooks

6.1 Conclusions

In this thesis, we have proposed a non-perturbative definition of the Atiyah-Patodi-Singer
index in the lattice gauge theory. We have shown that the eta invariant of the domain-
wall Dirac operator converges to the APS index formula in the classical continuum limit.
To evaluate the eta invariant, we have derived the eigenmode set of the square of the free
domain-wall fermion. Then we have evaluated the eta invariant in the extreme situation of
the Shamir type domain-wall using the eigenmode set. We have found in the continuum
limit that the standard curvature term in the APS index appears as the contribution from
the massive bulk extended modes, while the boundary eta invariant comes entirely from the
massless edge-localized modes. Since the eta invariant of the domain-wall fermion at a finite
lattice spacing is guaranteed to be integers by its definition, the APS index on the lattice
can rigorously describe the anomaly inflow mechanism in the lattice gauge theory. We have
achieved a non-perturbative formulation of the APS index theorem on the lattice.
Our result can be easily generalized to any 2n-dimensional lattice:

1 " 1 . on 1 on
—577(H123w) :/ Ch(F) - 577(ZD(2 1)D)|22n=0+ 577(ZD(2 1)D)|ﬂc2n:L2n> (220)

X2n
where Xo, is the 2n-dimensional flat manifold with boundary at xs, = 0 and x9,, = Loy, and
ch(F') is the Chern character

ch(F) = (i>ntrF", (221)

n! \ 27

and iD??~D ig the Diarc operator on the boundary.
We also comment on the admissibility condition on the link variables [47].

|1 = Pu(x)|| <e forall z,pu,uv, (222)
where [|O|| denotes the norm of operator O and P, () is the plaquette
P (z) = Uu(2)Uy (2 + ait) Ul (z + ad) U} (z). (223)

This condition divides the space of lattice gauge fields into topological sectors. This condition
requires a certain smoothness of the gauge field on the lattice, which prevents the appearance
of a vortex and other phenomena that do not exist in continuum theories. Thanks to this
condition, space-time can be treated geometrically, even on the lattice [34]. The AS index
theorem is well-defined even on the lattice if this condition is imposed. This condition also
guarantees the locality of the overlap Dirac operator (see Appendix B.2).

Let us consider whether the admissibility condition on the link variables is necessary in
the case of the APS index theorem on the lattice. Recalling the proof of locality of the
overlap Dirac operator, this condition is necessary for the Wilson-Dirac operator to have no
zero eigenvalues. In the case of the APS index theorem, where the domain-wall fermion Dirac
operator is used, the Dirac operator has the same form as the AS index theorem, so the same
admissibility condition is needed for the APS index to be topological. In general, however,
the APS index is not a topological invariant because it can change its value through the eta
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invariant at the boundary. As shown in (148), when the eigenvalues of Hpw does not cross
zero, the APS index is invariant under the infinitesimal deformation of the gauge field. Then
it seems sufficient to impose the same admissibility condition as for the AS index.

6.2 Outlooks

Finally, we show some perspectives of this work.

Anomaly descent equation

The APS index theorem is an integral representation of a part of the anomaly descent equa-
tions [48-52]. The anomaly descent equations describe the relationship between anomalies
from 2n + 2 to 2n dimensions. The APS index theorem describes that the parity anomaly or
T anomaly in 2n + 1 dimensions appears at the surface term of the axial U(1) anomaly in
2n + 2 dimensions. It indicates that massless edge-localized modes, having parity anomaly,
must appear to cancel the parity violation induced by the U(1) anomaly of bulk fermions.

It is interesting to extend our work to the 2n-dimensional chiral fermion system, which
appears as the edge-localized state of the 2n+1-dimensional gapped bulk fermions. As already
investigated in the literature [53-55], the gauge anomaly should be canceled by the surface
contribution from the bulk eta invariant. It is known that the APS index theorem between
odd-dimensional bulk and even dimensional edge does not exist mathematically. However,
we consider that our formulation using the domain-wall fermions can be applied in general
dimensions. Furthermore, since the correspondence with lattice theory is obvious, we expect
our formulation to provide a non-perturbative formulation of the anomaly descent equations
relating odd-dimensional bulks to even-dimensional edges, which has not been known before.
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A Notations

Through this thesis, we use the Euclidean signature g = 0" and the space-time indices u, v
run from 1 to 4.

A.1 Gamma matrices

The y-matrices are all chosen to be hermitian as
(=20, ()P =A" (224)

The chirality operator is defined as

¥ = -2y, () =7 (225)
Chiral representation
- 0 o 0 loxo
1 __ — . — =
1 0
V5 = —Y1Y27374 = < 22 > = 73 @ laxa, (227)
0 —loxo
Dirac representation
; 0 oy 1oxo 0
T 7 — . — X =
0 11
V5= —MV2V3va = | . 22 = 1 @ 1aya, (229)
—t1axo 0

7; and o; denote the Pauli matrices. The spinor trace properties of the gamma matrices

trys = trysy"'y” =0
trys [YHY 7] = —4etPT (230)
tr(any odd # of 4's) = 0.

A.2 Lattice difference operator

V,(U) and VL(U ) are the forward and backward covariant difference operator acting as

VuU)h(x) = ~[Up(x)(x + ap) — ()], (231)

ViU (w) = ~[¥(x) = Ul(z — api)p(x — afp)). (232)

— Q|

For the free case, the difference operator act as

Vu(L)e(z) =
ViL)p(z) =

[Y(x +af) — ()], (233)
[Y(x) = (x — af)]. (234)

QI—Q |
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B Some properties of the overlap fermion

B.1 Proof of the overlap operator satisfies the Ginsparg-Wilson relation

We write the overlap Dirac operator as

1 X
Doy ==-(14V), V= . 235
ov =" ) << (235)
Then V has the vy5-hermiticity and is unitary,
v5Vs = VT, (236)
vvi=1, (237)
because
W5V = 1 X (XTX) 7295 = 45 Xy575(XTX) 7125 = XT(X xT)71/2
=3 @ XT(xxh" =Y e (xTX)nxT = (xTx) V2t = v, (238)
n n
and
vVt = x(xXTx) V2 xtx)"12xt = x(xTx)1xT = 1. (239)
We also have
1 1 1 1% 1
V5 V5 = = = =1-—=. (240)
1+V 1+Vys 14V 14V 1+V
This means
VD3t ys = a— D}
S5 Dgy + Doyl s = ans, (241)

the Ginsparg-Wilson relation, therefore the overlap Dirac operator satisfies the GW relation.

B.2 Locality of the overlap operator

From the definition of the overlap operator(72), D,y is manifestly gauge covariant, however,
it is not clear that the overlap operator is local due to the inverse square root of XTX. Here
we prove that Dy, is local if the gauge field is sufficiently smooth at the scale of the cutoff,
according to [56]. In this discussion, the detail form of XTX does not matter. (XTX)~1/2 can
be expanded in a series of Legendre polynomials and to ensure the convergence we assume
that the bounds on the spectrum of (aX)'(aX),

u < (aX)(aX) <, (242)

for positive constants u < v. From now on, we denote aX as X. The Legendre polynomials
Py(z) is defined through the generating function,

(1 =2tz +2) 712 = " t"P(2). (243)
k=0
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z is taken to be
z=w+u—2X"X)/(v—u), (244)

using the bounds we can show that ||z|| < 1. Due to the properties of the Legendre polyno-
mials, it implies

[1P:(2)]] < 1. (245)
Then the expansion is convergent for |t| < 1. Now we introduce a parameter 6 as

coshf = (v+u)/(v—u), 6 >0, (246)

and set t = e~?. Using these parameters, the Legendre polynomial has the form

(XTX)—l/Q:mitkPk(z), K,:< A >1/2. (247)

v—u
k=0

We define the kernel G(z,y) for (XTX)~1/2,

(XTX)"20(x) = a' Yy Gla,9)v(y). (248)
y
where () is an arbitrary fermion field. If we define the kernels G (x,y) like Py(z), we have
k=0

The norm convergence of the Legendre expansion implies that the absolute convergence of
this series for all point z and y. From the norm of Py(z), we obtain

at||Gr(z,y)|| <1 for all k,z,, (250)

where the norm for G(z,y) is the matrix norm for 12 x 12 matrix G(z,y) in color and spinor
indices. If we define the taxi driver distance

e =yl = 3l — wl, (251)
o

we can obtain the bound for the kernel

a'l|G(z,y)l| < exp{—0l|z —y||1/2a}. (252)

1-t¢

It implies that G(z,y) is exponentially decaying depending on the distances between = and y
and in the continuum limit G(z,y) becomes zero except for the distance

|z = ylli = O(a). (253)

Therefore, (f( FX)=1/2 is exponentially decaying for finite lattice spacing and strictly local in
the continuum limit only if the bounds (242) are satisfied.
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Finally we will show the validity of the bounds (242) for any gauge fields. The Wilson-
Dirac operator can be written as

1 1
aX = —ma+ Z {2(1 —Yu)aV, — 5(1 + ’}/M)CLVZ} , 0<ma<2. (254)
w

Using the triangle inequality and the property of unitary matrices ||U,(z)|| < 1, it follows
that
laX || = [laX || <8 = [|a®XTX|| < [|aXT|| - [|aX[| < 64, (255)

hence XX is uniformly bounded from above.
To obtain the lower bound, we expand XX as

1
AXTx =1+ 3 > [Buw + Cuw + Dy, (256)
p#EV

where we set ma = 1 and

By = a'ViV, ViV,
2
a * *
Cuw = =V WV + Vi, Vi + Vo,

D,, = —a%VM[VZ + V., V, =V, (257)
The commutator of the covariant derivative is
@[V, Vil(2) = {Uu(2)Us (2 + fra) — Uy(2)Uy(z + Da) }(x + fra + va),
= Up(@)U( + fua) (1= B, (2)) (@ + jua + ba). (258)
If we suppose a condition for the link variables
11— Pu(z)||<e foralz,pu,v, (259)
so-called the admissibility condition [47], the bracket of the covariant derivative satisfies
16%[Vu, Vil S € (260)

and the same inequality also holds for [V}, V,] and [V}, V;]. In this way it is easy to show
that

ICuwll <26, [ Duwll < 4e. (261)
For B,,,, we rewrite it in the form
By = a*'ViViV,V, —d*ViV,, V, - V}]. (262)
The first term has strictly positive eigenvalues and the second term becomes
V319, Vo = V3| < 26[| 93] < de. (263)
Hence the lower bound for XX is given by
a?X1X > 1 — 30e. (264)

Therefore the locality of the overlap operator is guaranteed if € < 1/30 and the admissibility
condition is satisfied.
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C Explicit evaluation of the topological charge density

C.1 Evaluation of the topological charge density in continuum theory

In this appendix, we give an explicit evaluation for a Jacobian factor of the fermionic path
integral with respect to the chiral symmetry using Fujikawa’s method. We start with the
QCD-type Euclidean action with SU (V) background gauge fields

5 = [ d'ai@)(D - myi(a) (265)
where D = v#(0, 4+ iA,). To analyse the chiral Jacobian we expand the fermion fields:
(@) = andn(x) =Y an (zln), (266)
9) = 3 Budh (@) = S b (k) (267)
where ¢(x) is the eigenfunction of hermitian operator iD satisfying,
iDon(x) = My (z), (268)
/ d*x ¢}, (2) b () = Sum (269)

and a,, b, are the Grassmann number. Then the fermionic path integral measure is written
as

N
DYDY = [det ¢, (x)] " [det ¢ (2)] ! Jim 1;[1 dbday,

N
= lim_ g dbnday,. (270)

Under U(1) chiral transformation, the fermion fields transfrom as

U(z) = ¥'(2) = eP(a) = () +iarsd(z),

— Z and(z) + iays Z andn(z), (271)
Y(x) = P () = P(@)e'™” = (x) +d(x)iars,
= " budh (@) + D bud (w)ians, (272)

then using the orthogonality of ¢, (x), we obtain
a, = an + Z i / Azl (2)Y50m () am. (273)
In the same way,

bl = by + Zial_)m / d*z ¢l (2)V5¢n(z). (274)
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Then, the transformation of the fermionic path integral measure is given by

N N
H dbl da, = det[6,m + ia / d*z ol (2)y50m(x H

n=1

X det[Opm + io / d*z ¢l (2)v5¢0m(z H day,

= det[6nm + icv / d*z ) (2)y5Pm(x H dbpday,, (275)
Thus the Jacobian of the path integral measure is expressed as,

det[dpm + i / d*z ¢l (2)75¢0m(x)] 2 = exp {—Qtr In {(5nm +ia / d4xq§IL($)’y5¢)m(m)}]

—2iay / d4¢L(fv)75¢n(w)] : (276)

using det C' = exp[trIn C] and In[1 + C] = C + O(C?). We obtain the Jacobian factor:

= exp

DyY/'Dyy = JDYD1p, (277)

J = exp[—2ia hm Z/d4¢T )V5Pn ()] (278)

Since this summation is divergent in general, so we use the mode cut-off limy_, o Zn 1)
however, this regularization breaks the gauge symmetry. Therefore, we need to change the
regularization in a way that does not break the gauge symmetry. One example of such a
regularization is the heat kernel regularization, which is regularized by a smooth cut as shown
below.

N oo
lim / d' ol (x)y5¢n(x) = A}@OOZI / d'zo} (@) (An)*/M?)¢n(x)

N—o0
n=1
= i S 6 £ (DY M) () (279)
= lim Teys f((iP)*/M?), (280)

where f(x) is an arbitrary function which satisfies,

f0)=1, f(0) =0, af'(x)la=0 =2f (¥)lo=0c =0, (281)

and Tr is taken over space-time coordinates, spinor and color indices. Now we can expand in
the plane wave basis for each x,

d*k
(2m)?

i ers F(EDP ) =l [ 8-S o (D) M), (282)
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The covariant derivative can be decomposed into two parts,
1
D* =19 DyuDy = DuD" + 23,7 ][Dy, D]
)
= D,DV" + Z[v“,*y”]FW. (283)

Then the regularization function is evaluated as:

4 . .
/ (;17:;4 e—zkxf((iD)Z/MQ)ezlm

/ d4k —ikx I { wov 2\ ikx
= (27‘(‘)46 f(_(Dp,D +1[7 Y ]FMV)/M )6

7

d*k 1 . by g wow
:/(27T)4f (—MQ(DMZ’%)(D k) = ety ]FW)

'k oy %k,D* D,DF )
:/WMf(kﬂkM_ M o M2 _4M2[7Ma7]Fuu s (284)

in the third step, we rescale k, — Mk,. We expand f(z) around xo = k? as,

2ik, D* D, DV i
f (kukﬂ_ M - M2 B AM?2 [’yuafyl/]FMV>
2ik, D* D, D* i y
= U0 4 O by (-2 DB 1R )
1 2ik,D*  D,DF , 2
+ Oy (2 DB ) e
Using the trace properties of v matrices,
trys =0, trys[y,9Y]1 =0, trys[y", 77", 7] = —16€"77, (286)
then
‘K 2ik,D* D, DV i
- 4 Iz H v
e (27r)4M o [75f (k“ku Tz mEth ]F“”)]

4 1

. 2
Ty <_4]\242[7M7'7V]FMV> f(2)(/€2)+0(1/M5)]

| ko
= ) ot

1 i 2
— tr [752! <—4[’y“,v"]Fuy>

The integral in the final line can be calculated by using the property of regularization function

4

f(x),
d*k 1 o0
2N w22y — (2)
- Lalwz”ff “)@‘)]0 - 16;2 /0 dzf (@)

1
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Finally we obtain following expression,

: . 1 -
Jim ey f((iD)?/M?) = WEW t1cF s Fpo (289)

Therefore the Jacobian of the fermionic path integral measure becomes

1
J = exp [—Zia/d%?we“”p"trcFWFpg . (290)

C.2 Evaluation of the topological charge density using Overlap fermion

In this subsection, we explicitly show that the lattice topological charge density —§trys Doy ()

converges to the topological charge density q%ﬁ%(m),

1
q%%; = I(m,r) 39,2 eMPtr Flu Fpe + O(a). (291)
without using the gauge coupling expansion.
Let us review the situation. D,y is the overlap Dirac operator (72) and X (x) is the Wilson
Dirac operator (73). The lattice Dirac operator D, (z) and the Wilson term R(z) is given by

Dy(x) = % [Up@)en — ()] (292)
R(z) = QLa Z [2 — U, (x)er — e*aa“U;ﬂ(a;)} (293)
o

where U, () is the link variable. In this subsection, the Wilson parameter r is not fixed to
one.
First,

1
—§tr’y5aDov (x)5($7 y) ’y:m

1 1
= —§trfy5 1+ X(x)XT(:U)X(a:)] 0z, y)|y=z»

1=

— —%tr%(D(x) —m + R(x)) {(D(:c) —m+ R(x))T(D(x) —m+ R(x)) : 3z, y)|y=a-

The denominator of above is
(D—m+R)(D—m+R)=~5(D—m+ R)y(D—m+R)

==Y DuD = L A D D~ DRI+ (n - R (299)

l’l‘7V
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Therefore

1
— itr’}/5CLDov (CL')(;(.I, y) |y=£L“

1
—Etr'yg)(D -m+ R)

X [—ZD,JD“—Zll
I

N

> 1" 4"1[Dy, D] = 4Dy, R + (m — R)?

5(«Tay>|y:x-
"%
1 (o d'% "
_ t kT —
2/7T o) ryse” " ( m+ R)
“ !
1 v ikx
X [_ZDMDM_ZLZ[')’M?’Y [[Dpu Do) = [7# Dy, R + (m — R)? | e
j 782

substituting the relation d(x,y) = f:/r(;a d*ke™*==v) / (27)*. And we use the relation,

—ikx ikx __ i a
e D e™" = ;Su + Dy,

(295)
—ikx p ike _ T _ D
e T Re™ = . Z (1—-cu) +R, (296)
o
where s, = sinak, and ¢, = cosak, and
> 1 ia a —1i —a
D, = % [e ku (U#e O — 1) — e ku (e a”U): - 1)} (297)
D r iak ad —iak —ad,
R:—%Z[e “(Uue "—1)—6 “(e uU,j—l)] (298)
“w
Then

1
- §tr’Y5aDov($)6(xa y) |y=x

= —itr% /7;//2 (2;)4 {i'y“su —ma+r Zu(l —cu) + a'y“DH + af{}
X {— Zu(isy +aD,)? + {ma - sz(l —cy) — aR]
a’ ~ o - 7]
- Zyp AYAP [D,,, DP} . ['y”D,,,R] } . (299)

According to the trace properties of gamma matrices, 5 requires at least four gamma
matrices. By parameterizing the link variables as U, (z) = exp[iaA,(x)], we have

VI

Dy =c,Di+0(a), R=-—ir) s,Df+0(a), (300)
I

where DZ = 8u +z’AM is the covariant derivative of the continuum. Therefore the commutators
of Du and R become

[]_T)M, ]3,,] = cucyFu + O(a) []_T)M, }Zi} = —grey Z sy Fu + O(a).

(301)

52
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We find

1
— §tr'y5aDOV(fB)5(SC, Y)ly=z

1 m/a dk N N
= ——tr [z Ps,—ma-+r 1—-¢,)+av*D +aR}
27 /—7r/a (2m)* 7o Zu( w + a7 Dy

X {— Zy(isy +aD,)? + [ma - sz(l —cy) — (IR]

D=

1a 9
5 2, Y'vPeye, Fyp — atr Zyp cvspy ' Fup + O(a)] . (302)

(The terms in O(a) contain gamma matrices, but only in terms above O(a). There are only
at most two gamma matrices in O(a).) If we define

(7 =+ (ma= 3 (1-a)) .
ia?

~ 9 2
AHW = _7 v ,-}/nypcychyp —a szp CVSprVpr + O(a)7

(HY)? and AHZ, are commute [(HY)%, AHZ/] = 0, then we have

2 ia?
(I CEOMIERINES S WReR R st

N[

2 —1

a ) 2 2
1+ 5 (2 Zu,p VyPeye,Fup + 1 Zyp c,jsp,yl/F,,p) [3 + (ma -7 Zy(l — c,,)) ]
-2

3at (i » 2 2
Z p v 2 _ —
+ A (2 E V}py Yeye, Fyp 4 E ” CuSpY pr> |:S + (ma T g V(l c,,)) ] +

(303)

X

The denominator is expanded in terms of a, and considering the spinor structure and the
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order of a, the third term only survives. The third term becomes

¢ i
<2 ZW, Yy epe, Fuy + 1 Z/w CuSV’Y”Fm/> (2 ZMU Yy cpcoFpo + 1 ZPU cpsafprp(,)

1
v o 2
S E v YA AN ey oo Fuy Fpg + 1 g po cuSvCpSo V'V FuvFpo

+ < Z A AP Yeucny Y soFuwEpo (304)

For s1mph(:1ty, we denote

M=+ {ma—ry (1~ cy)}Q. (305)

1
- itr’yg,aDov(aJ)(S(fUa y)|y=w

1 (™ di
= —2/ﬂ/a 2n) —trys {w Sy — ma—i—rz (1 —cu) +ay"Dy, —mrz suDy, + O(a %)

a2
[M_2+< lev 7 eucy W—i—'rz CusSvY FW>M 2

3a* 1
—|—? {—4 Zu,v,p,o YA YN ey cpCo Fpun Fpe + r? Zu,u,p,o CusuCpSaV Y Flun Fpo

i _3
_,_5 ) W(’y“y”y” + Py Yeuee, ZU SC,FWFPU} M72 .. ] (306)

Considering the spinor structure and the order of a

1 [ @Ak s
_2/7r/a(277) brve [W T ma_‘_rz l_cu)}M ’

3a 1 y w v v

X e [—4 Z VYAV epcv oo Bl Fpe + o Z (VY + APV ) epcvepso Fuw Fpo
VP50 VP50

(307)

For the first term

34 w/a dik s
o1 ) H [ ma +r Z (1—c, } Z trys [V P Jepcucpcotre Fluy Fpe M2
—r/a VP50

3 4 wpo w/a dik B
16 —€ trcF l/FpO' /ﬂ-/a W E[CM [ma-i—T‘Zu(cu - 1)] M

For the second term

3atir [7/@ d4l<: -5
-3 / tr75 127 Sa Z YA AP+ AP VepeyCpSo By Fpg M ™2

N

(308)

m/a BP0
34 w/a d4k
- Czlr/ Ja (2m)* Z Sacucvcﬂsoeul/patchWFpaM_%
—m/a (&T

o, LV, 0,0
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Since s, is an function, only o = « remains

3atr [0 gtk 5
= / 1 Z cucl,cpsie‘“””‘51“0}7’,“,}7’,,(,—/\/17E

4 ~n/a (27) RN N
4 5
d k4 Hcﬂ (Z ) ~3, (309)

3 4
R

As a result, we obtain

1
_itr’)ﬁaDov(x)é(wa y) |ac:y
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e
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[SI[S;
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= m[(ma,r)e””patrcFuprg (310)
™

where

3
I(ma,r) = 82/ d4kHCu

In the following, we evaluate the factor I(ma,r). First, we change the integration variable
from k, to sink, by splitting the integration region into —7/2 <k, < 7/2 and 7/2 <k, <
37 /2 in each direction. The original integration region has been split int 2* = 16 blocks, then
we have

ma—i——H"Z -1) —I—rzc]./\/l_ (311)

v

3

/ d*k H cu
3

¥ g 2
/ / dk161] / dkgCQ] / +/ dk‘gCg]
1
Z / dsieq - / dsoeo - / dsses - / dsseq
ep=%1

¥ (H) [ s 12)

ep==%1

/ + / dk4C4]
-3 /3

L E]
ol

= (£1,#1,%1,£1) specifies the individual block. Note that cosk, is expressed as ¢, =
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en(l1—s )1/ 2. Therefore we rewrite I(ma,r) as

I(ma,r)

% d4]{HcM ma+—|—rz —1) +r;CV

-5 (H )/1d43

ep==%1

ma—l——i—TZ{e 2y1/2 _ 1}+r23 e, (1 —s2)71/2

njot

[ {ma-ry (- cp)}z]

B(s)™%/?, (313)

where

Bls)= Y st {matr Y (e -2V - ). (314)

To reproduce the correct coefficient of the chiral anomaly for a single fermion, one would
expect I(ma,r) = 1 at least in some parameter region. In fact, the factor I(ma,r) is topolog-
ical. It does not vary under an infinitesimal variation of the parameters ma and r. We note
the identity

ma + ’I“Z {Gu(l — 8;21)1/2 - 1} + TZ 8/2t€u(1 - 5/21)1/2]

Ju o v

ma-l—rZ{ L(1— )12 - 1}]

_ L, 72 9 _5/2
= B(s)+ < B(s) zuj O—%B(s) . (315)
This identity is easily shown, for the right-hand-side of it

B2y L p(s) P

w 0s,,

:—Z [3 — s (ma—i—rz [ 1—3 /2 _ 1})-(7“206,)(1—52)_1/2)}. (316)

Then we have

B+ 5B, SoB)
=3 2 fmatr Y (@ - -}

DI { (ma+r [e—s22-1])- (@p ;e,,@_sg)—wﬂ
ma+rz {eﬂ (1—s2)/2 - } —i—rZs eu(1 1/2] ma+ry {ey(l — )2 - 1}]

(317)

Using above identity, we obtain

0 3 !
8ma1(m’r):_w Z (1;[6“) /_1d4s

B(s)™%/2. (318)
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And similarly,

(319)

When ma # 0,2r,4r, 6r,8r, B(s)fg is regular in —1 < s, < 1, then we can perform the
partial integration. We can show that dI(m,r)/0ma = 0I(m,r)/0r = 0.

aial(m,r)Z% Z <1;[€“) /_11d45 {6651 (SIB(S)_5/2)+6682(SZB(S)_5/2)

+i (833(5)_5/2) + 524 <S4B(s)_5/2>}

=0 (320)
0I(m,r)/0(ma) is zero since each term is an odd function with respect to s,.

1
%I(m,r) = —% Z (1;[ Eu) /_1 d*sa (4 - Z) [ep(l — si)

14

87r2 Z (H ) /11 d4sz 885,, (sl, [ep(l — si)% — 1] 3(5)75/2) (321)

ep=%1
=0 (322)

N[

~1] B(s)7?

As in the case of 0I(m,r)/0(ma), each term is an odd function with respect to each s, so
the integral is 0. Therefore, it is confirmed that the coefficients of I(ma,r) are stable and
topological for the mass m and the Wilson parameter r.

I(m,r) can be regarded as a function of the ratio of two parameters a = ma/r and the
Wilson parameter 7. When we fix «, for a # 0,2,4,6,8, I(m,r) is independent of the value
of r. Therefore, we evaluate it with a certain value of r and consider the limit » — 0. We
change the integration variable in I(ar,r) as s, — rs,,

I(m,r)

Bl gt g

—1/r
—5/2

2
Zs +{a+zep -2 1} : (323)

where the third term in the numerator is O(r?) is not necessary for the evaluation at r — 0,
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so we neglect it. Therefore we have

1/r
I(ar,r) zé Z <H€M>/ ds

ep=%1 o —1/r

y a+>, {el,(l — 7“23,%)1/2 — 1} (324)

2 5/2.
<Zps%+ {a—i-zpep(l —r2s2)=1/2 — 1} )

To consider the limit » — 0, we divide the integration region [—1/r,1/7]* of I(ar,r) into a
four-dimensional cylinder C'(L) = S® x [~L, L] and the rest R(L) = [~1/r,1/r]* —C(L). The
radius of S% is L (L < 1/r), and the direction of the cylinder is taken along the v-direction
in the numerator. For the latter integral I(ar,r) R(L), We can show that the limit of r — 0 of
the integral vanishes as L — oco. Therefore the integral becomes

lim I (ar,r)

r—0
E | | m L E _n2.2\1/2
3 < 6”) li lin d48 o+t v {EV(]' T Sz/) ]-}

:@e*:l:l L—oor—0 J_p 2\ 5/2
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_1 € a+2u(el’_1)
-a}210JfJ‘a+z;&p-n« (425)

1 oty (1) . . . . .
2 Tt S (e, =] is a step function and performing the summation about €,, we obtain

(vezese) | Tloew | at T, (0 —1) | #of (6) | Jaieien
(+1,+1,+1,4+1) +1 a 1 O(am/r)
(+1,+1,+1,-1)--- -1 a—2 4 —40(am/r — 2)
(+1,+1,-1,-1)--- +1 a—4 6 +66(am/r — 4)
(+1,-1,-1,-1)--- -1 a—6 4 —40(am/r — 6)
(—-1,-1,-1,-1) +1 a—38 1 O(am/r —8)

Therefore, the factor I(ma,r) is given by

I = lim [
(ma, ) = lim I(ar, )

= 0(am/r) — 46(am/r — 2) 4+ 60(am/r — 4) — 40(am/r — 6) + O(am/r — 8), (326)

where 6(x) is the step function.

D Asymmetric domain-wall fermion on a lattice

In this Appendix, we summarize the eigenfunction set of the squared of the asymmetric
domain-wall Dirac operator. There are three types of eigenfunctions in the z4 direction: (i)
edge-localized modes at x4 = 0, (ii)extended modes but only for x4 > 0, (iii) extended modes
at any z4.
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(i) Edge-localized modes at x4 =0
MM _ 2+ M )2+ M_ Th+T4 >0
¢i(1ge($4) _ + ( + +)( + ) > e ) ($4 = ) (327)
a(My — M_)(2+ My + M) e~ (24 S —a)
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(ii) Extended modes but only for z4 >0
) - \/27:‘[+| [I+eiw(m4+a) _ Ijre—iw(ac4+a)] (554 z ())7 -
1’+(JU4) - I k(xz4+a) < ( )
oyl (x4 £ —a).
1+ M_ a —iwa T iwa —iwa
+:1+M+ek— , Ip=e""—e
. D_ Iieiw(z4+a) _ Iie—iw(am-i—a) ($4 > 0)7
1 (z4) = ~[ k(zsta) } - (329)
D_1 el (x4 £ —a).
1 1+ M+ ka —iwa T 1+ M+ wa —iwa
=, _ = e — € 5 I, - (& —€
V2|l | 1+ M- T )

(iii) Extended modes at any x4
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