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Abstract
Let 8 be an element of the mapping class groupMg of genusg (� 2) such

that 8 is the isotopy class of a pseudo periodic map of negative twists. It is ex-
pected that, for each8 which commutes with a hyperelliptic involution, there exists
a hyperelliptic family whose monodromy is the conjugacy class of 8 in the map-
ping class group. In this paper, we give a partial solution for the conjecture in the
case where8 is a semistable element.

1. Introduction

Let � : S ! 1 be a proper surjective holomorphic map from a nonsingular com-
plex surfaceS to a small disk1 := ft 2 C j jt j < "g such that��1(t) is a nonsingular
curve of genusg � 2 for eacht 2 1� := 1 n f0g. We call (�; S;1) a degeneration
of curves or a family of curvesof genusg. If all ��1(t) (t 2 1�) are hyperelliptic
curves, we call (�; S;1) a hyperelliptic family. We call ��1(0) the special fiberof S.
Two degenerations (�; S;1) and (�0; S 0;10) are said to betopologically equivalentif
there exist orientation preserving homeomorphisms : S ! S 0 and : 1! 10 which
satisfy �0 Æ  =  Æ �. For a topological equivalence class of a degeneration, we can
uniquely determine the topological monodromy (called the monodromy, for short) as
the conjugacy class of the isotopy class of a pseudo periodicmap of negative twists
in the mapping class groupMg of genusg (cf. [3]).

Let 6g be a compact real surface of genusg without boundary. It is well-known
fact thatMg is generated by Dehn twists at simple closed curves on6g (cf. [2]). We
denote byDniCi the ni-times right hand Dehn twists at a simple closed curveCi on 6g.
An involution I of 6g is calleda hyperelliptic involutionif it has 2g + 2 fixed points.
We call 8 a hyperelliptic element withI if there exists a homeomorphisme8 whose
isotopy class is8 satisfying I Æ e8 = e8 Æ I as map. We denote by [8] the conjugacy
class of8 in Mg. An element8 of Mg is calledsemistableif there exists a disjoint
union of simple closed curvesC := fCigi=1;2;:::;r and positive integersfnigi=1;2;:::;r satis-
fying 8 = Dn1C1

� � �DnrCr . We call C an admissible systemof 8 if any two simple closed
curves are not homotopic to each other.
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Let 8 be the isotopy class of a pseudo-periodic map of negative twists. It is ex-
pected that if8 is a hyperelliptic element, there exists a hyperelliptic family of curves
of genusg with monodromy [8]. In this paper, we give a partial solution for the con-
jecture in the case where8 is a semistable element. Thus, our main theorem is the
following;

Theorem 1.1. Let 8 be a hyperelliptic semistable element. Then, there exists a
hyperelliptic family with monodromy[8].

To prove Theorem 1.1, for each8, we construct a hyperelliptic family using a double
covering of P1 � 1. Thus, for each hyperelliptic semistable element8, we give not
only the proof of the existence but also an algorithm to construct a hyperelliptic family
with monodromy [8].

2. Hyperelliptic semistable monodromy

Let hI i be the cyclic group generated by a hyperelliptic involutionI . We denote
by 5 : 6g ! 6g=hI i ' S2 the canonical projection from6g to the quotient of6g byhI i. Let P := fP1; : : : ; P2g+2g be the set of the branch points of5. To prove the main
proposition (Lemma 2.4) in this section, we need to observe simple closed curves on6g and their images on6g=hI i by 5.

Lemma 2.1. Let 8 = Dn1C1
� � �DnrCr be a hyperelliptic semistable element withI ,

where fCigi=1;:::;r is an admissible system of8. Then, for each i, there existsj (1 �j � r) such thatI (Ci) is homotopic toCj with ni = nj .
Proof. LeteDC and eDI (C) be homeomorphisms whose isotopy classes areDC andDI (C), respectively. SinceI is homeomorphism of6g, we see thatI Æ eDC is isotopic

to eDI (C) Æ I (cf. [2], Lemma 1). Since8 is a hyperelliptic element, we obtain

(1) Dn1I (C1) � � �DnrI (Cr ) = Dn1C1
� � �DnrCr :

Let UCi be a small annular open neighbourhood ofCi such thatUCi \ UCj = ; for alli, j . Note that there exists a homeomorphism whose isotopy classis 8 such that the
restriction to6gn�SUCi	 is the identity. Thus from the equation (1), we see that eachI (Ci) does not intersect properly someCj . So, I (Ci) is homotopic to someCj withni = nj or I (Ci) is homotopic to a curve contained in6g n�SUCi	. In the latter case,
the restriction map of any homeomorphisms in the isotopy class ofDn1I (C1) � � �DnrI (Cr ) to6g n �SUCi	 are not identity, a contradiction.

Let 
 : [0;1]! 6g be a simple closed curve on6g such that the curve5Æ
 is the
composite
2 Æ 
1 of curves
1 and 
2, where
1 : [0;1]! S2 is a simple closed curve
rounding only one branch pointPi . Taking another curve homotopic to
 if necessary,
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we may assume that5 Æ 
 intersects itself transversally at the initial point of
1. We
also assume that any branch points are not on5 Æ 
. We denote byDi the disk with
boundary
1 that containsPi in its inside.

Lemma 2.2. Notation is as above. There exists a simple closed curvee
 homo-
topic to 
 satisfying5 Æe
 = 
2 Æ 
�1

1 . Then, any simple closed curve on6g is homo-
topic to a lift of a curve onS2 which has no subloop rounding only one branch point
of 5.

Proof. Let 
̄1 and 
̄2 be curves on6g such that5 Æ 
̄i = 
i (i = 1;2) and the
composite
̄2 Æ 
̄1 is 
. Since 
1 rounds only one branch pointPi , 5�1(Di) is a disk
on 6g. Thus, there exists a curvee
1 on 6g such that5 Æ e
1 = 
1 and the composite
1 Æ e
1 is the boundary of5�1(Di). Then, we see that the curvee
 := 
̄2 Æ e
1

�1 is
homotopic to
 and5 Æe
 = 
2 Æ 
�1

1 . Since the configuration of5 Æe
 nearPi is as
shown in Fig. 1 (1), we can find a curve onS2 homotopic to
2Æ
�1

1 such that it does
not have a subloop rounding onlyPi (see, Fig. 1 (2)).

REMARK 2.3. Assume that
 is a curve on6g such that the configuration of5 Æ 
 nearPi is as shown in Fig. 1 (3). Then
 is not a simple closed curve on6g.
Let 8 be a hyperelliptic semistable element withI . For each simple closed curveCi in an admissible system of8, we denote it by

�!Ci when we emphasize its orien-
tation. By Lemma 2.1, we can classify the curves in an admissible system into the
following three types;

(Type A0) I ��!Ci� is homotopic to
��!C�1i .

(Type B0) I ��!Ci� is homotopic to
�!Ci .

(Type C0) There existsj (6= i) such thatI ��!Ci� is homotopic to
�!Cj or

��!C�1j .

We consider the case whereI (Ci) 6= Ci and I (Ci) \ Ci 6= ;. We may assume
that I (Ci) intersectsCi transversally and there exist no branch points of5 on 5(Ci).
Moreover, by Lemma 2.2, we may assume that5(Ci) does not have a subloop round-
ing only one branch point of5. Let

�!�1 be an oriented subcurve of
�!Ci such that

�!�1 \I ��!Ci� = fQ1;Q2g, whereQ1 and Q2 are the initial and end points of
�!�1 , respec-

tively. We assume that there exists a subcurve
�!�2 of I (Ci) (or I (Ci)�1) such that the

composite
�!�2 Æ�!�1 is homotopic to zero and

�!�1 \�!�2 = fQ1;Q2g. We denote byDQ1Q2

the disk on6g with boundary
�!�2 Æ �!�1 . If I (Q1) 6= Q2, then I (DQ1Q2) \ DQ1Q2 = ;.

Thus, we see that5(DQ1Q2) is a disk onS2 containing no branch points and the con-
figuration of 5(Ci) near5(Q1) and 5(Q2) is as shown in Fig. 2 (1). A lifteCi of5(Ci)0 as shown in Fig. 2 (2) is homotopic toCi . ReplacingCi to eCi , we can ob-
tain more simpler admissible system. Repeating this, we mayassume thatI (Q1) = Q2.
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Moreover, by Lemma 2.2, we may assume thatI ��!�1

� 6= �!�2 . Let
�!� 
1 be the subcurve

of
�!Ci satisfying

�!� 
1 Æ �!�1 =
�!Ci . SinceI ��!�1

� 6= �!�2 , we see that
�!��1

2 = I ��!� 
1 �, namely,

I ��!� 
1 � is homotopic to
�!�1 . Thus,

�!� 
1 is homotopic toI ��!�1

�
. SetC 0i := I ��!�1

� Æ �!�1 .

By the argument above, we see thatC 0i is homotopic toCi and I ��!C 0i� =
�!C 0i . In this

case,C 0i is of TypeB0. Repeating this process, we obtain a new admissible systemfC 0ig
satisfyingCi \ I (Ci) = ; or Ci = I (Ci).

Lemma 2.4. Let 8 be a hyperelliptic semistable element withI . Then, we can
find an admissible systemfCigi=1;:::;r of 8 such that eachCi satisfies one of the fol-
lowing conditions:

(Type A) I ��!Ci� =
��!C�1i .

(Type B) I ��!Ci� =
�!Ci .

(Type C) There existsj (6= i) such thatI (Ci) = Cj .
Proof. Let fC 0ig be an admissible system of8 obtained from an admissible sys-

tem by repeating the above process. For eachC 0i , we find a curveCi homotopic toC 0i
satisfying one of the three conditions in Lemma 2.4. In the case whereC 0i = I (C 0i), we
setCi := C 0i . In the case whereC 0i \ I (C 0i) = ;, C 0i is not of TypeB0 because5(C 0i) is
a simple closed curve onS2. Thus, we may assume thatC 0i is of Type A or Type C.

Assume thatC 0i is of Type A0. We see that5(C 0i) rounds the two branch points of5. Let 
i be a simple path connecting the two branch points satisfying
i \5(C 0i) = ;.
We see thatCi := 5�1(
i Æ 
�1i ) is of Type A and homotopic toC 0i . Assume thatC 0i is
of Type C0. Let C 0j be a curve that is homotopic toI (C 0i). In this case, we setCi := C 0i
andCj := I (Ci). We obtain an admissible systemfCig that we want.

DEFINITION 2.5. An admissible system of8 is called simple if each simple
closed curve in the admissible system satisfies one of the conditions Type A, B, or
C in Lemma 2.4.

REMARK 2.6. If Ci is of Type B, there exists a simple closed curve
 on S2

such that
 Æ 
 = 5(Ci). Moreover, we see that the number of the branch points of5 contained in the disk with boundary
 is odd. Thus, without fear of confusions, we
consider that5(Ci) is a simple closed curve onS2.

We describe the configuration of the special fiber of a family of curves whose
monodromy is the conjugacy class of a semistable element (cf. [3]).

Let f(Ci; ni)g1�i�r be pairs of simple closed curves on6g and positive integers.
We assume thatfCig be a disjoint union of simple closed curves. For eachCi , we
choose an open neighbourhoodUCi of Ci satisfying; (I) UCi is homeomorphic to an
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open annulus, (II)UCi TUCj = ; (i 6= j ), whereUCi is the closure ofUCi . We denote
by �1Ci and �2Ci the connected components of the boundary of6g n UCi .

Let R(Ci)ni := LCi ;0[LCi ;1[ � � � [LCi ;ni�1[LCi ;ni be a union of two closed disks
and ni � 1 spheres satisfying the following;
(A) LCi ;0 andLCi ;ni are disks with boundaries�LCi ;0 and �LCi ;ni , respectively.
(B) LCi ;j intersectsLCi ;j+1 at a point andLCi ;j \ LCi ;k = ; when jj � kj > 1.
(C) LCi ;0\LCi ;1 andLCi ;ni�1\LCi ;ni are inner points ofLCi ;0 andLCi ;ni , respectively.

Identifying �1Ci with �LCi ;0 and �2Ci with �LCi ;ni , we obtain the topological space

Xf(Ci ;ni )1�i�rg :=
�6g n[UCi� [ �[R(Ci)ni�

called the chorizo space (cf. [3]). An irreducible component of Xf(Ci ;ni )1�i�r g which is
not contained in anyR(Ci)ni is calleda body componentof Xf(Ci ;ni )1�i�rg. We call the
sub chorizo spaceLCi ;1 [ � � � [ LCi ;ni�1 of Xf(Ci ;ni )1�i�rg the core chain atCi . We call

a union of spheres satisfying the condition (B)a P1-chain. We call a point at which
two components intersecta double point. Wheng = 0, we can also define the chorizo
space, similarly. It is well-known fact that the special fiber of a family of curves is
homeomorphic toXf(Ci ;ni )1�i�rg if the monodromy of the family is the conjugacy class
[8] of a semistable element8 = Dn1C1

� � �DnrCr . Conversely, the monodromy of a family
with the special fiberXf(Ci ;ni )1�i�rg is [8]. We setX[8] := Xf(Ci ;ni )1�i�rg, for short.

EXAMPLE 2.7. Let
�Ci; Cj ; C 0k; C 00k 	1�i;k�3;1�j�5 be a set of simple closed curves

on 612 as shown in Fig. 3. If the monodromy of a family is the conjugacy class of

8 = DC1DC2D3C3
D4C1

DC2
D2C3

D2C4
D2C5

D3C 01D3C 001DC 02DC 002D2C 03D2C 003 ;
the configuration of the special fiber is as shown in Fig. 4.

3. Proof of Theorem 1.1

3.1. Canonical resolution of double covering. In this section, we review the
canonical resolution for double coverings introduced by Horikawa (cf. [1]). For a pos-
itive small real number", we set1" := ft 2 C j jt j < "g andW0 := P1 � 1". Let�0 : W0 ! 1" be the second projection,

�eZ0 : eZ1
�

a homogeneous coordinates ofP1

and t a parameter of1". Let F �eZ0;eZ1; t� 2 C
�eZ0;eZ1; t� be a polynomial satisfying

the following conditions; (a)F is a homogeneous polynomial of degree 2g + 2 with
respect to

�eZ0 : eZ1
�
, (b) the equationF �eZ0;1; t� = 0 has 2g+2 distinct roots for eacht 2 1" n f0g. Let B0 and [B0] be the divisor defined byF �eZ0;eZ1; t� = 0 and the asso-

ciated line bundle onW0, respectively. By (a), [B0] is even, namely, there exists a line
bundleF0 satisfying [B0] ' F
2

0 . Thus, there exists a morphism 0 : S0! W0 of de-
gree two branched along the divisorB0. By (b), the fibers (�0 Æ 0)�1(t) (t 2 1" n f0g)
are smooth hyperelliptic curves. We set0t := ��1

0 (t).
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We define�i , e�i , �i , Bi , Fi , Ei and i inductively as follows: We choose a sin-
gular pointpi�1 of Bi�1. Let �i : Wi ! Wi�1 be the blowing-up atpi�1. We denote
the multiplicity of Bi�1 at pi�1 by mpi�1. Let Ei be the exceptional set of�i . We
set Bi := � �i Bi�1 � 2[mpi�1=2]Ei and Fi := � �i Fi�1 � [mpi�1=2]Ei , where [mpi�1=2] is
the greatest integer not exceedingmpi�1=2. Since [Bi ] ' F
2i , we can take a double
covering i : Si ! Wi branched alongBi and naturally define a bimeromorphic mape�i : Si ! Si�1 (cf. [1, §2]). We set�i := �i�1 Æ �i . Repeating this process, we obtain
a sequence of blowing-upsWr �r! � � � ! W1

�1! W0 satisfying thatBr is nonsingu-
lar. Since the set of singular points ofSi coincides with the inverse image of the set
of the singular points ofBi by  i , we see thatSr is nonsingular. We obtain the rela-
tively minimal model� : S ! 1" by the composite of the blowing-downs of suitable
(�1)-curves successively onSr . We call the above processHorikawa’s canonical res-
olution (the canonical resolution, for short).

Note that if a componentE of (�1 Æ � � � Æ �r )�00 is a component ofBr , the multi-
plicity of  �r (E) is 2ni , andni , otherwise.

3.2. Construction of hyperelliptic families. In this section, we prove Theo-
rem 1.1, namely, for any hyperelliptic semistable element8, we construct a hyper-
elliptic family with monodromy [8]. Set

8 = Dn1C1
� � �DnkCkDn1C1

� � �DnmCmDn01C 01Dn01I (C 01) � � �Dn0sC 0sDn0sI (C 0s );
where CA := fCig1�i�k, CB :=

�Cj	1�j�m and CC := fC 0l ; I (C 0l )g1�l�s are the sets of
simple closed curves of Type A, Type B and Type C, respectively.

Since the monodromy of a family is [8] if and only if the special fiber of the
family is homeomorphic toX[8] , we construct a hyperelliptic family whose special
fiber is X[8] . We would obtain such a family as the nonsingular minimal model of
a double covering 0 : S0 ! W0 := P1 � 1 introduced in Section 3.1. Our strategy is
as follows;

In Step 1, we construct the chorizo spaceseX[8] andX[8;5] and an involutionĨ oneX[8] . There exists a surjective map5[8] : eX[8] ! X[8;5] of degree two such that5[8]

is induced from the natural mapeX[8] ! eX[8]= 
Ĩ �, whereeX[8]
Æ 
Ĩ � is the quotient by

the group

Ĩ � generated bỹI . In Step 2, we give a symbol to each irreducible compo-

nent ofX[8;5] and each point at which two components intersect for convenience. In
Step 3, we give the defining equation of the branch locusB0 on W0 using the symbols
defined in Step 2 and observe the canonical resolution. LetWr �r! � � � ! W1

�1! W0

be the subsequence of the blowing-ups obtained by the canonical resolution satisfying
that Sr admits only rational double points of typeAn. We can easily see thatX[8;5]

is homeomorphic to (�r Æ � � � Æ �1)�00 and eX[8] is homeomorphic to the singular fiber
of Sr . Finally, we show that the special fiber of the nonsingular minimal model ofSr
is homeomorphic toX[8] .
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STEP 1 We first consider6g=hI i ' S2 with the data
�5(Ci);5 �Cj � ;5(C 0l ); ni;nj ; n0l� and the set of the branch pointsP = fP1; P2; : : : P2g+2g of 5. Let P 0 be the

subset ofP such that each point inP 0 is not on5(CA).
Since CA [ CB [ CC is a simple admissible system, the set

�5 �Cj �	1�j�m [�5(C 0l )	1�l�s is the disjoint union of simple closed curves (cf. Remark 2.6). Thus, we
can consider the chorizo space

X[8;5] := Xn
(5(Cj );2nj )1�j�m;(5(C 0l );n0l)1�l�so

defined in Section 2. With this chorizo space, we consider thedata f(5(Ci); ni)g1�i�k
and P. For example, in the case where8 is an element in Example 2.7,S2 with the
data is as shown in Fig. 5 andX[8;5] with the data is as shown in Fig. 6. For eachCi , we take a point on5(Ci) and denote it byPCi .

We use the same notations as in Section 2. For each simple closed curveC in
CA[CB[CC , we denote a small annular open neighbourhood byUC satisfyingI (UC) =UI (C) andUC \5�1(P 0) = ;. We assume that they do not intersect each other. More-

over, we assume thatI ��1C 0l
�

= �1I (C 0l ) and I ��2C 0l
�

= �2I (C 0l ). Let U be the union of all

annular neighbourhoods defined as above. Set

(2) eX[8] := Xn
(Ci ;1)1�i�k ;(Cj ;2nj )1�j�m;(C 0l ;n0l)1�l�s ;(I (C 0l );n0l)1�l�so

We define an orientation preserving homeomorphismĨ : eX[8] ! eX[8] induced

from I as follows; SetBo := 6g n U . We decomposeeX[8] as eX[8] = Bo [ ChA [
ChB [ ChC , whereChA :=

SR(Ci)1, ChB :=
SR �Cj �2nj , and ChC :=

S�R(C 0l )n0l [R(I (C 0l ))n0l �. For Bo and each member ofChA [ ChB [ ChC , we define an orientation
preserving homeomorphism satisfying suitable conditionsin the following way.

We can naturally defineIBo : Bo ! Bo by the restriction ofI to 6g n U . Note
that 5�1(P 0) is the set of fixed points ofIBo. Thus, we can consider that5�1(P 0) is
the set of points oneX[8] .

For eachR(Ci)1 = LCi ;0 [ LCi ;1, we can define a homeomorphismICi : R(Ci)1!R(Ci)1 of order two such thatICi coincides withIBo on �1Ci [ �2Ci (we identify �LCi ;0
with �1Ci , and �LCi ;1 with �2Ci ). Note that ICi (LCi ;0) = LCi ;1 and the fixed point isLCi ;0 \ LCi ;1.

For eachR �Cj �2nj , we define a homeomorphismICj : R �Cj �2nj ! R �Cj �2nj
of order two such thatICj coincides withIBo on �1Cj [ �2Cj and the fixed locus isSnjd=1LCj ;2d�1. Thus, the restriction mapICj ��LCj ;2d (d = 2; : : : ; nj � 1) is a homeomor-

phism ofLCj ;2d of order two with fixed pointsLCj ;2d \LCj ;2d+1 andLCj ;2d \LCj ;2d�1.
For R(C 0l )n0l [ R(I (C 0l ))n0l , we can define a homeomorphismIC 0l : R(C 0l )n0l [R(I (C 0l ))n0l ! R(C 0l )n0l [ R(I (C 0l ))n0l of order two such thatIC 0l �LC 0l ;d� = LI (C 0l );d andIC 0l coincides withIBo on �1C 0l [ �2C 0l [ �1I (C 0l ) [ �2I (C 0l ).



110 M. I SHIZAKA

By gluing these maps, we obtain a homeomorphismĨ of eX[8] . Since we see thatĨ is an involution, we can consider the quotient mape5 : eX[8] ! eX[8]
Æ
Ĩ � of degree

two. From the construction, there exists a natural homeomorphism 2 : eX[8]
Æ
Ĩ � !X[8;5] such that2 �e5(5�1(Pi))� = Pi (Pi 2 P 0) and2 �e5(LCi ;0 \ LCi ;1)

�
= PCi .

Then we can consider the surjective map5[8] : eX[8] ! X[8;5] of degree two such

that the branch locus is
S�SLCj ;2d�1

�
and the set of isolated branch points isP 0 [

fPCi g. Note that5�1
[8](Pi) (Pi 2 P 0) is not a double point and5�1

[8](PCi ) is a double
point.

STEP 2 A component of a chorizo space which intersects only one component
is called a terminal component. Since the dual graph ofX[8;5] is a tree, there exists
at least one terminal component. For later use, we give a symbol to each component
of X[8;5] by the following way (see Fig. 7, for example, in Fig. 7, we give a symbol
to each component ofX[8;5] appearing in Example 2.7. The lines mean irreducible
components ofX[8;5]); Choose a terminal component ofX[8;5] and denote it byZ0.
If X[8;5] has another terminal component, thenZ0 intersects only one component ofX[8;5] . We denote it byZ1

0;1. If there exist components ofX[8;5] nZ0 which intersectZ1
0;1, choose a component among them and denote it byZ1

0;2. Inductively, if there exist
components ofX[8;5] n Z1

0;i�1 intersectingZ1
0;i , choose such a component and denote

it by Z1
0;i+1. Finally, we obtain aP1-chainZ0 [ Z1

0;1 [ � � � [ Z1
0;k� such thatZ1

0;k� is a
terminal component ofX[8;5] .

Let Z1
0;j be a component which is not a terminal component ofX[8;5] n �Z1

0;j�1

	
.

If j = 1, we setZ1
0;0 := Z0. We denote byZ1;1

0;j;1; Z1;2
0;j;1; : : : ; Z1;d

0;j;1 the components

of X[8;5] n �Z1
0;j�1; Z1

0;j+1

	
that intersectZ1

0;j . For eachZ1;i
0;j;1 which is not a terminal

component ofX[8;5] , choose a component ofX[8;5] n Z1
0;j intersectingZ1;i

0;j;1 and de-

note it byZ1;i
0;j;2. Inductively, if Z1;i

0;j;j 0 is not a terminal component ofX[8;5] , choose

a component ofX[8;5] n Z1;i
0;j;j 0�1 intersectingZ1;i

0;j;j 0 , and denote it byZ1;i
0;j;j 0+1. Fi-

nally, we obtain aP1-chainZ1;i
0;j;1[� � �[Z1;i

0;j;� such thatZ1;i
0;j;� is a terminal component

of X[8;5] .

By the same way, we give symbols to all components ofX[8;5] ; For simplicity,
we denote a sequence 1; i1; : : : ; il�1 by Il and a sequence 0; j1; : : : ; jl�1 by Jl . LetZIlJl ;jl be a component which is not a terminal component ofX[8;5] n ZIlJl ;jl�1. We de-

note byZIl ;1Jl ;jl ;1; ZIl ;2Jl ;jl ;1; : : : ; ZIl ;ilJl ;jl ;1 the components ofX[8;5] n�ZIlJl ;jl�1; ZIlJl ;jl+1

	
which

intersectZIlJl ;jl . For eachZIl ;�Jl ;jl ;1, choose a subchorizo spaceZIl ;�Jl ;jl ;1 [ ZIl ;�Jl ;jl ;2 [ � � � [ZIl ;�Jl ;jl ;jl+1
of X[8;5] such thatZIl ;�Jl ;jl ;jl+1

is a terminal component ofX[8;5] .

We also give a symbol to each point at which two components intersect. We de-
note by aIlJl ;jl the point at whichZIlJl ;jl intersectsZIlJl ;jl�1 when jl 6= 1. We denote byaIl ;�Jl ;jl ;1 the point at whichZIl ;�Jl ;jl ;1 intersectsZIlJl ;jl . We set

I8 :=
n
(Il; Jl; jl) ��� aIlJl ;jl 2 X[8;5]

o :
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When � = (Il; Jl; jl) 2 I8, we sometimes writea� andZ� instead of writingaIlJl ;jl andZIlJl ;jl , for simplicity.

STEP 3 Let P� 2 P 0 be a point onZ1;i1;:::il�1

0;j1;:::;jl . We define the polynomialfP� �eZ0;t; a� ; P� � associated toP� as follows;

fP� �eZ0; t; a� ; P� � := eZ0 �
0
� j1X
j=1

a1
0;j t j�1 +

j2X
j=1

a1;i1
0;j1;j t j1+j�1 + � � �

+
jlX
j=1

a1;i1;:::;il�1

0;j1;:::;jl�1;j t j1+j2+���+jl�1+j�1 + P� tj1+j2+���+jl
1
A :

If P� is on Z0, we setfP� := eZ0 � P� .
Let 5(Ci) be the image of a curve of Type A by5 on Z1;i1;:::il�1

0;j1;:::;jl . We define the

polynomial gCi �eZ0; t; a� ; PCi � associated to5(Ci) as following;

gCi (eZ0; t; a� ; PCi ) :=

8<
:eZ0 �

0
� j1X
j=1

a1
0;j t j�1 +

j2X
j=1

a1;i1
0;j1;j t j1+j�1 + � � �

+
jlX
j=1

a1;i1;:::;il�1

0;j1;:::;jl�1;j t j1+j2+���+jl�1+j�1 + PCi tj1+j2+���+jl
1
A
9=
;

2

� tni+2(j1+���+jl ):
If 5(Ci) is on Z0, we setgCi �eZ0; t; PCi � :=

�eZ0 � PCi �2� tni . Set

F �eZ0; t; fPCi g; fP� g; fa� g� := 5P�2P 05Ci2CAfP� �eZ0; t; a� ; P� � gCi �eZ0; t; a� ; PCi � :
Fix f[PCi ]; [P� ]; [a� ]g a set of mutually distinct complex non-zero numbers and

consider the polynomialF �eZ0; t� := F �eZ0; t; f[PCi ]g; f[P� ]g; f[a� ]g�. Note that the de-
gree ofF �eZ0; t� with respect toZ0 is 2g + 2. Moreover, sincef[PCi ]; [P� ]; [a� ]g is a
set of mutually distinct complex numbers, the roots ofF �eZ0; t� = 0 is mutually dis-
tinct when t 6= 0 and jt j is sufficiently small. Let" be the small positive real number
such that the roots ofF �eZ0; t� = 0 is mutually distinct. We set1 := ft 2 C j jt j < "g.
Let eF �eZ0;eZ1; t� be the homogeneous polynomial of degree 2g + 2 with respect to�eZ0 : eZ1

�
satisfyingeF �eZ0;1; t� = F �eZ0; t�.

Let  0 : S0! W0 := P1�1 be the double covering branched alongB0; eF �eZ0;eZ1;t� = 0, where
�eZ0 : eZ1

�
is a homogeneous coordinates ofP1. Since the divisor defined

by eZ1 = 0 does not intersectB0, it is sufficient to observeB0 on eZ1 6= 0 defined byF �eZ0; t� = 0. We observe the canonical resolution of the family�0 Æ  0 : S0 ! 1.
In the case whereX[8;5] has only one component, the assertion is clear because each
simple closed curve in a simple admissible system of8 is of Type A.
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Let �1 : W1 ! W0 be the blowing-up ateZ0 � �a1
0;1� = t = 0. Let Z1

0;1 be the

exceptional set of�1. We denote byeZ1
0;1 an affine coordinates of the exceptional set

satisfyingeZ0� �a1
0;1� = teZ1

0;1.

If (1; 0;2) 2 I8, we blow up ateZ1
0;1 � �a1

0;2� = t = 0 and denote byZ1
0;2 the

exceptional set of this blowing-up. We denote byeZ1
0;2 an affine coordinates satisfyingeZ1

0;1 � �a1
0;2� = teZ1

0;2. Similarly, if (1; d; 0;1;1) 2 I8, we blow up ateZ1
0;1 � �a1;d

0;1;1� =

t = 0. We denote byZ1;d
0;1;1 the exceptional set of this blowing-up. We denote byeZ1;d

0;1;1
an affine coordinates of the exceptional set satisfyingeZ1

0;1� �a1;d
0;1;1� = teZ1;d

0;1;1.
Inductively, we blow up and give the symbols to the exceptional sets of the

blowing-ups in the way similar to the above; If (Il ; Jl; jl + 1) 2 I8, we blow up ateZIlJl ;jl � �aIlJl ;jl+1

�
= t = 0 and denote byZIlJl ;jl+1 the exceptional set of this blowing-up.

We denote byeZIlJl ;jl+1 an affine coordinates of the exceptional set satisfyingeZIlJl ;jl ��aIlJl ;jl+1

�
= teZIlJl ;jl+1. If there existsd 2 Z such that (Il; d; Jl; jl;1) 2 I8, we blow up

at eZIlJl ;jl � �aIl ;dJl ;jl ;1� = t = 0 and give the symbolZIl ;dJl ;jl ;1 to the exceptional set of this

blowing-up. We denote byeZIl ;dJl ;jl ;1 an affine coordinates satisfyingeZIlJl ;jl � �aIl ;dJl ;jl ;1� =teZIl ;dJl ;jl ;1.

Let Wr �r! Wr�1
�r�1! � � � �1! W0 be the sequence of the blowing-ups obtained by the

process above. Then, we obtain the chorizo space (�1 Æ � � � Æ �r )�00 =
S�2I8 Z� . Here,

we use the same symbol for the exceptional set of each blowing-up �r 0 : Wr 0 ! Wr 0�1

(r 0 � r) and its strict transform by�r 0+1Æ� � �Æ�r . Note that the multiplicity of each com-
ponent ofZ� is one. For eachr 0, we can define the double covering r 0 : Sr 0 ! Wr 0
branched alongBr 0 and bimeromorphic mape�r 0 : Sr 0 ! Sr 0�1 introduced in the previ-

ous section. SinceZIlJl ;jl+1 intersectsZIlJl ;jl at eZIlJl ;jl =
�aIlJl ;jl+1

�
and ZIl ;�Jl ;jl ;1 intersects

ZIlJl ;jl at eZIlJl ;jl =
�aIl ;�Jl ;jl ;1�, there exists a natural homeomorphism between

SZ� toX[8;5] that sends each exceptional setZ� (� 2 I8) to the irreducible componentZ�
of X[8;5] . Then, we can identifyX[8;5] with (�1 Æ � � � Æ �r )�00. Moreover, ifP� 2 Z� ,
the strict transform offP� = 0 on Wr intersects the exceptional setZ� at eZ� = [P� ],
transversally. Thus, we can identify the pointP� 2 P 0 on Z� with the point on the
componentZ� defined byeZ� = [P� ]. If 5(Ci) � Z� , the strict transform ofgCi = 0
on Wr intersects the exceptional setZ� at eZ� = [PCi ]. Then we identify naturally the
point PCi 2 P 0 on Z� of X[8;5] with the point onZ� defined byeZ� � [PCi ] = t = 0.

We can easily see that the defining equation of the strict transform of gCi = 0 onWr neareZ� = [PCi ] is
�eZ� � [PCi ]�2 = tni . Thus, if Z� is not a component ofBr , the

singular point onSr over eZ� � [PCi ] = t = 0 is a rational double point of typeAni�1.
In the proof of Claim 3.2, we show that a exceptional set corresponding to a body
component ofX[8;5] is not a component ofBr .

CLAIM 3.1. Let �r 0 : Wr 0 ! Wr 0�1 be the blowing-up atQ; eZ� � [a� 0 ] = t = 0.
Then, the strict transformeBr 0�1 of the divisorB0 by � r 0�1 = �1 Æ � � � Æ �r 0�1 is singular



HYPERLLIPTIC SEMISTABLE MONODROMIES 113

at Q.

Proof of Claim 3.1. Note that the strict transform offP� = 0 or gCi = 0 by � r 0�1

containsQ, if and only if fP� or gCi include a monomial whose coefficient is [a� 0 ].
Assume thateBr 0�1 is nonsingular ateZ� � [a� 0 ] = t = 0. Then, there exists unique irre-
ducible componentD of eBr 0�1 that containsQ. Let D0 be the irreducible component
of B0 such that the strict transform ofD0 by e�r 0�1 is D. If the defining equation ofD0 is gCi = 0, we see that5(Ci) is on the componentZ� of X[8;5] because if5(Ci)
is not onZ� , the strict transform ofD0 by � r 0�1 is singular. Then, the strict transform
of gCi = 0 intersectsZ� at eZ� = [PCi ]. It contradicts thatf[PCi ]; [P� ]; [a� ]g is a set
of mutually distinct complex numbers. Thus, there exists a branch pointP� 2 Ze� of5 such that the defining equation ofD0 is fP� = 0. If � = e� , it contradicts the fact
[P� ] 6= [a� ]. If � 6=e� , we see that there exists no5(Cj ) and no branch points butP�
on Ze� . Moreover, we see thatZe� is a terminal component ofX[8;5] . It contradicts the
assumption thatCA [ CB [ CC is an admissible system of8.

CLAIM 3.2. LetZ�1 [ � � �[Z�N be a set of the exceptional sets corresponding to
the core chain at the image of a curve of Type B or Type C by5. Let Z�0 andZ�N+1

are the exceptional sets corresponding to the body components such thatZ�0 andZ�N+1

intersectZ�1 andZ�N , respectively. Then, ifZ�1 [ � � � [Z�N is a set of the exceptional
sets corresponding to the core chain at the image of a curve ofType C, eachZ�i is
not a component ofBr . If Z�1 [ � � � [ Z�N is corresponding to the core chain at the
image of a curve of Type B by5, then eachZ�i is a component ofBr when i is odd
and not a component ofBr when i is even.

Proof of Claim 3.2. Let�r 0 : Wr 0 ! Wr 0�1 be the blowing-up whose exceptional
set is Z�1. Without loss of generality, we can assume thatZ�2; : : : ; Z�N are not the
exceptional sets of� r 0�1. Thus, we can consider that�r 0 is the blowing-up atQ; eZ�0�
[a�1] = t = 0.

Let f� 01; : : : � 0wg be the subset ofI8 such that eachZ� 0i is contracted toQ by �r 0 Æ� � � Æ �r . By the definition offP� and gCi , we see that each strict transform offP� =
0 (resp.gCi = 0) by � r 0�1 containsQ if and only if there exists� 0i such thatfP�
(resp. gCi ) includes a monomial whose coefficient is [a� 0i ]. The multiplicities of the
strict transform offP� = 0 andgCi = 0 atQ are one and two, respectively if they con-
tain Q. Thus, the multiplicity of the strict transformeBr 0�1 of B0 at Q by � r 0�1 coin-
cides with the number of the branch points of5 that are on the componentsZ� 01; : : : ;Z� 0w of X[8;5] . Then, we see that the multiplicity ofeBr 0�1 at Q is odd if Z�1[� � �[Z�N
is the core chain at the image of a curve of Type B, and even if not. If Z�0 is not a
component ofBr , the assertion is clear becauseN is odd whenZ�1 [ � � � [ Z�N is
the core chain at the image of a curve of Type B. Though, since the strict transform
of 00 is a component corresponding to a body component and not a component ofBr , we see that all components corresponding to body components are not components
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of Br .
Let P i and P Ci be points on (�1 Æ � � � Æ �r )�00 corresponding toPi and PCi , re-

spectively. Leter : eSr ! Sr be the minimal resolution of all singular points of typeAn on Sr and eSr ! S the blowing-downs of suitable (�1)-curves successively oneSr
such thatS has no (�1)-curve. LeteX be the singular fiber of�r Æ  r : Sr ! 1. By
Claim 3.2, r jeX : eX! (�1 Æ � � � Æ �r )�00 ' X[8;5] is a double cover branched along the

components corresponding to
S�SLCj ;2d�1

�
and branched at the points correspond-

ing to P 0 [ fPCi g. Moreover, r j�1eX �P Ci � is a double point ofeX and  r j�1eX �P i� is
nonsingular point ofeX. Thus we see that r jeX satisfies the same conditions as5[8]

and eX is homeomorphic toeX[8] . Since �1r �P Ci � is a rational double point of typeAni�1, the singular fiber of�r Æ  r Æer : eSr ! 1 is homeomorphic to

Xn
(Ci ;ni )i�k ;(Cj ;2nj )j�m;(C 0l ;nl )l�s ;(I (C 0l );nl )l�so

becauseeX[8] is given by (2).
By the proof of Claim 3.2, we see thatZ� is a component ofBr if and only ifZ� corresponds to a component of

S�SLCj ;2d�1

�
. Since the multiplicity of �r �Z� �

is two whenZ� � Br ,  �r �Z� � is a (�1)-curve. Moreover, we see that �r �Z� � is

not a (�1)-curve whenZ� does not correspond to a component of
S�SLCj ;2d�1

�
by Claim 3.1. Thus, we see that the special fiber of� : S ! 1 is homeomorphic toX[8] . We complete the proof of Theorem 1.1.
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Fig. 4.

Fig. 5.
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Fig. 7.
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