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1. Introduction

The present paper is devoted to developing an eigenfunction expansion
theory for the Schrodinger operator

(1.1) S=—-A+00) (yERY)

with a long-range potential Q(y)=0(|y| %), €>0, as |y|—>oco. This work is
a direct continuation of [12] and we shall make use of the results of [12] as main
tools throughout this work. Thus, as in [12], in place of the Schrodinger
operator S we shall consider the differential operator L with operator-valued
coefficients

(1.2) L= —§+B(r)+0(r) (rel=(0, ))
with
By = (- At I3

C(r)=0(rov) x (0= SN-Y),

(1.3)

S¥-1being the (N—1)-sphere and Ay denoting the Laplace-Beltrami operator
on S¥-1. L can be considered as an operator in L,(I, X), where X=L,(S"-?)
and Ly(I, X) is the Hilbert space of all X-valued functions f(r) on I such that
| f(r)| x is square integrable over I (| |y is the norm of X). Since L is repre-
sented as

(1.4) L=USU-!
by the use of a unitary operator U

(1.5) U: L(RY)EF(y)—rV-DY2F(ro)e LI, X)
(r=1lyl, 0o =ylreS"1

from L,(R") onto L,(I, X), L and S are unitarily equivalent, and hence all the
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results obtained for L can be applied to S with the aid of the unitary operator U.

The investigation of the operator (1.2) with a self-adjoint operator B(r) and
a symmetric operator C(r) in a Hilbert space X has been originated by W. Jager.
His paper [6] develops an eigenfunction expansion theory for L which can be
applied to the Schrodniger operator S with Q(y)=0(|y|~®?~%). Saito [8]~[11]
have extended the results of [6] to apply the Schrodinger operator. In [10] an
eigenfunction expansion formula for S in RY (N =3) with Q(y)=0(|y|~/2~%)
is given. On the other hand Ikebe [4], [5] have treated the Schrodinger
operator S directly and given a spectral representation formula for S with
O(y)=0(| y| ~W/2-%) by using essentially the same idea as the above works.

Now let us state the conditions imposed on the potential O(y)

Assumption 1.1.

(0) O(y) can be decomposed as Q(y)=0(y)+0O,(y) such that Q, and
O, are real-valued functions on R¥, N being an integer such that N =2.

(00) There exist constants C>0 and 0<E<1/2 such that Q,eC"(R")
and

(1.6) DO =CA+1y)7""  (yERY,j=0,1, -, m),

where D’ denotes an arbitrary derivative of j-th order and

m— | [2/€] (if 2/€ is an integer),

(1.7) .
[2/€]4+1  (otherwise),

[a] denoting the greatest integer # such that #<a. Further, we have

(1.8) Q=0 (lyI=1).
(0) 0,eC%R") and
(1.9) 10 I=CA+Iy)  (yERY)

with the same C, € as in (Q,).

Let Q(y) satisfy all the conditions of Assumption 1.1 except for (1.8).
Then, by replacing Q, and Q, by aQ, and (1—a)Q,+Q,, respectively, where
a(y) is a real-valued C> function such that a(y)=0 (|y|[=1), =1(|y| =2),
O(y) with the new Q, and Q, is considered to satisfy all the conditions of
Assumption 1.1. Hence (1.8) is a trivial condition.

In §2 we shall introduce the Green kernel G(r, s, k) which will be useful
in constructing the eigenoperator n(r, k) in §3. In §3 and §4, in addition to
Assumption 1.1, Q,(y) will be assumed to satisfy a stronger condition

(1.10) Q) =CA+1y1)*  (yERY).
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Under these conditions an expansion theorem will be shown in §4. In §5 we
shall discuss the general case where we assume Assumption 1.1 only.

As to the notations we shall follow [12]. The list of the notations is given
at the beginning of [12], §2.

2. The Green kernel

Let L be as in (1.2). We shall define the Green kernel G(z, s, k) (r, s€ =
[0, =), kEC™*) and investigate some properties of it. Let s&l, x& X=L,(S"-?)
and let /[s, x] be an anti-linear functional on H y?(, X)=UH,(R")" defined by

(2.1) s, 2], o> = (%, d()x  (p€H (I, X)),

( , )x denoting the inner product of X. Then it follows from Lemma 5.1 of
[12] that we have

(22) o) x=ll¢lls  (p€H (I, X)),

and hence /[s, x] € Fy(I, X) for any positive number v and the estimate
(2.3) KL, Alllly=(1+s)|xlx  (s€ 1, x€X, v=0)

is valid.?. Denote by v=9(-, &, s, x) the radiative function for {L, &, {[s, x]},
whose existence is guaranteed by the limiting absorption principle (Theorems
2.2 and 5.3 of [12]). Then, by the use of (2.2), (2.3), the interior estimate
(Lemma 3.1 of [9] and Lemma 5.2 of [12]) and the limiting absorption principle
((2.4) and (5.12) of [12]), we can easily show

(24) o) x=C(1+spP|x|x  (C=C(R), r[0, R], s, x€X),

8 being a fixed constant such that 1/2<8<<1/24-¢€/4, whence follows that a
bounded linear operator G(r, s, k) on X is well-defined by

(2.5) G(r, s, k)x = o(r, s, k, x) .

DErFINITION 2.1 (the Green kernel). The bounded linear operator G(r, s, k)
(r, s€l, keC+) will be called the Green kernel for L.

The linearity of the operator G(r, s, k) directly follows from the linearity
of /[s, x] with respect to x. Roughly speaking, G(r, s, k) satisfies

(2.6) (L—F)G(r, s, k) = 8(r—s),

1) Foru=Uv¥,v=Ud¢cH}B(I, X) (¥, b€ H,(R¥)) the inner product (u, v)s of H}B3(I, X)
is defind by (u, v)s=( , 9);, ( , ); being the inner product of H;(R¥). If N=3, then
(u, v)B is equal to (v, v")+ (u, v)o+(BY2u, BY?),, where ( , ), denotes the inner product
of Ly(I, X).

2) For the definition of Fy(I, X) and || |ly see the list of the notations of [12], §2.
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the right-hand side denoting the d-function. The following properties of the
Green kernel G(r, s, k) will be made use of further on.

Proposition 2.2. Let Assumption 1.1 be satisfied.

(1) Then G(-, s, k)x is an L, (I, X)-valued continuous function on
IXC+xX. Further, G(-,s,k)x is an X-valued continuous function on
IxIxC+xX, too.

(ii) G(0, r, k)=G(r, 0, k)=0 for any pair (r, Ky Ix C*.

(iii) Let (s, k, x)€IXC+x X and let ] be an arbitrary compact interval in
I—{s}. Then v(r)=G(r,s, k)x is an X-valued C* function on J with its derivative
o', /(r) is a strongly absolutely continuous X-valued function on | and is differen-
tiable almost everywhere on J with its derivative v’ €L,(J, X). We have v(r)€D
and (L—Fk®)v(r)=0 for almost all r< J®.

(iv) Let R>0 and let K be a compact set ot C*. Then there exists
C=C(R, K) such that

(2.7) IG(r, 5, k)|<C  (0<r, s<R, keK),

where || || means the operator norm.
(v) We have for any triple (r, s, k)€ Ix IxC+

(2’8) G(r) S k)* = G(s’ r, —}_8) ’
G(r, s, k)* denoting the adjoint of G(r, s, k).

Proof. (i), (ii), (iv) and (v) can be directly obtained by proceeding as in
the proof of Proposition 1.3 of [10]. Next let us show (iii). Let p(r) be a
real-valued smooth function on I such that the support of p(r) is compact in
I—{s} and p(r)=1o0n J. Set u(r)=p(r)v(r)=p(r)G(r, s, k)x. Then u satisfies
the equation (u, (L—F?)¢)e=(f, ¢) (€ UCT(R")) with f=—2p'v'—p'veE
Ly, X),,. Thus (iii) follows from Lemma 2.3 of [12]. Q.E.D.

3. The eigenoperator

The main purpose of this section is to construct the eigenoperator 7(r, k)
(rel, ke R—{0}) by the use of the Green kernel G(r, s, k) which was defined
in §2. In this and the following sections Q(y) will be assumed to satisfy both
Assumption 1.1 and (1.10) which enable us to apply the results of [12]. Using
Theorems 2.5 and 5.4 of [12], we shall first show some more properties of the
Green kernel in addition to Proposition 2.2.

Proposition 3.1. Let Assumption 1.1 and (1.10) be satisfied. Then we have

3) D is the domain of the Laplace-Beltrami operator Ay as in [12].



EIGENFUNCTION EXPANSIONS FOR THE SCHRODINGER OPERATORS 41

Cyk)  (keC*, Imk>0,r,s€]),
C,(k) min{(14+7)+8-5, (14-s)+-}
(ke R—{0}, r, s€]),

(3.1) G, s, )| < {

where C\(k) (Cy(k)) is bounded when k moves in a compact setin {keC*[Im k>0}
(R—A{0}). Further,

(3.2) o(ry ky {[f]) = S, G(r, s, kf()ds  in X (rel)

holds for amy radiative function o(-, k, {[f]) for {L, k, {[f]}, where k& C~,
fEL, (I, X) and the definition of {[f] is given in (2.6) of [12].

Proof. Let us assume that k=C* with Im2>0. Then it follows from
Lemma 1.7 of [9]Y that v=G(+, s, k)x (x€ X, s€I) belongs to H}'?(I, X). The
first estimate of (3.1) is obtained from (2.2), (2.3) with =0 and Lemma 1.7 of
[9]. Next let us show the second estimate of (3.1). Applying Theorems 2.5
and 5.4 of [12], and using (2.3) with vy =1+8—¢&, we have |G(7, s, R)x| y <
C(1+s) =% |x| x (r, sel, xeX, ke R— {0}) with C=C{(k), which implies that

(3.3) IG(r, 5, B)||<C(1+s)+-2  (r, sel, ke R—{0}).

The second estimate of (3.1) is obtained from (3.3) and the relation G(r, s, k)*=
G(s, r, —k) ((v) of Proposition 2.2). Finally let us show (3.2). If keC* with
Im k>0, then u=G(-, r, R)x= H (1, X) satisfies

(3.4) bi(u, ¢) = (4, ¢)s+((C(+)—1=Fu, $)o = (%, $(r))x
for all p€Hy?(I, X). Set in (3.4) p=10(+, k, {[f]), where fEL,(I, X) with
compact support in I. Then it follows that
(3.5) (% 0(r)x = bi(v, w) = (f, wo = (1, f)o

= | G s, W),
Since ¥ X is arbitrary, we arrive at (3.2). If ke R— {0}, then we can appro-
ximate k by {&,} (k,=C*, Im k,>0) to obtain (3.2), where we have made use
of the continuity of the radiative function o(-, &,, {[f]) with respect to k, and

the estimate (2.7) in Proposition 2.2. 'Thus (3.2) has been established for keC+*
and f& L,(I, X) with compact support in I. Approximate f € L, 5(I, X) by {f,},

4) Note that in the case of N=2 the result of Lemma 1.7 of [9] is valid by the following
modification: v in HyB(I, X)N Ly,y(I, X) and
lgrad ¢z, yre>+I18 1z, cR=CII v

with ¢=r"W2gy, and C=C(ky, 7), where || ”zz ,(R® means the norm of L, y(R?%)=
Ly(R?, (1+1yl|)2dy). -
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where f,& L,(I, X) with compact support in 7, and take note of (3.1). Then
(3.2) will be proved completely. Q.E.D.

Let s€l, x€X and let p(t)=p,(t) be a real-valued, smooth function on I
such that p(t)=0 (¢=s+1), =1 (¢=s+2). Let u(y, k) be as in (2.12) of [12].
Then Theorems 2.4 and 5.5 of [12] can be applied to v=p(r)G(r, s, k)x (xE X,
ke R— {0}) to show that there exists the strong limit

(3.6) a(r, k, x) = s—lim e=*"OG(r, r, k)x in X .

Here it should be noted that v is the radiative function for {L, k&, {[f]} with
f=—2p'v"—p"’v. It can be easily shown that a(, k, x) is linear with respect to
x. On the other hand the estimate | a(r, &, x)| y =< C(1+4s5)'*3-%| x| 5 follows from
Proposition 3.1. Therefore the bounded linear operator 7(r, k) is well-defined by

(3.7) n(r, k)x = s—lim e~*¢NG(¢, 7, k)x

DEFINITION 3.2. The bounded linear operator 7(r, k) (rel, ke R—{0})
defined by (3.7) will be called the eigenoperator associated with L.

The appropriateness of this naming will be justified in the remainder of this
section (especially in Theorem 3.5).

Proposition 3.3. Let Assumption 1.1 and (1.10) be satisfied. Then we have
3.8) s—lim G(r, s, —k)e™* ¢ Hx = p*(r, k)x in X

for any triple (r, k, x) I x (R— {0})x X, where n*(r, k) is the adjoint of n(r, k)
and p(y, k) is given by (2.12) of [12].

Proof. Let us first note that G(r, s, —k)e™*¢Px converges weakly to
n*(r, k)x as s—>oco. Suppose that there exist ,>0, k,& R— {0}, x,= X and a
sequence {s,} such that |v,(r))—7*(r,, —ko)x,|x=8, holds for all n=1, 2, -
with some §,>0, where we set v,(r)=G(r, s,, —ko)e*“r*x,. By using the
interior estimate (Lemma 4.1 of Jager [6] or Lemma 3.1 of [10]) and using (3.1)
it can be seen that the sequence ||v,||5 .z is bounded for each R>0. Since
the imbedding

(39) H(])’B(Iy X)Ioc - LZ(I, X)hn'

is compact by the Rellich theorem, there exists a subsequence of {v,}, which
is denoted again by {v,} for the sake of simplicity, such that {v,} is a Cauchy
sequence in Ly(I, X),,. Make use of the interior estimate again. Then we can
show that {v,} is a Cauchy sequence in Hy?(l, X),,. Therefore the estimate
(2.2) can be applied to see that {v,(ro)} is a Cauchy sequencein X. Thus v,(7,)
converges strongly to »*(r,, ko)x,, which is a contradiction. Q.E.D.
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Let us summarize these results in the following

Theorem 3.4. Let Assumption 1.1 and (1.10) be satisfied.

(i) Then
(3.10) n(r, k)x = s-yrg e e G(s, 7, R)x in X
and ’
(3.11) 7¥(r, k)x = s'l,if.} G(r, s, —k)e*cbx in X

for any triple (r, k, x)€Ix (R—{0})x X.
(i1) The relation

(3.12) 2tk(n(s, k)x, n(r, k)x')x=({G(r, s, k)—G(r, s, —k)}x, x’)x

holds for any x,x’€X and any r,s€I. n(r, R)x is a strongly continuous X-valued
function on I x (R— {0}) x X.

(i) v=n*(-, kyxeHy5(1, X),,. and v satisfies the condition (1)~(3) given
in Lemma 2.3 of [12] and

(3.13) (L—k)y@r) =0 aerel,

where rel, keR— {0}, x€X. 7*(r, R)x is a strongly continuous X-valued
function on I x (R— {0})x X.
(iv) We have the estimates

(3.14) lln(r, B)l| = [[n¥(r, B)| < C(14n)ee-02  (rely,

where || || means the operator norm and C—=C(k) is bounded when k moves in a
compact set in R— {0}.

Proof. (i) follows from (3.7) and Proposition 3.3. (ii) can be obtained in
quite the same way as in the proof of Theorem 2.9 of [10]. By proceeding as
in the proof of Lemma 2.8 of [10] and the proof of Theorem 2.9 of [10] we can
show (iii). Finally (iv) can be obtained from (3.12) and (3.1) with s=7, '=x.

Q.E.D.

Theorems 2.4 and 5.5 of [12] can be also used to define one more important
operator from L, ;(I, X) into X. For any fixed k= R— {0} let us define a linear
operator (k) from L,,.;_.(I, X) into X by

(3.15) F(R)f = s—lim e *o(r, k, [f])  in X,

where v=9(-, k, {[f]) is the radiative function for {L, &, {[f]}. Let {r,} be a
sequence which satisfies v’(r,)—iko(r,) >0 in X. It follows from the Green
formula that
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(3.16) (fs 0,010 = (s o rp = (@(ra), 0'(rs)—iko(r,))x
—(©'(r)—tko(ry), o(r,)x—2ik| e ™" 0(r) | &

Letting # —co, and taking note of Theorems 2.5 and 5.4 of [12], we arrive at

(3.17) |F(R)f 5=k Im(f, )| = [k| T CE)IISIIF

and hence (k) can be uniquly extended to a bounded linear operator on
L, s(I, X).

DerFINITION 3.5. We denote again by (k) the above bounded linear
extension of F (k).

The operator norm ||F(k)|| of (k) is bounded when k& moves in a com-
pact set contained in R— {0}. The following formula, which will be used in
§4, can be easily obtained by starting with (3.16).

Proposition 3.6. Let f &L, (I, X) and let v(-, k, {[f])=v be the radiative
function for {L, k, {[f1} with ke R— {0}. Then we have

(3.18) (@, fo—(f, )0 = 2ik|F(R)f % .
The following Theorem gives a relation between 7*(r, k) and F (k).
Theorem 3.7. Let Assumption 1.1 and (1.10) be satisfied.
(1) Let ke R—{0}. Then n*(-, R)x&L, I, X) for any x&X with the

estimate
(3.19) ll*(e, B)xll s=C x|y (x€X),

where C=C(R) is bounded when k moves in a compact set in R— {0}.
(i1) The relation

(3.20) (*(+, B)x, f)o = (%, F(R)f)x
holds for any triple (k, x, f)E(R—{0}) X X X L, (I, X).

This theorem can be proved in the very same way as in the proof of Prop-
osition 4.3 of [10], and hence the proof will be omitted.
Finally we shall show a theorem which gives a relation between (k) and

7(r, k).
Theorem 3.8. Let Assumption 1.1 and (1.10) be satisfied. Then we have
(3.21) F(R)f = Sl’r)(r, k)f(r)dr

for any feEL,q(I, X) with B> (2+8—E)/2 and any ke R—{0}, F(k) being
given in Definition 3.5.
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Proof. Let us first assume that f belongs to UCF(RY). Then the change
of the order of integration in (3.20) enables us to obtain

(3:22) (= [ 7 DAOEr) = FWNx,

by which (3.21) is implied. Let us next consider the general case. Then,
noting that |[n(r, k)|| < C(1+7)*+3-9/2((3.14)), we can approximate f in L, g(, X)
(B>(2+8—¢)/2) by a sequence {f,} c UCF(R") to obtain (3.21). Q.E.D.

4. Expansion theorem

In this section we shall assume, as in the preceding section, that Q(y)
satisfies (1.10) in addition to Assumption 1.1. Now let us show an eigenfunc-
tion expansion theorem associated with a self-adjoint realization of the operator
L in LI, X).

As is well known, under Assumption 1.1, the Schrodinger operator S
restricted to C7(RY) is essentially self-adjoint in L,(R¥)®. Its unique self-
adjoint extension will be denoted by M. Then we have

{ Mp = Sep
D(M) = Hy(R")?.

Now let us define a self-adjoint operator T in L,(I, X) by T=UMU 7, i.e.

{ T¢= Lo
9(T) = UH,R").

4.1)

(4.2)

Set R(z; T)=(T—=z)"! and denote by E(-; T) the spectral measure associated
with T. It can be easily shown that T is bounded below and the essential
spectrum o,(7T) of T is equal to [0, o). We can also show by the limiting
absorption principle that the spectrum of T is absolutely continuous on (0, =)
(cf. Proposition 1.5 of [10]).

Lemma 4.1. Let A be a compact interval in (0, o) and let f <L, g4I, X)
with 8> (2+8—¢&)/2. Then

(43) E@; D o= 2| | 2t sy | a
— S\/K% ) Sl'q(r, —RYf(r)dr ;dk,

where \/ A= {k>0[k*c A} and n(r, k) is as in §3.

5) See, for example, Kato [7].
6) D(W) denotes the domain of W.
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Proof. Let us first note that R(z; T)g=1v(-, /2, {[g]) for zEC—R
and gL, (I, X). Here /= is the square root of z with Im+/2=0 and
o(+, \V/ 2, {[g]) is the radiative function for {L, /2, {[g]}. In fact this follows
from the uniqueness of the radiative function and the fact that R(z; T)g€
UH,(R"). Moreover let us note that

(4.4) lim R(k*£ib; T)g = o+, L|k|, {[g])  in Ly, o], X)
(ke R—{0}, gL, (I, X)),

which follows from the continuity of the radiative function. Then from the
well-known formula

45 (BA; T, fh
= @ui)lim | {(Ra-+ib; T)f, Plo—(f, Ra-+ib; T)f)i} da
— (2wi) ™ lim gA{( f, R(—a—ib; T)f),—(R(a—ib; T)f, f)o}da
we obtain, setting o(+, &, {[f])=v(k),
(4.6)  (E(A; DS, fo
— @ai) | (v @) f~(f, o/ @)i}da
= @riy* | A(fy o=V On—(e(—v/@), F)}da,

and hence by the use of Proposition 3.6 and Theorem 3.8 we arrive at

(*.7) (B85 T o= §, 22| [ 26, v a)fr)ar [ da
_ SA\/TE S, o(r, —/@)f(r)dr| da,

whence (4.3) easily follows. Q.E.D.

Starting with the Lemma 4.1, we can proceed quite similarly as in §3 of
[10] to show an eigenfunction expansion theorem (or to be more exact, an eige-
noperator expansion theorem). Set

(4.8) n.(r, k) = :}:/\/% thn(r, +k) (rel, k>0).
n¥(r, k) denote the adjoints of 7.(r, k), respectively, i.e.,

4.9 7¥(r, k) = :M/ g tkn*(r, k).
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Using these operators we can define the “generalized Fourier transforms” <.

from L,(I, X, dr) into L,(I, X, dk) by

(4.10) (F.)k) = 1.13;13. S:ni(r, R)f(r)dr  in LI, X, dk).
&F, are bounded operators and their adjoint F* have the forms
(4.11) (F*F)(r) = l}if}} S:_lnf(r, R)F(k)dk in Ly(I, X, dr)

(see Lemma 3.3 of [10]). Thus we obtain

Theorem 4.2 (expansion theorem). Let Assumption 1.1 be satisfied. Let
B be an arbitrary Borel srt in (0, o). Then

(4.12) EB; T)=9iX 5.,
where X, is the characteristic function of B, i.e., X 5(k)=1(F*€B),=1 (k*eB).
Especially we have

(4.13) E((0, ); T) = F*TF., .

Since the proof is quite the same as the proof of Theorem 3.4 of [10], it
will be omitted.
Now we shall show a key lemma to the proof of the orthogonality of ..

Lemma 4.3. Let ke R— {0}, x&D. Let £(r) be a real-valued, smooth
Sunction on [0, oo) such that (r)=0 (r<1), =1 (r=2) and set f=(L—Fk?)(Ee™x).
Then F(k)f=ux.

Proof. As is easily seen from (3.8) of [12], f belongs to L, s(1, X). It can
be easily checked that v,=£e™*x is the radiative function for {L, &, [f]}. For
each positive integer m v,, and u,, denote theradiative functions for {L, &, /[f]}
and {L, k, {[g,]}, respectively, where f,=X,f, g.=(X,,—1)f and X,(r) is the
characteristic function of the interval (0, ). Then, by the relation v,=v,+u,,
and the definition of < (k)f,,, we have

(4.14) F(R)f = s—lim {0 Doy(r) e Py, (1)} .

The first term of the right-hand side of (4.14) is equal to x, and hence the second
term has the limit x,,, i.e., we obtain

(4.15) F R, = x+x, (m=1,2, ).

On the other hand, setting f=g,, v=u,, in (3.16), letting m to infinity and using
the limiting absorption principle, we arrive at
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which, together with (4.15), implies
(4.17) |F (k) fu—2%] x =C(R)Igll5 -

Since (k) is a bounded linear operator on L, (I, X), we let m to infinity to
arrive at F(k)f=x, where we should note that f,, and g, converge to f and 0 in
L, (I, X) as m— oo, respectively. Q.E.D.

Theorem 4.4 (the orthogonality of &F.). Let Assumption 1.1 and (1.10)
be satisfied. Then &, transform LI, X, dr) onto LI, X, dk).

Proof. We can proceed as in the proof of Theorem 4.1 of [10]. It suf-
fices to show the following: If FeLyl, X, dk) and ., F=0 (F-F=0) in
L,(1, X, dr), then F=0. Let us assume that ¥ ,F=0. Then there exists a
null set e such that n*(r, k)F(k)=0 for (r, k)& x ((0, c=)—e) (see Lemma 4.5
of [10] and the proof of Theorem 4.1 of [10]). Therefore, taking account
of Theorem 3.7, (ii), we obtain

(4.18) (F(k), F(R)f)x =0 (k€(0, >)—e)

for any fe L, (I, X). Take f asin Lemma4.3. Then we obtain (F(k), x),=0
for any x€D and any kede It follows from the densness of D in X that
F(k)=0 for almost all k=(0, o), and hence F=0. The case of F- can be
treated quite similarly. Q.E.D.

5. The case that Q,(y)=0(|y| ™)

In §3~84 we have assumed that the potential Q(y)=0(y)+O,(y) satisfies
not only Assumption 1.1 but also (1.10). In this section, however, we shall
construct the eigenoperators and show the expansion theorem under Assump-
tion 1.1 only. The fundamental idea is to approximate Q,(y) by a sequence
{01.(»)} of short-range potentials, where Q,,(y) satisfies the condition |Q,,(y)I
=C(1+|y|)? (y=R") uniformly for n=1, 2, ---.  We may take, for example,

(5.1) Ou(M=pr(lyN0(y) (r=1,2,-),

where p,(r)=p(r—n) and p(t) is a real-valued, smooth function on (— oo, o)
such that p(t)=1 (¢<0), =0 (¢=1) and 0=p(#)<1. We set

Sn = —A+Qo(y)+an(y) ’

| L= =LA BOHCO+Culr) (Cul)=Qulre)).

(5.2)

The main tool in this section is Theorem 4.1 of [9] which gives a uniform
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estimate for the radiative function v,(-, &, {) for {L,, k, {}”. Since all the
results of the preceding sections can be applied to L,, we can define bounded
linear operators & (k) (ke R— {0}) from L, s(I, X) into X. The eigenoperators
7,1, k) ((r, k)€ Ix (R—{0}) on X are also well-defined.

Proposition 5.1. Let Assumption 1.1 be satisfied and let 7,(r, k) as above.
Then the operator norm ||n,(r, k)|| (=||n¥(r, k)||) is uniformly bounded when n=1,
2, -+, and r and k move in a bounded set in I and compact set in R— {0}, respecti-
vely. For each pair (r, k)€1 x (R—{0}) there exists a bounded linear operator
7(r, k) on X such that

(5.3) s—him 7,(r, k)x = 7(r, k)x in X

for any x€ X, and (it) of Theorem 3.4 is satisfied.

Proof. Using the Green formula and proceeding as in the proof of Lemma
3.3 of [8], we have

(54) ({Gn(r: S, k)_Gm(r) S, _k)}x’ x/)X
+] (Cu—Ca®1G.tt 5, By, Gult, 7, Bz

=2tk(n,(s, R)x, (7, R)x')x
(myn=1,2, -, ke R—{0}, rk, s€I),

where G,(r, s, k) is the Green kernel for L,. Since the left-hand side of (5.4)
tends to ({G(r, s, k)—G(r, s, —k)}x, x’)x as m, n—>co by Theorem 4.1 of [9], it
can be easily shown by setting s=r and x’=x in (5.4) that {n,(r, k)x} is a
Cauchy sequence in X and that ||n,(r, k)|| is uniformly bounded. By the
use of these facts we can prove the existence of 7(r, k) which satisfies (5.3). At
the same time the relation (3.12) is obtained, whence follows the continuity
of 7(r, k)x, too. Q.E.D.

Proposition 5.2. Let Assumption 1.1 be satisfied and let F (k) be as above.
Then the operator morm ||F (k)|| is uniformly bounded when n=1, 2, --- and k
moves in a compact set in R—{0}. For each k& R— {0} there exists a bounded
linear operator F(R) from L, (I, X) into X such that

(5.5) s—lim F (k)f = F(k)f inX
for any f €L, §(I, X) and (3.18) holds good.
Proof. Denote by v, the radiative function for {L,, k, {[f]} with

7) In the case of N=2 we have to modify the proof of Theorem 4.1 of [9]. But we shall not
find any difficulty in the modification (cf. §5 of [12]).
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fE€L, -1, X). Then by the Green formula and the definition of & (k) we
have

(5:6) (@ o= (s Vot ((Crn—Cin)0s V)o = 2K(F (R)f, Fo(R)f)x -

From the boundedness of the operators & ,(k), &, (k) and the continuity of the
radiative function it follows that (5.6) is valid for all f&L, (I, X). As in the
proof of Proposition 5.1, by starting with (5.6) and making use of Theorem 4.1
of [9], {Z.(k)f} can be shown to be a Cauchy sequence in X and (3.18) is seen
to hold good. Q.E.D.

Proposttion 5.3. Let Assumption 1.1 be satisfied and let 73¥(r, k) be as above.
Then, denoting by n*(r, k) the adjoint of n(r, k), we have

(5.7)  lm¥(-, R)x||-s<C(k)| x| x (keR—{0},xeX,n=1, 2, ),

C(k) being bounded when k moves in a compact set in R— {0}. 75(-, k)x converges
to n*(-, k)x in L, (I, X)NH}E(1, X),, for any pair (k, x)€(R—{0})xX.
¥(r, k) satifies (132) of Theorem 3.4. Further, we have

(5.8)  7¥(-, B)x = n¥(-, B)x—o(-, —k, l[g]) (X, ke R—{0}),

where 17, R) denotes the eigenoperator for L(,:—;Z—f—B(r)—f— Cy(r) and v(-, —k,
r

{[g)) is the radiative function for {L, —k, {[g]} with g=Cm¥(-, k)x®.

Proof. Set w,= G-, s, —k)+x—G,(-,s, —k)x, Gr, s, k) being the
Green kernel for L,. Then w, is the radiative function for {L,, —&, {[A]},
h,=C, G|+, s, —k)x, i.e., G(r, s, —R)x=G((+, s, —R)x—v,(+, —k, {[h,]). If
we replace x by e™*¢Px and let s—oo, then we obtain from Proposition 4.3
735 (r, R)yx=n¥(r, k)x,—v(-, —k, {[g,]) with g,=C,7¥(-, k)x. Further, let n—oco.
Then by Theorem 4.1 of [9] 7¥(-, k)x converges to 7*(-, k)x in L, (I, X)N
Hy5(1, X),, and the relation (5.8) is valid. The rest of the statement can be
easily justified by using (5.8). Q.E.D.

Now that the eigenoperator 7(r, k) has been constructed and the pro-
poerties of %(r, k) have been investigated, the expansion theorem (Theorem 4.2)
and the orthogonality of the generalized Fourier transforms (Theorem 4.4) can
be easily shown.

Theorem 5.4. Let the potential Q(y) satisfy Assumption 1.1. Then all

8) If we denote the radiative function v(-, &, f) by (L —k?)"1f, then (5.8) can be represented
as

7*(e, B a={I—(L—(=k)?)'Ci}n*(+, B) %,

where I means the identity operator.
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the results of Theorems 4.2 nad 4.4 hold good, i.e., the generalized Fourier trans-
forms F, can be well-defined by (4.10). (4.11) and (4.12) hold. F. transforms
Ly(1, X, dr) onto L1, X, dk).

Proof. Let feLy I, X) with compact support in I. Combine (3.18)
with

(5.9) F(R)f = S, o, fd (ke R—{0}),

which is obtained by letting #—occ in (3.31) with (k) and 7(r, k) replaced by
&F.(k) and 7,(r, k), respectively. Then it is easy to see that (4.3) in Lemma 4.1
is valid for any f € L,(I, X) with compact support in I. Thus we can show the
expansion formula. Let us show the orthogonality of &F,. The essential point
of the proof is to show the following: if 7*(r, k)x=0 for all r& 1, then x=0. In
view of (5.8) it follows from the relation #*(r, kK)x=0 (r&1I) that 7(r, R)x =
o(r, —k, {[g]), and hence 7{(-, k)x is the radiative function for {L,, —k, 0}.
Here we should note that 7§(-, k)x satisfies the equation (L,—k?)v=0. Because
of the uniqueness of the radiative function we have 7§(r, k)x=0 for all r&1.
To 7yr, k) we can apply the same argument as in the proof of Theorem 4.4.
Thus we have x=0. Q.E.D.

6. Concluding remarks

1° The expansion theorem for the Schrodinger operator. The expansion
theorem (Theorems 4.2 and 5.4) for the operator T can be directly translated
into the case of the self-adjoint realization M of the Schrodinger operator S as
follows (cf. Theorem 5.10 of [10]): Let us define the generalized Fourier trans-
. from L(RY, dy) onto L,(R", d§) by F,=U7'F .U with the unitary operator
U,=kW-972 from L,(RY, d£) onto L,(I, X, dk) (k=|£|). If the bounded
operators #.(r, k) (r €1, k>0) on X=L,(S¥!) are defined by #.(r, k)=
r~(N-DR2R-(N-D/2y (y k), then we have

. (iF)(g):l.g;@.s:(ﬁf(r, R)F(r)(o'y¥dr  in L(RY, dg),
| @om=1im | % HoENeR R in LR, dy),

where y=rw and &=ko’. Further the relations E(B, M)=3G*x \/EQ" . hold
good for an arbitrary Borel set B in (0, o), E(-, M) being the spectral measure
associated with M and X, being as in Theorem 4.2. As has been shown in

(5.52) of [10], &, are essentially the usual Fourier transforms when Q(y)=0.
2° Let us note that

(6.2) (Z(3)+E (@) +e(y, M) = (grad M))*,
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o(y) and A(y) being as in (3.6) and (2.13) of [12], respectively. Hence the
second relation of [12], (3.17) can be rewritten as.

(6.3) 2k 5I—~Qo(y) (grad?\(y))2|<c(1+|y|) -
3° The modified wave operators. The time-dependent modified wave

operators W, . for the Schrodinger operator with a long-range potential were

defined by Alsholm-Kato |2], Alsholm [1] and Buslaev-Matveev [3] as

(6.4) Wp,. = s—lim e/Me=itMo-iXt

typtoo

where M, is the closure of —A and X, is a function of M,. On the other hand
from the viewponit of the stationary method the sattionary wave operators W, .
should be defined by
(6.5) W, = F*F, .,
F,,+ being the the generalized Fourier transforms for M,. From the orthogo-
nality of the generalized Fourier transforms (Theorems 4.4 and 5.4) we can easily
see that W), . are complete. Recently the relation W, .=W, . is shown by
H. Kitada [13], [14] and T. Ikebe-H. Isozaki [15], whence follows the com-
pleteness of the time-dependent modified wave operators W, ..

4° In this paper and [12] we have treated the Schrodinger operator S by
transforming S into the differntial operator

(6.6) L= —2 4 B)+C0)

with operator-valued coefficients. Of course, as in Jager [6] and Saito [8]~
[11], we can start with the operator (6.4) and apply the resuts obtained to the
Schrodinger operator. Then, however, the conditions imposed on B(r) become
rather complicated than in Jiger [6] and Saito [8]~[11].

5° The case that the potential Q(y) has singularities can be treated in
essentially the same way. For example, we may replace the condition (Q,;) by
(Q) 0:€0,,1. with some o>0 and there exists R,>0 such that

(6.7) 10N =CA+-1yD™" (1¥[=Ry) -

Here Q,,,,, denotes the class of locally L, functions p(y) such that

(6.8) M= EI 4

ly=als1 | y—g | N-4*2
is locally bounded in RY.
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