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Abstract
Let ® be an element of the mapping class gradp, of genusg (> 2) such
that @ is the isotopy class of a pseudo periodic map of negativetdwis is ex-
pected that, for eack which commutes with a hyperelliptic involution, there egis
a hyperelliptic family whose monodromy is the conjugacysslaf ® in the map-
ping class group. In this paper, we give a partial solutiontf® conjecture in the
case whered is a semistable element.

1. Introduction

Let ¢: S — A be a proper surjective holomorphic map from a nonsingulan-co
plex surfaceS to a small diskA :={t € C | |t| < &} such thatyp—(¢) is a nonsingular
curve of genusg > 2 for eachr € A* ;= A\ {0}. We call ¢, S, A) a degeneration
of curves or a family of curvesf genusg. If all ¢~1(r) (r € A*) are hyperelliptic
curves, we call ¢, S, A) a hyperelliptic family We call ¢~2(0) the special fiberof S.
Two degenerationsg( S, A) and @', §’, A’) are said to bdopologically equivalenif
there exist orientation preserving homeomorphigmss — §” andy: A — A’ which
satisfy ¢’ o ¥ = ¥ o ¢. For a topological equivalence class of a degeneration, ave ¢
uniquely determine the topological monodromy (called thenodromy, for short) as
the conjugacy class of the isotopy class of a pseudo perimdip of negative twists
in the mapping class groupt, of genusg (cf. [3]).

Let X, be a compact real surface of gengisvithout boundary. It is well-known
fact thatM, is generated by Dehn twists at simple closed curvestor(cf. [2]). We
denote byDg"l_ the n;-times right hand Dehn twists at a simple closed cutyeon X,.
An involution I of X, is calleda hyperelliptic involutionif it has 2g +2 fixeg points.
We call @ a hyperelliptic element with if there exists a homeomorphisd whose
isotopy class isp satisfying/ o ® = ® o I as map. We denote byd] the conjugacy
class of® in M,. An element® of M, is calledsemistablef there exists a disjoint
union of simple closed curves := {C;};=12..., and positive integer$n;};=1 2., satis-
fying @ = Dg p DZ"‘_. We callC an admissible systemwf & if any two simple closed
curves are not homotopic to each other.
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104 M. ISHIZAKA

Let ® be the isotopy class of a pseudo-periodic map of negativstdwlt is ex-
pected that if® is a hyperelliptic element, there exists a hyperelliptimilst of curves
of genusg with monodromy {b]. In this paper, we give a partial solution for the con-
jecture in the case wheré is a semistable element. Thus, our main theorem is the
following;

Theorem 1.1. Let ® be a hyperelliptic semistable elemeiithen there exists a
hyperelliptic family with monodromix®].

To prove Theorem 1.1, for each, we construct a hyperelliptic family using a double
covering of P* x A. Thus, for each hyperelliptic semistable elemdntwe give not
only the proof of the existence but also an algorithm to aoesta hyperelliptic family
with monodromy {b].

2. Hyperdliptic semistable monodromy

Let (I) be the cyclic group generated by a hyperelliptic involutibnWe denote
by IT: £, - X, /(1) ~ 52 the canonical projection fronk, to the quotient ofZ, by
(I). Let P :={Py, ..., Py} be the set of the branch points DFf. To prove the main
proposition (Lemma 2.4) in this section, we need to obsemw®ls closed curves on
¥, and their images orx,/(I) by II.

Lemma 2.1. Let ® = D¢ --- D be a hyperelliptic semistable element wikh
where {C;};=1..., IS an admissible system df. Then for eachi, there existsj (1 <
Jj <r) such that/(C;) is homotopic toC; with n; =n;.

Proof. Let5c and 51(@ be homeomorphisms whose isotopy classesiareand
Dy(c), respectively. Sincd is homeomorphism of,, we see thatl o D¢ is isotopic

to BI(C) ol (cf. [2], Lemma 1). Sinced is a hyperelliptic element, we obtain
1) D’;(lcl) T D;lfc,.) = Déll T D??’

Let Uc, be a small annular open neighbourhoodfsuch thatUc, N Uc, = @ for all

i, j. Note that there exists a homeomorphism whose isotopy ©$agssuch that the
restriction toEg\{U UC,.} is the identity. Thus from the equation (1), we see that each
I(C;) does not intersect properly sont&. So, I(C;) is homotopic to some”; with

n; =nj or I(C;) is homotopic to a curve contained lijg\{U UC,.}. In the latter case,
the restriction map of any homeomorphisms in the isotopgsciaf D}’(lcl) e D’;fc,-) to

2, \ {UUc,} are not identity, a contradiction.

Letc: [0,1] — X, be a simple closed curve ag, such that the curv&loc is the
compositec;, o c; of curvesc; and ¢y, wherec: [0, 1] — S2 is a simple closed curve
rounding only one branch poink;. Taking another curve homotopic toif necessary,
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we may assume thdi o ¢ intersects itself transversally at the initial point of We
also assume that any branch points are notffbnc. We denote byD; the disk with
boundaryc; that containsP; in its inside.

Lemma 2.2. Notation is as aboveThere exists a simple closed curgehomo-
topic to ¢ satisfyingTl o € = ¢z o c;*. Then any simple closed curve oB, is homo-
topic to a lift of a curve onS? which has no subloop rounding only one branch point
of II.

Proof. Letc; andc; be curves onZ, such thatlloc; = ¢; (i = 1,2) and the
compositec, o ¢1 is ¢. Sincec; rounds only one branch poirk;, IT~(D;) is a disk
on X,. Thus, there exists a curv@ on X, such thatIl o ¢; = ¢; and the composite
¢1 0 ¢, is the boundary offi-}(D;). Then, we see that the cuni@:= ¢, o &;71 is
homotopic toc andITo¢C = ¢ o cgl. Since the configuration ofl o ¢ near P; is as
shown in Fig. 1 (1), we can find a curve ¢ homotopic tOczocIl such that it does
not have a subloop rounding onl§; (see, Fig. 1 (2)). Ul

REMARK 2.3. Assume that is a curve onX, such that the configuration of
IToc nearP; is as shown in Fig. 1 (3). Theais not a simple closed curve OH,.

Let ® be a hyperelliptic semistable element with For each simple closed curve
C; in an admissible system o, we denote it bya when we emphasize its orien-
tation. By Lemma 2.1, we can classify the curves in an adbisssystem into the
following three types;

—
(Type A) I (8) is homotopic toC; ™.
(Type B) I (8) is homotopic toa.

. . . =2\ . . =g 1
(Type C) There existsj (# i) such that/ (C;) is homotopic toC; or C;~.

We consider the case wheiC;) # C; and I(C;) N C; # @. We may assume
that 7(C;) intersectsC; transversally and there exist no branch pointsobn I1(C;).
Moreover, by Lemma 2.2, we may assume thHC;) does not have a subloop round-
ing only one branch point ofl. Let ¢; be an oriented subcurve @T such that¢; N
I (C,-) = {01, Q>»}, where Q; and Q, are the initial and end points of;, respec-

tively. We assume that there exists a subcuf)yeof I(C;) (or I(C;)™1) such that the
- — - —
composite{, o ¢1 is homotopic to zero and; N & = {Q1, Q2}. We denote byDy, o,
. . —> —

the disk onX, with boundary ¢, o ¢1. If 1(Q1) # Qz, thenI(Dg,0,) N Dg,0, = 9.
Thus, we see thafll(Dy,¢,) is a disk ons? containing no branch points and the con-
figuration of IT(C;) near I1(Q;) and TI(Q,) is as shown in Fig. 2 (1). A liftC; of
I1(C;) as shown in Fig. 2 (2) is homotopic t6;. ReplacingC; to C;, we can ob-
tain more simpler admissible system. Repeating this, we assyme thaf (Q1) = Qo.
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Moreover, by Lemma 2.2, we may assume the(tZ) # ?2) Let g_f be the subcurve
——

of a satisfying;_f o Z = a Sincel (Z) # Ez) we see thatgl =1 (Ef) namely,

1 (?f) is homotopic toZ. Thus,g_f is homotopic to/ (Z) SetC! =1 (Z) ) ?1)

— -
By the argument above, we see th@tis homotopic toC; and I C}) = C]. In this

case,C! is of TypeB'. Repeating this process, we obtain a hew admissible sygfgm
satisfyingC; N I(C;) =@ or C; = I(C;).

Lemma 2.4. Let ® be a hyperelliptic semistable element with Then we can
find an admissible systeC;};=1 .., of ® such that eachC; satisfies one of the fol-
lowing conditions

—
(Type A) I (8) =c
(Type B) 1 (C) = C:.
(Type C) There existsj (# i) such that/(C;) = C;.

Proof. Let{C;} be an admissible system df obtained from an admissible sys-
tem by repeating the above process. For edthwe find a curveC; homotopic toC;
satisfying one of the three conditions in Lemma 2.4. In theecathereC; = I(C;), we
setC; := C|. In the case wher€, N I(C}) =@, C! is not of TypeB' becausdl(C/) is
a simple closed curve of?. Thus, we may assume thay is of Type A or Type C.

Assume thatC] is of Type A'. We see thafl(C}) rounds the two branch points of
I. Let ¢; be a simple path connecting the two branch points satisfyingl1(C;) = @.
We see thaC; := TT™1(c; ocfl) is of Type A and homotopic t«€;. Assume thaiC; is
of Type C'. Let C’; be a curve that is homotopic t(C;). In this case, we sef; = C|
and C; := I(C;). We obtain an admissible systef@;} that we want. ]

DEeFINITION 2.5. An admissible system ob is called simple if each simple
closed curve in the admissible system satisfies one of theitimms Type A, B, or
C in Lemma 2.4.

REMARK 2.6. If C; is of Type B, there exists a simple closed curveon S2
such thatc o ¢ = I1(C;). Moreover, we see that the number of the branch points of
IT contained in the disk with boundakyis odd. Thus, without fear of confusions, we
consider thatl1(C;) is a simple closed curve of?.

We describe the configuration of the special fiber of a familycorves whose
monodromy is the conjugacy class of a semistable elemen{3pf

Let {(Ci, ni)}1<i<- be pairs of simple closed curves i, and positive integers.
We assume tha{C;} be a disjoint union of simple closed curves. For ed&Gh we
choose an open neighbourhodt, of C; satisfying; (I) Uc, is homeomorphic to an
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open annulus, (IU¢, N Uc, =9 (i # j), whereUc, is the closure ofUc,. We denote
by ¢ and dZ the connected components of the boundarysgf\ Ug,.
Let R(Ci)», = L¢,0ULc;1U---ULg, n,—1U L¢, », be a union of two closed disks
and n; — 1 spheres satisfying the following;
(A) L¢,0 and L, ,, are disks with boundarie8L¢, o and 9L, ,,, respectively.
(B) Lc,,; intersectsLc, j+1 at a point andL¢, ; N L¢, x =% when|j — k| > 1.
(C) L¢,oNLe,,1 and Le, p,—1N L, ., @re inner points oL, o and L¢, »,, respectively.
Identifying aél_ with L, o and 83_ with dL, ,,, we obtain the topological space

X{(Ci-"f)lgisr} = (Eg \ U UC,-) U (U R(Ci)n,-)

called the chorizo space (cf. [3]). An irreducible compdneh X, n,),...,; Which is
not contained in anyR(C;),, is calleda body componenof X{(Compae)- We call the
sub chorizo spacé.c,.1U--- U Lc,n,—1 Of Xg(c, 4y, the core chain atC;. We call

a union of spheres satisfying the condition (8)P!-chain We call a point at which
two components interseet double point When g = 0, we can also define the chorizo
space, similarly. It is well-known fact that the special fibd a family of curves is
homeomorphic X, n)reier) if the monodromy of the family is the conjugacy class
[®] of a semistable elemend = D¢ --- D¢ . Conversely, the monodromy of a family
with the special fibeD({(Cl_,n,_)lgs_} is [@]. We setX[q) := X{(Cmmier ) for short.

ExampLE 2.7. Let{Ci,C;, C;. C}},, k<3,1%j<5 be a set of simple closed curves
on X1, as shown in Fig. 3. If the monodromy of a family is the conjugatass of

— 3 4 2 2 2 3 3 2 2
® = D, D, D¢, D D, D DZ DE D¢, D¢y DeyDey D, Dy
the configuration of the special fiber is as shown in Fig. 4.

3. Proof of Theorem 1.1

3.1. Canonical resolution of double covering. In this section, we review the
canonical resolution for double coverings introduced byikbwa (cf. [1]). For a pos-
itive small real numbeer, we setA, := {t € C | |[t| < €} and Wy := P! x A,. Let
mo: Wo — A. be the second projectior{Zo : Z1) a homogeneous coordinates f
and: a parameter ofA,. Let F (Zo, Z1,t) € C[Zo, Z1, 1] be a polynomial satisfying
the following conditions; (a)F is a homogeneous polynomial of degreg 22 with
respect to(Zo : Z1), (b) the equationF (Zo, 1,) = 0 has 2 +2 distinct roots for each
t € A\ {0}. Let By and [Bg] be the divisor defined by (20, 71, 1) =0 and the asso-
ciated line bundle or,, respectively. By (a), Bo] is even, namely, there exists a line
bundle F, satisfying [Bo] >~ F(?Z. Thus, there exists a morphisthy: So — Wy of de-
gree two branched along the divisBp. By (b), the fibers o o ¥0)(¢) (t € A\ {0})
are smooth hyperelliptic curves. We dgt:= m, Yo).
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We definet;, 7, 7, Bi, F;, E; andy; inductively as follows: We choose a sin-
gular pointp;_; of B;_;. Let 7;: W; — W;_1 be the blowing-up atp;_1. We denote
the multiplicity of B;_; at p,_1 by m,,_,. Let E; be the exceptional set of,. We
set B; := t/Bi_1 — 2[m,, ,/2]E; and F; = t/F;_y — [m,_,/2]E;, where [n, ,/2] is
the greatest integer not exceeding, ,/2. Since B;] ~ Fi®2, we can take a double
covering y; : S; — W; branched alongB; and naturally define a bimeromorphic map
7.8 — S, 1 (cf. [1, §2]). We setr; := m;_1 o 7;. Repeating this process, we obtain
a sequence of blowing-up®, = ... — W; 3 W, satisfying thatB, is nonsingu-
lar. Since the set of singular points 6f coincides with the inverse image of the set
of the singular points of3; by ¥;, we see thatS, is nonsingular. We obtain the rela-
tively minimal model¢: S — A, by the composite of the blowing-downs of suitable
(—1)-curves successively of.. We call the above proceddorikawa’s canonical res-
olution (the canonical resolution, for short).

Note that if a componenE of (t;0---01,)*Tg is a component ofB,, the multi-
plicity of ¥*(E) is 2n;, andn;, otherwise.

3.2. Construction of hyperélliptic families. In this section, we prove Theo-
rem 1.1, namely, for any hyperelliptic semistable eleméntwe construct a hyper-
elliptic family with monodromy fp]. Set

® = D - DEDE - D Dy Dy -+ D Dieyy

where Cy = {Ci}1<i<k, Cp = {Ej}l<j<m and Cc = {C], I(C))h1<i<s are the sets of
simple closed curves of Type A, Type B and Type C, respegtivel

Since the monodromy of a family is®] if and only if the special fiber of the
family is homeomorphic toX[s;, we construct a hyperelliptic family whose special
fiber is X[4). We would obtain such a family as the nonsingular minimal etoof
a double coveringfo: So — Wp := P x A introduced in Section 3.1. Our strategy is
as follows;

In Step 1, we construct the chorizo spadgs; and X[, and an involution/ on
X[]. There exists a surjective mdpye;: X[e] — Xo.m Of degree two such thaiqe
is induced from the natural mafis) — Xe)/ (1), where X(41/ (1) is the quotient by
the group(f) generated byl. In Step 2, we give a symbol to each irreducible compo-
nent of X;o o) and each point at which two components intersect for coevesi. In
Step 3, we give the defining equation of the branch loByon Wy using the symbols
defined in Step 2 and observe the canonical resolution.w,eti o= Wq 3 Wo
be the subsequence of the blowing-ups obtained by the czalamisolution satisfying
that S, admits only rational double point§ of typé,. We can easily see thaf[s m
is homeomorphic tot o .- o 11)*Tg and X[¢) is homeomorphic to the singular fiber
of §,. Finally, we show that the special fiber of the nonsingulanimal model ofS,
is homeomorphic taX[q.



HYPERLLIPTIC SEMISTABLE MONODROMIES 109

STEP 1 We first considers,/(I) ~ $2 with the data(TI(C;), IT ( C;), II(C)), n;,
ﬁj,n;) and the set of the branch poin = {Py, P,, ... P42} Of I1. Let P’ be the
subset of P such that each point i®’" is not onII(C,).

Since C4 U Cp U Cc is a simple admissible system, the §161’ﬂ(c_,-)}1<j<m
{H(C,’)}Nq is the disjoint union of simple closed curves (cf. Remark).2Tus, we
can consider the chorizo space

Xio.m = X[(n(a).mj)lgjﬁm.(n(c;).n;)ls,g]
defined in Section 2. With this chorizo space, we considerdduz {(I1(C;), n:)}1<i<k
and P. For example, in the case whese is an element in Example 2.3?2 with the
data is as shown in Fig. 5 ankijo m with the data is as shown in Fig. 6. For each
C:, we take a point orfI(C;) and denote it byPc,.

We use the same notations as in Section 2. For each simpledclogveC in
CoUCUCc, we denote a small annular open neighbourhood/pysatisfying/(Uc¢) =
Urc)y and Uc N II-1(P") = 9. We assume that they do not intersect each other. More-

over, we assume that(al,) =9t , and/ (82,) =92 .. Let U be the union of all
C (c) C (C))
annular neighbourhoods defined as above. Set

) Xie] =X [(€Drzi= (1283 () g (1D

We define an orientation preserving homeomorphiemX¢; — X[¢] induced
from I as follows; SetBo := ¥, \ U. We decomposeX[¢] as X(e) = Bo U Chy U
Chp UChc, whereChy = | JR(C)1, Chg = |JR (fj)zﬁ/_, and Ch¢ = |J(R(C))u U
R(I(C,’))n;). For Bo and each member ath, U Chp uchc, we define an orientation
preserving homeomorphism satisfying suitable conditionghe following way.

We can naturally defindg,: Bo — Bo by the restriction ofl to X, \ /. Note
that IT~%(7") is the set of fixed points ofz,. Thus, we can consider that—(P’) is
the set of points orX[q).

For eachR(C;)1 = L¢, 0U L¢, 1, we can define a homeomorphisfa : R(C;)1 —
R(C;)1 of order two such thaf, coincides withlg, on 8%1, U 82.,_ (we identify 9L, o
with 0%, and 9L, 1 with 92). Note that/c,(Lc,0) = L¢,.1 and the fixed point is
LC,-,O n LC,-.l-

For eachR (C)),, , we define a homeomorphisiy : R(C;),, — R(Cj)y
of order two such thatz, coincides with /5, on 8%_ U 8% and the fixed locus is

— J J
Ui e, 24—1- Thus, the restriction mapz |,  (d=2,...,7; — 1) is a homeomor-
7 JHC2d
phism of Lz », of order two with fixed pointsLe 5N Lg, 5441 @Nd Le 50N LG, 241
For R(C)),, U R(I(C)))., we can define a homeomorphisty,: R(C)), U
R(I(C))w; — R(C))w; U RUI(C)))w, of order two such thatlc (Ley.a) = Licp.a and

I¢; coincides with/z, on d¢, U 8¢, U ey U 7.
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By gluing these maps, we obtain a homeomorphlsmf X[q;.] _Since we see that
T is an involution, we can consider the quotient r’rﬁp X[q; - X q;]/ J of degree
two. From the construction, there exists a natural homephism ©: X[q;.]/( I) —
X{o,m such that® (TI(IT-X(P,))) = P (P, € P') and © (TI(L¢, 0N Le, 1)) =

Then we can consider the surjective mBpy;: X(o] — X[o.m Of degree two such
that the branch locus is) (U LE, 20— 1) and the set of isolated branch pointsRsU

{Pc,}. Note thatIl, (P) (P; € P’) is not a double point anclﬂ[<I> (Pc,) is a double
point.

STEP 2 A component of a chorizo space which intersects only onepooent
is calleda terminal componentSince the dual graph okjo m is a tree, there exists
at least one terminal component. For later use, we give a glytobeach component
of X[, m by the following way (see Fig. 7, for example, in Fig. 7, weegia symbol
to each component oK[o m; appearing in Example 2.7. The lines mean irreducible
components ofX[o j); Choose a terminal component &% nj and denote it byZ.
If X[e,mp has another terminal component, th&p intersects only one component of
X{o,m. We denote it byZ$ ;. If there exist components of(s m \ Zo which intersect
Zél, choose a component among them and denote Zé)y Inductively, if there exist
components ofXe m \ Z%,_, intersectingZ},, choose such a component and denote
it by Z§,,,. Finally, we obtain aP'-chain ZoU Z5, U --- U Zg, such thatZg, is a
terminal component 0X¢ .

Let Z§ ; be a component which is not a terminal componentXpi m\{Z5,_1}-
If j =1, We setZg, = Zo. We denote byZojl, Zé:jz.,l,... ZOJl the components
of Xjo.m \{Z§,_y. Z§ 11} that intersectz] ;. For eachzg', , which is not a terminal
component 0fX[q>_]'[ 1» choose a component K¢ m \Z1 . intersectinng’i. and de-
note it by Zg"; ,. Inductively, if Zg"

0.j.J'
a component ofX[e m \ ZOJ j-1 mtersectlngZ ;. and denote it byZO, a1 FI-
nally, we obtain aP-chain Zg' ,U--UZg"

such thatzl® is a terminal component
of X [@.]-

0.j.n 0.j.n
By the same way, we give symbols to all componentsXgf rj; For simplicity,
we denote a sequenceii, ...,i;_1 by I, and a sequence, @, . ..,j, 1 by J,. Let
be a component WhICh is not a terminal componentX@i n] \ ZJ, j—1- We de-
note byZ][ L Zit L.z | the components oK(o.m \{Z]} ;. Z] ﬂ+1} which
mtersethJ,_j,. For eachzgj‘j”.hl, choose a subchorizo spa@”“ 1Yz U U

1] o
zie . of X(em such thatz]“ . is a terminal component aK[o,mj.
We also give a symbol to each point at which two componenersatt. We de-

note bya,, ; the point at whlchZJ P mtersectsZJ -1 When j; # 1. We denote by
ajl ;.1 the point at whichZj e 1 mtersectsZ’ . We set

is not a termlnal component ¢ m, choose

JI i

Ty = |(1,, 5 )| af € Xom].
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When9 = (1, J;, Ji) € Tep, We sometimes writely and Z, instead of Writingaj’,,j, and
Jlﬂ for simplicity.

STEP 3 Let P: € P’ be a point onZ
t,ag, Pg) associated taP: as follows;

oot We define the polynomiafs, (Zo.

J1 J2
1 j-1 Lii L j+j-1
fp. (Zo,t ag, Pg) =Zo— Zao,jﬂ +2:czo_j1!jt/1 A R
J=1 J=1

+ 2 alll SUS TPV R A BT 1+P gttt
. L

If P is on Zo, we setfp, = Zo— P.
Let TI(C;) be the image of a curve of Type A bl on Zéjl_”"_’ '. We define the
polynomial g¢, (Zo, . ag, Pc;) associated td1(C;) as following;

gc.(Zo.t.ag. Pc) = Zo - Za T 1+Za(1)’1 ity
j=1 j=1

+§ a1~i_l -1 pitietet it = 1+p t/1+’2+ “+ji
0, /15 erji-12J

— put20uketi)

If TI(C;) is on Zoy, we setgc, (Zo,t, Pc,) = (Zo - Pc) — 1. Set
F (207 t, {PC,'}’ {PEL {Clg}) = HPgEP'HC;ECAng (ZOv t,ag, PE) 8¢; (ZO’ t,ag, PC;) .

Fix {[Pc.], [P¢], [as]} a set of mutually distinct complex non-zero numbers and
consider the polynomiaF (Zo, t) := F (Zo, t, {[Pc,]}, ([ Pe]}. {[as]}). Note that the de-
gree ofF(Z), t) with respect toZ, is 2g + 2. Moreover, sincg[Pc,], [Pe], [as]} is a
set of mutually distinct complex numbers, the roots}b(fo, t) = 0 is mutually dis-
tinct whenr # 0 and|¢| is sufficiently small. Lete be the small positive real number
such that the roots of’ (Zo, t) =0 is mutually distinct. We set :={r € C | |t]| < ¢&}.

Let F(fo, Z1, t) be the homogeneous polynomial of degree+22 with respect to
(Zo : Zl) satisfying F (20, 1,1)=F (fo, 1).
Let Yo: So — Wo:= P x A be the double covering branched aloBg F(Zo, Z1,
1) =0, where(Zo : Z1) is a homogeneous coordinatesB. Since the divisor defined
by Z1 = 0 does not intersecBy, it is sufficient to observeBy on Z; # 0 defined by
F(Zo, t) = 0. We observe the canonical resolution of the famityo yo: So — A.
In the case wher&|o m; has only one component, the assertion is clear because each
simple closed curve in a simple admissible systembois of Type A.
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Let 7i: W1 — Wp be the blowing-up aZo — [a},] = ¢ = 0. Let Zé_l be the
exceptional set of;. We denote byZ(l)!l an affine coordinates of the exceptional set
satisfying Zo — [a} ] =12} ,.

If (1;0,2) € T, we blow up atZ}, — [al,] = ¢ = 0 and denote byZ,, the
exceptional set of this blowing-up. We denote 53;_2 an affine coordinates satisfying
Z§, — [a},] = tZ},. Similarly, if (1,4;0,1,1) € Zo, we blow up atZ}, — [ags,] =
t = 0. We denote b)Zl):‘ll.l the exceptional set of this blowing-up. We denoteiéj/l’_l
an affine coordinates of the exceptional set satisfyiidg — [ag{,] = tZ5% ;.

Inductively, we blow up and give the symbols to the excepiosets of the
blowing-ups in the way similar to the above; If;}(J;, j; + 1) € Zg, we blow up at
Z} . —[a} 4] =1=0 and denote b)?j’[.j,ﬂ the exceptional set of this blowing-up.
We denote by?ﬁl_jl+1 an affine coordinates of the exceptional set satisfyﬁfgj, -

[a) 1s1] = tZ" ... If there existsd € Z such that {.d; J;, ji. 1) € Zo, we blow up

atZl . —[aj ]=1=0 E?(j give the symboZ, , to the excEE)tionaI sIe; of this
blowing-up. We denote byZ]’,’,j],l an affine coordinates satlsfymzjj’]_j] — [aJ;:jhl] =
VAN

15]15

Let W, % W,_; ' ... 2 W, be the sequence of the blowing-ups obtained by the
process above. Then, we obtain the chorizo spage (-- o 7,) T'o = .z, Zy. Here,
we use the same symbol for the exceptional set of each blewpng : W,, — W,
(r" < r) and its strict transform by, .10---ot,. Note that the multiplicity of each com-
ponent of Z, is one. For each’, we can define the double covering. : S, — W,
branched alongB, and bimeromorphic mag, : S, — S,_; introduced in the previ-
ous section. Sinc&) ., intersectsZ, , at Z% . = [a} .+1] and Zy" | intersects
Zy, atZh = [al ], there exists a natural homeomorphism betwgiZ, to
X[o,m that sends each exceptional s&f (¢ € Zs) to the irreducible componerity
of X[e.m. Then, we can identifyXo m with (ry 0 --- o 7.)*T'o. Moreover, if P: € Zy,
the strict transform offp, = 0 on W, intersects the exceptional S&, at Z, = [Pe],
transversally. Thus, we can identify the poift € P’ on Z, with the point on the
componentZ, defined byZ, = [Pe]. If TI(C;) C Zy, the strict transform ofgc, = 0
on W, intersects the exceptional sg&f at Zp = [Pc,]. Then we identify naturally the
point Pc, € P’ on Z, of X[e,m With the point onZ, defined byZ; —[Pc]=t=0.

We can easily see that the defining equation of the stricstoam of g, = 0 on
W, nearZ, = [Pc] is (Ze: [PC,.])2 =" Thus, if Z, is not a component oB,, the
singular point onS, over Z, —[P¢,] =t = 0 is a rational double point of typd,, _1.
In the proof of Claim 3.2, we show that a exceptional set gpoading to a body
component ofX[¢ mj iS not a component oB,.

CLAam 3.1. Lett.: W, — W,._; be the blowing-up ai; 29 —[ag] =1t =0.
Then, the strict transfornB,._; of the divisorBg by 7, 1 =t10---0 11 is singular
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at Q.

Proof of Claim 3.1. Note that the strict transform ¢, =0 or gc, =0 by 7.,
contains Q, if and only if fp, or g¢, include a monomial whose coefficient isy{].

Assume that§,./,1 is nonsingular alZ; — [as] =t = 0. Then, there exists unique irre-
ducible componen®D of E,f,l that containsQ. Let D’ be the irreducible component
of By such that the strict transform dd’ by 7.1 is D. If the defining equation of
D’ is g¢, = 0, we see thafl(C;) is on the componenEy of X[ nj because iff1(C;)

is not on Z,, the strict transform ofD’ by 7,,_; is singular. Then, the strict transform
of g¢, = 0 intersectsZ, at Zy = [Pc,]. It contradicts that{[ Pc,], [Pe], [as]} is a set
of mutually distinct complex numbers. Thus, there existsranbh pointP: € Zz of
IT such that the defining equation &' is fp = 0. If 6 = g, it contradicts the fact
[P:] # [ap]. If 6 # 6, we see that there exists M®(C;) and no branch points bu:
on Zz. Moreover, we see thay is a terminal component aXje ). It contradicts the
assumption thaf, U Cp U Cc¢ is an admissible system ab. O

CLAIM 3.2. LetZ, U---UZ,, be a set of the exceptional sets corresponding to
the core chain at the image of a curve of Type B or Type ClbyLet Z, and Z,,,,
are the exceptional sets corresponding to the body compoisech thatZ,, and Z, .,
intersectZ,, and Z,,, respectively. Then, iZ, U-.-UZ;, is a set of the exceptional
sets corresponding to the core chain at the image of a curviymé C, eachZ, is
not a component of3,. If Z,l u-.--u Z)N is corresponding to the core chain at the
image of a curve of Type B byl, then eachZ, is a component o3, wheni is odd
and not a component a8, wheni is even.

Proof of Claim 3.2. Letr.: W, — W,_; be the blowing-up whose exceptional
set is Z,,. Without loss of generality, we can assume ti@t, ..., Zy, are not the
exceptional sets of,_;. Thus, we can consider that is the blowing-up atQ; Z(.)O—
[001] =t=0.

Let {6, ...6,} be the subset afs such that eacl¥ is contracted toQ by 7, o

- o 7,. By the definition of fp, and g¢,, we see that each strict transform ¢f, =
0 (resp.gc, = 0) by 7,._1 contains Q if and only if there exists§; such that fp,
(resp. g¢;) includes a monomial whose coefficient is,[. The multiplicities of the
strict transform of fp, =0 andgc, =0 at QO are one and two, respectively if they con-
tain Q. Thus, the multiplicity of the strict transform,_; of By at Q by 7,1 coin-
cides with the number of the branch pointsIdfthat are on the component;, .. .,
Zy of Xje.m. Then, we see that the multiplicity d._, at Q is odd if Zy,U---UZj,
is the core chain at the image of a curve of Type B, and evenftif IhaZ,, is not a
component ofB,, the assertion is clear becausg is odd whenZ1 u..-u ZN is
the core chain at the image of a curve of Type B. Though, siheestrict transform
of Ty is a component corresponding to a body component and not gauwnt of
B,, we see that all components corresponding to body compsraatnot components
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of B,. O

Let P; and ?C be points on €, o --- o 7,)*T'y corresponding toP; and Pc,, re-
spectively. Let7: S, — S, be the minimal resolution of all singular points of lype
A, on S, and S, — S the blowing-downs of suitable—(1)-curves successively oy
such thatS has no £1)-curve. LetX be the singular fiber ofr, o ¥,: S, — A. By
Claim 3.2, ¢, |5: X — (rr0---01.)*Tg =~ X[o,m) iS & double cover branched along the

components corresponding tg (U ij,2d71> and branched at the points correspond-
ing to P" U {Pc,}. Moreover, ¥,|;* (Pc,) is a double point ofX and vl (P) is
nonsingular point ofX. Thus we see that/, |3 satisfies the same conditions Bge)
and X is homeomorphic taX[¢). Sincey, ™ (Pc,) is a rational double point of type
An,—1, the singular fiber ofr, o ¢, o7: S, — A is homeomorphic to

X{(Ci,ni),-sk.(fj.Zﬁj)jSm.(C,'.n,)/S\-.(I(C,’).n/),S}
becauseX|q) is given by (2).

By the proof of Claim 3.2, we see that, is a component ofB, if and only if
Z, corresponds to a component @‘(U La_qufl). Since the multiplicity ofy;* (Z)
is two whenZ, C B,, ¥ (Zy) is a (~1)-curve. Moreover, we see that’ (Z,) is
not a (~1)-curve whenZ, does not correspond to a componentLgf(U ng.zl,_l)
by Claim 3.1. Thus, we see that the special fiberpofS — A is homeomorphic to
X[o). We complete the proof of Theorem 1.1. U
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