|

) <

The University of Osaka
Institutional Knowledge Archive

Title Tissue growth mechanics that shape plant organs

Author(s) |pE[E, EH¥

Citation |KFRKZ, 2022, HEHwX

Version Type|VoR

URL https://doi.org/10.18910/87835

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Tissue growth mechanics that shape plant organs
FaEW#s'E % TEAE D kR R /)%

Fujiwara, Motohiro

Laboratory of Theoretical Biology, Department of Biological Sciences,

Graduate School of Science, Osaka University

RICRZFRZFZBEELEAER YRR BindmFrsi=



Contents

Abstract
Publication List
1. General Introduction
1.1 Tissue growth is indispensable for animal and plant organogenesis
1.2 Cell behavior and the contribution of force for organogenesis
1.3 Methods for predicting and verifying force loaded on organs
1.4 Overview of plant root
1.5 The aim of my thesis

2. Tissue growth constrains root organ outlines into an isometrically

scalable shape
2.1 Abstract

2.2 Introduction

2.3 Materials and Methods
2.4 Results

2.5 Discussion

2.6 Figures

2.7 Supporting figures

3. Distally localized proliferation imposes symmetric smoothing of

plant vascular boundary
3.1 Abstract

3.2 Introduction

3.3 Materials and Method
3.4 Result

3.5 Discussion

3.6 Figures

3.7 Supporting figures

4. General conclusion
Acknowledgements

References



Abstract

LM E) Ow B IXEARE TR CEZ 7R3, #E ORI T D kDR E Tk F
Do FEAIE. MIRREEIZ X0 MR O B BIMR AN EE S AR O TRBIME MRV O T, Ml
Gy MR R D 7 & AALE A HAE L TR E 2 TBAED, FEBRIT, MR o m=ehr
ENELIVZZERIRTIL, ROELHND, EOMILD 53R O J5 1 & A % fil
T HHHA L LTI S < DENRER SN TWD, JBITHFE Tix, XTESZH
BN THO W &M R EDF N e T 5 Z LRz, 2L, 7
DIET= & LI L~V O ST e BARIZ [RE S LT\ 5D, LI > T, Miflao s
RMEAC L DR EDS, B LUV TED X 9 R 2B EE 2 AR D D) FifE
FR+0THs, ZO—Kix, ERERTHE LSV ONORERHE LN LITH
%, 2T, FATBIEOMMRREICAI L CEREOIRIED 2 HELTX 2 /12N e 58t
TNEWEL, ZOFEHETNLVERWD Z LT, BB Z2EELMRERE ORI & 2
ZTCEHELL NETMTHZ ENTE T, RO TRNEFER E OHLFEIFEIC LD EED
ICHEE S T,

1 D BIFRDO ISR OMFETH LD (KA, RO
Sl MR Sy A AE T Z 2R My 25k Rk & &
. R—bBRZRT, ETEEMITICEID, v
AXTFT AT OEREMRDO R—LBRIF, A X &
FEOEERM TCOELSEN/NSLKFE L THHZ &%
REB LT, BML. HEHOEF LB AT, co A WIRREG R AR
K=k 7 F ) —hi & — T D 2R A Lz, B 7V —dhix., 7—F
e E@EEWIZ R oD PN ZERBIRTH 5, RIT, B2, ED X 9 70k
RIZEV AT TV =B ~ETAES N DO THIT B 72002, ARRIEIE (X A) D3E
PRI LT, RIFIEOlmER 2 E & L7 kG, SwEBi 3o ARl T @A i s &
DREDSTED, BEBPTIZESSDZ /N EL RV AT TV —dh# &b b
Molz, A7V —dhfgE AT 5 e T viE, mimaEE L T, —HhTH Ak
HINZ K- TENZAMTHD, ZONFET NV EESTHMBRELE LT, LTD2
DOIEAIMFRE DAL D53 HERLM RN XIET D LG Z STz, (1) RO T—EkD
O—FMIZWEHESCEFHET S, BLOL  (2) BOMECTHELZRV, FATMAR
JFEOBAEEBE LB ET VAMHBE L, 25 2 DOMMBMREEZEATHZ LT,
BT F V) —JROBPIERSND Z 2R Lz, ZORE, 7 U —iifRa4mT 5
—H B TE =R NNFRORHEBRIZITTZH VTV, —F T, b 2 DO/
EORFEZNENEATLE, R—LBRPFNDZ 2R L, ZORHEET L
DOTHNX, DHEDFEILNIRIN D puchi ZEFRAR & 53K DT RDEALD aurora 254K % H
W2 B R FHEBRIC L 0 EERIZ R— AR AN D 2 EPREES LTz, 205 OFERD




5. ROPLT—ERPO—FHAIIHR L THET S, BLO, ROMmTHE LR
W, W) 2 oDMREDS, REDT T U~ ETBIED Z LB MNIT LT,

2 HOROHEE AMBOTIE TH 5, v rA X
F RS OIROHUER AL, TP FINHE L 72 5 AHD
NS, o> b T ICERE 72 BRI, oM
RGBS 3 O L FRFRE RS (1 B), A
L BT HE O R MRS U 0TI, MR & L »
{8138 TR - I A CEER AT & 01 72 B (1 B), B RO R ORI
SIAORLE A A5 B PRI 35U T, WIRRRR | AR (R A A

T D ORBER & AT 5 ik A= O BN HL AR <

ATV, BpARICIE, IR SN M & B Uk U C Lk xR CBEAL 7= i AE
RS0 CIRFTANICEE 2, £7, FATHEE R EZ B L CTHERET VEAREL, =

WREBANT 52 ETHONRERORZFE LT, EORROMBII D5 671 %
BEETNVCTHERET D & BERELTIX, G D OB R 72 55 2 — 2
It LIS RS O JERRIS AR D Z & &2 FRI LTz, PRI L7TZ Z ORI 722 EHE
X, L——Z HWCTERE L ORI 2 E 3 2 FEBRIC L 0 EERICR 6N D Z &3 %
AES Tz, o T, B ORI T CRTMIC GRS 5 Z & TH O M REFIE M A E
Bl 2HAITH D &V RGNS, — 5T, BAERNCK LA BEICERDE 6Tl
72 HAN B EIRCIE, RT3 3 & Tz, HAN ZBARDIERPTH 72 oyl %
BEET /EA LSRR, ERANELNTIERL 2olz, £Z2C, HANERKD L
DB CORHBEEPEROWBOLNEZ2 72 LTWDHO0, FHE LT T I
JRFTHI 7R 53 G A i 2 TRIBFT TINS5 2 & THIGE LT, ZOREE, BEREN TnoyR
WCEVEROE NI N leoTe, Fio, HBEFRITKT L CRFRAREREMALE © 04354
DB OIANHFEIRADIEN Y Z3EAN LI T D & BEHROWE O NI A
{Tgole, ZOWGT, BERAMD D EMCDELNTND Z &R L, 202
EMD . BERD BEEN TRITE LR G AT CO RN b h e BE R U B e B
ThHHZ 2 TRLIRGELTZ, ZADDEEND, B FRBU XLV HIH Sz oH
IRB =V FORY— 2 LR LT R EREIS S 20 LCL BER & BRI
WWELMNZTHZ LM LT,

L, FEYIEE OTAEY OE BN REHET Y 7 2@ LT, &E 215k
ROBAIEZ Z TR D2 THIL, ERTEIETE D57 ik2 ML LT,



Publication List

1. *Fujiwara M., *Goh T., *Tsugawa S., Nakajima K., Fukaki H., and Fujimoto K., “Tissue
growth constrains root organ outlines into scalable shape” Development (2021) 148,
dev196253. doi:10.1242/dev.196253 (*Equal contribution)

I am preparing a submission of the contents in section 3 as follows:
2. *Fujiwara M., *Miyashima S., Matsushita K., Nakajima K., and Fujimoto K., “Distally
localized and symmetric proliferation smoothens plant vascular tissue boundary” (*Equal

contribution)



1. General Introduction

1.1. Tissue growth is indispensable for animal and plant organogenesis

Multicellular organs within the same species show the same shape with less individual variation.
The organs consist of tissues of internal structures, and the tissue growth forms the organ. The
fundamental challenge of developmental biology is to understand how tissue growth by the
behavior of individual cells achieves the reproducibility of organ shape.

Tissue growth is characteristic of each organogenesis. For example, in the wing
epithelium of fruit fly, a differential adhesion at the cell-cell interface positionally biases cell
rearrangement, resulting in forming a straight boundary between cell populations (Dahmann et
al., 2011). Such cell rearrangement has also been observed in spider embryogenesis during
active cell division (Hemmi et al., 2018). In sea urchin gastrulation, cell contraction at the apical
side promotes bending of the epithelium tissue that allows cells to inward into the embryo
(Keller et al., 2003). Therefore, the local and fluid cell behaviors, such as cell contraction and
rearrangement, primarily regulate tissue growth to determine animal organ shape (Dahmann et
al., 2011; Lecuit et al., 2007).

On the other hand, plant tissue is less fluid where the cell wall prevents cell
rearrangement, thereby fixing neighboring cell relations. Cell division and elongation are the
main processes of plant tissue growth. For example, in shoot apical meristem, the position and
direction of cell division form a new leaf primordium (Hamant et al., 2008). In leaf primordia,
cell division at the proximal side, followed by cell elongation, results in leaf elongation (Kuchen
et al., 2012). In roots, the direction of division and elongation at the root tip is strictly controlled
to determine the cell layer (Wilson et al., 2013). These results suggest that control of the
direction and position of cell division and elongation are indispensable for forming organs in
less fluid plant tissue. The genetic mechanisms such as phytohormone-dependent controlling the
direction and position of cell division and elongation have been extensively investigated. At the
root tip, the auxin distribution causes the cell elongation and division that form the lateral root
primordium (Péret et al., 2009). The orientation of the cortical microtubules at the surface of the
plant cells also controls the direction of cell elongation. Therefore, reproducible plant

organogenesis requires the precise control of cell division and elongation of tissue growth.



1.2. Cell behavior and the contribution of force for organogenesis

Cell shape and deformation are governed by cell mechanics, which explains how forces control
the cell division and elongation of tissue growth. It is essential to understand what forces
contribute to the regulation of tissue growth by molecular mechanisms to understand organ
formation. The relationship between forces and cell behavior regulation has attracted attention
(Kennaway et al., 2011; Bassel et al., 2014). In recent years, it has become possible to measure
local cell deformation and estimate mechanical parameters (e.g., cell junction and surface
tension, tissue stress) of tissue (Sugimura et al., 2016). Cell division and elongation cause stress
around cells during tissue growth. The stress regulates the direction of cell division and
elongation (Trinh et al., 2021). Molecular mechanisms linking force and cell growth include
auxin efflux carrier PIN, which controls the flow of phytohormones auxin. Auxin flow affected
the orientation of the cortical microtubules. This mechanism regulates cell division and
elongation by controlling the cell wall extensibility (Heisler et al., 2010). The importance of
forces acting on cells in the morphogenesis of plant organs is now well understood (Trinh et al.,
2021). However, our understanding of the forces is limited to localized processes because it is
difficult to measure the actual mechanics throughout the organ. Moreover, the forces that
determine the shape of organs are limitedly understood. Therefore, mathematical models that

recapitulate the mechanical tissue processes are useful to predict the forces loaded on organs.

1.3. Methods for predicting and verifying force loaded on organs

The models for the tissue mechanics have been developed to directly link cell behavior to tissue
deformation and represent the forces from tissue growth (Farhadifar et al., 2007; Honda, 1983).
The vertex model is one of the most useful models to understand how individual cell dynamics
drive tissue deformation (Aliee et al., 2012; Hamant et al., 2008), and predict the underlying
mechanical properties such as the differential adhesion and the mechanical stress loaded on each
cell (Lee and Morishita, 2017). The predicted stress loaded on cells can be verified by using
invasive experiments such as laser ablation and noninvasive ones such as atomic force
microscopy (Sugimura et al., 2016). In laser ablation, the mechanical pressure can be indirectly
measured by the deformation of the surrounding cells in response to the ablation for a target
cell. However, the mechanical understanding has been limited to cell-level behavior and its
effects on small cell populations, so it is lacking to understand the forces of tissue growth at the
organ level. Therefore, I aimed to develop a more realistic mathematical model by introducing
the quantitative data of developmental processes measured in vivo to estimate the forces of

tissue growth.



1.4. Overview of plant root

Plant roots are essential organs for plant growth, taking nutrients and water from the outside and
supporting the above-ground plant part. The root tip comprises root apical meristem (RAM) and
root cap (Wilson et al., 2013). The RAM has a group of root stem cells with proliferating
activity. Although a fraction of cells within RAM, called the quiescent centers, does not divide,
these cells serve as a scaffold for the stem cells by signaling them to maintain their proliferative
potential while preventing the surrounding stem cells from differentiation. The direction of cell
division in the RAM is regulated, forming a multi-layered tissue structure. The root cap covers
the RAM and is indispensable to protect RAM from the surrounding environment, such as soil.
The vascular tissue at the inside of the root contains the conducting tissue that carries water and
nutrients (Esau 1965). I focus on the shape of the root tip outlines and the vascular tissue
boundary as the target tissue growth system. The detailed background of each is explained in

Chapters 2 and 3.

1.5. The aim of my thesis

The present thesis aims to identify the tissue growth rule and mechanical forces that shape plant
organs. In Chapter 2, I study the root tip shape. In Chapter 3, I study the root vascular tissue
boundary. In both Chapters, I constructed a mathematical model by incorporating tissue growth
measured in vivo and try to reproduce plant organ shapes quantitatively. Using the mathematical
model, I predict the primary tissue growth and forces that determine the root shape. I further
establish the research method combining quantitative analysis and mathematical modeling with
experimental verification in vivo. The established research method allows me to identify the

tissue growth and the mechanical forces for forming the organ shapes.



2. Tissue growth constrains root organ outlines into an
isometrically scalable shape

Some figures in this thesis were obtained in collaboration with my colleagues, T. Goh and S.

Tsugawa. I clarified their contribution in each caption.

2.1. Abstract

Organ morphologies are diverse but also conserved under shared developmental constraints
among species. Any geometrical similarity in the shape behind diversity and the underlying
developmental constraints remain unclear. Plant root tip outlines commonly exhibit a dome shape,
likely to perform physiological functions, despite the diversity in size and cellular organization
among distinct root classes and/or species. I carried out morphometric analysis of primary roots
of ten angiosperm species and lateral roots (LRs) of Arabidopsis and found that each root outline
is isometrically scaled onto a parameter-free catenary curve, a stable structure adopted for arch
bridges. Using the physical model for bridges, I analogized that localized and spatially uniform
occurrence of oriented cell division and expansion force the LR primordia (LRP) tip to form a
catenary curve. These growth rules for the catenary were verified by tissue growth simulation of
developing LRP development based on time-lapse imaging. Consistently, LRP outlines of
mutants compromised in these rules were found to deviate from catenary curves. Our analyses
demonstrate that physics-inspired growth rules constrain plant root tips to form isometrically

scalable catenary curves.

2.2. Introduction

Plant root

Plant and animal organ forms (i.e. outline morphologies of organs) are defined by size and shape.
Organ forms became diverse across species as a consequence of adaptation to various
physiological and environmental conditions during evolutionary radiation (Darwin, 1859; Le Roy
et al., 2019; Maugarny-Cales and Laufs, 2018; Salcedo et al., 2019; Tsukaya, 2018). However,
organ forms share a conservative feature in each organ type (e.g. roots and leaves in plants, and
beaks and wings in animals) (Houle et al., 2017; Wang and Clarke, 2015). As a typical example
of similarity behind the diversity, organ outlines can collapse onto a single common shape across
species by rescaling of individual size (e.g., cannon-bone of ox, sheep, and giraffe (Thompson,
1917); beak of songbirds (Abzhanov, 2017; Campas et al., 2010)). The scaling of songbird beaks

is imposed by developmental programs shared among species (Abzhanov, 2017; Campas et al.,



2010; Fritz et al., 2014). While scaling of organ size (e.g. proportionality and allometry to body
size) has been extensively studied (Niklas, 1994; Schmidt-Nielsen, 1984), quantitative
assessments on the shape scaling and the underlying developmental constraints have been
reported in limited cases as mentioned above.

The outline of plant root tips commonly exhibits a domed shape in angiosperms, despite
diversities in size and cellular organization among species and/or in developmental processes
among root classes (Clowes, 2000; Hamamoto et al., 2006; Heimsch and Seago Jr, 2008). The
root tip plays a pivotal role in root growth by executing a wide variety of functions such as
penetration, anchorage, gravity perception, and nutrient and water uptake (Eshel and Beeckman,
2013). The root tip mainly consists of the root apical meristem (RAM) and the surrounding root
cap (Fig. S2.1A-C) (Kumpf and Nowack, 2015; Petricka et al., 2012). RAM organization is
diverse across species, as exemplified by open and closed meristem (Clowes, 2000; Heimsch and
Seago Jr, 2008), and the number of cell files and layers (Di Ruocco et al., 2018; Hamamoto et al.,
2006; Mellor et al., 2019). Even within a given individual, there are several classes of
developmentally distinct roots, such as primary roots (PRs), lateral roots (LRs) and adventitious
roots (ARs). PRs are established during embryogenesis (Petricka et al., 2012; ten Hove et al.,
2015), whereas LRs and ARs are post-embryonically initiated in existing roots and specific parts
of the shoot, respectively (Fig. 2.1A) (Lavenus et al., 2013). While internal morphologies of PRs
and LRs have been extensively studied at the level of cellular organization and shown to be largely
conserved (Petricka et al., 2012), how their outline morphologies have converged into a seemingly
similar dome shape and whether any mechanical impositions play a role to stabilize fixed root tip

shapes, if any, remain unknown.

Lateral root development

LR primordia (LRP) development is a suitable model system to investigate the nature of tissue
growth that governs the formation and maintenance of the root tip outlines (Goh et al., 2016; von
Wangenheim et al., 2016). In Arabidopsis thaliana (Arabidopsis), LRP originates from the LR
founder cells that are specified in the xylem pole pericycle in the differentiation zone (Lavenus et
al., 2013; Norman et al., 2013). LR founder cells undergo multiple rounds of coordinated cell
divisions and expansion to produce a dome-shaped LRP and emerges from the overlaying tissues
to extend into the soil (Goh et al., 2016; von Wangenheim et al., 2016). Several factors, such as
cell division rules arising from cell geometry and mechanical constraints by the overlaying tissues,
have been reported to affect the LRP outline (Lucas et al., 2013; Vermeer et al., 2014; von
Wangenheim et al., 2016).



Here, I performed morphometric analysis of the PR and LR tip outlines and revealed that
they are highly reproducible in both size and shape within a given species and regardless of the
root class. Statistical analyses showed that the outlines of different root classes and species were
isometrically scalable (geometrically similar); by scaling the width and the height of root tips with
an identical rate, the outlines commonly converge to a unique catenary curve. Simulations
incorporating cell division and expansion rules drawn from time-lapse observation of LRP
development identified tissue growth constraints as a major determinant for the geometry and
mechanics of the isometrically-scalable root tip shape. The developmental constraints identified

in this study govern the scalable diversity of root organ morphologies.

2.3. Materials and Methods

Plant materials and growth conditions

We used accession Col-0 as a wild type for analysis of root tip shape in Arabidopsis. For analysis
of multiple species, I selected one monocot (Allium fistulosum, Welsh onion), three rosids
(Cucumis sativus, cucumber; Viola mandshurica, violet; Arabidopsis), one caryophyllales
(Dianthus superbus, pink), and five asterids (Primula polyantha, primrose; Cosmos bipinnatus,
common cosmos; Daucus carota, carrot; Antirrhinum majus, snapdragon; Nemophila menziesii,
nemophila). All seeds except for Arabidopsis were obtained commercially (Sakata seed
corporation, Yokohama, Japan). puchi-1 (Hirota et al., 2007), auri-2 (SALK 031697) and aur2-
2 (GK403B02; (Van Damme et al., 2011)) have been previously described. 35S::LTI6b-GFP line
(CS84762) was obtained from the Arabidopsis Biological Resource Center. Seeds were surface
sterilized and sown on 1x MS medium solidified with 0.4% gellan gum containing 1% (w/v)
sucrose or on Arabidopsis growth medium (Okada and Shimura, 1992) supplemented with 1%

(w/v) sucrose and 1% (w/v) agar.

Imaging and image processing

For LR analysis, seven-day-old seedlings were fixed with 4% (w/v) paraformaldehyde for 30 min
at room temperature, washed twice with phosphate-buffered saline (PBS), and then cleared with
ClearSee solution including 0.2% (v/v) SCRI Renaissance 2200 (SR2200) for cell-wall staining
(Kurihara et al., 2015; Musielak et al., 2015). Images were obtained with a Nikon C2 confocal
microscope, with a 405-nm laser line for excitation of SR2200. For PR analysis, seedlings were
grown for several days until the first LR appeared and then observed by a confocal microscope

after staining with propidium iodide. Images were obtained with a Zeiss LSM710 confocal

10



microscope. Image segmentation was performed to detect shape and position of each cell using
the Fiji plugin Tissue Analyzer (Aigouy et al., 2010).

For time-lapse observation of LRP development, 4-day-old seedlings (35S::LT16b-GFP)
grown vertically were transferred into a coverglass-bottom chamber (LabTek, Thermofisher)
placed with a block of solid medium. Images of an identical primordium were obtained 6, 24, 30,
48 and 54 hours after gravistimulation with a Nikon C2 confocal microscope and processed with

ImageJ software.

Determination of root tip outlines and unification of the coordinate system

We analyzed the vertical sections of the angiosperm PR tips (Figs. 2.1A, S2.1A-C and S2.5A)
and Arabidopsis LR tips at different developmental stages (Fig. 2.1A). For both the PR and LR
tips, we determined the outline from the positions of the cell junctions along the dome surface
(Fig. S2.1D, E). For the PRs, we analyzed the region from root tip to the boundary between
meristem and elongation zone except for sloughing root cap layer (red dotted box in Fig. S2.1D).
The x- and y-axes were set parallel to the upper boundary at the opposite side of the tip and the
proximal-distal axis of the dome, respectively. In order to compare different root tip outlines, it
is necessary to objectively unify the coordinate system with setting the peak of the tip at origin.
Therefore, we define the origin of the coordinate system by the following three steps (see also
Fig. S2.1F): (1) the junction points on the outline were duplicated and turned by 180 degree (n
radian); (2) the duplicated positions were translated to satisfy that the maximum y of the original
one was equal to the minimum y of the duplicated one; (3) the origin of x- and y-coordinates were
determined as the mean of x of all points and the minimal y of the original points, respectively.
Given this unified coordinate system, the dome area and width at a height from the root tip are

comparable (Fig. S2.1G).

Radial Fourier series expansion

The radial Fourier series expansion enables to characterize the shape of a closed curve using the
radial information of the polar coordinate system (r;, 8;)derived from the cartesian coordinate
system (x;, y;) (Hong et al., 2016). The closed curve of root tip outlines was prepared by the above-
mentioned methods, (1) duplication and (2) translation, without loss of generality. In this set up,
i denotes the label of all junction points including the duplicated ones (Fig. S2.1F) up to the total
number of duplicated junction points (i = 1,2,+--,M; 0 < 6; < 2m). The radial Fourier series

expansion r(a) can be decomposed as,
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Ny

r(a) =ry+ ) [a, cos 2mna) + b, sin 2rna) |

n=1
N
=1+ Znil[cncos(n(Zna + CDn))] (Eqn. 2.1),
Ty = %foznr(a) da (Eqn. 2.2),
T Ary 2nmt; 2nmt;
an = WZ?;A—; (cos % —cos n: ) (Eqn. 2.3),
b, = —annz Zli\ili_g (sin —Zn”Tt”l —sin Zn:ti ) (Eqn. 2.4),

where a(0 < @ < 1) denotes a continuous normalized perimeter along the outline. ®, and c,
denote the angular phase and the amplitude, respectively, of the n-th Fourier mode. At; denotes
the normalized perimeter at the point (13, 60;). 4r; denotes the radial distance between two
successive junction points Ny= 200 in this study. In the explicit form, « is equal to t; /T with the

total perimeter of the outline 7" and At; and Ar; can be defined as,

; 2 2
Aty =t —t;, 4 = 3’:1\/(Xj+1 %)+ (¥j+1 = ¥)) (Eqn. 2.5),
Ari =Tiy1—7T; (Eqn 26)
The shape is characterized by normalized radial Fourier series expansion
(@ Ny [en
Tnorm (@) = % =1+ Znil i—ocos(n(Zna + CDn))] (Eqn. 2.7),

to eliminate the influence of the size on the shape. For the normalized radial Fourier expansion
r,{orm (a) of the sample j (j = 1,2,---,K) where K stands for the total number of samples, the
sample average with continuous outline can be calculated as

Tnorm(@) = %25:1 rnormj(a) (Eqn. 2.8).

12

An indicator of shape reproducibility S>"“, representing normalized error of shape, can be

evaluated by the root mean squared deviation from sample-averaged normalized shape

2

T 2
521/2 = Jin IOZ (rnorm(a) - rnorm(a)) da (qu’l. 29)9

where 521/ 2 = \/5—2 as described previously with regards to sepal shape (Hervieux et al., 2017;
Hong et al., 2016).

Statistical analysis of the dome shape

I fitted the outline of the dome to the following five functions: parabola (y = a,x?), catenary
(y = ay cosh(x/ay) —a, ), ellipse (y = bz —bz+/1—x%/az?), hyperbola (y = —b, +
by 1+ x2/a,?), and cosine (y = —ag cos(bsx) + ag), where a; (i=1, 2, 3,4, 5) and b; (i = 3,

12



4, 5) are fitting parameters. The hyperbola has a common mathematical nature (i.e. conic section)
to parabola and ellipse; catenary and cosine are mechanically stable functions under unidirectional
force (Block et al., 2006; Lockwood, 1961) (Fig. 2.2B) and the Euler buckling (Timoshenko and
Gere, 1961), respectively. Using these functions, I applied the non-linear least-squares (NLS)
method (Mor¢, 1978) to each dataset of normalized cell junction positions on the outlines of
multiple LRP samples at each developmental stage and PR samples from each species. I evaluated
the positional variation of the dome outline among samples on the basis of the sample standard

error (SSE) of the y-coordinate (height) from these functions defined by

SSE = \/Z(ydata - yfunction)z/(n -1 (Eqn. 2.10),
and the Akaike-Information Criterion (AIC) defined by
AIC =2k - 2In(L) (Eqn. 2.11),

which is the number of parameters in the model & (one for parabola and catenary, and two for the
other three functions) minus the natural logarithm of the maximum likelihood L (Akaike, 1974;
Burnham et al., 2002; Sakamoto et al., 1986). The AIC is one of the most popular and statistically
rigorous criteria, since the AIC of the best-fit function takes the minimum value. I computed
AAIC defined as the difference in AIC between a given model function and the lowest AIC model
function. Thus, the fitting function for which AAIC = 0.0 is the best model, whereas models with
larger AAIC values are not as good. Generally, models with AAIC < 2.0 have the potential to be
the best model, and those with AAIC < 7.0 cannot be easily rejected (Burnham et al., 2002). I
performed NLS-fitting and AIC calculation with the R interface using the minpack.lm package
(Elzhov et al., 2015). S. Tsugawa performed the cross-validation test which is one of the model
validation techniques, providing us how robustly the model will predict the data set without
overfitting or selection bias (Hong et al., 2016). In the test, a part of the data points (referred to as
the testing set) is validated based on the rest of the data points (referred to as the training set). In
our case, the training set was 99% of the junction points which were randomly selected, whereas
the testing set was the remaining 1%. The model validation was evaluated by the mean squared
error (MSE) between the fitting function from the training set and the testing set. Applying this
process to different training set i with different random seeds for N times, the final validation is

performed by
N mse;
=1y

the averaged MSE = };

(Eqn. 2.12).
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Formulation of tissue-mechanical simulations

The cell vertex model is useful for simulating the mechanical deformation of cells in tissues based
on the forces acting on each cell, in which the cell configurations are described as polygons that
have vertices that form cell junction subjected to mechanical force (Farhadifar et al., 2007; Honda,
1983). Cells change their shape based on the force balance represented as mechanical energy £
with dimensionless time and mass. The model is represented here by the ordinary differential

equations of the position vector 7 of each vertex:

-

ar dE
a Farea elasticity + Fiension = — a7 (Eqgn. 2.13),

E =Ync(An — Ag)? + X BijLij (Eqn. 2.14).
The area elasticity Fiurea elasiciny 15 €xerted on a vertex i by the cell face n to which the vertex i
belongs, while the area of cell 4, approaches the target area of Ay with normalized strength of the
elasticity. The tension Frension is €xerted on a vertex i by the connecting edges between vertices i
and j, where Fl..sion increases as the edge length between vertices i and j (L;) increases, depending
on the cell-wall extensibility f;. For all cells, we set c=1 pum 2, ;= 0.002 pm for horizontal edges,
and f;; = 0.004 um for vertical edges, which reproduced the average cell area and cell aspect ratio
of Arabidopsis wild-type cells in LRP at developmental stage IV (Goh et al., 2016). In addition,
plant cells undergo plastic deformation by the irreversible cell growth, which has been formulated
by multiplication of the excess turgor pressure over yield stress and the cell wall extensibility of
cell edge (Lockhart, 1965). In the present model, the plastic deformation was formulated by the
irreversible increase of the target area of cells, as described in detail below, instead of the edge
length in the Lockhart model (Lockhart, 1965). We integrated the cell vertex model numerically
using the Euler method and confirmed that the obtained results were not greatly influenced by the

choice of the temporal discretization size dt.

Cell division and expansion in simulations

For the initial condition of the vertex model, 20 cells were arranged horizontally (only 8 to 12
cells at the central region shown in Figs. 2.4, 2.5, S2.7, S2.8); the four cells (dark and light blue
in Fig. 2.4E) among the eight at the center subsequently divided, but the others did not divide
(white in Fig. 2.4E) during the wild-type simulation. For the boundary conditions, the vertices at
the basal end of the tissue could be displaced horizontally but not vertically (i.e. fixed at y = 0) to
mimic the high stiffness of the adjacent parental xylem cells, whereas those at the apical end were
displaceable in any direction. Below 40 pm of the LRP height, those at the apical end are adjacent

to an imaginal cell to mimic the overlaying parental cells with vertical thickness 36 um (4o = 36

14



um x 20 cells x 14 pm/cell = 10,080 um?; grey in Figs. 2.4, 2.5, S2.8). All the vertices at both
ends in the horizontal direction were fixed (at x =-140 pm and x = 140 pm, respectively).
During the stages with one to four layers, the timing and orientation (periclinal/anticlinal)
of cell divisions were set following the typical division rules in wild-type LRP (Goh et al., 2016;
von Wangenheim et al., 2016). First, two central cells (dark blue in Fig. 2.4E) simultaneously
underwent periclinal division. Second, these four central cells underwent anticlinal division while
two flanking cells (light blue cells, Fig. 2.4E) immediately outside those four cells simultaneously
underwent periclinal division. Third, the eight central cells (dark blue in Fig. 2.4E) synchronously
underwent two periclinal divisions, although cells at the outer layer divided a little earlier than
cells at the inner layer of Arabidopsis LRP (Goh et al., 2016; von Wangenheim et al., 2016). The
cell division plane was assumed to pass through the geometric center of the dividing cell with a
small rotational variation in the periclinal/anticlinal direction, which followed the Gaussian
distribution with the s.d. of 0.1 degree. Cells (dark and light blue in Fig. 2.4E) followed linear
growth in wild-type LRP (Goh et al., 2016); immediately after the previous division event, the

target area 4y was initially set as an average of 56 um? in cells, and temporally linearly increases
with % = 7.2um?*/hour. The cell division occurred when the cell area 4, (Eqn. 2.14) became

twice that of the initial target area, with a variation following a Gaussian distribution with an s.d.
of 5.6 um?. New target area Ay was set to half of 4, before the division event. After the four layers
stage, cells (dark blue in Fig. 2.4E) were additionally divided until the cell numbers identical to
wild-type stage VII LRP (Goh et al., 2016; von Wangenheim et al., 2016), where cell expansion
and division cycle were the same as the above, whereas the division plane was set to the short
axis of the mother cell with a rotational variation following a Gaussian distribution with an s.d.
of 0.1 degree.

To recapitulate the anisotropic growth of provascular bundle cells (Fig. 2.4A, D, right

panel), we introduced rapid anisotropic expansion of the two central basal cells (magenta in Fig.
2.4E) by linearly increasing Ao with % = 21.6 um*/hour and the same division cycle as the

above, and decreasing f; of the vertical cell edge (5; = 0.002 pum at the end of four layers to 5, =
0.0005 pum at the end of provascular cell expansion) over time, while keeping £; = 0.002 pum of

the horizontal cell edge.
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2.4. Results

Reproducible size and shape of root tip dome in Arabidopsis

PR and LR tips of Arabidopsis share an apparently common dome shape with a nearly perfect
rotational symmetry (Figs. 2.1A, S2.1A). In order to quantitatively evaluate the shape of
Arabidopsis root tips, we captured longitudinal optical sections of the tips of PRs, mature LRs
(longer than 5 mm as measured from the primary root surface), and young emerged LRs (less than
200 um as measured above; Fig. 2.1A; Materials and Methods). Root tip outlines were delineated
semi-automatically by marking the positions of cell-cell junctions along the outer surface of the
outermost cell layer (red points in the right panels of each root class in Fig. 2.1A), and then
projected to the spatial coordinate (x, y) (Fig. S2.1D-G; Materials and Methods). The size and
shape of the extracted outlines were apparently reproducible within each root class (Fig. 2.1B).
First, we quantified the size reproducibility based on the coefficient of variation (CV, i.e., the
standard deviation divided by the mean). The CV was within a range of a few percent for LRs (4—
7% for dome area, Fig. 2.1C; and 3—6% for dome width, Figs. S2.1G and S2.2), whereas slightly
larger for PRs (7-4% for dome area, Fig. 2.1C; 5-11% for dome width, Fig. S2.2). We then
assessed shape reproducibility irrespective of the size by normalizing the root tip outlines
(Hervieux et al., 2017; Hong et al., 2016). An indicator of shape reproducibility, which was
represented by the root mean squared error between the normalized outlines of individual root
tips and their average (Eqn. 2.9 in Materials and Methods; Fig. 2.1D), was found within a range
of 1-3% (Fig. 2.1E). Taken together, our analysis indicated that Arabidopsis PR and LR tips are
highly reproducible in both size and shape.

Tip dome outlines of PRs and LRs fit to a catenary curve and its essentially-
equivalent curve, a catenary-closest ellipse

The reproducibility of root outline shapes (Fig. 2.1) prompted us to examine which mathematical
function accurately represents the dome shape. We assessed which of the five representative
curves, an ellipse, parabola, hyperbola, cosine, or catenary, best fits the root tip outlines (Fig.
2.2A; Materials and Methods for statistical analysis). Although the outlines of RAM and shoot
apical meristem have been previously fitted to ellipse (Colombi et al., 2017) and to parabola
(Leiboff et al., 2016; Leiboff et al., 2015), respectively, whether these outlines could better fit to
other dome-shaped functions with a common mathematical nature (hyperbola) or a mechanical
stability (cosine (Timoshenko and Gere, 1961) and catenary (Block et al., 2006; Lockwood, 1961)
(Fig. 2.2B)) has not been investigated. The ellipse and catenary functions were found to fit equally
well to the outline data of PRs, emerged LRs, and mature LRs of Arabidopsis, and fit significantly
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better than the other three functions (the sample standard error [SSE] in Fig. 2.2C left and Fig.
S2.3 left; averaged mean squared error [MSE] of cross validation, Fig. 2.2C right and Fig. S2.3
right; the Akaike-information criterion in Fig. S2.3 middle). Interestingly, the fitted ellipse and
catenary functions were found to superimpose each other within the range of the root tip width
(Fig. 22.A). Indeed, this characteristic ellipse had the highest similarity to the catenary among
any ellipses at a level that could be nearly identical in shape (Fig. S2.4A-J) so as to be hereafter
referred to as catenary-closest ellipse. These indicate that catenary and catenary-closest ellipse
are essentially equivalent functions best-fitting to the root tip outlines of both Arabidopsis PR and

LR.

Isometric scaling unifies dome outlines of the root tips of diverse root classes and
plant species into a single common shape

The catenary parameter « is the reciprocal of the curvature of the dome controlling its sharpness
(Fig. 2.3A, left panels; y = a cosh(x/a) - a), and works as a factor of the isometric scaling (i.e.
geometric similarity); by scaling both x- and y-coordinates with catenary parameter a, catenary
curves commonly converge to the parameter-free catenary function (¥ = cosh(X) - I, X =x/a, Y
= y/a; Fig. 2.3 A, right panels). The catenary parameter a also works as the isometric scaling factor
to the catenary-closest ellipse as well, since each fitted value of ellipse parameters (@enipse and
betiipse; ¥ = bezz,pse(l—(x/aen,-pse)z)o‘s) were both proportional to that of catenary parameter a among
Arabidopsis PR and LR samples (Fig. S2.4K, L). The isometric scalability of the fitted functions
by catenary parameter a predicts that of the root tip outlines. Strikingly, the isometric scaling of
each sample using its own fitted catenary parameter a (Fig. 2.3B) successfully normalized
differences of the individual size among PR and LR samples (Fig. 2.3C, left panel), so that all
root outlines commonly converged to the parameter-free catenary function (Fig. 3C, right panel).
These results verified the isometrically scalable nature of Arabidopsis PR and LR.

To further examine the isometric scaling of dome-shaped outlines across diverse species,
we analyzed the PRs of eight additional eudicot and one monocot species (Figs. 2.3B, D left panel
and S2.5A). Regardless of their morphological diversity (i.e. size and aspect ratio of the dome,
the number of ground-tissue layers, and the structure around the quiescent center such as the open
or closed meristem; Fig. S2.5B, C) (Clowes, 2000; Heimsch and Seago Jr, 2008), the root tip
outlines of all these species fitted to the catenary curve and the catenary-closest ellipse to a similar
extent (averaged MSE in Fig. S2.6). The fitted value of catenary parameter « reflected the species-
specific dome size (Figs. 2.3B and S2.4K, L). Moreover, the rescaled PR outlines by the fitted

catenary parameter a converged universally to the parameter-free catenary curve (Fig. 2.3D, right
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panel) as in Arabidopsis PRs and LRs. These results indicate that the dome outline diversity of
various angiosperm PRs as well as Arabidopsis LRs universally emerge from the isometric scaling

by the species- and root class-specific catenary parameter a.

Tissue growth rules underlie self-organized formation of the catenary-curved
geometry in Arabidopsis LRs

The dome shape of LR emerges from a developmental process (Goh et al., 2016; Lucas et al.,
2013; Vermeer et al., 2014; von Wangenheim et al., 2016). Both young emerged LRs and mature
LRs had almost identical values of the catenary parameter a (Fig. 2.3B), suggesting that the
formation of the isometrically scalable dome shape is completed before the LR emergence. We
further found that the dome outlines fit well to a catenary curve consistently from early (LRP
dome height 10 <h <30, stage II - V), late (30 <h <50, stage VI - VII), and emerged LRP (dome
height 50 < h, emerged, Fig. 2.4A-C), judged by the same level of averaged MSE as those of
emerged LRs (Figs. 2.4C and S2.3). The value of catenary parameter a of LRP decreased with
developmental progression, and eventually reached those of emerged LRs (Fig. 2.4B).

In order to gain insights as to what developmental processes contribute to the formation
of the isometrically scalable dome and its maintenance, it is useful to refer to a developmental
model of catenary curve, i.e., a free-hanging chain stably forming with its own weight when its
ends are supported (Fig. 2.2B, left panel) (Block et al., 2006; Lockwood, 1961), though, to our
knowledge, a model for the catenary-closest ellipse has not been described so far. To this end, we
performed tissue growth simulations of LRP development by focusing on the catenary-curved
geometry.

We used the vertex model for mechanical deformation of cells (Materials and Methods;
(Farhadifar et al., 2007; Hamant et al., 2008; Honda, 1983; Uyttewaal et al., 2012)) by
incorporating tissue growth rules of LRP (i.e. the rate and orientation of cell division and
expansion) obtained from the previously reported time-lapse imaging of wild-type LRP
development (Fig. 2.4A, D, E; Materials and Methods) (Goh et al., 2016; von Wangenheim et al.,
2016). Briefly, in the early phase where a four-layered primordium (stage I to IV) is formed, one
anticlinal and three periclinal divisions occurred synchronously in the central region of a
primordium (dark blue cells, Fig. 2.4D, E) and one periclinal division occurred in the flanking
region (light blue cells, Fig. 2.4D, E), whereas no division occurred at the periphery of the
primordium (white cells, Fig. 2.4D, E). In later phases, anisotropic cell expansion occurred locally
at the central bottom cells (pro-vascular cells shown in purple, Fig. 2.4D, E), and the LRP
subsequently emerged through the overlaying cells (Goh et al., 2016; von Wangenheim et al.,
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2016). Importantly, simulations incorporating the tissue growth rules quantitatively reproduced
the catenary-curved geometry of a growing LRP dome (Fig. 2.4E). Even in the absence of
overlaying cells at the earlier stages, the catenary-curved dome develops in simulations (Fig.
S2.7A), though the shape reproducibility was less pronounced than those produced in the
simulations with overlaying cells (Fig. S2.7A-C). These results recapitulate the decrease of the
catenary parameter a along the course of LRP development (Fig. 2.4B), with similar or even

higher degree of fitness as compared with those observed in vivo (Fig. 2.4C).

Tissue growth rules of LRP account for the mechanics of a catenary curve
formation in Arabidopsis

Catenary-curved hanging chains and bridges (Fig. 2.2B) are load-bearing structures which follow
the mechanical equilibrium between gravity (i.e., vertical and uniform force distribution) and
tangential tension on the chain (Fig. 2.4F-H) (Block et al., 2006; Lockwood, 1961). Geometrical
similarity between catenary chains and LRP domes prompted us to examine whether tissue growth
behaviors in LRP accounts for the mechanics of their catenary curves. To this end, we
decomposed the force along the dome outline into the vertical and the tangential components (red
and black arrows, respectively, in Fig. 2.41, lower panel) at the mechanical equilibrium during the
tissue growth simulations. The vertical force was uniform at the central domain but sharply
decreased to zero in the peripheral region of the primordium (Fig. 2.4, upper panel). The
tangential force was the lowest at the dome center and increased toward the peripheries with
inverse proportionality to the cosine of the tangential angle (Fig. S2.7D). The spatial distribution
of vertical and tangential forces on the LRP outlines was consistent with that of the gravity and
tangential tension of catenary chains, respectively (Figs. 2.41 and S2.7D). Thus, our simulations
also support tissue growth behavior of LRP for the mechanics of catenary curve formation.

The mechanical and geometrical features of growing LRP (Fig. 2.4A-E, I) agreed with
those assumed for a hypothetical catenary chain of extending length (Fig. 2.4F-H), whose (1) both
ends are fixed resulting in the sharp boundary of force distribution while (2) its outline length
increases under gravity. This consistency suggests that (1) the sharp boundary and (2)
unidirectional and uniform force distribution are necessary for the formation of a catenary-curved
LRP dome. The two elementary candidate rules of tissue growth are (1) periclinal divisions of the
cells at the central domain of LRP and the lack of cell division at the peripheral edge of LRP, and
(2) spatially uniform occurrence of unidirectional (i.e. anisotropic) tissue growth via periclinal

divisions and/or cell expansions at the central domain (Fig. 2.4D, E).
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Sharp boundary of periclinal cell division rate was required for catenary curve
formation

To examine whether (1) the periclinal divisions of the cells at the central domain and the lack of
cell division at the peripheral edge is indispensable for catenary curve formation, we first
perturbed distribution of cell division rates within an LRP in simulations. In addition to the
naturally occurring situation where a single cell layer with low periclinal cell division rate
constitutes a sharp boundary separating rapidly dividing central region from mitotically quiescent
outer region (Fig. 2.4D, E), we also simulated a hypothetical situation where multiple cell files
with low periclinal cell division rate were assumed between the central and peripheral regions
(light blue cells in Fig. 2.5A) to make a shallow gradient of division rate (Fig. 2.5A). In the latter
case, the simulated dome outline became more extended towards the periphery than the normal
situation (30 < 4 at |x] > 40 in Fig. 2.5B) and deviated from the catenary curve even after
incorporating the anisotropic cell expansion (Fig. 2.5C). This deviation became further
exaggerated when more cell files with low division rate were assumed (shallower gradient model,
Fig. S2.8A, B, D). Additionally, the spatial distribution of vertical force was less uniform and
continuously decreased from the central to the peripheral domain (Fig. S2.8F-G, left panel). On
the other hand, increasing the number of cell files with high division rate at the central domain
(dark blue cells) to make a sharper boundary resulted in the outline that can be robustly fitted to
a catenary curve with a larger value of the catenary parameter (increasing central zone model, Fig.
S2.8C, E). These simulations predicted that the sharp boundary of cell division rate at the flanking
region is required for the catenary curve formation.

We experimentally verified the requirement of the sharp boundary of cell division rate by
using the Arabidopsis puchi-I mutant defective in a gene encoding an auxin-inducible
AP2/EREBP-type transcription factor PUCHI (Hirota et al., 2007) (Fig. 2.5D). The puchi-1 lost
the sharp boundary due to the extra periclinal divisions at the flanking region significantly
increasing the number of cell files to more than one cell layer as compared with one in wild type,
whereas that with more than two cell layers did not increase (Fig. S2.9A, B) (Hirota et al., 2007).
This defect specifically increased the number of cell layers at the flanking region, substantiating
the shallow gradient of periclinal division rate assumed in silico (Fig. 2.5A). Intriguingly, the
emerged LRP dome of the puchi-1 mutant appeared to be more tail-extended (Fig. 2.5D), and
thereby deviated from a catenary curve (i.e. averaged MSE higher than that of wild type in Fig.
2.5E). The consistency between the dome outlines of the puchi-I mutant in vivo and the
simulations of shallow gradient in silico confirmed that the sharp boundary of division activity at

the flanking region of LRP is required for the catenary curve formation.
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Anisotropic and uniformly-distributed tissue growth contributes to catenary curve
formation

To examine if (2) the spatially uniform occurrence of periclinal division is indispensable for the
formation of the catenary-curved dome shape, we randomized the cell division orientation in
simulations (Fig. 2.5F). The dome outline became less symmetric in the bilateral axis as seen for
the displacement of the dome tip from the center, and thereby deviated from a catenary curve (h
<30 1in Fig. 2.5F-H). The spatial distribution of vertical forces was accordingly less uniform (Fig.
S2.8F-G, right panel).

We experimentally verified the requirement of the anisotropic tissue growth arising from
the periclinal cell division by using the Arabidopsis aur! aur2 mutant where the two AURORA
kinases genes indispensable for correct positioning of cell division plane in the LRP were
disrupted simultaneously (Van Damme et al., 2011). In the aur! aur? mutant, division-plane
orientation (angle), especially that at the foot of the LRP, was significantly more variable than
that in wild type (at the central domain of stage V in Figs. 2.5 and S2.9A, C) (Van Damme et al.,
2011; von Wangenheim et al., 2016), substantiating the simulation with randomized division
orientation described above (Fig. 2.5F). In the early stages (stage II and V in Fig. 2.5]), the aur!
aur2 mutant consistently lost bilateral symmetry in their LRP outline, resulting in the deviation
from a catenary curve (significantly higher MSE than that of the wild type; h <30 in Fig. 2.5J).
The consistent defects in the dome outlines between the aur/ aur? mutant and the simulations
with randomized cell division orientation confirmed that anisotropic and uniformly-distributed
tissue growth arising from the periclinal division was required for the catenary curve formation.
Importantly, the fitness of aur! aur2 mutant root tip outline to a catenary curve improved as LRP
developed and became similar to that of wild type (30 <h in Fig. 2.51, J). This observation further
supports the hypothesis that the anisotropic cell expansion at the central domain, which occurs in
both wild-type and aurl aur2 LRP (Figs. 2.4D, E and 2.5F, I), promotes (2) the anisotropic tissue

growth and hence the catenary curve formation.

2.5. Discussion

Isometric scaling of plant root tip morphologies into a universal catenary curve

It has long been acknowledged that organ morphologies are conservative while being diverse
among species depending on survival strategies and adaptation to the environment. Despite the
morphological diversity of root tip in size (width) and internal cellular organization (Fig. S2.5)

(Clowes, 2000; Hamamoto et al., 2006; Heimsch and Seago Jr, 2008), our morphometric analysis
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revealed that the outlines of ten angiosperm species PRs and Arabidopsis LRs commonly fitted
to a catenary curve and its essentially equivalent curve, a catenary-closest ellipse (Figs. 2.2A,
S2.3, S2.4 and S2.6). The catenary curve is seen in free-hanging chains and bridges (Fig. 2B),
which has several interesting features in mathematics, physics and architecture; (1) the shape is
represented by a simple mathematical function with a single catenary parameter (y = a cosh(x/a)
- a)), (2) stably formed under gravity in a free-hanging chain, and (3) widely used in various
architectures for its structural stability.

Each outline shape of root tip across root class and species is surprisingly represented by
a single catenary parameter a (Fig. 2.3B, lower panels), which is the reciprocal of the dome
curvature (Fig. 2.3B, upper panels) and also the tangential tension divided by the vertical force
per unit length (Fig. 2.4H), representing both geometry and mechanics. From a mathematical
interpretation, the catenary parameter works as a factor of an isometric scalability; i.e., each
catenary curve is able to superimpose on universal parameter-free catenary curve via transforming
equally on x- and y-coordinates with the catenary parameter (Fig. 2.3A). By the isometric scaling,
indeed, any root tip outlines superimposed to the parameter-free catenary function (Fig. 2.3C-D).
Other known examples of conservative organ outlines (e.g., skull of humans; cannon-bone of ox,
sheep and giraffe (Thompson, 1917); beak of songbirds (Abzhanov, 2017; Campas et al., 2010))
superimpose among neighboring species via affine transformations which allow to transform the
outlines on x- and y-coordinates with different rate and/or different directions of deformation
(Campas et al., 2010; Fritz et al., 2014; Thompson, 1917)). This indicated that the isometric
scalability of plant root tip outlines is a previously undescribed highly constrained solution for
the conservative morphologies and suggested underlying constraints during the development.

The isometric scalability also mathematically ensures the reproducibility of the rescaled
outline shape (Fig. 2.3A). This is distinct from a recently reported mechanism of the shape
reproducibility within species via spatiotemporal averaging of variable cell growth during
organogenesis (Hong et al., 2016). Despite the distinct mechanisms for the reproducibility, the
shape of Arabidopsis PR and LR tips were highly reproducible (1-3% in Fig. 2.1D, E) in a level
similar to Arabidopsis sepals (= 5%) (Hong et al., 2016). To date, morphological diversity among
species (Abzhanov, 2017; Thompson, 1917) and shape reproducibility within a given species have
been studied rather independently (Hervieux et al., 2017; Hong et al., 2016; Hong et al., 2018).
The isometric scalability adequately achieves both diversity and reproducibility, recapitulating
the conservative feature of organ morphologies. The general methodology established in this

study (Fig. 2.3) provides a way to unravel the isometric scalability in other biological shapes.
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Developmental constraints for the formation and maintenance of canary-curved
dome

The geometry and mechanics of growing LRP (Fig. 2.4A-E, I) are consistent with those of a
hypothetical catenary chain of extending length (Fig. 2.4F-H), which stably forms under (1) the
sharp boundary and (2) unidirectional and uniform force distribution such as gravity. These
mechanical consistencies proposed developmental constraints for the formation of catenary-
curved dome; (1) unidirectional (i.e. anisotropic) tissue growth localized at the central domain of
LRP and the lack of growth at the peripheral edge of LRP, and (2) spatially uniform occurrence
of the anisotropic tissue growth via periclinal divisions and/or cell expansions at the central
domain (Fig. 2.4D, E). Assuming these two tissue growth rules successfully recapitulated the
spatial distribution of the force field that is predicted for the catenary-curved chain (Fig. 2.4G-I).
The first constraint, (1) localized occurrence of the anisotropic tissue growth, was verified using
Arabidopsis puchi-1 mutant, which lost the sharp boundary due to the extra periclinal divisions
at the flanking region (Figs. 2.5D and S2.9A, B) resulting in a tail-extended dome shape deviated
from a catenary curve (Fig. 2.5D, E). The cell divisions in the peripheral regions of LRP are
strongly repressed by the locally-expressed genes represented by PUCHI, and this restriction
plays critical roles to define the organ boundaries and organ outgrowth (Hirota et al., 2007;
Lavenus et al., 2015; Torres-Martinez et al., 2019; Trinh et al., 2019). Our findings further
demonstrated the importance of the peripheral region for outline morphology of LRP. The second
constraint, (2) spatially uniform occurrence of anisotropic tissue growth, was verified using

Arabidopsis aurl aur2 mutant, in which the division-plane orientation was varied (Figs. 2. 5] and

S9A, C). Less symmetric dome shape deviated from a catenary curve during the early LRP stages
indicated the necessity of the uniform occurrence of periclinal divisions. On the other hand,
developmental convergence of the LRP outlines to the catenary curve from later stage onwards
also supports the significance of uniform occurrence of the anisotropic cell expansion which was
normal in this mutant (Fig. 2.5I). These constraints are also consistent with the notion obtained in
the previous studies; a small set of cell division rules reflecting cell geometry promotes periclinal
divisions in the growing LRP (von Wangenheim et al., 2016). Additionally, upon LRP emergence,
mechanical constraint from the overlaying tissues affects the LRP shape and its reproducibility
perhaps through controlling potential growth pattern (Figs. 2.4E and S2.7A-C) (Lucas et al., 2013;
Vermeer et al., 2014). Taken together, we proposed that the spatiotemporal regulation of tissue
growth at the central or peripheral region under the control of specific sets of regulators (Lavenus
etal., 2015; Torres-Martinez et al., 2019) is the developmental constraints for the catenary-shaped
root tip in the LRP development.

23



The catenary parameter is stabilized around the emergence stage of LRP development,
where the RAM is established in preparation for successive cell proliferation to extend LRs (Figs.
2.4A-C and S2.1B, C) (Goh et al., 2016; von Wangenheim et al., 2016), and further maintained
in the matured LRs (Fig. 2.3B). Interestingly, previously-reported growth simulations based on
LR and PR cell geometries predicted that a localized and uniform occurrence of anisotropic tissue
growth at RAM was required for maintaining organ outline morphology as well as the cellular
organization (Hejnowicz, 1984; Nakielski and Lipowczan, 2013; Szymanowska-Putka et al.,
2012), and the cellular geometry within root tip of embryo is the mechanical constraint on tissue
growth (Bassel et al., 2014). We hypothesized the tissue growth rules of RAM might fulfill the
developmental constraint for catenary-shaped dome formation through anisotropic growth via
oriented cell divisions and expansion and for maintaining a largely constant width. Furthermore,
the structural feature of RAM is essentially conserved across vascular plants under the control of
shared regulatory mechanisms (Huang and Schiefelbein, 2015). Therefore, it will be interesting
to study in future whether (1) the localized and (2) spatially uniform occurrence of anisotropic
tissue growth are shared constraints for the maintenance of a catenary curve across the root classes
and species. Underpinning of the constraints by the cell wall extensibility and the turgor pressure
of individual cells may be also predicted in future, if the formulation proposed by Lockhart
(Lockhart, 1965) and the elasto-plastic cell deformation (Geitmann and Ortega, 2009; Ortega,
1985) are to be incorporated into the present vertex model.

The catenary curve becomes a 3D dome surface when it is rotated (around y-axis) as seen
in the root tip with a rotational symmetry (Fig. S2.1A), and such 3D shapes are also used in
architectures of various sizes and materials (e.g., St. Paul’s Cathedral (Heyman, 1998) and snow
igloo (Handy, 1973)). 3D root tip shapes have been previously shown to affect penetration ability
of roots into soil in wheat (Colombi et al., 2017), or into a hard medium in Arabidopsis (Roue et
al., 2020). In addition, an engineering approach using soft robots suggested that plant root tip
morphology governs the penetration stress and efficient elongation in soil (Mishra et al., 2018).
Our simulations indicated that the mechanical force produced by the tissue growth was uniformly
distributed on the surface of the catenary-curved root tips (Figs. 2.4G-I, S8F-G). This finding
encourages us to step further to a future challenge to test whether the force produced by the
interaction between the root tip and soil is also uniformly distributed onto the entire tip surface,

and thereby contributes to the efficient penetration of roots to soil.
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Fig. 2.1. Reproducible size and shape of root tip outlines in Arabidopsis

(A) Longitudinal confocal sections of a PR, a mature LR, and an emerged LR. Cell walls were

stained with SR2200. Red points indicate cell junctions on the dome outline. Scale bar = 100 pm.

(B) Reproducibility of root tip size. Outlines of multiple samples from each root class were

superimposed with different colors. Points indicate cell junctions on the outline.

(C) Reproducibility of root tip area. Root tip areas measured on the median longitudinal section

up to the indicated heights from the root tip. Size reproducibility is indicated by coefficient of
variation (CV (%) = (s.d. of area) x 100 / (mean of area)). Higher CV of PR than that of LR is

likely attributable to phase differences of root cap sloughing among samples.

25




(D) Reproducibility of root tip shape. Outlines of multiple root samples were normalized by the
radial Fourier series expansion method (Material and Methods) and superimposed (grey). Median
outlines are shown in red.

(E) A graph showing shape reproducibility indicator (Eqn. 2.9) of tip outlines for distinct root
types. The upper and lower hinges, the middle lines and the error bars of the box plots in C and E
represent the 25th, 75th, and 50th (median) percentiles, and s.d., respectively. (B)-(E) are drawn
from identical data sets (n = 12 [PR], n = 12 [mature LR], n = 11 [emerged LR]).

The samples in A were prepared and imaged by T. Goh.

The ellipse estimates in D and E were performed by S. Tsugawa.
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Fig. 2.2. Catenary is an isometrically scalable function and the best-fit model for
root tip outlines.

(A) Non-linear least-squares (NLS) fitting of a representative Arabidopsis PR outline with five
geometrical functions (catenary, cosine, ellipse, hyperbola, and parabola).

(B) Examples of catenary curves in architectures: a chain hanging with its both ends fixed under
gravity (left panel) and the Kintai wooden bridge in Yamaguchi prefecture, Japan (right panel).
(C) Sample standard error (SSE) between PR sample dome outlines (n = 12) and the indicated
curve function (left panel). The averaged MSE by cross validation between PR sample dome
outlines (n = 12) and the indicated curve function (right panel; Eqn. 2.12). Different letters (a, b,
c¢) denote statistically significant differences (P < 0.05) among means by Tukey’s honestly
significant difference (HSD) test. The upper and lower hinges, the middle lines and the error bars
of box plots represent the 25th, 75th, and 50th percentiles, and SD, respectively.

The cross validation and Tukey’s honestly significant difference test in C was performed by S.

Tsugawa.
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Fig. 2.3 Isometrically scalable root tip outlines to a parameter-free catenary curve.
(A) Isometric scalability of catenary function. Catenary curves (y = a cosh(x/a) - a) witha=1, 2
and 4 (left panels) are isometrically scalable into a parameter-free catenary function (¥ = cosh(X)
-1, X=x/a, Y = y/a, right panels).

(B) Catenary curves with a = 10, 30, 50 and 70 (upper panel). Catenary parameter a of root tip
outlines quantified by NLS method (bottom panel). Arabidopsis PR, mature and emerged LR
outlines (n = 12 [PR], n= 12 [mature LR] and n = 11 [emerged LR]), and PR of nine angiosperm
species (n = 5 for each species) were analyzed. The fitted value of a indicated high reproducibility
in Arabidopsis (CV of a ~14% in PR, ~7.2% in mature LR and ~8.5% in emerged LR),
consistently with the level of size reproducibility (CV of root tip area in Fig. 2.1C), and was on
average 50% larger in the PR than in the LR. The right and left hinges, the middle lines and the
error bars of box plots represent the 25th, 75th, and 50th percentiles, and s.d., respectively.

(C, D) Outlines of Arabidopsis PRs and LRs (left panel in C) and ten angiosperm species PRs
(left panel in D) were isometrically scalable to a parameter-free catenary curve using distinct
catenary parameter a (respective right panels). Samples in C and D are identical data sets to B.
Sample sets of Arabidopsis PRs, mature LRs and emerged LRs shown in B and C are identical to

those used in Fig. 2.1B.
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Fig. 2.4. Geometry and mechanics of catenary-curved dome during LRP tissue

growth

(A) Longitudinal confocal sections from a time-lapse imaging of a developing Arabidopsis LRP
visualized using 35S:Lti6b-GFP (a plasma membrane marker). The elapsed time (h) after

gravistimulation for inducing LRP development is indicated in each panel. Red lines indicate LRP

dome outlines. The scale bar indicates 50 um.

(B) A graph of catenary parameter a (y-axis) plotted against dome height / (x-axis) of growing

LRP outlines quantified by the NLS method.

(C) Cross validation test (Eqn. 2.12) of in vivo and in silico LRP outlines fitted with catenary
function. Shown are averaged MSE (y-axis) against the dome height 4 (x-axis) in vivo (blue, n =

10[h<10],n=10[10<h<30],n=10[30 <h <50], n= 10 [50 < h]) and in silico (red, n =5

for each dome height range, h < 10, 10 <h <30 and 30 <h < 50).
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(D) Rules of cell divisions (white: no division, light blue: single division, deep blue: three
consecutive divisions), and anisotropic cell expansion in the proximodistal direction (magenta:
presence, other colors: absence) observed in the LRP development in vivo.

(E) Tissue-mechanical simulation from a flat primordium to dome formation during LRP
development with a mass of overlaying cells (grey). Cells division and expansion rules (colored-
coded as in (D)) were incorporated into the simulation. See also Movie S1.

(F) Catenary curves of different parameter values a with its width (x-axis) roughly equal to that
of an actual LRP (Fig. 2.4A).

(G) Catenary curves formed by the chains of increasing length with fixed ends under gravity.
(H) Mechanics of catenary curve; The gravity works as vertically uniform force W on the chain,
and is balanced with the tangential tension 7 at the mechanical equilibrium. s, a, x, p, g and 0
denote chain outline length, catenary parameter, x-coordinate of the catenary chain, mass density,
the gravitational acceleration, and the angle from horizontal x-axis, respectively. pg represents
the gravitational (vertical) force per unit length.

(I) Distribution of vertical force (red arrows) and tangential force (black arrows) on dome outlines
after cell expansion in five representative simulations (bottom panel shows a representative
outcome). The magnitude of vertical force normalized by its spatial average over the dividing
zone (dark blue and light blue cells in the bottom panel) plotted as a function of x-coordinate
along the dome width (upper panel). Error bars denote SD of five independent simulations. The
upper and lower hinges, and the middle lines of box plots in C and I represent the 25th, 75th, and
50th percentiles, respectively.

The samples in A were prepared and imaged by T. Goh. The box plots in C and I were performed
by S. Tsugawa.
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Fig. 2.5. Localized periclinal cell divisions of LRP determine its dome shape

(A, F) Simulation of (A) the shallow gradient model assuming supernumerary cells in the flanking
region (light blue), and (F) the randomized division model assuming randomized cell division
orientation in the central domain (dark blue). Division and expansion rules of remaining cells
were left unchanged from those used in Fig. 2.4E. Panels from left to right correspond to LRP
shapes observed in vivo at h < 10, 10 <h <20, 20 <h <30 and 30 <h < 50. See also Movie 1.
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(B, G) Dome outlines during the in silico simulation of the shallow gradient model (B) and the
randomized division model (G). The dome outlines of wild-type templates are derived from Fig.
2.4E. Colors denote root dome height (um).

(C, H) Averaged MSE from the cross-validation test (Eq. 12) with catenary curve in case of
simulations (in silico) of wild-type template (blue), the shallow gradient model (red in C; n =5
for each dome height range, h < 10, 10 < h < 30 and 30 < h < 50), and the randomized division
model (red in H; n = 5 for each dome height range, h <10, 10 <h <30 and 30 <h < 50). Welch’s
t-test was performed.

(D, I) Longitudinal confocal sections of LRP at different developmental stages in puchi-1 (D) and
aurl aur? (I) mutants (left panels), and their dome outlines plotted in the cartesian coordinate
together with an imaginary fitted catenary curve (dotted black line) (right panels). Cell walls were
stained with SR2200 (white). Red lines and circles indicate LRP dome outlines and cell junctions,
respectively. Scale bars indicate 50 um.

(E, J) Averaged MSE from the cross-validation test with catenary curves for Arabidopsis LRP of
wild type (blue), puchi-1 (red in E;n=21[h<10],n=9[10<h<30,n=9[30<h<50],n=
7 [50 <h]), and aur! aur?2 mutants (red inJ;n=9[h<10],n=10[10<h<30],n=3 [30<h<
50], n =4[50 <h]). Welch’s t-test was performed. The upper and lower hinges, the middle lines
and error bars of box plots in C, E, H and J represent the 25th, 75th, and 50th percentiles, and SD,
respectively. Date sets for wild type used in C, E, H, J were identical to those in Fig. 2.4C.

The samples in B and I were prepared and imaged by T. Goh.

The box plots and Welch’s unpaired, one-tailed t-test in C, E, H and J were performed by S.

Tsugawa.
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2.7. Supporting figures
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Fig. S2.1. Determination of root dome outlines and unification of the coordinate

system.
(A) 3D view of a mature LR (lateral root).

(B, C) Raw image of a vertical section of a mature LR (B). The root tip is composed of RAM

(root apical meristem; blue region) and a root cap (red region) (C). Scale bars indicate 100 pm.

33



(D, E) Root tip outlines of a PR (primary root; D) and an LR (E) were determined from the cell
junction positions on the dome outlines (red points, enlarged figure in bottom panel). Red dotted
boxes denote the region of interest, which ranged from the root tip to the boundary between the
proliferation and elongation zone (D) and to the vascular cells of parent roots (E).

(F) Unification of the coordinate system (see Material and Methods). Red points indicate the
original positions on the root tip outline, and green points indicate the points duplicated and turned
by 180 degree. The origin of x- and y- coordinates were determined as the mean of x of all points
and the minimal y of the original points.

(G) Illustration of how to measure the dome width and area (shaded region) up to the indicated
height 4. from the root tip.

The samples in A, B, C, D and E were prepared and imaged by T. Goh.

The unification of the coordinate system in F and G were performed by S. Tsugawa.
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Fig. S2.2. Size reproducibility of root tip width.
Root tip dome width measured on the median longitudinal section up to the indicated heights from
the root tip. Root tip width measured on the median longitudinal section up to the indicated height
from the dome tip (25 pum steps). The size reproducibility is indicated by the coefficient of
variation (CV (%) = (SD of width) x 100 / (mean of width)). The lower and upper hinges, the
middle lines and the error bars of box plots represent the 25th, 75th, and 50th percentiles, and SD,

respectively. Data sets were identical to those of Fig. 2.1 B-E.
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Fig. S2.3. Statistical model selection of best-fitting model of the root tip outlines of

Arabidopsis using SSE, AAIC (Akaike information criterion) and average MSE

(mean squared error).

SSE (left panels), AAIC (central panels), and average MSE by cross validation (right panels)

between the dome outlines and the five model functions. SSE and average MSE for PRs were

identical with Fig. 2.2C, E, respectively. The lower and upper hinges, the middle lines, and the

error bars of box plots represent the 25th, 75th, and 50th percentiles, and SD, respectively. Sample
numbers are n= 12 (PR), n=11 (mature LR), and n =12 (emerged LR). See Material and Methods
for definition of SSE, AAIC and MSE. Different letters (a, b, ¢) denote statistically significant

differences (P < 0.05) among means by Tukey’s honestly significant difference (HSD) test.

The cross validation and Tukey’s honestly significant difference test in C was performed by S.

Tsugawa.
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Fig. S2.4. Quantitative comparison of the catenary and ellipse functions

(A-C) The fitted function of a catenary (magenta) and an ellipse (green) to a sample of a PR (A),

an emerged LR (B) and a matured LR (C). Grey lines indicate ellipses (v = beuipse — beliipse

37



\/ 1- x2/a? lipse) With different values of the ellipse parameter beuipse (abbreviated as ber) given

the fitted value of the other ellipse parameter aeuipse (@etiipse = 78.0 [A], = 45.0 [B] and = 50.1 [C];
abbreviated as a.;), demonstrating that the fitted ellipse is apparently closest to the fitted catenary
among the ellipses. Data points (X) represent root tip outlines identical to those in Fig. 2.1A.
(D-J) We quantitatively evaluated the closeness using the bottleneck distance between two
different curves ), known as the Fréchet distance given by
Dr=inf, gmaxiepo,11{d(catenary(a(t)),ellipse(B(t)))},where d denotes distance function;o and
denote reparametrization of [0, 1] to a catenary and an ellipse, respectively, within the range of
the plant root sample width. Fréchet distance was numerically measured by discretizing ¢ into
200 equi-spaced samples. We revealed that the fitted ellipse (black dashed line) was almost closest
to the fitted catenary curve (grey dashed line) among any ellipses given the fitted value of beripse
(abbreviated as beidaa; D-F) Or denipse (abbreviated as dequ ; G-1), for all samples of PRs (D, G),
emerged LRs (E, H) and matured LRs (F, I). @eimin and beimin denote the parameters of the closest
ellipse indicating the global minimum of Fréchet distance, whereas the multiple local minima and
maxima in the order of + 1 are due to numerical errors.

(K, L) The fitted values of acipse (K) and beuipse (L) were proportional to the fitted catenary
parameter dcaenary among PR and LR samples, i.e., deiiipse = 2.84acatenary a0d bettipse = 10.0acarenary,

respectively (grey dotted line). This proportionality enabled us to parametrize the ellipse by

2
Aeatenary @lone via substituting the proportionalities: y = 10.0acasenary \/ 1- (;) We

2.840cqtenary

referred to this function as the catenary-closest ellipse. By scaling of both x- and y-coordinates

Wwith dcarenary, any catenary-closest ellipses commonly converge to a unique function (Y =

X

2
2 84-) 5 X= X/acatenary, Y:y/acatenary)-

10.0 1—(

These quantitative comparisons were performed by S. Tsugawa.
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Fig. S2.5. PR tip outlines in ten angiosperm species.

(A) Root tip outline (red circles) of each species. Scale bars indicate 50 um.

(B) The aspect ratio (dome width / dome height) of the root tip for each species (n = 5 for each
species).

(C) The cellular organization of root tips among species. The meristem types and the number of

ground-tissue cell layers appeared to be species-dependent.
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Fig. S2.6. Average MSE of PR tip shape in nine angiosperm species.

The average MSE from a cross validation test with the five functions for each species (n =5 for

each species). Different letters (a, b, c) denote statistically significant differences (P < 0.05)

among means by Tukey’s honestly significant difference (HSD) test.
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Fig. S2.7. LRP development in silico.

(A) Simulation without a giant imaginal cell (none-overlaying cell model).

(B, C) average MSE from the cross validation test with a catenary curve (B; Eqn. 2.12) and the
shape reproducibility indicator (C; Eqn. 2.9) of tip outline during simulations (in silico) of the
wild type (blue; identical with Fig. 2.4C, red) and the non-overlaying cell (red; n = 5 for each
dome height range, h < 10, 10 <h <30 and 30 <h < 50) models.

(D) Tangential force on the LRP surface. The magnitude of tangential force (black arrow in Fig.
2.41 bottom panel) after cell expansion. Vertex model simulations (box plot) and theoretical
prediction based on a catenary-curved chain (T/To= 1/cos@ in Fig. 2.4H; dashed line). The force
of each cell on the outline (red arrow in Fig. 2.41, upper panel) was normalized by that at the dome
tip and plotted as a function of 8 of the x-coordinate of the dome (Fig. 2.4H). The lower and upper
hinges, and the middle lines of box plots represent the 25th, 75th, and 50th percentiles,
respectively. The error bars denote the SD of five independent simulations. Sample sets were

identical to those of Fig. 2.41.
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Fig. S2.8. Tissue growth rules affects its dome shape

(A-C) Developmental time course of vertex model simulations (left) and the root tip outlines
(right) of the wildtype model (A; Fig. 2.4), the shallower gradient model (B) and the increasing
central zone model (C). Color coding of cells (left) and outlines (right) are identical with that of
Fig. 2.5A and B, respectively. (D, E) The average MSE from the cross validation test with a
catenary curve (n =5 for each dome height range, h < 10, 10 <h < 30 and 30 < h < 50) in wild
type model (A), the shallower gradient (by increasing flanking region, light blue cells) model (B)
and the increasing central region (dark blue cells) model (C). (F, G) The magnitude of vertical
force (F) and tangential force (G) normalized by its spatial average over the dividing zone (dark
blue and light blue cells in the right panel in Fig. 2.5A, F) plotted as a function of x-coordinate
along the dome width in the shallow gradient model (left panel) and the randomized division
model (right panel). The lower and upper hinges, and the middle lines of box plots in D, E, F and
G represent the 25th, 75th, and 50th percentiles, respectively. The error bars denote the SD of five

independent simulations.

42



aurt aur?

B C
g aie p=52x10"
*p=0.10 g’8150' ' .'
o 10 4 [ = Q0
25 x 8 o130
= s 8 - ° 00 GCJ%
85 | F . E g9 1101
Y O 2]
° 8 an < S8 9 &
82 . B o :
ES & o wild type =5 70
> I =1
> 2 . ' X p'uch/-1 0% . .
1< 2< ,&Qe’ ,b&q’
cell layers @b 0&"
?

Fig. S2.9. Cell division defects of puchi-1 and aurl aur2 in vivo.

(A) Stage IV LRPs of Col, puchi-1 and aurl aur2. Scale bar = 50 pm.

(B) The number of cell files with more than one or two cell layers in the wild type (left, n = 5)
and the puchi-1 mutant (right, n = 17) at stage [V.

(C) The orientation of cell division 0 in the wild type (left, n =5) and the aur] aur2 mutant (right,
n=>5) at stage IV. A t-test was performed after confirming a normal distribution by Kolmogorov-

Smirnov test. The error bars in B and C indicate SD.
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3. Distally localized proliferation imposes symmetric

smoothing of plant vascular boundary

Some figures in this thesis were obtained in collaboration with my colleague, S. Miyashima. I

clarified his contribution in each caption.

3.1. Abstract

Proliferating tissue is separated by a sharp boundary symmetrically during organogenesis
(SAM;Caggiano, 2017, embryo, vascular, vertebrate neural tube). The boundary is smooth in the
cell shape and arrangements by the tissue fluidity (i.e., cell migration and intercalation) in animal
systems (Landsberg, 2009). Plant systems lack such fluidity due to rigid cell walls. Although
regulatory molecules initially define the symmetric zonation of the boundaries (Heisler;
bisymmetry by cytokinin-auxin; secondary growth; CUC), whether and how the cell arrangement
is smoothed during tissue growth remains unclear. Using the cell-geometric quantification
(Rudolfet al., 2015 Umetsu et al., 2014 Landsberg et al., 2009 Aliee et al., 2012) combined with
cell lineage tracking in Arabidopsis primary root vascular tissue during cambial growth
(Miyashima-2019), we show the boundary is smooth, similar to the animal epithelium. Moreover,
the arrangement of vascular cells improves bisymmetry, along with the distally localized and
bisymmetric proliferation surrounded by less proliferative tissue. Mechanical simulations
(Hamant et al., Science 2008, Fujiwara2021) and laser cell ablation (Oikawa 2015) showed the
distally localized and symmetric proliferation was decoded into a global distribution of the
mechanical stress on the tissue, avoiding the local heterogeneity, thereby compressing to
smoothen and symmetrize the boundary. In this process, HANABA-TARANU, a transcription
factor contributing to the boundary zonation (Zhao et al. 2004), was indispensable to define the
positional information of the proliferation by restricting cytokinin-PEAR1 module activity. The
patterned proliferation, which tends to sustain the stress in less fluidic tissue like plants (Trinh
2021, Hamant 2012), is thus mechanically suitable to design the organ shape globally, including

the symmetric smoothening of the boundaries.

3.2. Introduction

Plant bodies exhibit some form of symmetry in their shapes and arrangements, such as the radial
arrangement of shoot organs, so-called phyllotaxis, and their bilateral shapes. Not only in the
outward appearances, plants also establish symmetry in their internal tissue organization. At the

central part of axial organs including stem and root, plants develop the vascular cylinder (so-
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called stele) that consists of the vascular tissue and its surrounding layer, the pericycle (Esau,
1965). Among a vast variety in the arrangement of two conductive tissues, xylem and phloem, in
the plant vascular tissues, the roots of most seed plants typically exhibit a radially symmetric
vascular organization, with one or more strands of xylem extending towards the periphery, and
phloem alternating with the peripheral xylems. While the number of symmetric axes varies among
plant species, the Arabidopsis root exhibits a simple biradial symmetric (bisymmetric) anatomy
(Fig. 3.1A), where a straight line of xylem strand bisects the vascular tissue with forming laterally
neighboring procambium, and two phloems are established at the vascular periphery
perpendicular to xylem strand (Fig. 3.1B, left).

In general, tissue symmetry is initially defined by a molecular pre-pattern present in the
precursor cells, and is further refined during the subsequent growth phase involving cell
proliferation and expansion. In the case of Arabidopsis root vascular tissue, its bisymmetry is
defined at the vascular stem cells, so called initials, where a mutual interaction between two
phytohormone, auxin and cytokinin, forms distinct domains for high-level hormonal signaling,
which makes domains for xylem and phloem or procambium, respectively. As an output of this
hormonal signaling, two functionally antagonistic transcription factors, HD-ZIP III and PEAR,
determine the spatial distribution of cell proliferation. PEAR, a mobile transcription factor
expressed in protophloem sieve element (PSE) cells in cytokinin-dependent manner, promotes
the proliferation at two PSE and their neighboring cells, whereas HD-ZIP 111, as a downstream of
auxin, repress the proliferation in the inner vascular cells. Furthermore, the PEAR expression and
function are restricted peripherally by HD-ZIP III, resulting in the highly centered proliferation
around PSE. Despite an extensive progress in our understanding of symmetric tissue zonation
coupled with localized proliferation in the vascular tissue, it remains unclear how symmetry is
maintained or reinforced at the cellular level during the dynamic process of the vascular
development.

In animal systems, the boundaries between different cell types, such as compartment
boundaries in the Drosophila imaginal disc, play crucial roles in the pattern formation of
proliferating tissues. Once the boundaries are zoned by selector genes in the early tissue, their
neighboring groups of cells are kept physically separated during further developmental stages. In
addition, the interface of the boundaries is maintained and smoothened at cellular level throughout
the organogenesis, leading to further refinement of tissue organization (Dahmann et al., 2011).
Recent studies have uncovered that the boundary smoothing is achieved by the oriented
mechanical stress and fluidic cell property at the boundary, which deforms the cell geometry

locally. Although cell geometrical deformation at the boundary could be assumed to regulate the
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plant tissue patterning, including symmetry refinement, so far little is known about how and
whether the boundary shape is determined at cellular level in plants, especially in the tissue embed
in an organ including the vascular tissue.

Here, I performed geometric analysis of the vascular bundle tissue and revealed that the
vascular tissue maintain biradial symmetry and form the smooth xylem-procambium boundary
during tissue growth. Simulations incorporating cell proliferation drawn from vascular bundle
development identified tissue growth improve the symmetry and smoothen the boundary through

compression toward the boundary.

3.3. Materials and Method

Plant materials and growth conditions
We used accession Col-0 as a wild type for analysis of root vascular bundle in Arabidopsis. We

also used han-1, wol, wol han-1, and overexpression HAN for analysis of root vascular bundle.

Imaging and image processing

We determined each position of tricellular junctions in root vascular tissue at the transverse
section of the proliferation zone (Fig. 3.1A) by using the Fiji plugin Tissue Analyzer (Aigouy et
al., 2010). We used the position of tricellular junctions (vertices) to calculate the boundary
roughness, cell aspect ratio, angle of tricellular junctions (Fig. 3.1B), cell number, proliferation
position (Fig. 3.3B, C), and cell area (Fig. S3.1). We obtained vascular cell number and area from
the transverse sections of the pattern compilation stage (Fig. 3.1A). Since root cells are stacked
longitudinally, cell proliferation position was determined by comparing a successive series of

transverse sections of a root following earlier studies (Miyashima et al., 2019).

Boundary smoothness indicators
The roughness of the boundary w was quantified by the variance of the distance /; between

vertices on the XP boundary (i=1,- - -, N) and a straight line connecting both the ends (Fig. 3.1B):

1 —\2
W= \/E N (hi—h) (Eqn. 3.1)
= 1
h = Ezgvzl h; (Eqn. 3.2)
We used the normalized roughness of the XP boundary w / L (Fig. 3.1B. 3.3E, 3.4F), and L
indicated the average length of cell edges (cell-cell interfaces) on the boundary. N denotes the

number of vertices on the boundary (Fig. 3.1C). h denotes average distance between the vertices

and the ideal boundary line. As a control, the roughness of PSE-PSE cell file was quantified by
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the variance of the distance between the vertices on the cell file and a line connecting both the
ends (Fig. 3.1B). For the cell aspect ratio, we first fit an approximated ellipse to the cell (Fig.
3.1B), which was defined by the inertial tensor using cell vertices (Alim 2012). The two axes of
the ellipse were given by the line passing through the centroid of the cell in the direction of the
eigenvector corresponding to the eigenvalue of the tensor (Fig. 3.1B). The cell aspect ratio was
calculated by dividing the length of the tangential axis along the boundary by that of the other
axis. The angle between three successive vertices (Rudolf 2015) (Fig. 3.1B) was measured and

averaged over all of the vertices on the XP boundary or the PSE-PSE cell file.

Statistical analysis

Tukey’s honestly significant difference test was performed for Fig. 3.1B, C, 3.3E, J, K, 3.4C, E,
S3.4E after confirming a normal distribution by Kolmogorov-Smirnov test, using R. Different
letters (a, b, ¢, d) denote statistically significant differences (P < 0.05) among means. The lower
and upper hinges and middle lines represent the 25th, 75th, and 50th percentiles. The whiskers

denote the minimum and the maximum.

Formulation of tissue-mechanical simulations

The cell vertex model is useful to simulate mechanical deformation of cells in tissues based on
the forces acting on each cell, where the cell configurations are described as polygons whose
vertices form cell junctions subjected to mechanical force (Honda, 1983; Farhadifar, 2007,
Fujiwara 2021). Cells change their shape based on the force balance. The model is represented

here by the ordinary differential equations of the position vector of each vertex:

-

a dE
d_: = Farea elasticity + Frension = — Pr (Eqn. 3.3)
E =Y, c(An — Ag)? + Xij BijLij (Eqn. 3.4)

The area elasticity Fureq elasiicity 18 €Xerted on a vertex i by the cell face n to which the vertex i
belongs, while the area of cell 4, approaches the preferred area of 4p. The tension Fiension is exerted
on a vertex i1 by the connecting edges between vertices 1 and j where Fiension increases as the edge
length between vertices i and j (L;) increases depending on the cell-wall extensibility 5. For all
cells, we set c=1 um 2, £;=0.12 pum of the cell edge between xylem and procambium, £;=0.15 um
of the edge between PSE and pericycle, £;=0.08 um of the edge between pericycle and pericycle
or endodermis, and f$;=0.1 um of the other edge, which reproduced the cell aspect ratio of
Arabidopsis wild-type cells (Fig. 3.1B, S3.1B). In addition, plant cells undergo plastic
deformation by the irreversible cell growth, which has been formulated by multiplication of the

excess turgor pressure over yield stress and the cell wall extensibility of cell edge (Lockhart,
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1965). In the present model, the plastic deformation was formulated by the irreversible increase
of the preferred area Ay of cells, as described in detail below, instead of the edge length in the
Lockhart model (Lockhart, 1965). We integrated the cell vertex model numerically using the
Euler method.

Cell division and expansion in simulations

As the initial condition of the vertex model simulations, we used nine initial templates, which
were obtained from wild-type roots in vivo (Fig. S3.1), for the position, area and vertices shape
anisotropy of each cell. For the boundary conditions in the simulations, the vertices at the outside
end of endodermis could move freely allowing the vascular tissue to expand until the size of after
proliferated vascular tissue (Fig. S3.1C). During the vascular tissue growth, the orientation of the
cell division plane was set in a horizontal direction to the XP boundary for PSE, in a vertical
direction for PX and in the short axis direction of the approximate ellipse for the procambium cell
just before division (Fig. 3.1A, S3.1) (Miyashima 2019), with a small rotational variation
following the Gaussian distribution with the s.d. of 0.1 degree. The division plane was set to pass
through the geometric center of the dividing cell.

The frequency of cell proliferation (division) in wild-type and han-1 mutant in silico was
introduced from that in vivo (Fig. 3.3D; i.e., twice at PSE/PSE-LN and once at PX per cell in
wild-type; four times at PSE/PSE-LN, twice at PX, six times at OPCs, once at IPCs per cell in
han-1); The pericycle was set to proliferate once per cell (Fig. S3.1B) and endodermis did not
proliferate. The enhanced proliferation in han-1 mutant simulation was additionally introduced
following observation (Figs. 3.3D and S3.4B) to above cell proliferation in wild-type, twice per
cell in the enhanced simulation at PSE/PSE-LN; once per cell in enhanced proliferation at PX;
once per cell in enhanced proliferation at IPCs; five times per OPC cell laterally adjacent to PSE-
LN in enhanced proliferation at OPCs. In the simulation of the overexpressing HAN, proliferation
frequency at PSE/PSE-LN domain decreased by half that in wild-type, following observation (Fig.
3.4B). To be the same number of each cell type observed in vivo, the cycle of cell proliferation
set To (arbitrary unit) in PSE, the cycle in PSE-LN was To/2 hour, and the cycle in pericycle was
3To hour in wild-type simulation (FiglD, S1C). In the simulation of han-1 mutant, the cycle of
enhanced proliferation at OPC and IPC were set to the same one to PSE cell To.

For cell growth, the preferred area Ao was initially set at the beginning of cell cycle as an average
among cells for 180 um? in xylem, 100 um? in procambium, 180 um? in pericycle and 360 pm? in
endodermis to reproduce the wild-type in vivo (Fig. S3.1B). After cell proliferation, cell area grew

to the preferred area. The cell area followed a linear growth, d4o/dT=97.2 um?*/T, in vascular cell,
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dA4y/dT=38.9 um?*Top*0.25 in pericycle, and d4,/dT=0, i.e., no growth in endodermis for

reproducing the size of cell area in vivo (Fig. S3.1B).

Mechanical stress in silico
In the simulation, the stress within a tissue was evaluated by the stress tensors used in these papers
(Ishihara and Sugimura 2012, Lee and Morishita 2017). The stress tensors are calculated by using

the forces loaded on vertices of each cell from Eqn. 3.4. The stress tensor ¢ (defined as stress

D . . 0
tensor o (B) in Lee and Morishita 2017) was represented diagonalized stress (%1 o ), where o1
2

and g, (01 > 05) are the principal stresses, and the direction of 61 represented by the angle & to
the XP boundary axis (0 <8< 180, g,: 6+90; Fig. S3.2A). A positive stress magnitude (g;+0,>0)
and a negative one (0 + 0,<0) represents compressive and a tensile stress, respectively (Fig.
3.4B; compressed (orange), and tensile (blue)). g, — g, represents the stress anisotropy. gy —
0, = 0 indicates isotropic stress. The direction of anisotropic stress is the same to the direction
of the maximum principal stress (6). The stress anisotropy is denoted

§ = ((0y — 03) * cos8, (o, — 7,) * sinB). |$|=0 indicates isotropic stress.
The tissue stress anisotropy S in the domain is defined by the summation of the stress anisotropy
of cells in the domain. Tissue stress anisotropy is denoted by the composite vector:

§ = %5 = (Ruor — 03); * cos;, Ti(oy = 0y); *sinf)  (Eqn. 3.5)
where the angle becomes twice since the stress works in both directions. The degree of the tissue
anisotropy is defined by

ST/ Zils]) = I57 + 55 + -+ 531 /(1571 + 5] + -+ 551D, Zils] # O(Eqn. 3.6)
where the magnitude of the composite vector is normalized by the sum of the magnitudes of the
stress anisotropy of the cells in the domain (i = 1 ...n). If all anisotropic stress of cells is in the
same direction, the tissue anisotropy is 1. The variance of the directions of cell anisotropic stress
increases, the tissue anisotropy is close to 0 (isotropic). X;|s,| = 0 is isotropic stress. The
direction of tissue stress anisotropy is defined by an angle between the composite vector
(tan~1(X;(01 — 03); * sinb; / ¥;(6, — 03); * cos6;) relative to the XP boundary. The angle 90
degree is the vertical direction of stress in the domain. The angle 0 degree is the horizontal

direction of stress in the domain.
Laser ablation

Laser ablation of cell was performed by the femtosecond laser (Oikawa 2015), upon ablating a

xylem, pericycle or endodermal cell in vivo.
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3.4. Result

Arabidopsis root vascular boundary is smooth and bisymmetric at the cell level

The vascular tissue of plants is composed of three cell types, xylem, phloem, and
procambium/cambium (Esau 1965). Those cells are arranged bi-symmetrically in the Arabidopsis
primary root, where two protophloem sieve element (PSE) cells are formed at the periphery
perpendicular to a single strand of xylem cell files (Fig. 3.1A). Intervening procambium tissues
are established between these conductive tissues to form the distinct boundary to the xylem. To
evaluate the smoothness of the xylem-procambium (XP) boundary at the cell level, we first
quantified several indicators following the studies in the animal tissue boundaries (Fig. 3.1B)
(Landsberg et al., 2009). Indeed, the roughness of cell arrangement at the XP boundary was
significantly lower than that along the PSE-PSE cell files as a control (Fig. 3.1B), indicating a
similar level (0.4-0.6) to the smooth boundaries in the animal epithelium (Rudolf et al., 2015
Umetsu et al., 2014 Landsberg et al., 2009 Aliee et al., 2012). The angle of tricellular junctions at
the boundary was larger than that of the PSE-PSE cell files (Fig. 3.1B). Moreover, the shape of
cells adjacent to this boundary, metaxylem cells (MXs), and procambial cells, were more
anisotropic tangentially to the boundary (i.e., long horizontal) than that of the procambium cells
not adjacent to the boundary (cell aspect ratio, Fig. 3.1B), together indicating a characteristic
smoothness at the cellular level.

The XP boundary develops along with the vascular tissue growth, in which two PSEs and
their lateral neighboring cells (PSE-LN) repeatedly proliferate in a bisymmetric pattern (Fig.
S3.4B), producing the procambial cells (Miyashima et al. 2019). In contrast, the procambium
nearby the XP boundary hardly proliferates, and each protoxylem cell (PX) proliferates only once
tangentially to form MX inward, together indicating a distally localized and bisymmetric
proliferation to the boundary (Miyashima et al. 2019). During the proliferation, notably, the MXs
transited from long vertical to the long horizontal shapes (Fig. S3.1A, C). Moreover, the
arrangement of the tricellular junctions on the XP boundary relative to the position of two PSEs
improve the bisymmetry (Fig. 3.1C), together suggesting that the proliferation may force to

smoothen and symmetrize the boundary.

Bisymmetry of mechanical stress field emerged under the patterned proliferation

The proliferative patterns produce the mechanical stress on the tissue promoting the
morphogenesis (Hamant et al., Science 2008, Fujiwara 2021), whereas the role of distally
localized and symmetric proliferation remains unclear. To this end, we performed a simulation of

vascular tissue growth by using the vertex model in which cell growth and proliferation cause to
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mechanically deform a multicellular tissue (e.g., studied in shoot (Hamant 2008) and root
meristems (Fujiwara 2021); Methods). Here we used the realistic geometries of the initial cells
(i.e., position, area, and vertices of each cell; Fig. 3.1A) in vivo as an initial template (Fig. S3.1C).
Then the quantified proliferation frequency (Miyashima et al. 2019; Method) and area growth
(Fig. S3.1B) during the proliferative phase in vivo (Fig. 3.1A) were incorporated into each
vascular cell in silico to simulate the tissue growth within its surrounding pericycle and
endodermis (Fig. 1D). Despite the variability of cell area and arrangement in the initial templates,
shown in vivo (Fig. S3.1A, C), the incorporation of the predominant proliferation (at PSE/PSE-
LN and PX; Method) developed the smooth and bisymmetric XP boundary in silico (Fig. 3.1B,
C, S3.1C), quantitatively accounting for the roughness, angle, cell aspect ratio and tissue
symmetry in vivo (wild type in Fig. 3.1B, C). Therefore, the mechanical simulation demonstrated
that the distal and bisymmetric proliferation centered around two PSEs, the pattern observed in
the wild-type root in vivo, is sufficient for the symmetric smoothing of the XP boundary.

Next, we investigated the mechanical stress loaded on each cell. Since vascular tissue proliferates
more frequently than the surrounding pericycle and endodermis (Fig. S3.1B) (Miyashima et al.,
2019), the surrounding tissue spatially confines the vascular tissue growth so that the stress
appears to be compressive in simulations (Fig. S3.2A). We can indirectly measure the stress by
anisotropic deformation of tissue in response to a mechanical perturbation on a cell (Sugimura et
al., 2016, Trinh et al., 2021). Indeed, upon ablating a pericycle or endodermal cell in vivo by using
the femtosecond laser (Oikawa et al., 2015; Methods), the vascular cells neighboring to the
ablated cell expanded outwardly (Fig. S3A; pericycle n=9, and endodermis n=3), confirming the
compression by the surrounding tissue.

Notably, as proliferation progressed in the simulation, the compression at the central
domain of vascular tissue (MXs and the internal procambial cells [IPCs]) became directed
vertically to the XP boundary (Fig.3.2A, S3.2D), whereas the compression at the peripheral PX
was always directed tangentially to the boundary (Fig. 3.2A, S3.2D). The bisymmetric
distribution of the stress was consistent with the bisymmetric pattern of proliferation (Fig. 3.1A,
3.2C, S3.4B). Upon ablating an MX in silico, following the vertical compression, the surrounding
procambium cells selectively expanded to occupy the space left by the ablated cell, whereas the
surrounding xylem cells hardly expanded (Fig. 3.2D). Upon ablating a pericycle cell adjacent to
PX in silico, conversely, following the tangential compression at PX, the surrounding PX and
procambium cells selectively expanded, but the surrounding pericycle cells hardly did (Fig. 3.2E).
Intriguingly, we verified the cell-specificity of the anisotropic compression in vivo by the

femtosecond laser ablation of a central MX (Figs. 3.2F and S3.3C; n=9) or a pericycle cell
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adjacent to PX (Figs. 3.2G and S3.3B; n=3). Taken together, both in silico and in vivo results
revealed the bisymmetric distribution of compression stress under the distally localized and
bisymmetric proliferation.

To examine the origin and role of the bisymmetric stress distribution, we manipulated the
proliferation pattern in silico. The reduction of proliferation centered around two PSEs weakened
the vertical compression on the IPCs and even changed the direction of stress tangentially at MXs
(PSE/PSE-LN| in Fig. 3.2B, C, S3.2C). As a result, the MXs and IPCs deformed to the long
vertical shape (indicated by the low aspect ratio in Fig. 3.3J), unlike the long horizontal shape in
the wild-type. The bisymmetry of the XP boundary also weakened (Fig. 3.3K). These results
predicted that the distally localized and bisymmetric proliferation governs the bisymmetric

distribution of the compression stress to symmetrically smoothen the boundary.

HAN is required for the distally localized and bisymmetric proliferation and
symmetric smoothing of the boundary

The bisymmetric arrangement of vascular cells is roughly initiated (Fig. 3.1A, C) through a
mutual interaction with auxin and cytokinin that first defines the domain of xylem or procambium
and phloem laterally neighboring xylem, respectively (Fig. 3.3A) (Bert 2014, Miyashima 2019).
The following proliferation centered around two PSEs is promoted by cytokinin and its
downstream mobile PEAR transcription factors, which is transcribed only at PSEs (Miyashima
2019). This PEAR expression and function are restricted distal to the boundary by HD-ZIP III
transcription factors, downstream of auxin signaling (Izhaki and Bowman 2007); However, it
remains unclear how the proliferation and the underlying PEAR expression are suppressed in the
lateral cells, such as the procambium laterally adjacent to PSE-LN.

To identify the factors determining the proliferation pattern to form the smooth boundary,
we searched the transcription factors abundantly expressing the vascular stem cells and found that
HANABA-TARANU (HAN), a B-GATA transcription factor, is expressed from the initial cells
to the proliferative phase (Fig. 3.3B). HAN regulates the zonation of boundary in embryo and
shoot (Zhao et al., 2004), but its role in root remains unknown. Compared with wild-type roots
where proliferation mostly occurs at PSE and PSE-LN (Fig. 3.3D) (Miyashima2019), we found
that the loss-of-function mutant han-1 significantly enhanced proliferation not only at the
PSE/PSE-LN but also at other domains, including the outer procambial cell (OPC) adjacent to
PSE-LN, the IPC, and PX (Fig. 33.D), resulting in the increased vascular cells (Fig. 33.C).

Moreover, the normalized S.D. of PSE-LN and OPC number among four domains separated by
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the XP boundary and the PSE-PSE cell file was more significant in han-1 than wild-type (Fig.
S3.4B), indicating an enhanced proliferation asymmetrically.

Notably, han-1 mutant significantly increased the roughness of the XP boundary and
decreased the cell aspect ratio (Fig. 3.3E, J), and weakened the tissue bisymmetry (Fig. 3.3K),
despite proper specification of xylem cells (Fig. 3.3A, S3.4A). The simulation incorporating the
enhanced proliferation pattern in han-1 mutant (Fig. 3.3D) quantitatively reproduced the cell
geometry for both the boundary roughening and asymmetry in vivo (Fig. 3.3E, F, J, K). We
investigated the position-specific effect of the enhanced proliferation on the boundary in silico;
The introduction of proliferation at IPC (Fig. 3.3G), which is proximal to the boundary and is
mitotically quiescent in wild-type (Fig. 3.3D), roughened the boundary (Fig. 3.3E). Additionally,
the induction of the asymmetric proliferation at OPC, a defect in han-1 mutant (Fig. 3.3D and
S3.4B), roughened the boundary at the side of the enhanced proliferation (Fig. 3.3E, G) and
weakened the tissue symmetry (Fig. 3.3K). In both cases, the direction of compression stress
became heterogeneous among the MXs and IPCs (Fig. 3.3H, S3.2C), indicating the distally
localized and bisymmetric proliferation centered around two PSEs contributes explicitly to the
bisymmetric compression stress directed to the XP boundary. Finally, the XP boundary in the
simulation enhancing proliferation at PSE/PSE-LN domain did not affect the roughness (Fig.
3.3E), xylem cell shape (Fig. 3.3J), and bisymmetry of the stress field among the MXs and IPCs
(Fig. S3.2B), while that at PX only affected the adjacent MX in the stress direction (Fig. S3.2B)
resulting in the long vertical shape (Fig. 3.3J). These results indicate that HAN contributes to the
bisymmetric smoothening of the XP boundary by bisymmetrically restricting the proliferation

domains centered around two PSEs.

HAN defines the patterned proliferation by repressively restricting the domain of
cytokinin-PEARI1 activity

To reveal how HAN regulates the proliferation pattern, we examined the expression of known
regulators in han-1 mutant. Whereas one of five HD-ZIP III genes, CNA was normally expressed
(Fig. S3.4C), the spatial expression of PEAR1 transcription became laterally expanded from the
initial stage to the proliferative phase in han-1 mutant (Fig. 3.4A). In addition, cytokinin response
reporter pARRS::RFPer, whose expression is suppressed in the xylem in wild-type (Bert 2014,
Miyashima 2019), was expressed in the whole vascular initials (Fig. 3.4A). However, the
expression of those reporters after proliferation became restricted into PSE and procambium,
respectively (Fig. 3.4A), as observed in wild-type roots (Fig. 3.4A), suggesting the repressive role

of HAN in cytokinin signaling during vascular proliferation. The intracellular signaling of
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cytokinin is mediated by His-Asp phosphorelay, which culminates the phosphorylation of B-type
response regulators to activate the transcription of downstream genes (Ari 2006). Our transient
assay using a cytokinin reporter, TCS::LUC (Bruno 2008), demonstrated that HAN inhibits the
transcriptional activity of B-type response regulator ARR1 (Fig. 3.4C) and its constitutively active
form ARRI1 delta DDK (Fig. S3.4E), in a dose-dependent manner, suggesting that HAN represses
the cytokinin response by competing with B-type response regulators at the transcriptional level.
Since both the initial tissue bisymmetry (Fig. 3.3A) and proliferation require the cytokinin
signaling (Bert 2016), a severe reduction of cytokinin signaling, like a cytokinin receptor mutant
wooden-leg (wol), leads to the radially symmetric tissue geometry without proliferation
(Miyashima 2019) (Fig. 3.4A). We found that introducing han-1 mutation into wo! restored the
vascular cell number to the wild type (Fig. 3.3C, 3.4A) with the expression of PEAR at the
vascular peripheral in an almost radially symmetric manner, again highlighting the repressive role
of HAN in cytokinin signaling in vascular proliferation. Notably, the proliferation occurred
distally but radially symmetrically in wol han-1 mutant leading to the less anisotropic shape of
vascular cells (Fig. S3.4F), supporting the long horizontal shape of the central cells (IPC and MX)
in wild-type (Fig. 1B) requires the distally localized and bisymmetric proliferation.

In addition, the induction of HAN-overexpression under the vascular specific CRE1
promoter immediately attenuated the cytokinin response (Fig. S3.4D), and further induction led
to the lack of proliferation in the vascular tissue (Fig. 3.4D, S3.4D) similar to plants lacking
cytokinin biosynthesis or signaling components (Ari 2000, Bert 2014). In this transgenic line, we
found that the 48hr-induction of HAN-overexpression resulted in decreased procambium
proliferation, while xylem cell number was equal to the wild-type (Fig. 3.4B). Therefore, we
experimentally tested the theoretical prediction that a moderate frequency of the distally localized
and bisymmetric procambium proliferation symmetrically smoothen the boundary (Fig. 3.2C) by
quantifying the cell geometry in the overexpressing HAN. Due to the decreased proliferation, the
MX cells consistently expanded vertically to the XP boundary, indicating a long vertical shape
unlike wild-type (Fig. 3.4E). In the root possessing six cells in the xylem strand, which
infrequently appeared in the wild-type, we found that the MX cells consistently further expanded
vertically (Fig. 3.4E). At the same time, notably, the roughness of the XP boundary was
significantly higher (Fig. 3.4E), and the bisymmetry was significantly lower than wild-type (Fig.
3.4E), verifying the theoretical prediction. Collectively, our data concluded that HAN defines the
spatial pattern of proliferation frequency by restricting the activation position of the cytokinin-
PEAR1 module with its repressive action on cytokinin signaling, which is indispensable for the

bisymmetric smoothing of the boundary.
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3.5. Discussion

In summary, our research has revealed that spatially localized proliferation produces a global
order of the anisotropic stress, thereby symmetrically smoothing the tissue boundary (Fig. 3.1,
3.2). Previous works have highlighted that the dual role of cytokinin in vascular tissue formation,
in which cytokinin initially defines the bisymmetric zonation by specifying procambial tissues
nearby the xylem, later on, promotes the proliferation through activating the PEARs at the most
distal procambial cells, PSEs (Miyashima 2019). However, whether and how the tissue
bisymmetry progresses during tissue growth remains elusive. Here we have discovered that these
cytokinin actions, with further spatially fine-tuned by HAN (Fig. 3.3, 3.4), are decoded into the
directed compression towards the central xylem (Fig. 3.2) that promotes the bisymmetric
smoothness of the XP boundary (Fig. 3.1). Since plant tissue lacks the cell rearrangement, unlike
animal tissue due to the rigid cell wall, the proliferation (Fig. 3.2A) and the compaction from the
surrounding tissue (Fig. S3.2A) tend to sustain the stress in tissue (Trinh 2021, Hamant 2012).
Proliferation at the proximal position causes the heterogeneity of the stress direction among the
neighboring cells (Figs. 3.3G-I and S3.2A, C; IPC?1), while the asymmetric proliferation at the
distal one causes the asymmetric distribution of the compression (Figs. 3.3G-I and S3.2A, C;
OPC1). Although it is currently infeasible to measure the heterogeneous and asymmetric stress
distribution in vivo, both proliferation defects, observed in han-1 (Fig. 3.3D), affected the
boundary smoothness and symmetry (Figs. 3.3E, J, K). Therefore, the directed bisymmetric
compression toward the boundary requires the restricted proliferation at the distal and symmetric
domains to the boundary. HAN fulfills this requirement by restricting the domain of cytokinin-
PEAR activity (Fig. 4.3A). Once the distal and symmetric proliferative pattern is defined, the
stress compresses the boundary in a spatially homogeneous direction (Fig. 3.2A and S3.2A, C;
WT). Such stress distribution is supported by the Gauss theorem in elastic mechanics that the
direction and strength of the stress caused by a force perturbation at a point source (corresponding
to each proliferation event at the PSE) spatially decreases and becomes homogenized as it goes
away from the position of the perturbation (Fig. 3.2C) (A. E. H. Love, 1927). Therefore, the global
order of the anisotropic stress (Fig. 3.2A) decoded from the distal and symmetric proliferation is
mechanically suitable to smoothen and symmetrize the boundary in less fluidic tissue like plants.

The anisotropic stress at the boundary contributed to its smoothness in animal tissue,
while the anisotropy locally appears due to the boundary-specific change of cell-cell adhesion
strength or cell contractility (Umetsu 2014). The local production of the anisotropic stress also
contributes to the plant morphogenesis (Enrico coen 2017, Hamant 2018); for example, auxin

influences the cell wall extensibility via the intracellular polarization of the efflux carrier PIN and
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the cortical microtubules in shoots and roots (Barro 2019, acid growth; Arsuffi 2017, Barbez 2017).
Interestingly, auxin is transported towards the xylem from neighboring procambial cells (Bishopp
2011) in the same direction as the compression stress toward the boundary (Fig. 3.2). A future
study is whether a boundary-specific change of the wall extensibility and the distal and symmetric
proliferation contributes synergistically to smoothing the XP boundary.

The bisymmetry of the XP boundary (Fig. 3.1A, D) is transformed to a radially symmetric
shape during the secondary growth, where proliferation occurs proximal to the boundary
(Smetana et al., 2019; Ye et al., 2021), in an opposite manner to the primary growth (Miyashima
2019) (Fig. 3.3D). In addition, the surrounding endodermis is peeled-off from the root surface
(Nieminen 2015), suggesting less compaction on the growing vascular tissue than the primary
growth (Fig. 3.2F, G, S3.3). It is also curious to investigate whether the patterned proliferation in
the secondary growth produced anisotropic stress, thereby smoothening the boundary. Analyzing
how the patterned proliferation affects the cell geometry in many biological systems accelerates
our understanding to design principles for the organ shape, including the smooth and symmetric

boundary.
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Fig. 3.1 Arabidopsis root vascular boundary is smooth and symmetric at the cell level
(A) Vascular tissue growth of Arabidopsis wild-type primary root. Transverse (left) and
longitudinal sections (right).

(B) Schematic for three indicators of the cell geometry at the XP boundary (magenta line) and
PSE-PSE cell files (green line; a negative control) after proliferation (upper); the roughness of the
boundary, angle of the tricellular junctions on the boundary and aspect ratio of xylem (yellow;
bottom right) and inner procambial cell (IPC; cyan) adjacent to the boundary. Sample number
n=10 for XP boundary and PSE-PSE (control) in vivo. n=9 for XP boundary in silico. Tukey’s
honestly significant difference test was performed (Methods).

(C) The bisymmetry of the XP boundary relative to two PSE positions after proliferation and
initial cells (left). To quantify the bisymmetric arrangement, we set a rectangular coordinate
system normalized by half the distance between two PSEs; the Y-coordinate passes through the

geometric center of the two PSEs whose midpoint is the origin. Then, bisymmetric transformation
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relative to the Y-axis was applied to each quadrant. For the tricellular junction positions on the
XP boundary on each quadrant, we performed the linear regression to get the slope and y-intercept
(top panels) and calculated S.D. as indicators for the bisymmetry (bottom). Samples were
identical to B.

(D) Representative time course of the mechanical simulation of tissue growth, started from an
initial template measured in vivo (Fig. S3.1D).

Colors denote the cell types: xylem (yellow), PSE (blue with red frame), PSE-LN (blue), pericycle
(gray), and endodermis (light gray); Procambium was shown in cyan in A, while IPC and outer
procambial cell [OPC] were in light blue and magenta, respectively, in D.

The samples of root were prepared and imaged by S. Miyashima.
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Fig. 3.2 Bisymmetry of mechanical stress field emerged under the patterned

After ablating
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(A) Compressive stress loaded on each vascular cell in silico corresponding to Fig. 1D. The
strength is represented by the length of white line in each cell. Color represents the stress direction
relative to the XP boundary (Method); vertical (orange) and tangential (blue), shown in the inset.
(B) Reduced proliferation around PSE (PSE/PSE-LN ) (top panel) and the strength and direction
of compressive stress in silico (bottom panel).

(C) Schematic summary for stress distribution for wild-type (top) and the reduced proliferation
(bottom), indicated by the stress (arrows) caused by proliferation (at PSEs [dashed line] in top; at
xylem in bottom).

(D-G) Indirect measurement of the stress by ablating a MX (D, F) or pericycle cell adjacent to
PX (E, G) in silico (D, E) and in vivo (F, G). Tissue (left) and the magnified view surrounding the
ablated cell (right) before (top) and after the ablation (bottom) in silico (D, E). Transverse section
(left) and the magnified view surrounding an ablated cell (center) at the ablation (bottom; yellow
in the longitudinal section in right) and at an upper site (top; cyan in right) in vivo (F, G). Auxin
(pIAA2; green) and Cytokinin (pARRS; magenta; F, G).

The samples of laser ablated root were prepared and imaged by S. Miyashima
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Fig. 3.3 HAN controls the boundary smoothness and proliferation pattern

(A) Auxin (pIAAZ2; green) and Cytokinin (pARRS; magenta) expression at the initial phase (1;

right bottom) and after proliferation phase (2; right top) in wild-type (WT) and han-1. Protoxylem

(yellow arrow). Scale bars: xxum.
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(B) HAN (pHAN; green, right) and Cytokinin (pARRS; magenta, left and right) expression in
han-1 mutant.

(C) Number of vascular cells in wild-type (n=X), han-1 (n=X), wol (n=X), and wol han-1 mutant
(n=X).

(D) Proliferation frequency at each vascular domain, indicated by colors in the inset, in wild-type
(n=13) and han-1 (n=6). The error bars represent the S.D. The wild-type data was obtained from
Miyashima et al. (2019) Nature.

(E) The roughness of the XP boundary in vivo (wild-type and han-1) and in silico (wild-type, han-
1, and several types of enhanced or suppressed proliferation). Wild-type data set in vivo is
identical with that in Figure 3.1B. OPC and OPC opposite in silico denote the either side of XP
boundary in presence and absence of the enhanced proliferation, respectively. Tukey’s honestly
significant difference test was performed (Methods).

(F) Simulated time course for the enhanced proliferation (brown) in han-1 mutant, starting from
an initial template of wild-type measured in vivo (Fig. S3.1C). Colors are the same as Fig. 3.1D.
(G) Each of the enhanced proliferation (denoted by IPCT and OPC1?; brown) observed in han-1
(D) was additionally induced into the wild-type simulations (Fig. 3.1D).

(H) The strength and direction of anisotropic on each vascular cell in simulated tissue (IPC1 and
OPCY?).

(I) Schematic summary for the stress distribution caused by the proximal (left) and asymmetric
(right) proliferation (brown).

(J) Aspect ratio of xylem cells.

(K) Symmetrical indicator of the s.d. of the slope of linear regression of the XP boundary.
Sample number n=10 irn vivo (wild-type and han-1 for each) and n=9 in silico (wild-type, han-1,
and five types of the enhanced proliferation for each) in E, J and K. Color coding in F, G and H
are identical with Figure 3.1D and Figure 3.2A, respectively.

The samples of root in wild-type and han-1 mutant were prepared and imaged by S. Miyashima
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Fig. 3.4 Han defines the spatial pattern of proliferation frequency by tuning the
cytokinin-PEAR distribution

(A) Cytokinin (pARRS; magenta) and PEAR1 (pPEAR1; green) expression in wild-type, han-1,
wol and wol han-1 mutants.

(B) Number of vascular cells in wild-type (n=X) and overexpression HAN (han-OX;n=X) . t-test
was performed after confirming a normal distribution by Kolmogorov-Smirnov tests.

(C) The relative luciferase activity.

(D) The longitudinal and transverse section of vascular tissue of overexpression HAN.

(E) The XP boundary roughness, xylem cell aspect ratio and the s.d.of slope for the bisymmetry.
The overexpression HAN (han-OX) is shown for the boundary having five (XylemS5; n=14) and
six (Xylem6; n=4) xylem cells. Tukey’s honestly significant difference test was performed for the
XP boundary roughness and xylem cell aspect ratio (Methods). Wild-type data was identical to
Figure 3.1B.

The samples of root in wild-type, han-1, wol, wol han-1 mutant, and overexpression HAN were

prepared and imaged by S. Miyashima
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3.7. Supporting figures
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Fig. S3.1 Supporting Figure for Fig. 3.1.
(A) The roughness (left panel), tricellular angle (center panel) and xylem cell aspect ratio (right
panel) at the initial cell templates (initial cells; n=9) and the pattern completion templates (after

proliferation; n=9) in vivo shown in C. Grey region represents the value of PSE-PSE cell files
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after proliferation in wild-type (Fig. 3.1C). For the roughness, fraction of the samples in the gray
region decreased from 33% of the initial cells to 11% of the samples after proliferation.

(B) The number of vascular cells in vivo (n=9) and in silico (n=9). The vascular cell area in vivo
(n=9). The angle and aspect ratio of xylem in vivo and in silico.

(C) Nine pairs of in vivo and in silico samples at the initial cell and after the pattern completion,
used for A and B.

The samples of in vivo root were prepared and imaged by S. Miyashima
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Fig. S3.2 Mechanical stress in simulated tissue

(A) Mechanical stress anisotropy (black arrow in left) and its angle (arc in left) on each cell in
wild-type (WT; Fig. 3.1D), enhanced proliferation at IPC (Fig. 3.3G, left), that at OPC (Fig. 3.3G,
right), and reduced proliferation at PSE/PSE-LN (B, bottom) in silico. Colors of line represent
the stress magnitude; compressive (orange), and tensile (blue).

(B) The simulated tissue of PSE/PSE-LN? (top) and PX?{ (bottom) and the direction of
compressive stress in each vascular cell. Color codings are identical with Figure 3.1D and Figure
3.2A, respectively.

(C) Each solid bar indicates the stress anisotropy (Eqn. 3.6; Method) and its angle averaged
among IPC cells (top), among MX cells (center) and among PX cells (bottom) in a simulated
tissue of WT, enhanced proliferation at IPC, that at OPC and suppressed proliferation at PSE/PSE-
LN (after proliferation, black; initial cell, red).

(D) Mechanical stress anisotropy and the direction of compressive stress in wild-type initial cells.
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Indirect measurement samples of stress by ablating an endodermis or pericycle not adjacent to

PX (A), a pericycle adjacent to PX (XPP; B) and a MX (C), other than those shown in Figure

3.2F, G. Transverse section (center) and the magnified view surrounding an ablated cell (right) at

the ablation (yellow in longitudinal section in left) and at an upper (lower) site (cyan in left).

Auxin (pIAA2; green) and Cytokinin (pARRS; magenta). The samples of laser ablated root were

prepared and imaged by S. Miyashima
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(A) Fuchsin-stained xylem (red) of wild-type, han-1, wol and wol han-1.
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(B) The variance of procambium number between two regions separated by the XP boundary (left
bottom panel), the variance of cell number (right top panel) and the coefficient of variation (CV,
i.e, variance normalized by the mean) of PSE-LN and OPC cell number (right bottom panel)
among four regions separated by the XP boundary and PSE-PSE cell files (red stripe) in wild-
type (n=xx) and han-1 mutants (n=xx). t-test was performed after confirming a normal distribution
by Kolmogorov-Smirnov tests.

(C) HD-ZIP III genes, CNA expression.

(D) Temporal processing with estradiol.

(E) The relative luciferase activity.

(F) Cell aspect ratio at central cells in wildtype (n=10) and wol han-1 mutant (n=12).

The samples of in vivo root in A, C, D were prepared and imaged by S. Miyashima
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4. General conclusion

To understand the developmental systems that realize the reproducible organ shape under less
fluid plant tissue, I investigated root tip shape and vascular bundle formation. At root tip shape in
Chapter 2, I identified the sharp division gradient at both root ends and directional cell division
at root center form a catenary-shaped root tip through the directional and uniform forces
corresponding to a catenary chain. At vascular bundle formation in Chapter 3, I identified the
distal and symmetric localized proliferation to the boundary forms a symmetrically smooth tissue
boundary through compression to the boundary. Therefore, spatial regulations of cell division and
elongation for anisotropic tissue growth are mechanically suitable for forming the organ under
less fluid tissue.

Moreover, I achieved highly quantitative consistency between mathematical modeling
and plant experiments at the cellular level of accuracy. I predicted the mechanical properties in
the organ by quantifying the plant organ shapes and cell behavior (i.e., cell division and
elongation) and the mechanical stress in the mathematical model. Then, the corresponding
mechanics led me to find the tissue growth rules that form the reproducible organ shapes. This
established research approach will lead us to discover essential tissue growth and its mechanics

for other plant and animal organogenesis.
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