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Let S be a locally flat 2-sphere in a 4-dimensional euclidean space
R‘, then the knot obtained by slicing S* with a hyperplane in R* is
called a slice knot [1].

A singular disk that is a continuous image of the unit 2-cell in a
3-dimensional euclidean space K* will be called a 7ibbon, if and only if
each of its singularities is of the following type:

A

B

and a knot that is the boundary® of a ribbon is called a »ibbon knot.
R. H. Fox presented a problem “Is every slice knot a ribbon knot?”
in his paper [2]. The purpose of this paper is to give an affirmative
answer to the problem.
In this paper we will consider everything from the semilinear point
of view.

1. In this paper, we shall use the motion picture method of des-
cribing surfaces in a 4-space R".

Let « be a slice knot in a 3-space R® and H[{,, f,] be a subspace
R*x[t,t,] in a 4-space R*=R®X(— oo, o), where (,) means open in-
terval and [, ] closed.

1) The boundary of a singular disk (a ribbon) means the image of the boundary of
the inverse image.
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Then, we can easily see that there exists a locally flat, non-singular
2-cell ¢ in H*—1, 0] with boundary «. In order to decribe ¢’, we
consider the intersections of ¢ with the hyperplanes Ri=R3x[¢] and
describe the changing of the configuration as ¢ increases from —1 to O.
We can modify ¢* isotopically in H*%—1, O] so that these intersections,
except at a finite number of levels, consist of collections of oriented,
simple closed polygons which vary continuously with . In each ex-
ceptional level of the modified ¢* there are a finite number of critical
points called elementary critical points, but these can be classified in
three types, that is, as ¢ increases through the critical value £,, the
configuration changes as follows ;

(elliptic critical point of type I at #=¢,:) a small unknotted simple closed
polygon appears as in figure 1,

t<to t=to to <t
Fig. 1

(elliptic critical point of type II at #=¢,:) a small unknotted simple closed
polygon shrinks to a point and disappears as in figure 2,

[ E e
[ 4 .

t<to t=to 1o <t
Fig. 2

(hyperbolic critical point at #=#¢,:) two arcs approach each other and
cross over as in figure 3,

>< XX

t<to t=to to<t
Fig. 3

Next, we will simplify the arrangement of the critical points of &%
Since H'[ —1, 1]—¢° is arcwise connected, it is easy to modify e so
that elliptic critical points of type I and II are found only at ¢=-—1
and #=1 respectively, and the hyperbolic critical points are found at
—1<t<0. If the critical points of the 2-cell ¢ are as above, we will
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say that the 2-cell ¢* has @ (—1, 1)-canonical form. Therefore, we have
the following '

Lemma 1. [f a knot « in Ri=R*x[0] is a slice knots then there is
a locally flat, non-singular 2-cell & with boundary x in H'[ —1, 17 which
has a (—1, 1)-canonical form.

Now, we may assume that the p hyperbolic critical points of ¢ are
found one by one at the values ¢;, i=1, 2, .-+, p, where —1<¢,<¢,<, -+,
<t p<0. Let ¢ and » be the number of the elliptic critical points of
type I and type II respectively, where p, ¢, » are non-negative integers
satisfying g+7»—p=1.

We will map N H'[—1, 0] into R".

Let € be a sufficiently small positive integer. Since &NH[—1,¢—¢]
(0<e<t,+1) consists of ¢ disjoint, non-singular, locally flat 2-cells with
boundary ¢’N R} _. which are ¢ disjoint unlinked unknotted circles, we can
map ¢ NH'[—1, t,—&] to ¢ disjoint, non-singular 2-cells in R* by homeo-
morphism /%,. Next, since NH[t,—¢, t,—&] (0<&E<?,—1t,) consists of
non-singular perforated disks with boundaries ¢’NR}_. and ¢NR},_.,
e NH[t,—¢, t,—€] can be deformed to ¢NR} .. with a band B, attached
at the two disjoint small arcs of ¢NR}_. at which the hyperbolic
critical point appears, as in figure 4 [3]. Denote this deformation by

&1

B,

g(2NHY[t,—¢, t,—¢])

e?nH* (trE',tz‘E)

Fig. 4

We map g(¢?NH[t,—¢&, {,—€]) into R* by a homeomorphism #, satisfy-
h.g(e’N R?I_E) =hye’N R?r e)-

Next, since ¢ NH[,—¢&, t,—&] (0<&E<E,—1,) consists of non-singular
perforated disks with boundaries ¢*NR},_. and ¢*NR},_., we see that
¢eNH[t,—¢, t,—€] can be deformed to ¢’NK},_, with a band B, attached
at the two disjoint small arcs of e’NR},_. at which the hyperbolic
critical point appears. Denote this deformation by g,. Also we map
g, (NH[t,—¢ t,—¢€]) into R*° by a homeomorphism #, satisfying
hzgz(ez n Rtg—e): hlgl(ez N R?2~e)-
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Repeating these processes, we have the deformations g; from
eNHYE—¢, t,,—€] (0<E<t;1,—¢;) to ¢€NR},_, with the attached band
B; and the homeomorphisms #4; from g;(¢*NH'[¢;—¢, t;,,—&]) into R®
satisfying 7%;8;(¢NR},_.) = h;_,8:_,(¢NR},_,) where =23, -, p and
¢,+,=0.

Since e,N H'[ —¢&, 0] consists of non-singular perforated disks with
boundaries ¢NR%, and eNR3, we can deform ¢ NH'(—¢, 0) by a de-
formation g,., to ¢,NR;, and g,.,(¢NH'[—¢& 0]) can be mapped into
R* by a homeomorphism #,,, satisfying 4,g (¢’ NR2.)=h,.,g,:.(¢"NR2,)
:hp+1(ean3)- Now, bY applylng 81 &> % gp»ﬂ and ho’ hl; ) hp—)—l to
¢éNH[—1,0], we obtain a singular perforated disk composed of ¢
disjoint 2-cells with the attached bands B,, -, B,.

The boundary of the singular perforated disk now consists of « and
7 disjoint unlinked unknotted circles «,, -+, «,. The circles «,, -+, ,
bound » mutually disjoint non-singular disks that do not intersect «,
and these disks correspond to the 7 elliptic critical points of type IIL.
The singularities of the singular perforated disk are of the following

four types:

T

Fig. ba

_,%
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A
x
A
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B

a

B

Fig. 5b



SLICE KNOT 377

Fig. 5c

Fig. 5d

where £k, c,, -+, ¢, are inverse images of «, a,, ‘-, «,.

A singular perforated disk in R® will be called a perforated ribbon
if the singularities are all of the above four types.

From the above considerations we have

Lemma 2. If a knot « is a slice knot in R there exists in R°—«
a collection of r mutually disjoint, non-singular 2-cells o, o,, -+, o, SUch
that k and the boundary circles a,, o, -+, a, of the 2~cells o, o,, -+, o,
bound a perforated ribbon in R°.

2. Let « be a slice knot in R®. By lemma 2, there are non-
singular disks o,, o,, ***, o, which are disjoint to each other and do not
intersect «, and there is a perforated ribbon &, such that 9o,=x U do,U
---U00,, where 0o; means the boundary «; of o; (=1, 2, -+, 7). Let
c=o,Uo,U-+Ug,, then o is a singular disk with boundary «.

Now, we will examine the singularities of o.

The singularities of & consist of the self-intersections of o, and the
intersections of ¢, and o; (1=1, 2, ---, 7), for o; has no self-intersections
and o; and o; are mutually disjoint for i=j, ¢, j=1, 2, -+, 7.
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Let D, D,, D,, ---, D, be the inverse images of ¢, o, 0, ***, o,, and
let %, ¢, c,, -+, ¢, be the inverse images of «, a,, a,, .-+, a,, that is 0D=k,
oD;=c; (1=1, 2, ---, 7).

Now, let us consider the intersections of o, and o;, #=+0. The
singularities of o, are of the four types of Fig. 5a, 5b, 5c, 5d, that is,
they are double lines (the segment AB in figure 5). The two endpoints
of one of the inverse images A’B’, A”B” of AB are boundary point of
D, (A, B’ figure 5), and the two endpoints of the other are inner points
of D, (A”, B” in figure 5).

We will call the inverse image of a double line of o, whose end-
points are boundary points of D, a b-/ine and an inverse image whose
endpoints are inner points of D, an i-/ine.

In the case that an endpoint A of a double line AB of o, is on
o;=00;, the intersection of o, and o; must contain a double line whose
endpoint is A, and we may modify o; so that the double line does not
intersect the double line AB in a neighborhood of A (as shown in
figure 6).

Fig. 6

At the inverse image of a double line, the b-line A’B’ extends on
D; from A’ to a point E’ of ¢;, and the i-line A”B” extends on D, from
A” to a point E” whose image is identical with the image of E’. Let
E be the image of E’ and E”, then the following two cases can occur.

Case I. In the case that E is not a singular point of o, we have
E’=FE"”, because E’ and E” are on D, and E is not a singular point of
o,. Then E must be a branch point of .

Case II. In the case that E is a singular point of o, there is a
double line of o, having E as one of its endpoints. If the other end-
point G is on «, G is an endpoint of a completed double line of o. If
G is not on « but on «; (i=1, 2, ---, 7), the double line extends again
and at last either it arrives at the endpoint of a completed double
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line of o or it arrives at the point B and forms a closed double line
of & or the case I occurs.

We remark that if a b-line meets an i-line, then the junction-point
must be a branch point.

The remaining singular lines of o arise from the intersection of
g,— 00, with o;—080; (i%0). Such a singular line must be a closed
double curve.

We will call a double line, whose endpoints are on the boundary,
a double line of ribbon type.

From the above considerations, the singularities of o are of the
following types® ;

i) double lines of ribbon type.

ii) closed double curves.

iii) triple points which are crossing points of double lines.

iv) branch points.

3.

(I) Branch points

Since the interiors of o, and o; have no branch points, a branch
point appears only in case I of section 2; that is, all branch points are
on «; (1=1,2, ---, 7). As a branch point is the result of local winding of
o; around «;, we may modify o; so that there is only one double line
through the branch point. Then the double lines through the points
are of the following two types, and figures 7a, 7b show their inverse
images.

(b)
Fig. 7

We can eliminate such a branch point by cutting along a double
line through the branch point, as shown in figure 8 [4].

2) By a slight modification we can put ¢ into general position,
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Fig. 8

[II7 Triple points

A triple point is a crossing of double lines; that is, if A is a triple
point then there are just three double lines through A. Let these
double lines be EG, HI, JK in a neighborhood of A, and the inverse
image of A be A’, A”, A, then the inverse image of o in a neigh-
borhood of A is as in figure 9.

Fig. 9

Now, we will consider triple points on double lines of ribbon type.
By the considerations about singularities of o in section 2, one of the
three inverse images of every triple point does not belong to i-line.
By cutting o along the image of an arc starting from a boundary point
and disjoint with i-lines, we may suppose that E’'G’ is a subarc of a b-
line, say E'G’ again, and H'I’ is of a b-line or of a closed double curve,
and G’A’ does not contain any inverse image of triple points as in figure
10-left upside.

We take such a point G, on EA that the double line GG, contains
no triple points except A. Now we cut off & along GG, as in figur 10,
then the triple point A vanishes.

The cut o has no singularities of new types and the knot type of
the boundary does not change. We will denote the cut « and its boun-
dary by o and « again.
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Fig. 10

Repeating these processes, we can remove all the triple points on
the double lines of ribbon type.

Now, let the collection {Ai{B{, A}{Bj}, ---, Al,B.} be the b-lines on D;
that is, the inverse images of the double lines of ribbon type whose
endpoints are on k Let d; be a narrow band in D which contains
A}B} in its interior and does not contain the inverse images of the other
singularities of o (=1, ---, m). By cutting D along the boundaries of
d,d,, -,d,, the cell is separated into 2m+1 disks d,, d,, -+, d,, and
Qopiry Qpizy ***y Apmyq @s in figure 11.

Let A, A,, -+, A,,,+, be the images of d,,d,, -, d,.,.,, then A,, -+, A,,
are mutually disjoint, non-singular disks, and A,,,,, -+, A,,,;, are singular
disks. However A,,.,UA,,.,U:--UA,, ., has no singularities in a neigh-
borhood of 9A,,,,U0dA,,,U - U0dA,,.,. Therefore, by a simple extension
of Dehn’s lemma (proof in the Appendix) we can replace A,,.:, A,izy s
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Fig. 11

A,,.+. by mutullay disjoint, non-singular disks &,,.,, ?,4s, ***, Foms: that
differ from A,,,,U--UA,,+, only on a compact subset of (&,,,,—089,,.,)U
U (792m+1_ 8192m+1)-

Now, by identifying the disks A,, -, A,,, 11, -+, oms: along the
cuts as before, we have a new singular disk with boundary «. Let us
again denote this new disk by o.

We will now consider the singularities of the new disk o.

Since A,, -+, A,,, are mutually disjoint non-singular disks, and
Dpi1s oty Domer are mutually disjoint non-singular disks, all the singulari-
ties occur only as intersections of A; and &; (=1, .-+, m, j=m+1, -,
2m+1).

After a slight modification, only double lines, triple points and
branch point occur as singularities.

When a double line crosses a cut, the inverse images of the cross-
ing point must be identical, and such a singular point must be a branch
point. Furthermore every branch point arises in this way.

If there is a double line which is neither closed nor of ribbon type,
the inverse images of the double line are two arcs A’B” and A”B’ and
both A" and B’ are on «, where A’ is on the boundary of #; and B’ is
on the boundary of A; (as in figure 12). But A; does not intersect

Fig. 12
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kN¥;, so this is a contradiction.

If there is a triple point, it must be contained in three different
disks of the collection A,, =+, A,,, Pppi1r ** Foms:- But this is impossible.

Since we can eliminate the branch points as in the beginning of
this section, we can modify® o so that the singularities are all of the
following type ;

1) double lines of ribbon type

2) closed double curves.

As there exist no triple points, all the closed double curves are
simple and mutually disjoint.

Therefore we can easily remove these simple closed double curves
by the well-known cut-and-exchange method.

Thus we can obtain a ribbon modified from ¢ with the boundary
k. Therefore we have

Theorem. Fuvery slice knot is a ribbon knot.

H. Terasaka proved that the Alexander polynomial of a ribbon knot
is of the form xt™f(t)-f(¢™"), [7]. Therefore it follows from the above
Theorem that the Alexander polynomial of a slice knot is of the form
")), [8]

Appendix

Lemma. If D, D,, ---, D, is a set of normal, canonical Dehn-disks
such that 0D; ND;=¢ (i=%j,1, j=1,2, ---,7) in a 3-manifold M, then there
exists a set of mutually disjoint, non-singular disks 9,, 9,, -+, 9, such that
Y; is identical with D; in a sufficiently small neighborhood of 8D; (i=1,
2’ .o, r).

Proof. By making use of Dehn’s lemma repeatedly, we have a set
of non-singular disks D{, Dj, ---, D} such that D/ is identical with D; in
a small neighborhood of 8D; (i=1, 2, ---, 7).

Since Df is a non-singular disk and D{NoD{=¢ i=2, .-, r there is
a 3-cell V, containing D{ in its interior and contained in M—oDjU ---
UaD]. Then we can construct such a homeomorphism ¢, that ¢, is the
identity in M— V, and that ¢ (D{)c M—DjU ---UD,.

Now the set of non-singular disks D{, @7(D3), ---, o7(D!) has the
following properties ;

(i) DineirY(Di)=¢, and

(i) r(D}) is identical with D/ in a small neighborhood of 8D/

3) This modification has also to eliminate any multiple points that may appear on
04;nk (i=1,--, m).
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(=2, -+, 7).
Repeating this process »—1 times produces a set of disks &,, &,,
..., ¥, having the required property.
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