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Abstract

Many mechanical properties of material are strongly depended on defects
in structure of the material such as vacancies, dislocations and grain boudaries,
which present space to accommodate impurity elements. For iron/steel materials,
the location of foreign atoms in defect structure strongly affects to their strength
and ductility. Therefore, the knowledge of location of C in iron/steel under the

existence of defects is essential for material design.

In this study, the segregation of carbon is explored in a-Fe<110> symmetric
tilt grain boundaries (STGBs) and several edge dislocations. Because of the
limitation of number of atoms in density functional theory (DFT) calculation, in
this work, the classical force-field method in conjunction with the presently
constructed Tersoff/ZBL interatomic potentials have been used for performing
the simulations of very large cells of STGBs and edge dislocations. Fe-C
interatomic potential in the framework of Tersoff/ZBL potential has been
constructed by fitting its parameters to reproduce the results of first-principles

calculations of various BCC Fe systems with C and Fe vacancies.

Firstly, | have applied classical force-field simulations using the newly
developed Tersoff/ZBL potential for calculating grain boundary energies. It is
found that the present potential give the most adequate results in comparison
with the DFT compared to the other standard classical potentials. The
segregation sites of C are determined by examining the energy landscape of the
GB systems, and it is found that C mainly locates at the GB planes. It is also
found that more unstable grain boundary exhibits a stronger interaction with C.
By using the Voronoi construction, it is suggested that there is a close correlation

between the segregation energies of C and open space around C.

Next, in order to confirm the universality of the relation between open space
around C and its segregation energy, | have calculated several edge dislocations

and their interaction with C. It is found that the stabililty of different seven edge

Xi



dislocations with <111>, <100>, and <110> Burgers vector are reasonably
reproduced experimental observations and the prediction by elastic theory. By
calculating the segragtaion energy of C as a function of distance from dislocation
core of calculated dislocations, it is shown that C is strongly trapped at
dislocation core and dislocation exhibits as a long-range interaction with C
comparing to STGBs. It is also found that the interaction between dislocations
and C shows similar tendency to the case of STGBs, namely the stability of C

around the dislocation is related to the VVoronoi volume around C.

I summary calculated segregation energy of C in different defects by
using the Tersoff/ZBL potential. | have also calculated the interaction between C
and single Fe vacancy. In general, STGBs and edge dislocations trap C strongly
compared to single Fe vacancy, and more unstable defect structures attract C
more strongly. Among the presently calculated extended defects, the <100> edge
dislocation is the strongest trap of C. The obtained tendency might offer useful

guideline to analyse atomistic distribution of C in Fe with extended defects.
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CHAPTER 1. INTRODUCTION

Today, thanks to the improvement in computational technology,
researchers are making vigorous progress in the understanding of materials at
atomic and molecular levelst. With this understanding, we can select suitable
materials for specific purposes and also improve or even predict advanced
materials for applications. Aiming at enhancing the collaboration between
experimental research and simulation work in studying on existing and new
materials as well as their application, computational material science with its
techniques is applied to solve material relating problems. Moreover, in some
aspects, computational experiments have an advantage over real experiments
because most of the variables can be controlled in the calculations to simulate
extreme conditions. Particularly, by analyzing the simulation results we can
discuss underlining mechanism behind the functional properties. The calculation
related to iron-carbon alloys is a good example to show the possibility of
computational methods and contributes to the development of the fundamental
research in steel industry, because the real lattice is not perfect and contains
many types of defects such as vacancy, dislocation and grain boundary. Those
defected systems show great importance to improving the properties of materials.
Regarding the requirement of understanding the behaviour of impurity atoms and
their influence to mechanical properties of iron, we have investigated the relation
of carbon segregation and local structure of several defected structures of BCC
Fe.

1.1. Overview of iron-based alloy

Iron-carbon alloy or steel is one of the most widely used structural materials
in our society. The versatility, durability and strength of steel can meet

requirements for a variety of purposes, and it is also an affordable price and

1



environmentally friendly?. The steel industry has a long history and an
extraordinary development, which can be classified into three generations. Those
three steel grades are classified according to their important properties, namely
strength (load capacity) and ductility (an index for plastic formability)3. The first
generation consists of the conventional steels such as IF (Interstitial Free), HSLA
(High-Strength Low-Alloy) steels and the advanced high strength steels (AHSS)
such as DP (Dual Phase), TRIP/TWIP (Transformation or Twinning Induced
Plasticity) steels. As shown in Fig. 1-1, the conventional steels are characterized
by high ductility but low strength while the advanced high strength steels have
high strength but less ductility. The second generation is so-called the austenitic-
based steels which are known for their high strength and good tensile properties.
The austenitic-based steels are developed by alloying expensive elements such as
Ti or Al, leading to the high cost of manufacturing and production. Nowadays,
new steels combining both high strength and high ductility with low cost are still
under investigation and development. Improving their mechanical properties by
modifying polycrystal structures of Fe matrix or controlling doped impurity

atoms is an attractive and active research field.? 3

Among impurities used in the production processes of iron/steels, carbon is
one of the most important foreign interstitial atoms determining the strength and
hardness of steels even though its concentration is quite low as 0.022 wt% in
body-centered cubic (BCC)- Fe 4. The concentration of C and its diffusion in Fe
matrix control the formation and kinetics of many important phases and phase
transformations in steel. The influence of C on different phases of steels is

summarized in Table 1.
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Fig. 1-1. Relation between elongation (ductility) and tensile strength in

low carbon steels for general applications.®

Table 1: Different phases of steels based on carbon content.>

Phase Term Structure Temperature Notes
conditions
a-Fe Ferrite BCC T<922.50 °C Solubility is very
low
v-Fe v-Ferrite FCC 911.50 °C < T <|C IS an
13960 °C "Austenite
stabilizer":  add
C, y field widens
o-Fe o-Ferrite BCC 13920°C<T<15360 | Dissolve as much
°C as 0.08% of
carbon
FesC Cementite Orthorhombic Hard ceramic
Fe-C Martensite BCT Metastable,
solute formed by
solution quenching




The concentration of C determines the strength and ductility of steels’.
Alloys containing more than 2.0wt% of C content are considered as cast irons,
which are known as very hard materials and they are also very brittle. In the case
of carbon concentration of less than 0.08wt%, the steel becomes softer when
compared to cast iron, but its ability of incurvation or distortion is better without
breaking, which is necessary for steel to play a role as a structural material in the
construction of buildings and other infrastructures. When carbon concentration is
between 0.2wt% and 2.0wt%, the properties of steel become special owing to the
balance between hardness and ductility. The appearance of carbon atoms in the
iron system even in small quantities is still considered to have a significant effect
on the energetics and kinetic properties of the system. The formation of carbides
occurs by exceeding the limit of carbon solubility, which contributes
significantly to the improvement of the durability and hardness of steel. Beside,
when the carbon concentration in the system is below the solubility limit, the
thermal and mechanical properties of the system can be changed significantly
only by a minimal amount of carbon atoms (several tens of ppm) at interstitial

sites 8.

At room temperature, a-Fe (ferrite) exists as the body-centered cubic
structure containing two atoms per conventional cubic unit cell where one Fe is
located at coordinates (are/2, are/2, are/2) (are is lattice constant of a-Fe) and the
other is placed at the origin of the cell with coordinates (0, 0, 0) (Fig. 1-2). As for
C in a-Fe, typical locations are octahedral (O-site, the most stable site) and
tetrahedral (T-site, a metastable site) sites (Fig. 2). It is known that the formation
energy of octahedral C interstitial is very high therefore many experimental and
theoretical studies have been devoted to identifying the location of C in Fe. It is
particularly interesting to study the interaction between C and various kinds of
defects in Fe and elucidate whether these defects affect the location of C °*°, This

IS because in the fabrication process of steel-related materials various types of



defects, such as vacancies, dislocations or grain boundaries, are naturally

expected to exist. Those defects are studied as attractive sources for C in a-Fe.

Octahedral interstices Tetrahedral interstices
@ Fcatoms @ Catoms

Fig. 1-2. Two typical interstitial sites for C occupation in BCC Fe.

1.2. Lattice defects in steel

1.2.1. Point defect

Point defect (zero-dimensional defect) is a type of lattice defects that occurs
at a single lattice point. In BCC metal alloys such as W and Fe alloys, the strong
interaction of C with vacancy (V) has been investigated with great scientific and
technological interests to understand the nucleation, evolution, and kinetics of the
other defects 111213, In the previous simulations, it was found that C at O-site
interacts strongly with vacancies whereas its interaction with self-interstitial
atoms (C at vacancy) has been explored to be weaker but also attractive
comparing to the perfect case 2. Significant reduction of vacancy diffusion due
to the presentation of C has been insighted. The binding energy of C-V and the
migration of vacancy in o-Fe have been estimated by ab initio calculations!**? as

well as classical force-field method by using various Fe-C interatomic potential



models 1>1617 The C-V binding energy values of 0.41~1.1eV and vacancy
migration energies of 0.55~1.28 eV in Fe have been explored 1, In this work,
the interaction of C and vacancy is investigated by a newly constructed FeC

interatomic potential.
1.2.2. Grain boundary

A grain boundary (GB) is an interface which separates two grains with the
same crystal structure but different orientations. It can be fully described by five
macroscopic and three microscopic degrees of freedom (DOFs). The five
macroscopic DOFs specify the crystallography of the GB, with three of them
representing the misorientation relationship between the two grains (two for the
rotation axis o and one for the rotation angle w) and the remaining two defining

the orientation of the GB plane n.

BOUNDARY
PLANE GRAIN B

Fig. 1-3. Description of grain boundary *°. o corresponds to the rotation
axis, w is misorientation angle, n is normal of grain boundary.

A GB is referred to as a tilt/twist GB when the rotation axis is
parallel/perpendicular to the GB plane. If the Miller indices of a tilt GB plane are
identical for the two grains, namely, {hikili}={hokol>}, the GB is called a

symmetrical tilt grain boundary (STGB) in contrast to asymmetrical tilt GB.



According to the misorientation angle, the GBs can be classified into low
and high angle GBs. The low angle grain boundary (LAGB) exhibits as an edge
dislocation (Fig 1-4a). The angle w is related to the spacing between dislocations

as the following equation:

(1.1)

where b is magnitude of Burger’s vector of the dislocation. When the
misorientation angle is larger than 15°, the high angle grain boundary (HAGB) is
established (Fig. 1-4b), and the dislocation model of a grain boundary become
incorrect. We can completely describe a grain boundary by the notation
w°[hyk,l,], (h, gk, 4l,,4) In which, the rotation axis is o = [h,k,l,] and

(haknala) 1s Miller index of grain A.

Grain boundary

Fig. 1-4. a) Low angle grain boundary and b) High angle grain boundary

in a cubic crystal %°.

In grain boundary model, for a certain misorientation angle, some lattice
points of grain A coincide exactly with some lattice points of grain B, this is

indicated as coincidence site lattice (CSL) X value. With X equals to 1, no grain



boundary occurs, it means a perfect crystal structure. The X3 value is considered
as a twin grain boundary which is known as the most stable GB with smallest
grain boundary energy. The dependence of misorientation angle w and grain
boundary was investigated and shown in Fig. 1-5 ! which indicated that the

smallest GB energy is obtained for X3(112).

) N o = ~N - =)
- w o -— ~— ~— o
A L o z z - z
2000
1600
>
81200
Z
8 800
1 —&— Mo
400 ——Fe
0 ] ¥ T T 1 T T v T T T ¥ 1
0 30 60 90 120 150 180
v

Fig. 1-5. The relationship between grain boundary energy (in mJ- m=2)
and misorientation angle (°) in <110>STGB of BCC Fe and BCC W 2.

Experimentally, C is well known to enhance the stability of GBs in steels,
in contrast to H, P and S, thereby improving its crack-resistant properties 2% 23 24,
Hence, to control the strength of steel, it is important to investigate the
interaction between GBs and C . In addition, the segregation of carbon causes
the formation of carbon clusters and the precipitation of carbides in aging process,
and it affects the mechanical properties of carbon steel %. However, the
experimental assignment of the location of carbon is still difficult. So far, the
GBs have been visualized by using transmission electron microscopy (TEM) and
atom probe tomography (APT) 2" 2 The excess of carbon at the GBs was

detected by combining the mass spectroscopy and ion projection microscopy in



grain boundary space and the linear relationship was observed between solubility
of C and misorientation angle w for w < 25° in a-Fe GBs?°. However, such kind
of correlation has not been found for large w-GBs. Since the local atomic
structure depends strongly on w, it is desirable to investigate the correlation
between local atomic structure of GBs and the stability of carbon at the GBs. For
this purpose, numerical simulations might be helpful to complement the
experimental observations. As for the computational approaches, the stability of
various pure a-Fe <110> symmetric tilt grain boundaries (STGBs) with common
<110> tilt axis was investigated by performing the molecular dynamics
simulations with several classical interatomic potentials of Fe such as the pair
potential proposed by Johnson 2! 3 or Embedded Atom Method (EAM) 3!
potential, however the behaviour of impurity atoms has been studied only in a
few typical a-Fe <110> STGB configurations 323334 due to the lack of universal
and reliable interatomic potentials for the systems with impurities. Grain
boundary (two-dimensional defect or plane defect) significantly affects the

physical and mechanical properties of polycrystalline materials®® 3¢,

1.2.3. Dislocation

Dislocation is a line defect whose structure can be characterized by a line
(Fig. 1-6).



Dislocation core

Fig. 1-6. Schematic model of a dislocation in supercell.

A dislocation can be identified by knowing Burgers vector b and glide
plane (xy plane in case of Fig.1-6). In Fig. 1-6, & is direction of dislocation line,
n is a normal vector to the glide plane. Basically, there are two types of
dislocations: edge and screw dislocations. The edge dislocation is disruption in
the crystal structure by an extra half plane of atoms inserted between the regular
atom sequence, resulting in a dislocation line. For the edge dislocation, the
Burgers vector b is normal to the dislocation line & This extra array of atoms
leads to a distortion and affects the local structure so that compressed part and
expanded part always appear along z direction as shown in Fig. 1-7. The screw
dislocation can be formed by rotating a half of the upper part of the crystal to
right related to the lower part. For the screw dislocation, the Burgers vector b is
aligned with the dislocation line & In this thesis we focus on the edge
dislocations. A dislocation can be denoted by <h,k,l,>(h,k,l,) in which

h,k,l, is Burgers vectore b and h, k,[,, is Miler index of glide plane.

An edge dislocation can be constructed by superimposing two crystals with
different number of atomic layers. The top part contains an extra atomic layer
compared to the bottom one. Therefore, in order to maintain the same length

along X (Burgers vector) of both upper and lower parts, the structure of the top

10



part is always compressed while that of the lower part is always expanded as

compared to pure bulk structure (Fig.1-7).

‘ ‘ ‘ N+1 columns

——=
b

N columns

L

X

Fig. 1-7. Schematic model of an edge dislocation (side view)

Dislocation (one-dimensional defect or line defect) can be observed by
using X-ray diffraction®’, transmission electron microscopy (TEM) 8 or scanning

transmission electron microscope (STEM)®.

It is well known that the creation and motion of dislocations are the
fundamental mechanism of plastic deformation. The influence of impurity atoms
and vacancies to the mobility of dislocation core leads to significant change in
mechanical properties of materials. In BCC metal, the dislocations with Burger
vector <111> are usually observed in experiments %°. Therefore, many previous
studies focused on ¥2<111> dislocation by using classical interatomic potentials
41 In steel, the interaction of dislocation with C impurity has attracted a large
attention from scientific community. The most popular edge dislocation model
1<111>(110) which is also known as the most stable dislocation in BCC Fe has
been studied with C segregation. The C and dislocation interaction was simulated
in the %<111>(110) dislocation using the pairwise interatomic potentials for Fe-
C pair proposed by Johnson?. The results showed that C atoms interact with
dislocation between the {110} atomic planes with interaction ennergy of -0.7 eV.

In addition, based on density-functional theory (DFT), the formation of strong

11



covalent-like bonds between C and adjacent Fe was investigated for ¥2<111> and
<100> edge dislocations, thereby leading to formation of carbon-dislocation
complexes 42, However, the atomistic mechanism of stability of dislocation
configuration, for example the relation of C location and local atomic structure of

dislocation, has not been clearly understood yet.

1.3. Purpose of thesis

In this thesis, | try to predict the location of C in BCC Fe with some typical
types of defects, namely vacancy, a-Fe <110> STGB, and edge dislocation
structures of a-Fe, and clarify the relation between the stability of C and its local
structures. First-principles calculations based on the density-functional theory
have been widely applied to give highly accurate prediction and insight into
atomic behaviour of impurity segregation. However, it is computationally too
expensive to apply the DFT to complex STGB and dislocation systems.
Therefore, alternative methods in conjunction with classical force-field have been
employed, namely classical interatomic potential for Fe-C systems was
constructed within the framework of Tersoff/ZBL potential by fitting its
parameters to reproduce the results of first-principles calculations of various a-Fe
systems with C and Fe vacancies.?*?® The reliability of the new Tersoff/ZBL
potential is demonstrated by comparing the grain boundary energy and binding
energy of V-C pair with those obtained by DFT. The results are also compared
with those calculated by other interatomic potentials. In the analysis of the
segregation sites of carbon in a-Fe, the relation between local atomic structure
and stability of C is discussed by considering the free volume around C based on
the VVoronoi construction, the shortest bond length from C to its neighbors Fe and
the coordination number. By using the same interatomic potential, the interaction
of C with different defects has been systematically investigated to identify the

priority position of C in mutiple defects systems.
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This thesis is organized as folows. In Chapter 2, we introduce the
computational methods applied in this thesis. The results and discussion are
given in Chapter 3. Here, the stable position of C in vacancy system is firstly
studied. After that, the stability of GBs with and without C and the segregation of
C in GBs systems are estimated. The dislocation model, stability of different
dislocation configurations and C segregation at dislocation core are discussed in
the third part of Chapter 3. At last, the conclusion and outlook are given in
Chapter 4.
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CHAPTER 2. CALCULATION METHODS

2.1. Density functional theory

Density functional theory is one of the most popular and successful
quantum mechanical approaches to matter. Nowadays, it is regularly applied for
calculating the binding energy of molecules in chemistry and the band structure
of solid in physics. DFT is a method used to solve the Schrodinger’s equation of
N, -electron systems (N, can be up to thousands) with the support of High
Performance Computer (HCP). The Schrodinger equation is the basic tool to
study the properties of a given material. The time-independent Schrodinger

equation has the operator form:
HY = EV¥ (2.1)

Where H is the Hamiltonian operator, E is energy, and ¥ is the wave
function. This equation can be exactly solved in the case of one nucleus and one

electron.

Let us consider a system including N nuclei of Z, charge at position {R,,}
forn =1,...,N and M electrons at position {r;} fori = 1, ..., M. The many-body

wave function ¥ becomes:
Y =Y(R{,R,,Rs, ..., 14, 15,13, ...)

To calculate and simulate a quantum system, we have to solve the
Schrodinger equation with 3N variables. In the system having many electrons,
the solution of this equation becomes very complicated and could take a long
calculation time, requiring High Perform Computer. The Hamiltonian for the

whole bulk system is:

h2 ZyZ
H=—;Zk Zkill - __Z V2+ Zli]lr -~ Zlkl

Ri—Ry| 2mg

o 22)
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Where h= h/2z, h is the Planck constant, m, and r, denote the electron
mass and the respective coordinates, M, and R, are nuclear masses and the
respective coordinates, and Z is the charge of the nuclei. The indices i and j
indicate electrons ith and jth while k and | denote the kth and Ith nuclei. The first
term in Eqg. 2.2 denotes the kinetic energy of the nuclei, the second term is the
Coulomb energy between the nuclei, the third term labels the kinetic energy of
the electrons, the fourth term indicates the Coulomb interaction among the
electrons, and the last term denotes the electrostatic interaction between the

electrons and the nuclei. So, in short, Eq (2.2) can be rewritten as:
H = TTL + I/TlTl + T + Vint + Vext (23)

Where T, Tn are the Kkinetic energies of the electrons and nuclei,
respectively. The potential energies from electron-electron repulsions, nuclear-
nuclear repulsion, and electron-nuclear attraction are labelled as Vi, V;,,, and
Voy: , respectively. Therefore, from above equations, the calculation of
Hamiltonian for many-body system is a complex process. In practice, a series of
approximation methods is made to reduce the complexity of the calculation. The
first approximation is Born-Oppenheimer approximation where the nuclei are
considered to be stationary, and Eq. 2.2 has to be solved for the electrons around
these stationary nuclei. This allows us to remove the first term in Eq. 2.2. The
second term is only a constant (since the nuclear positions are known). Following

the Born-Oppenheimer approximation, Eg. 2.2 and 2.3 can be expressed:

Hetee =T + Vipe + Veyr (2.4)

Z
Hetec = ZLVZ + Zli] |r - ~ 2 Iri Ilei' | (2.5)
Helee = Zlvz + Zlij i Zl ext (rl) (2.6)

Through the Born-Oppenheimer approximation, the complex Hamiltonian

H is simplified to the electron Hamiltonian H,,.. Now, many-body wave-
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function is dependent on spin and positions of the electrons while component

V.. (external potential) depends on the positions of nuclei.

2.1.1. Hohenberg - Kohn theorems

Material properties are mostly exhibited through the ground-state electronic
structure. The ground-state is governed by the electrons surrounding nuclei and
the interactions between them. Hence, if we can get hold of the real space
distribution of these electrons (the electron charge density p (r)) then almost all
physical properties can be predicted. The objective of the electronic structure
calculations is to obtain the electron density. This is the main idea of DFT. The

total number of electrons, n, is:

f p (r)dr =n, (2.7)

The density functional theory is based on two theorems. The first one was
introduced by Hohenberg and Kohn, and the second one was extended by Kohn

and Sham.

Theorem 1

The external potential V,,.(r) is univocally determined by the electronic

density, besides a trivial additive constant:
E=E[p(r)] = [Vee ®Mp)dr + Flp(r)] (2.8)
F[p(r)]: functional of the charge density,

where the external potential (V,,;) presents the interaction of the electrons and
the nuclei. Furthermore, the p(r), F[p(r)] terms are the Kkinetic energy of the

electrons and the inter-electron interactions, respectively, indicated three-
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dimensional electron density. However, unless we know F[p(r)] term, we still
do not have all the necessary information to calculate the ground-state energy of

a many-electron system.

Theorem 2

The functional E[p(r)] has its minimum value (the ground-state) for the

actual electron-change density of the system.

The Hohenberg-Kohn theorems laid the foundation of DFT. In 1956, Kohn
and Sham introduced a method in order to solve the Schrodinger equation via a

series of equations, known as Kohn-Sham equation, it is:

Flp(M)] = Exelp(M] + Exlp(M] + Exc[p(r)] (2.9)

where E;, denotes the kinetic energy of electron, E represents the Coulombic
energy of electron-electron interaction. E,. is the exchange-correlation term,
represents all unknown terms. By defining electron density term, the one electron

Schrodinger-like equation is rewritten:
hZ o
[_ﬁv + Veff(r)] @i (r) = €;¢; (2.10)

where €; denotes the orbital energy, ¢, represents the Kohn-Sham orbital, and the

effective potential is symbolized as Vesr. The effective potential is expressed as:

Ve () = Vere @) + [ X ' + v, (1) (2.11)

|r

where the V,.(r) represents the exchange-correlation potential, which can be
related to the exchange-correlation energy functional (E,.[p(r)]) by the

following equation:

_ SExclp ()]
Vee(r) = (—S(W)) ) (2.12)
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For an arbitrary electron charge density, there is no simple explicit
expression for the exchange-correlation energy Ex.. The local density
approximation (LDA) and the generalized gradient approximation (GGA) are

simple approaches to the exchange-correlation energy E,..

2.1.2. Exchange-Correlation functionals

In the Kohn-Sham equation, the exchange-correlation energy E,. IS an
indeterminate component, thus an approximation 1is required. Various
approximation methods have been used in order to approach this problem. The
local density approximation, the generalised gradient approximation or the
hybrid functional (for instance HSE - Heyd-Scuseria—Ernzerhof) approximations

are recently used for estimation of E,.[p(r)] term.

The LDA exchange-correlation functional is expressed as:

EXPALp] = [ p(r)ehem (p(r))dr (2.13)

The assumption of the LDA is that the exchange-correlation energy per
electron, located at point r, is equivalent to the homogeneous electron gas with
density p(r). Although simple, the LDA’s results are good at description of bond
length, crystal structure, elastic properties for various systems. However, the
LDA is not accurate enough for simulating chemical energies (often

overestimates binding energy).
The GGA exchange-correlation functional is expressed as:
EZE41p] = [ p()egé(p(r), Vp(r))dr (2.14)

The GGA’s results are equivalent to LDA’s in terms of atomic structure but
the GGA has overcome the error of determining binding energy in LDA

calculation. Moreover, the GGA describes band gaps of materials more
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accurately compared to the LDA, but it generally underestimates the value of

band gaps.

The hybrid functional is a combination of Hartree-Fock exchange energy

and DFT exchange-correlation energy by the following equation:
E..= (1 —a)ERIT + qEHF (2.15)

The hybrid functional is claimed to be an effective way to describe band

gaps of almost materials reasonably, especially semiconductors.

2.1.3. Solving Kohn-Sham equation

The exact ground-state density of the interacting system may be obtained by
solving a non-interacting problem in which the potential V,,, depends on the
electron density. Therefore, these simultaneous equations should be solved self-

consistently. The calculation process follows the diagram below:

Trial p(r) and Ex.[p(1)]

Evaluate Hy

l

Solve Kohn — Sam Eq.
Hisdi(r) = & ¢;(r)
Solution: New {¢;(r)}
i
New p(r)

Converged/No Converged/Yes

Calculate forces and update ion position
\

Converged/No l Converged/ Yes

Energy and other properties

Fig. 2-1. An illustration of the self-consistent field (SCF)
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2.2. Molecular dynamics

The molecular dynamics (MD) method was first introduced by Alder and
Wainwright in the late 1950s to study the interactions of hard spheres 4344,
Recently, due to the revolutionary advances in computer technology and
algorithmic improvements, molecular dynamics has subsequently become one of
the principal tools in many areas of physics, chemistry, biology and materials
science. There are two main families of molecular dynamics methods, which are
categorized based on model chosen to represent a physical system. One is
classical molecular dynamics (CMD) and the other is quantum or ab initio
molecular dynamics (QMD). In the classical molecular dynamics,
atoms/molecules are treated as classical objects and ruled by the laws of classical
mechanics. While in quantum molecular dynamics, which was introduced in the
1980s by Car and Parinello #°, the quantum mechanical effect of the electrons is
included in the calculation of energy and forces for the classical motion of the
nuclei. The quantum version gives an important improvement over the classical
approach. However, it requires more computational resources and the size of
simulated system is limited to few hundreds of atoms. For the simulation of
systems comprising many thousands (or millions) of atoms, which are usually
found in biology and materials science fields, the classical molecular dynamics

approach is more practical.
Equations of motion

The classical molecular dynamics method (hereafter, shortly called molecular
dynamics) is based on the Newton’s second law. We begin with a system of

particles which is governed by the Newton’s equations of motion (EOM):

2.,
where F; is the force exerted on particle, m; is the mass of particle and a; = %

is the acceleration of particle i.
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The computation of the force involves the calculation of the derivative (the
gradient) of the interacting potential U (1,5, ..., 7y), Which is a function of the
atomic positions r; of all the atoms in the system, with respect to the atomic

position:

Fi = _ViU(rlerI "'IrN) = _2_:.]1 (217)

Combining (2.16) and (2.17), we have

dzri — _ia_U (218)

dt? m; or;

The essential task in molecular dynamics simulation is to solve the above
equations of motion (the second order differential equations). With a given
interacting potential, one can find the trajectories of the particles for an interval
time frame as well as the velocities of the particles and other physical quantities

(both micro- and macroscopic).

2.3. Classical potentials

To understand the role of carbon in complex defect systems of a-Fe, it is
important to consider atomistic modelling at large time and length scale. This can
be done using molecular dynamics or Monte Carlo simulations in conjunction
with empirical potentials. In the past, some Fe-C empirical potentials have been
derived with requirements to find the total energy and the equilibrium state of the
system. Johnson et al.8 derived two-body central potentials for the FeC systems.
The metal-metal and the metal-carbon interactions were described by pairwise
potentials while no carbon-carbon interaction was assumed. Recently, one has
used a more realistic potential for Fe, constructed based on the tight binding
second moment approximation, achieving a better calculation of elastic
properties and a more natural agreement with experimental data. Below, some

advanced models for empirical potentials are introduced.
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2.3.1. EAM potential

The total energy formalism of a system described by the embedded atom method

(EAM) potential is shown below 46:
1
Eror = 2i Fi (@) + 5 X Xixj 0ii(ri}) (2.19)

Where F; is called the embedding energy, which is the energy required to
embedded atom i into the electron density @; caused by surrounding atoms. The
embedding energy is effective to describe the metallic bonding. The term

@ (r:;) is a simple pair potential which is typically attributed to attractive and

repulsive interactions between two atoms i and j with distance 7;;.

In general, the EAM potential for Fe-C reproduces the equilibrium lattice
constants, the bulk moduli and the cohesive energies for some carbides. But it is

failed to predict the most stable position of C in a-Fe*'.

2.3.2. Tersoff/ZBL potential

The classical interatomic potential for Fe-C systems which is mostly used in
this work is constructed within the framework of Tersoff/ZBL potential. The
Tersoff potential is an analytic bond-order potential which was found as a
suitable potential model for metallic/non-metallic compounds®. The
Tersoff/ZBL interatomic potential of Fe-C was constructed by fitting its
parameters to reproduce, as much as possible, the forces and energies of DFT
calculations of C in bulk BCC Fe with and without Fe vacancy. This potential
was shown to be effective in reproducing C diffusion paths in BCC Fe as well as

the effect of C on the BCC/FCC phase transformation in iron 4% 0,

In the Tersoff/ZBL potential framework, total potential energy of a given

system is calculated by:
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E= ZE— Z (2.20)

fo ()l fo () + by £,(r)] (2.21)

where the potential energy is decomposed into site energies E; or bonding
energies V;;. The i and j are the indices of atoms in the system with a spacing
distance r;;. The functions f, and f; are the attractive and repulsive Morse-type

pair potentials, respectively, and the extra term f, is a smooth cut-off function to

limit the interaction range of the potential within a finite distance .

f (r)—— (2.22)
f(O— 2/S (2.23)
Lr<R-D

o (r) = E_E n{z(rD )},R—D<r£R+D (2.24)
0,r>R+D

Here, 1, and D, are the bond distance and bond energy for the dimer, respectively.
The parameter  can be calculated by oscillation frequency of the dimer at

ground state, from the expression °2:

27C

K
B 2D/ (2.25)

where k, 4 are the wave number and the reduced mass, respectively. The

adjustable parameter, S can be estimated by using Pauling criterion:

E, =-D, exp[—,b’\/g(rb - ro)] (226)
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here 7, is the equilibrium bonding distance and E,, is the energy per individual
bond.

The parameters R and D are chosen as to contain the first-neighbor shell
only for considered structure (for carbon R = 1.8 A). The f. function declines

fromltoOintherangeR— D <r <R+ D.

The major characteristic of this potential is the appearance of the b;; part

which includes three-body interactions and angularity. This bond-order term is

expressed as:*!

bij — (1 + fij)_% (2.27)

where;

G = Z fe () G (eijk)a)ﬁjk exp[aijk (rij -nJ] (2.28)

ki, j

is defined so that the effect is zero to the first order between the different bond

lengths. Here, parameters w; ;, and «;;, are set relying upon the types of atoms
on triplet (i, j, k). For instance, they are fitted to 1 for w;j; and O for a;, in the

iron-carbon system.

The angular function g(0) is obtained by:

2

c c?
g(e)zy{“ﬁ_d%(h—cosaf} (2.29)

Here, 6, is the bond angle between bonds ij and ik . Adjustable

parameters y, ¢, d and h have different meanings: the parameter c describes the
strength of the angular effect; the parameter d determines the degree of
dependence on the sharpness of the angle and the parameter h expresses the

angular function’s minimum.
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To simulate high-energy events, it is necessary to improve the potential
over its original form. For r reaching zero in the repulsive part, the energy should
be varied according to the Ziegler-Biersack-Littmark (ZBL) universal screening

function and the Coulomb potential >
Vij = f(rij )Vij +[1- f(rij )]VijZBL (2.30)

here, V is the original potential, V.5, is the universal repulsive (ZBL) potential

that can be described as below °3:

1 Z;Z.e? r
VZBL — L7 — 2.31
ey T ¢ (a) (231)
. 0.8854 0 .
with a:WZ%%, a, =0.529 A (Bohr radius),
1 2
#(x) =0.1818e°** +0.5099¢ ***** +0.2802e % +0.02817¢ 2> (2.32)

and f(r) is defined as the Fermi-like function that links smoothly the ZBL part

with the original part. Parameter by is considered to control the “sharpness” of
the transition and r; indicates the cut-off distance for the ZBL potential. The

function f (r) is then written as:

1
f(r)= I (2.33)

In order to construct the potential by optimizing the parameters by reffering
DFT energy database, a number of structures including the configurations where
one or two carbon atoms are placed at an iron site (substitution), interstitial sites
(at O-site or T-site) and trapped at iron vacancy of 3x3x3 supercell of BCC iron
are calculated by DFT calculations. The parameters of the Fe-C classical
potential are fitted by using the Genetic Algorithm which are illustrated in Table
2.
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Table 2. Optimal iron-carbon potential parameters. The parameters for pure

iron and pure carbon interactions are taken from previous works®°.

Parameters | Fe-Fe C-C |Fe-C

S 2.0693 |1.22 |1.13068
B 14 2.1 1.63514
Do 1.5 6.0 13.13087
ro 2.29 1.39 |0.98468
R 3.15 1.85 |2.58980
D 0.2 0.15 [0.29680
r 0.0116 |0.0002 |0.04200
C 1.2899 |330.0 |0.00730
D 0.3413 |35 0.03530
H 0.26 —-1.0 |—0.01170
f 0.95 0.6 1.13470
by 2.9 8 5.41240

2.4. Method of analysis

2.4.1. Dissolution and Segregation energy

Dissolution energy of C in Fe configurations is calculated by following
equation:

Egis = ERFe*C — EX'® — e (2.34),
where X distinguishes the kinds of defects such as GB, vacancy, and

dislocation.

The difference between dissolution energy of C in the defect configuration
(X) and the one in pure bulk a-Fe is indicated as segregation energy (Eseg), which

is calculated as,
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Eseg = EJis -EB*= (EFe*C — ES® —uc) — (EFSHE-ERey — uc)
= (E)I;HC - E)I;e) - (Elljsﬁcc'ElI;slk) (2-35)

where EFe*¢ and EF€tC represent the total energy of the supercell of the X
defected iron configuration containing C and the total energy of bulk Fe with C
located at the O-site, respectively. EL¢,, and Ef¢ are the total energy of bulk Fe

without C and the total energy of the defected one, respectively.

2.4.2. Voronoi volume and coordination number

In order to determine the possible segregation sites of C in a-Fe matrix, we
analyze the geometry of the defect systems. We assume that C atoms can form
chemical bonding with surrounding Fe atoms. Chemical bonding is related to the
coordination number, which is defined as the number of neighbour Fe atoms
within a cut-off radius of 2.5A from the C atom. It is noted that the lattice
constant of a-Fe are is 2.8886A obtained by using the Fe-C Tersoff potential.
Hence, within the cut-off distance, the coordination number of C at O-site is 6 in
a-Fe.

The mechanical distortion is estimated by considering the VVoronoi volume
and shortest bond length between C and Fe. The relation of C segregation sites
and local atomic structure is also discussed from the view point of free space
around C. For this purpose we construct Voronoi cell constructed by
neighbouring Fe atoms around C (Fig. 2-2). The relation of C segregation sites
and local atomic structure is also discussed from the view point of free space
around C. For this purpose, the construction of Voronoi cell surrounding C is
performed and taken into account for the discussion. For the calculations of
the VVoronoi volume associated with C atom, the external library Voro++ is used
% This external library is integrated in and implemented directly from the Large-
scale Atomic/ Molecular Massively Parallel Simulator (LAMMPS)® code. The

details of construction of VVoronoi cell which specifies the VVoronoi volume is as
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follows: For a given set of three-dimensional points corresponding to the
coordinates of Fe and C in the simulated supercell, the Voronoi cell of a
particular point in this set is determined as a convex irregular polyhedron, the
faces of which are the perpendicular bisecting planes of that point with its
neighbors. Following this definition, any point located inside an

atom’s Voronoi cell is closer to that atom than any other one.

Fig. 2-1. Voronoi volume construction. The orange lines are the
perpendicular bisectors between neighbouring particles.

28



CHAPTER 3. RESULTS AND DISCUSSION

3.1. Point defect

For the simulation, the system of a 5x5x5 supercell a-iron with 249 iron
atoms containing single vacancy was studied. The interaction of C and vacancy
with different C-V distances is investigated by using the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) ° code.

@ fcatoms @ Catoms @ Vacancy

Fig. 3-1. C located at O-site in 1,2 positions and T-site in 3 position in Fe-V
system.

The positions of C at O-site and T-site around V are illustrated in Fig. 3-1,
in which C is located at the first nearest neighbour (LNN) and the second nearest
neighbour (2NN) O-site, and INN T-site from the vacancy. Moreover, in order to
consider the interaction distance between vacancy and carbon, some reasonable

positions of carbon around vacancy site were considered. It is noted that the most
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stable position of C in a-Fe is at the O-site %4, In Fig. 3-2, the location of
carbon at different O-sites such as P1, P2, P3, P4, P5, P6, P7 are shown. Among

them, the nearest position from vacancy is P1, next is P2 and so on.

=’ Vacancy

Fig. 3-2. Positions of carbon at O-site around iron vacancy. Orange balls
present Fe atoms.

The interaction of C with vacancy is estimated based on the segregation
energy of C which is defined in Chapter 2. Possible segregation sites of C are
analysed by considering the correlation between segregation energy and local

atomic structure factors.
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Table 3. The segregation energy of C in O-site and T-site. dc.v: Carbon vacancy

distance Voronoi volume of C in O-site in perfect a-Fe: 7.05 A3

Configuration dcv | Eseg \Voronoi Shortest Coordination
(A) (eV) volume bond length | number
(A%) (A)
INN O-site (P1) | 1.055 |-0.393 |9.996 1.924 5
2NN O-site (P2) | 2.032 | 0.098 9.228 1.773 S
P3 3.254 | -0.132 7.01 1.777 6
P4 3.512 | -0.416 7.06 1.793 6
P5 4,325 |-0.085 7.06 1.787 6
P6 4567 |-0.086 |7.06 1.787 6
P7 5.425 |0.042 7.06 1.785 6

Due to the interaction between C and vacancy, C prefers to locate at the
INN O-site and it shows negative segregation energy Eseg=-0.393 eV which is
quite in good agreement with the previous DFT calculations (-0.44 eV'°, -0.52
eV®®, -0.56 eV®’). C located at P1 and P4. For P1 case, it is easy to find that this
position will be stable because C atom is located right beside the vacancy, in the
region where there is much of space for C to reside. While in the case of P4, the
stability of C can be explained as follows: Due to the present of vacancy, 8 Fe
atoms in the conventional BCC cell containing the vacancy at center will move
toward the vacancy. Because of these displacements of 8 Fe atoms, the distance
between two Fe atoms on the left- and right- hand sides of P4 (Fig. 3-2) is

stretched, creating more free space for C to occupy. In fact, this explanation can
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also be applied for P2 case. As it can be seen in Fig. 3-2, C atom located at P2 is
expected to be stable because this position is the second nearest point to the
vacancy compared to P1. However, Table 2 shows that this is not the case as the
segregation energy of P2 point is the most positive one (most unstable). This is
due to the displacement of Fe atoms mentioned above, leading to the shrinking of
Fe-Fe distance aligning with P2. As a result, the free volume surrounding P2 is
reduced, making it a disfavoured site for C to move into. To figure out the clear
relation between interaction of C in defect BCC Fe and local atomic structure, the

grain boundary and dislocation defects will be discussed in the sections below.

3.2. Grain boundary (GB)

3.2.1. Model of grain boundary

In the present simulations, we assume periodic boundary conditions,
namely, atomic structure of STGBs is simulated by using supercell. For each
STGB, corresponding supercell is generated by GBstudio software.>® In this
study, 9 structures of a-Fe <110> STGBs with the range of misorientation angle
of 38.9°-153.5° are considered. The unit-cell sizes of STGBs configurations
before relaxation are provided in Table 3. The translation vectors ay, by and ¢,
define the supercell and are used for the DFT calculations. The rotation axis of
the STGBs, namely <110> direction of BCC structure, is parallel to b, and its

length is v2ag, where ag, is the lattice constant of BCC Fe. The directions of
two perpendicular axes ag and ¢, and their lengths are also indicated in Table 3.

a,, by defines the GB plane and ¢, defines the thickness twin grains

perpendicular to the GB plane. The distance of two adjacent STGBs is CZ—"
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Fig. 3-3. Grain boundary structures of a) modified 29(221)38.9° STGB and

b) its optimized structure. The grain boundary is perpendicular to c-axis. Orange

and gray spheres represent Fe atoms lying on two adjacent atomic layers along

rotation axis (b - axis)

The information of the supercells of the STGBs used for the simulations
with classical interatomic potentials is shown in Table 4. The GB plane is
constructed by two vectors N;a, and N,b, (where, Ny and N, are integers) by
using ag, bg defined in Table 3 for each case. The width of twin is ¢ and also
indicated in Table 4. Among the considered STGBs, the simplest GB is £3(112)
with misorientation of 109.5° which is well known as a twin GB configuration
with [112] Miller index of grains. In other configurations with higher
coincidence site lattice X values, the structure of GB becomes more complex. For
example, in £9(221) GB, some Fe pairs come too close with each other. In such
cases, to simplify the calculation, some Fe atoms are removed as shown in Fig. 3-
3a). The resulting STGB structure becomes asymmetric but by relaxing the
structure, the symmetric arrangement is recovered for most cases, as shown for
the case of X9(221) GB in Fig. 3-3Db).

All the calculations with classical interatomic potentials are carried out by
using the LAMMPS. In addition to the new Tersoff/ZBL interatomic
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potential*®*, the calculations are also performed in conjunction with the EAM
potential®* for comparison. To avoid strong interaction of two adjacent GBs,
calculations using classical potentials are performed with large cells of STGB:s.
For some typical cells of STGBs with small number of atoms (the their sizes are
listed in Table 3), we performed DFT calculations in order to confirm the
reliability of presently constructed Tersoff/ZBL potential. Our DFT calculations
were performed by using the spin-polarized version of the Vienna Ab initio
Simulation Package (VASP) *°.The Perdew-Burke-Ernzerhof (PBE) functional
based on the generalized gradient approximation (GGA)®® 61 was employed for
the electronic exchange-correlation interaction. The projector-augmented-wave
(PAW) pseudopotential was taken from PAW database where the 3d, 4s states of
Fe are treated as valence states. An energy cut-off of 450 eV is used for all
calculated systems, and all relaxation calculations are performed until a residual
force of 102 eV/A is achieved. The calculated lattice constant ar, of BCC Fe is
2.84A with the k-point mesh of 15x15x15.

3.2.2. Grain boundary energy

In order to examine the stability of GBs, grain boundary energies (GBES)

with and without C were calculated by the following equation:

mFe+nC
Egp

—MUFe—NUC (31)

Y = 24

where EZFe*™C js the total energy of the supercell of the STGBs systems
containing m Fe atoms and n C atoms, and ug., u. are the chemical potentials
of Fe atom in perfect BCC structure and C in diamond, respectively. A is the area
of calculated STGB.

In GBE calculations, the periodic boundary conditions along three

directions are applied. Hence, 2A is used in Eqg. (3.1) to indicate two symmetric
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GB interfaces for each calculated supercell. Firstly, we assume there is no C in
the system, namely n = 0, and calculated values of y,z by the DFT and the
classical interatomic potentials are compared. The obtained values of y,z are
compared and illustrated in Fig. 3-4. For both cases, the STGB structures are
fully optimized. Both of the present DFT and classical force-field calculations
confirm that the most stable STGB is > 3(112), which is in good agreement with
previous studies 32 62.35-38) The 9(221) is predicted as the most unstable STGB
among the presently calculated ones. The results of classical force-field
calculations using the new Tersoff/ZBL potential reproduce DFT results
reasonably as compared with those obtained by the EAM and Johnson potentials.
Therefore, the present Tersoff/ZBL interatomic potential has shown to be a good
force-field for calculating complex GBs system, and we use the potential for all

of the following simulations.
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Fig. 3-4. Grain boundary energy as a function of misorientation angle. The
GBE values calculated by Johnson* potential are taken from previous study

(ref30)
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The stability of grain boundaries can be explained by considering free
volume of grain boundary. The free volume of GB indicates the excess volume
around Fe atoms constructed by establishing GB per GB area comparing to

volume of perfect BCC Fe (eq 3.2).

ymFe_ o
Qgp = B¢ (3.2)

where ;g is free volume of GB, V¢, vg, are volume of GB system
containing m Fe atoms and volume of a Fe atom in perfect bulk BCC Fe,
respectively. A is area of GB.

The free volume imply the excess volume due to the formation of grain boudary
comparing to prefect a-Fe. The larger value of free volume corresponds to how
large difference between GBs and perfect structures. The relation of GBEs and
these free volumes is illustrated in Fig. 3-5. It can be seen that the smaller energy

GBs correspond to the smaller free volume of these GB and vice versa.
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Fig. 3-5. The grain boundary energy as a function of free volume.
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Next, to determine the influence of C on the stability of STGBs, the GBESs (y§5
and yggf ) of STGBs including one C (i.e., n = 1) are calculated and compared by

using eq (1). Herein, the GBEs y¢; are obtained by introducing C at the most

stable position in GB. The areal concentration of C in GBs is shown in Table 4.

The reference of GBEs (y,5’ ) was calculated for the configuration in which the C
atom is inserted at the most stable position in bulk BCC Fe, which is about 2.2-
4.4 nm away from the GBs. At these distances, the interaction of C with GBs is
negligible, this means that C atom exhibits as in bulk BCC Fe while the GBEs in
these cases are considered to be the same as in the case of no C (y;5). As shown
in Fig. 3-6, generally the energy of STGBs is reduced by introducing C at GB
comparing with C at a distance away from GB. In the Y 3(112) GB, carbon at GB
is shown to have very small influence on the GBE. This is reasonable, because
this GB is considerably stable and its local structure is similar to bulk Fe. On the
other hand, C shows strong effect on other STGBs such as > 11(332), >9(114),
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and > 19(116). They are basically unstable GBs and the local structures are very
much different from the bulk Fe. Quantitative discussion between the stability of

C and the local structure will be discussed later in section 3.2.3.
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Table 4. Unit cell used for the DFT calculations on grain boundary energies of typical STGBs. Here, w is misorientation

angle, m is number of Fe in the unit cell. y;5" values are obtained from previous DFT studies.

Unit cell size Direction k-point mesh Yee Y8~
STGB 0
w (° _
Configuration laol | 1ol | lcol m J m~?
(nm) (nm) (nm) Qg bo Co (eV A—Z)

<114><110><221> 3x10x 3 1.71%

¥9(221) | 1.21 [0.40 |1.72 38.9 |64
0.101

$11(332) | 0.95 |0.40 |[2.69 |<113><110><332> 505 |84 |5x11x?2 0.089 | 1.49%®

<112><110><111> 6x10x2 0.098 |1.61® 157%
¥3(111) (070 |0.40 |1.99 705 |48

1.52%7
¥17(334) [1.18 |040 |3.34 |<223><110><334> 86.6 |28 |3x1lx1 0.093

¥17(223) | 1.67 0.40 2.36 <334><110><223> 93.4 28 2X6x1 0.084

<111><110><112> 8x10x2 0.026 0.43%  0.34%
¥3(112) [0.49 |0.40 |2.81 109.5 |48

0.47%8

¥11(113) | 1.34 0.40 1.90 <332><110><111> 1295 | 80 3x11x2 0.090
¥9(114) | 0.86 0.40 243 <221><110> <114> 141.1 | 68 5 x10x3 0.091
¥19(116) | 1.25 |0.40 |3.53 <331><110><116> 1535 | 40 4x10x1 0.092
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Table 5. Supercells used for the calculations using Tersoff/ZBL potential on various <110>STGBs.. The supercell size is
indicated by using vectors ay and b defined in Table 3. Grain boundary energy, segregation energy of C and Voronoi volume

of C are also summarized.

Supercell size w (%) YeB Areal C conc. ygB Eseq (V) Voronoi
volume of C
N1aoX Nzboxc [(eV- A~%)] (L/nm?) (ev-A7?) (A3%)
m
N; N2 ¢ (nm)

¥9(221) 3 6| 8.61 6336 38.9 0.095 0.115 0.089 -1.78 8.39
>11(332) |5 5]13.46 | 10900 | 50.5 0.082 0.102 0.060 -1.46 8.22
¥3(111) 10 10 [9.93 24000 | 70.5 0.088 0.035 0.080 -1.16 8.38
X17(334) |5 5111.82 | 16800 | 86.6 0.087 0.058 0.073 -0.76 8.41
¥17(223) | 5 5]116.73 |16800 |93.4 0.083 0.083 0.080 -0.56 7.86
>3(112) 6 6| 8.46 5184 109.5 0.016 0.137 0.015 -0.53 7.50
¥11(113) |5 519.52 10800 | 129.5 0.077 0.073 0.072 -1.10 7.94
>9(114) 5 5112.16 | 8900 141.1 0.078 0.014 0.075 -1.09 7.90
¥19(116) |5 51 17.67 | 18800 | 153.5 0.080 0.078 0.076 -1.60 8.01
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3.2.3. Segregation sites

The segregation sites of C are determined by examining the landscape of the
dissolution energy (Edis) of C in the GB systems. In this calculation, a single C is
inserted on a middle plane of two Fe layers corresponding to [022] plane in the bulk
BCC structure. This plane includes a set of O-sites, the most preferable location of
C. On this plane, a 100x100 mesh lying along two lattice vectors are set up and the
dissolution energy of C for each mesh point is estimated by optimizing the structure
with C position kept fixed. In Fig. 3-7, the scanning planes and dissolution energy
landscapes of two typical STGBs, namely, the most stable ) 3(112) STGB (Fig. 3-
7a) and the most unstable one, > 9(221) STGB (Fig. 3-7b) are illustrated. Here, the
darker color (dark blue) reflects the higher energy area in which C is less preferred,
whereas the lighter area (red) illustrates the favourable location of C. As can be seen
that the unstable area of C is the area close to Fe atoms, indicating the strong
repulsive interaction between C and Fe atoms. The lighter area of GB planes
indicates an attractive source of C compared to the one in the distant GB. Besides,
possible positions of C are found at O-sites in the distant GB area. Similar
calculations are also performed for the other STGBs. All obtained results confirm

that C is preferably located at the GB plane considered in the present study.
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Fig. 3-7. Scanning planes (colored in pink on the left-hand side sub-figures)

and dissolution energy landscapes (right-hand side sub-figures) of FeC systems of
a) 23(112) STGB and b) 29(221) STGB. The location of GB is indicated by green

dashed line.

3.2.4. Segregation energy

In order to figure out the behaviour of C, the E,,, is calculated for various
STGBs and the results are summarized in Table 4. For all of the STGBs considered
in this thesis, the segregation energies Eseg are found to be negative, which indicates
a strong segregation tendency of C atoms to the GBs from the bulk region. Among
the considered STGBs, the >3(112) GB has the highest segregation energy of -0.53
eV, and the Y}9(221) GB has the lowest E,, of -1.78 eV. In order to discuss the
origin of difference in segregation energy from the view point of the local atomic

structure, we focus on the free volume defined by neighboring Fe atoms around C.
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For this purpose, we define Voronoi cell around C as free volume. In Fig. 3-8, the
correlation between the Voronoi volume of C and its Eseqis shown. In the figure, C
is assumed to be located not only on the GB but also off the GB plane for each
system. It is clearly observed that there is a negative correlation between them,
namely the larger free volume STGBs is, the more negative Eseq is predicted. The
negative correlation was not clear in the previous DFT calculation 32 due to the
limited number of calculated GBs, but the trend of the most stable position of C at

GBs is consistent to the present results.

0.5
—

2‘0 i | $ v Y3(111)
™ - il % o Y3(112)
g " " A Y9(114)
1.0 F * 9(221
2 = " + o 29(221)
2 st O o Y11(332)
g e + Y11(113)
§D 210 | o * 2.17(223)

g )
g 25t 5 >17(334)
%) " ® Y19(116)
8.4 |
_35 1 1 1 1 1 1 1 1

68 70 72 74 76 78 80 82 84 86

Voronoi volume (10'3nm3/at0m)

Fig. 3-8. The relationship between segregation energy and Voronoi volume of
C in different STGBs. In this plot not only the C on the GB plane but also the C off

the GB plane are included.
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In order to extend the above discussion, we calculate E,, as a function of

distance between C and GB plane for STGBs, namely > 3(112), Y3(111), >9(221),
9(114), and Y 11(332). At the same time, for each position of C, the Voronoi
volume is calculated. For this procedure, a single C atom is inserted at the stable
positions which are predicted based on the energy landscapes obtained in Section
3.2.3. The results are shown in Fig. 3-9. Eseg takes the lowest value when C is placed
at the GB plane (dee-c = 0) then gradually increases and approaches zero as C is
moved far away from the GB plane. The distance dependence of Eseg corresponds
very well with the change of the VVoronoi volume of C, namely the VVoronoi volume
reaches to the highest value when C located at the GB plane and from there the
lowest Eseq is obtained. A gradual decrease of Voronoi volume is found when
increasing the distance from C to the GB, des-c. The minimum of VVoronoi volume
of around 7.0x102 nm? is obtained when C is located in distant GB. This is almost
the same to the value of C in bulk Fe (7.05%10° nm?). By considering the effect of
the Voronoi volume to the behaviour of C in various STGBEs, it can be concluded
that the GB creates open space for C occupation, resulting in C being strongly
trapped by the GB.

_ 0 = 86
: :
S 00 — s 84
& 32
y = 82
2-05F
N P o 80
%-10 ] —v— Y11(332) S 738
2 ‘ - 33(112) °
qu -1.5 ‘ —O0— Y9(114) = 75
2 90 M —4— y9(221) S 7.4
& —0— y3(111) 5 72
b <25 5 7.0
A s
30X 1 1 1 > 6.8 ! ) ! ]
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
The distance between GB and C atom,dGg_c /nm The distance between GB and C atom,dGg_c /nm

Fig. 3-9. The segregation energy of C (left) and Voronoi volume (right) as

functions of the distance between GB and C. The horizontal dashed line at the
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bottom of the right-hand side sub-figure indicates the Voronoi volume of C located
at O-site in BCC bulk iron.

In the most stable GB configuration Y 3(112), E., is small but we can still find
the anti-correlation between E;,, and the Voronoi volume of C. As already shown in
Fig. 3-9, this behaviour is also clear for the other GBs. It is suggested that the anti-
correlation between Voronoi volume around C and the segregation energy is general
for Fe-C systems. Experimental confirmation of this finding is desirable. For
>.3(112) GB, a small difference in E,,, between the position on the GB plane and
distant GB is shown, it means that such GB behaves as a weak attraction to C. It was
observed that a significantly lower excess of C is detected in the experimental study
for special stable >3 and Y5 GBs.'® On the contrary, in the case of Y9(221)
configuration, C is strongly trapped at the GB plane when compared to other
locations. The strong interaction of Fe-C in the GB plane prevents the difusion of C
to the bulk. Therefore, a high solubility of C can be expected in Fe matrix by

controlling the inclination of GB planes.

It can be concluded that the GBs exhibit stronger attraction to C than the other
point defects in the BCC Fe matrix, and the lowering of the GB energy due to the

existence of C might partly contribute to the strengthening effect of C. 3

3.3. Dislocation

In the present simulations, 5 different edge dislocation configurations are
constructed by using Atomsk code . They are: two edge dislocations with the
Burgers vector b <111> and glide planes (110) and (112), two with the
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Burgers vector b <100> and glide planes (011) and (010), and the one
dislocation with b <110> and (110) glide plane. The translation vectors which
create dislocation configurations and magnitude of Burgers vectors are listed
in Table 6. Ly, Ly, L;are length of translation vectors which create the basic
unit cell of edge dislocation models. The edge dislocation model (a three-
dimensional model) in the form of a supercell with periodic boundary
condition is illustrated in Fig. 3-10. A supercell containing 4 dislocation cores
(quadrupole model) has been investigated. A quadrupole model of dislocations
can be constructed by two pairs of dislocation cores with opposite sign.
Herein, number of atomic layers are the same in the upper/lower parts and the
middle part of the supercell. In the supercell of quadrupole model, four
dislocation cores are inserted: two with positive Burgers vectors at the reduced
coordinated (0.251, 0.251) and (0.749, 0.749), and two with negative Burgers
vectors at (0.251, 0.749) and (0.749, 0,251) with the X axis corresponding to
Burgers vector, dislocation line lying along Y axis, and Z axis normal to glide plane.

D is the distance of two adjected dislocation cores.

_|_._D_.J_
yL - T

X

Fig. 3-10. Quadrupole dislocation model. D corresponds to the distance of two
adjacent dislocation cores.
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Table 6. Structure of edge dislocations considered in the present study. Ly, L,
L. are basic unit cell size which create dislocation models, and |b| is the
magnitude of Burgers vector. For each dislocation configuration, glide plane is

perpendicular to slip direction.

] ) Burgers Slip Dislocation Basic unit cell
Configuration o )
vector b | direction line Lo/|b] (hm) | Ly (nm) | Lz (nm)

<111>{110} | %<111>| <110> <112> 0.25 0.41 0.71
<111>{112} | %<111>| <112> <110> 0.25 0.71 0.41
<100>{010} | <100> <010> <001> 0.29 0.29 0.29
<100>{011} | <100> <011> <011> 0.29 0.41 0.41
<110>{110} | <110> | <110> <001> 0.41 0.41 0.29

3.3.1. Dislocation energy

The supercell size of quadrupole dislocations is chosen by considering the
change of the formation energy of the dislocation AE;;¢ocation WheN increasing the

size of the supercell. AE ;q10cation 1S €Stimated by following equation:

gmFe . _
AE gisiocation = dlslocat;czn e (3.4),
where ETEe ... is the total energy of the supercell containing 4 dislocations

with m Fe atoms and ug, is the chemical potential of Fe atom in the perfect BCC
structure. It is obtained after optimizing the supercell volume and atomic positions.

L is the length of dislocation line in the supercell. Since the quadrupole model has 4
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dislocations in one supercell, we have factor 1/4 in eq (1). The definition in eq (1)
implies that, the smaller AE;¢;0cation, the more stable dislocation is. In this work,
the stability of edge dislocations is figured out by comparing the dislocation energy
AE jisiocation With supercell size dependence being taken into account. The size of
supercell is gradually increased in both x and y direction which corresponds to
increasing the distance of two adjacent dislocation cores (D). The dependence of
AE jisiocation @nd D is illustrated in Fig 3-11. The dislocation energies of edge
dislocations rise continuously with the increasing of the distance D. The size
dependence of the dislocation energy shows logarithmic-like behavior which is
consistent to the prediction of elastic theory, where the energy of an edge dislocation
increases logarithmically as a function of distance from the dislocation core.) Among
considered edge dislocations, it is found that ¥2<111>{110} edge dislocation has the
smallest AE j;c10cation @Nd Y2 <111>{112} dislocation is the second smallest one.
This is to say, the most stable dislocation is ¥2<111>{110} and the second stable
dislocation is %2 <111>{112}, which are consistent with the conclusion from
experimental observation. 334 The dislocations with Burgers vector <100> and
gilde planes {010} and {011} are shown to be less stable than the ones with Burgers
vector %<111>, with a small energy diference. This might explain the
transformation of Y%<111> dislocation loop to <100> dislocation in previous
theoretical studies and experiment observation at high temperature.®>-=") In present
dislocations, the AE;¢0cation Value of <110> dislocation is the highest one which is
significantly different as compared to other dislocations, namely, it is the most
unstable one from computational investigation. This result is consistent with the fact
that this dislocation is not observed in experiments and known as unstable
dislocation in contrast to the case of FCC metals. The order of stability obtained by
the present calculations can be reasonably explained by the elastic theory which

predicts that the dislocation energy is proportional to |b|? (Table 6).
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Fig. 3-11. Dislocation energy as a function of distance D between two adjacent
dislocation cores (proportional to the supercell size) of different dislocation
configurations calculated by classical force-field method using the new Fe-C

potential.
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3.3.2. Carbon segregation in dislocation

The reliability of our newly-developed potential was examined in cases of
carbon segregation at vacancy and grain boundary in BCC iron.*®5°7% For the
calculations of edge dislocation, this procedure is also considered by comparing
the results calculated by our new potential to the results from previous DFT
calculations. In previous study, the interaction of C with <100>(001) edge
dislocation core was investigated using DFT calculation™. Because the
limitation of number of atoms in DFT a cluster of Fe containing dislocation core
was extracted from the optimized configuration of <100>(001) edge studied by

using Finnis-Sinclair potential.

Compression area

<100>Expression area

Fig 3-12. Atomic model of the <100>(010) edge dislocation core and
different interstitial sites. Black and white balls represent Fe atoms in two
adjacent planes (plane A and plane B, respectively) along <001> direction. Solid
circles and dashed circles represent positions of C atom in plane A and plane B,

respectively.

Here, the structure of Fe cluster, as shown in Fig. 3-12, is divided into two
regions: a compression region (CR) and an expansion region (ER). The black and
white balls represent Fe atoms in two adjajent planes along <001> direction (or

dislocation line). To determine the interaction energy between C and dislocation
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core, C is singly inserted into the center of plane A (CA, above dislocation core)
and plane B (CB, under dislocation core), octahedral site in compression region
(CR-O) and expansion region (ER-O), tetrahedral site in compression and
expansion region (CR-T and ER-T, respectively). Similar to previous work, the
periodic boundary condition is applied to the <001> direction while kept fixed
along <100> and <010> directions. In addition, for the Fe-C system, some
empirical interatomic potentials have already been implemented in LAMMPS.
Therefore, to find out the advantages of our newly-developed Tersoff/ZBL
potential, the calculations are also carried out by using other potentials, namely
EAM ™) and MEAM 7@, In previous study 79, the interaction of C and edge
dislocation was discussed by using segregation energies. However, the definition
of those segregation energies is different to our present study. To avoid confusion
hereafter the segregation energies presented in ref. 70 is denoted as dissolution

energy Eudiss and expressed as follows:

dop rclean
_E, -Ep

Ediss - N (35) %

Where N is number of C atoms, EZ"" and E§'®®" are binding energies of the C-

doped system and clean system, respectively. The calculated dissolution energies

Eqiss for different C sites are listed in Table 7.
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Table 7. Dissolution energy Ediss (€V) of carbon at different interstitial sites
calculated by DFT (ref. 70) and other classical interatomic potentials.

Core center Compression region Expansion region

CA CB CR-T CR-O ER-T ER-O
Tersoff/ZBL —-7.61 | —8.78 —-7.34 —7.63 —8.03 —7.69
MEAM -6.97 | —8.43 —6.69 -6.71 —6.92 -6.35
EAM —-5.69 | —6.01 —-3.13 —2.37 —-3.57 —4.01
DFT™ —9.20 | —9.84 | —9.02 —9.04 —9.62 —9.22

By using Tersoff/ZBL potential, we can see that the most stable position
of C around dislocation core is located in CB. This result is in good agreement
with those obtained by other interatomic potentials and DFT. For the next stable
site of C, our Tersoff/ZBL potential predicts ER-T site, which is also consistent
with DFT calculation, while for EAM and MEAM potentials, the second most
stable is found to be CA site. Overall, the values of Egiss calculated from
Tersoff/ZBL potential are higher than DFT results by at most 1.68 eV, which is
much lower than those obtained by MEAM (2.87 eV) and EAM (6.02 eV). The
small discrepancy implies a better performance of our new potential for this
specific Fe-C system as compared to other interatomic potentials. This is also
complemented by the fact that the trend of dissolution energy reproduced by our
potential agrees very well with the DFT calculations as compared to others (see
Table 7).
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%<111>(110) dislocation

Here, we consider the ¥2<111>{110} edge dislocation with Burgers vector
1%<111> and glide plane {110}. For this dislocation, the glide plane is normal to
<110> direction and the dislocation line lies along <112 > direction. The
dislocation model is created based on a basic unit cell of LxxLyxL, (Fig. 3-13 a).

The dislocation system contains 151200 atoms.

The O-sites in a-Fe are located at the middle of edges or the centre of faces
of BCC lattice which could be in <100>, <010>, or <001> directions
corresponding to TDA(100), TDA(010), and TDA(001) sites (Fig. 5a). Here,
TDA is an abbreviation for “tetragonal distortion axis” which indicates the
largest distortion of lattice due to the insertion of C.*> 3% The position of C in
different layers along <112> direction is shown in Fig. 3-13 b. In Fig. 3.13 b, the
Voronoi volume of Fe atoms around dislocation core is illustrated using a colour
map and positions of C under consideration at different layers from the glide
plane are shown. The value of VVoronoi volume increases as the colour changes
from red to blue. As we can see, the area above the dislocation core is more
compressed while the area below the dislocation core is more expanded. The
compression and expansion are reduced with moving away from the dislocation
core. The C in the TDA(010) and TDA(100) located along 0.5 and 1.5 layers
from the glide plane while the ones in the TDA(100) are right on the glide plane
or along 1.0 and 2.0 layers.
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Fig. 3-13. a) BCC Fe and basic unit cell of Fe with the corresponding O-
sites where C resides and b) The colour map of the Voronoi volume of Fe around
the dislocation core and the positioning levels of C under consideration at

different layers referring from the glide plane.

In Fig. 3-14, the segregation energies of C along TDA(001) and TDA(010)
as functions of distance from C to the dislocation core (in unit of ag.) are shown.
Results for the C segregation in TDA(001) are presented in Fig. 3-14 a and those
in TDA(100) and TDA(010) are presented in Fig. 3-14 b. It can be seen that the
C segregation in TDA(001) is highly symmetric for both sides of the dislocation
core (Fig. 3-14 a). While, the asymmetry for C segregation is shown in Fig. 3-14
b for left- and right-side of the dislocation core, which can be explained by
considering local atomic structure of iron. As shown in Fig. 3-13 a the octahedral
geometry of the TDA(001) sites is symmetric along Burgers vector <111>, in
contrast to those of the TDA(010) and the TDA(100) sites. This mainly
contributes to the asymmetry of the local structures on two sides of the plane
which is normal to the glide plane and contains the dislocation line. In both cases,
the interaction between carbon and dislocation is weaker when C is located at a
distance layer along <112 > direction from the glide plane. Based on the
calculated segregation energy, strong interaction range between C and dislocation
is within 5ag. (about 1.44nm) for TDA(001) and 10ag. (about 2.89nm) for

TDA(010). When C atom is located far from the dislocation core, the Eseg values
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approach to that of C in bulk BCC Fe. Considering the Eseg of C in different
layers from the glide plane, interaction of C and dislocation is weaker in the layer
which are distant from the glide plane. As shown in Fig. 3-14, C lying along the
TDA(010) shows the lowest segregation energy of -1.11 eV at the dislocation
core, which is lower than those obtained from Johnson and EAM potentials.t’:??)

This is because of the different dislocation model and interatomic potential used
in present study.
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Fig. 3-14. Segregation energy of C in system containing %<111>(110)

edge dislocation with C at O-sites lying along a) TDA(001) and b) TDA(010) and
TDA(100).

In Fig. 3-14 b, the segregation energies of C along TDA(001) as functions
of distance from C to the dislocation core are shown. It can be seen that the
dependence of segregation energy of C in this case is asymmetric at two sides of
the dislocation core. This is mainly attributed to the asymmetry of the local
structures on two sides of the plane which normal to the glide plane and
containing the dislocation line.
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¥%<111>(112) dislocation

The ¥<111>{112} dislocation is characterized by Burgers vector ¥2<111>
and glide plane {112} containing 180000 Fe atoms in calculation of C
segregation. The positions of C at the O-sites are also considered along the
TDA(100), TDA(010) and TDA(001) as in previous case. The calculated
position-dependence of C segregation energy is plotted in Fig. 3-15. The figure
shows the interaction between dislocation and C located along the TDA(001)
(Fig. 3-15 a). The interaction is repulsive when C is on the right side of the
dislocation line (<110> direction) and attractive if C is on the left side of the
dislocation line. In contrast, the C lying along the TDA(010) and TDA(100) (Fig.
3-15 b) does not prefer to locate on the left side of the dislocation line which is
qualitatively in agreement with previous study.” The strong interaction range of
C and %<111>{112} dislocation is within 10 ag, (about 2.89nm) for both
TDA(001) and TDA(010). As shown in Fig. 3-15 b, C belonging to the
TDA(100) shows the lowest segregation energy of -1.35 eV at the dislocation
core. This energy is lower than the case of the ¥2<111>{110} dislocation, which

is also observed in previous calculations.!’:??
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Fig. 3-15. Segregation of C in ¥2<111>(112) edge dislocation with one C in
a) TDA(001) and b) TDA(010) TDA(100).Segregation energy of C in system
containing %<111>(112) edge dislocation with C at O-sites lying along a)
TDA(001) and b) TDA(010) and TDA(100).

56



<100> and <110> Dislocations

The supercell containing <100>{010} dislocation is constructed from the
conventional BCC unit cell of Fe with Burgers vector <100> and glide plane
{010}, including 115200 Fe atoms. For this edge dislocation, the positions of C
at O-sites are symmetric along the Burgers vector <100> and equivalent along
TDA(010), TDA(001) and TDA(100), leading to the symmetrical dependence of
segregation energy of C with respect to the distance between C and the
dislocation core (Fig. 3-16 a). In this dislocation, C is localized in dislocation
core area with interaction range about 4ag. (1.15nm). The lowest segregation
energy of C, which is -1.77 eV, is obtained when C locates at the dislocation
core. The maximum absolute value of Eseg is larger than that in the cases of

%<111> dislocations.

The <100>{011} dislocation with Burgers vector <100> and glide plane
(011) which contains 160000 atoms is considered. The segregation energy of C
in this dislocation is shown in Fig. 3-16 b. It is found that C atom is localized
more strongly in the <100>{011} dislocation core as compared to the one in
<100>{010} dislocation, with a segregation energy of 2.00 eV. The interaction
range between C and dislocation in the cases of <100> dislocations is around

5ag. (1.44 nm) which is shorter than that in the cases of ¥2<111> dislocations.

The supercell of <110>{110} dislcoation, characterzied by <110> Burgers
vector {110} glide plane, including 226800 Fe atoms. Here, most unstable
dislcoation structure is very complex. Thus, the interaction of C with the most
unstable <110>{110} dislocation is studied with C located at dislocation core
which is known as the favorable location of C. The lowest segregation energy of
-2.57 eV is obtained and shown much lower than in others edge dislocations
(Table 3).
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Table 8. Size of simulated supercell

containing quadruple edge

dislocations, segregation energy (Eseg) of C, Voronoi volume (V) around C and

shortest Fe-C bond distance (dre_c). m is number of Fe atoms in a simulation cell.

Here, the supercell size is indicated by using size of basic unit cell of Ly, Ly, L..

Supercell size
. _ Max |Egeg| | V drec
Configurations N1LxXNaLyXNsL, m 2
€V) A% A
N1 N2 N3

<111>{110} 120 70 3 151200 1.11 | 8.00 |1.861
<111>{112} 120 50 5 180000 1.35 |8.00 |1.924
<100>{010} 120 80 6 115200 1.77 | 7.67 | 2.056
<100>{011} 100 80 5 160000 2.00 |8.10 |1.953
<110>{110} 90 90 5 226800 2.57 |8.76 | 1.963

3.3.4 Local atomic structure and Carbon segregation

To figure out the relation between local atomic structure around C in the

dislocation structure and the segregation tendency, the Eseq 0f C for the cases of
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1<111>, <100> and <110> dislocations is plotted as a function of Voronoi
volume formed by Fe atoms around C atom in Fig. 3-17. It is shown that there is
an anti-correlation relation between segregation energy of C and its Voronoi
volume. Similar tendency was discovered for the case of grain boundaries.'? In
Table 3, the Eseg of C at the most stable positions in different dislocation
configurations and two indicators for the geometry of local atomic structure,
namely the Voronoi volume (V) and the shortest Fe-C bond length (dre-c). It is
found that, in most cases, the most stable segregation site has the largest VVoronoi
volume and the largest dre.c Which was also figured out in the case of grain
boundaries. For <100>{010} dislocation, although the dre-c are much longer than
the one in other dislocation cases, the interaction of C is weaker than in
<100>{011} and <110>{011} edge dislocations. It can be explained that the
distances of Fe and C are slightly longer than the equilibrium Fe-C bond length
which lead to the weak interaction of Fe and C, similar to the case of grain
boudaries.®'? Here, equilibrium Fe-C bond length is the shortest bond lengh of
Fe and C in O-site in BCC Fe (1.790A). Besides, in addition to the \Voronoi
volume and the shortest Fe-C bond length, the shape of the Voronoi volume
formed by neighbour Fe atoms might contribute to the strength of Fe-C

interaction.
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3.3.5 Compasion with other defects

In order to compare the strength of interactions between C and defects, the
segregation energy of C with different kinds of defect structures is summarized
in Fig. 10. In the figure, not only the present results of the Eseq of the dislocations
systems but also the previous results'? on the Eseg of grain boundaries and single
Fe vacancy are also summarized. As compared to the single vacancy case, the
Eseg Of C in the cases of STGBs and dislocations are more negative, namely, the
later defects are more attractive to C than the vacancy. This order is partly
consistent with previous DFT calculation of segregation energy of C in bulk Fe
with a single vacancy (-0.44 eV), stable >3(112) STGB (-0.67 eV).**#? The
strongest interaction of C with GB is found to be —1.78 eV for the unstable GB
39(221), which is lower than the one in %<111> edge dislocations. The
interaction of C with the stable dislocations %2<111> is weaker than the unstable

<100> and <110> dislocations. The interaction of C with the unstable
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dislocations is stronger than the most unstable >9(221) STGBs, in contrast to the
stable 1/2<111> dislocation. The interaction range of C and grain boundaries
(0.8nm) is much shorter than in dislocations (2.89nm).? It is known that the
segregation energy is related to the solubility of C in Fe matrix. Therefore, it can
be concluded that the higher solubility can be obtained by BCC Fe matrix which
contains unstable STGBs and dislocations structures. 9 The obtained results
might provide useful instruction for experimental studies for controlling the
solubility of C through manipulating different defects.

0.0
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Fig. 3-18 .Energy diagram of C in BCC Fe containing different defects.
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CHAPTER 4. CONCLUSION

In this thesis, we have investigated the carbon segregation in three different
types of defect structures in a-Fe, namely, point defect, grain boundary and edge
dislocation. We have performed large scale atomistic simulations based on newly
constructed Tersoff/ZBL interatomic potential, which in turn developed by fitting

to the energy and force data from DFT calculations.

In the case of point defect, we focus on a single Fe vacancy and found the
most stable position of C is the first nearest neighbour O-site to the vacancy site.
The attractive interaction might be due to the open space created by the
introduction of athe vacancy. The interaction range between C and vacancy is
estimated to be about 5A.

For the case of symmetrical tilt grain boundaries (STGBSs), we have studied
the stability of various STGBs and the interaction between STGBs and C. We
focus on a series of a-Fe<110> STGBs. Firstly, we found that the Tersoff/ZBL
potential works well even for the large complex systems of STGB and can
reproduce the energy of STGB reasonably well compared to DFT calculations
and previous simulations with using the other interactomic potentials. The stable
location of C was also analyzed from the view point of free volume formed by
the GB systems. We found that the compact GBs were are less attractive to C
than the open ones. The GBs exhibit a strong attractive interaction with C
compared to vacancies, therefore, a higher solubility of C can be expected in
more open GB systems. The GB is shown to have a short-range interaction with

C and this iteraction range is about 10 A.

For the case of dislocations, we firstly estimated the stability of different
dislocation configurations by molecular static calculations. It is confirmed that

the dislocation with Burgers vector <111> is the most stable one, which is
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consistent with statements in literatures. The interaction between dislocation and
C is also explored by calculating segregation energy as in case of grain boundary.
In general, C interacts more strongly with the dislocation core compared to the
vacancies and the stable grain boundaries. Moreover, it is found that the edge
dislocations cause very long-range interaction with C. The interaction range
reaches up to about 29A, which is much longer than the one in case of grain

boundary and vacancy.

In order to understand the origin of the interaction between C and defects,
we performed Voronoi analysis. VVoronoi volumes around C are calculated for
various defects and various distance from defects. It is found that the geometry of
defect structure is very important to determine the defect and its interaction with
C. We found that C is more preferred to be located at the positions which have

larger free space, shorter bond length and higher coordination number.

We conclude the segregation difference of considered defects in this thesis.
The segregation energy of C in <100>edge dislocations are most negative
indicating that C is strongest trapped in these defects. Among calculated defects,
point defect vacancy is weakest interaction with C. In dislocation and unstable
¥9(221)GB, C is strongly localized. Comparing to bulk vacancy and £3(112)GB
and C interaction is stronger. However, C tends to move out of Fe matrix provied
by obtainded positive dissolution energies in those defects. Thus, in the Fe matrix
which contains various defects, the C will prioritize segregating and locating at
diferent defects following the order <100> dislocation > unstable STGB> <111>

dislocation > stable STGB > vacancy.

63



REFERENCES

1.

10.

11.

12.

13.

14.

Yang, Z. et al. Comput. Mater. Sci. 151, 278-287 (2018).

Honeycombe, H. K. D. H. B. and R. W. K. Steels: microstructure and

properties. (Butterworth-Heinemann, Amsterdam,).
Barella, S. et al. Metall. Ital. 106, 31-39 (2014).

Hristova, E., Janisch, R., Drautz, R., Hartmaier, A. Comput. Mater. Sci. 50,
1088-1096 (2011).

Hosford, W. Tempering and Surface Hardening. In Physical Metallurgy.
(2013).

Krauss, G. Steels: Heat treatment and processing principles. (1990).
Araki, S. et al. Tetsu-to-Hagane 103, 491-497 (2017).

Liu, Y. L., Zhou, H. B., Zhang, Y., Lu, G. H. & Luo, G. N. Comput. Mater.
Sci. 50, 3213-3217 (2011).

Ohtsuka, H. et al. IS1J Int. 55, 24832491 (2015).
Domain, C., Becquart, C. S. & Foct, J. Phys. Rev. B 69, 144112 (2004).
Fukai, Y. & Akuma, N. Phys. Rev. Lett. 73, 1640-1643 (1994).

Fu, C. C., Meslin, E., Barbu, A., Willaime, F. & Oison, V. Solid State
Phenom. 139, 157-164 (2008).

Tapasa, K., Barashev, A. V., Bacon, D. J. & Osetsky, Y. N. Acta Mater.
55, 1-11 (2007).

Simonetti, S., Juan, A. & Brizuela, G. Mater. Sci. Pol. 25, 885-898 (2007).

64



15. Rosato, V. Acta Metall. 37, 2759-2763 (1989).

16. Wagenblastt, H., et al. J. Phys. Chem. Solids Pergamon Press 23 (1962).

17. Bosman, A. J., Physica, X., Brommer, P. E. Rathenau. Physica 23, 1001-

1006 (1957).

18. Kim, S. M., Jackman, J. A., Buyers, W. J. L. & Peterson, D. T. J. Phys. F
Met. Phys. 14, 2323-2328 (1984).

19. Lejcek, P. Grain Boundaries: Description, Structure and Thermodynamics.
in Springer Series in Materials Science vol. 136 5-24 (Springer Verlag,
2010).

20. Literati, C., Mishin, Y. & Wiley, J. Fundamentals of Grain and Interphase
Boundary Diffusion Third, Revised and Enlarged Edition Inderjeet Kaur.

21. Wolf, D. Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech.
Prop. 62, 447-464 (1990).

22. Krasko, G. L. & Olson, G. B. Solid State Commun. 79, 113-117 (1991).

23.  Wu, R., Freeman, A. J. & Olson, G. B. Phys. Rev. B 50, 75-81 (1994).

24. Suzuki, S., Tanii, S., Abiko, K. & Kimura, H. Metall. Trans. A 18, 1109-
1115 (1987).

25. Jiang, H. & Szlufarska, I. Sci. Rep. 8, 3736 (2018).

26. Miller, M. K., Beaven, P. A., Brenner, S. S. & Smith, G. D. W. Metall.
Trans. A 14, 1021-1024 (1983).

27. de Gruyter, C. B., Verduijn, J. P., Koo, J. Y., Rice, S. B. & Treacy, M. M. J
L. Ultramicroscopy 34, 102—-107 (1990).

28. Palanisamy, D., Raabe, D. & Gault, B. Acta Mater. 174, 227-236 (2019).

65


https://www.sciencedirect.com/science/journal/00318914

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Herbig, M. et al. Phys. Rev. Lett. 112, 1-5 (2013).
Nakashima, H. & Takeuchi, M. £k & £l 86, 357--362 (2000).

Terentyev, D., He, X,, Serra, A. & Kuriplach, J. Comput. Mater. Sci. 49,
419-429 (2010).

Wang, J., Janisch, R., Madsen, G. K. H. & Drautz, R. Acta Mater. 115,
259-268 (2016).

He, X. et al. Energy Procedia vol. 127 377-386 (Elsevier Ltd, 2017).

Wachowicz, E. & Kiejna, A. Model. Simul. Mater. Sci. Eng. 19, 25001
25021 (2011).

Lu, K. etal. J. Phys. Chem. C 122, 2319123199 (2018).
Ono, Y. et al. ISIJ Int. 57, 1273-1281 (2017).

Takebayashl, S., Kunieda, T., Yoshinaga, N., Ushioda, K. & Ogata, S. ISI1J
Int. 50, 875-882 (2010).

Bertsch, K. M., Meric de Bellefon, G., Kuehl, B. & Thoma, D. J. Acta
Mater. 199, 19-33 (2020).

Majd, Z. G., Taghizadeh, S. F., Amiri, P. & Vaseghi, B. J. Magn. Magn.
Mater. 481, 129-135 (2019).

Weinberger, C. R., Boyce, B. L. & Battaile, C. C. Int. Mater. Rev. 58, 296—
314 (2013).

Khater, H. A., Monnet, G., Terentyev, D. & Serra, A. Int. J. Plast. 62, 34—
49 (2014).

Simonetti, S., Pronsato, M. E., Brizuela, G. & Juan, A. Appl. Surf. Sci. 217,
56-67 (2003).

66



43.  Wainwright, B. J. A. and T. E. J. Chem. Phys. 27 1208.

44, B.J. Alder and T. E. Wainwright, J. Chem. Phys. 31 (1959) 4509.

45. R. Carand M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471.

46. Daw, M. S. & Baskes, M. I. Phys. Rev. B 29, 6443-6453 (1984).

47. Mendelev, M. I. et al. Philos. Mag. 83, 3977-3994 (2003).

48. Tersoff”, J. Physical Review B vol. 39.

49. Nguyen, T. Q., Sato, K. & Shibutani, Y. Mater. Trans. 59, (2018) 870

50. Nguyen, T. Q., Sato, K. & Shibutani, Y. Comput. Mater. Sci. 150 (2018)
510

51.  Henriksson, K. O. E. & Nordlund, K. Phys. Rev. B 79, 144107 (2009).

52.  Albe, K., Nordlund, K. & Averback, R. S. Phys. Rev. B 65, 195124

(2002).

53. Ziegler, J. F. & Biersack, J. P. The Stopping and Range of lons in Matter.
in Treatise on Heavy-lon Science 93-129 (Springer US, 1985).
doi:10.1007/978-1-4615-8103-1_3.

54. Rycroft, C. H. VORO++: A three-dimensional VVoronoi cell library in C++.
Chaos 19, 1-16 (2009).

55. S. Plimpton: J. Comp. Phys. 117 (1995) 1

56. Fu, C. C,, Torre, J. D., Willaime, F., Bocquet, J. L. & Barbu, A. Nature
Materials vol. 4 68—74 (2005).

57. Ohnuma, T., Soneda, N. & lwasawa, M. Acta Mater. 57, 5947-5955
(2009).

58. Ogawa, H. Mater. Trans. 47, 2706-2710 (2006).

59. Kresse, G. & Furthmiller, J. Phys. Rev. B - Condens. Matter Mater. Phys.

67



54, 11169-11186 (1996).

60. Perdew, J. P., Burke, K. & Ernzerhof, M. Phys. Rev. Lett. 77, 3865-3868
(1996).

61. BIochl, P. E. Phys. Rev. B 50, 1795317979 (1994).

62. Wachowicz, E., Ossowski, T. & Kiejna, A. Condens. Matter Mater. Phys.
81, 094104 (2010).

63. P. Hirel: Comput. Phys. Commun. 197 (2015) 212219.
64. Tapasa, K., Osetsky, Y. N. & Bacon, D. J. Acta Mater. 55, 93-104 (2007).

65. W. Cai and W. D. Nix: Imperfections in Crystalline Solids (Cambridge
University Press, 2016)

66. D. J. Dingley and K. F. Hale: Proc. R. Soc. Lond. A 295 (1966) 55
67. D. Hull and D. J. Bacon: Introduction to Dislocations (Elsevier, 2011)

67. D. Terentyev, P. Grammatikopoulos, D. J. Bacon and Y. N. Osetsky: Acta
Mater. 56 (2008) 5034

68. X. Wang, N. Gao, Y. Wang, H. Liu, G. Shu, C. Li, B. Xu and W. Liu: J.
Nucl. Mater. 519 (2019) 322

69. K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono and H. Mori: Phys. Rev.
Lett. 96 (2006) 125506

70.J. A. Yan, C. Y. Wang, W.H. Duan, and S. Y. Wang: Phys. Rev. B 69 (2004)
214110

71. L. S. I. Liyanage, S. G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes,
and M.F. Horstemeyer: Phys. Rev. B 89(9) (2014) 094102

72. D.J. Hepburn, and G.J. Ackland: Phys. Rev. B 78(16) (2008) 165115

68



73. T. D. Pham, T. Q. Nguyen, T. Terai, Y. Shibutani, M. Sugiyama and K. Sato:
Mater. Trans. 62 (2021) 1057

74. ). Wang, R. Janisch, G. K. H. Madsen and R. Drautz: Acta Mater. 115 (2016)
259

75. C. Domain, C. S. Becquart and J. Foct: Phys. Rev. B 69 (2004) 144112

76. R. Matsumoto, M. Riku, S. Taketomi and N. Miyazaki: Prog. Nucl. Sci.
Technol. 2 (2011) 9

69



PUBLICATIONS

1. T. D. Pham, T. Q. Nguyen, T. Terali, Y. Shibutani, M. Sugiyama, and K. Sato.
Interaction between Carbon and Extended Defects in Fe Studied by First-
Principles Based Interatomic Potential. Matt. Trans., 2022 (acepted)

2. T. D. Pham, T. Q. Nguyen, T. Terai, Y. Shibutani, M. Sugiyama, and K. Sato.
Segregation of Carbon in a-Fe Symmetrical Tilt Grain Boundaries Studied by
First-Principles Based Interatomic Potential. Matt. Trans., 2021, 62, 1057-1063.

3. T. N.Tran, V. A. Dinh, N. V. Ly, H. D Luong, T. D. Pham, T. T. Truong, H.
Q. Nguyen, Q. D. Dao, C. T. K. Tran, H. T. T. Bui, D. T. Nguyen, M. N. Ha
Dang, V. V T. Phan,and Q. D. T. Novel (110) Double-Layered Guanidinium-
Lead lodide Perovskite Material: Crystal Structure, Electronic Structure, and
Broad Luminescence. J . Phys. Chem. C, 2021, 125, 1, 964-972.

4. T.D. Pham, H.D. Luong, K. Sato, Y. Shibutaniand V. A. Dinh. Two-
dimensional Na,SiS as a promising anode material for rechargeable sodium-based
batteries: ab initio material design. Phys. Chem. Chem. Phys., 2019, 21, 24326-
24332.

70


https://www.researchgate.net/publication/348235504_Novel_110_Double-Layered_Guanidinium-Lead_Iodide_Perovskite_Material_Crystal_Structure_Electronic_Structure_and_Broad_Luminescence
https://www.researchgate.net/publication/348235504_Novel_110_Double-Layered_Guanidinium-Lead_Iodide_Perovskite_Material_Crystal_Structure_Electronic_Structure_and_Broad_Luminescence
https://www.researchgate.net/publication/348235504_Novel_110_Double-Layered_Guanidinium-Lead_Iodide_Perovskite_Material_Crystal_Structure_Electronic_Structure_and_Broad_Luminescence
https://pubs.rsc.org/en/results?searchtext=Author%3AThi%20Dung%20Pham
https://pubs.rsc.org/en/results?searchtext=Author%3AHuu%20Duc%20Luong
https://pubs.rsc.org/en/results?searchtext=Author%3AKazunori%20Sato
https://pubs.rsc.org/en/results?searchtext=Author%3AYoji%20Shibutani
https://pubs.rsc.org/en/results?searchtext=Author%3AVan%20An%20Dinh
https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03352a
https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03352a
https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03352a
https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03352a

CONFERENCES
1. T. D. Pham, T. Q. Nguyen, T. Terai, M. Sugiyama, and K. Sato, JIM,
March 2021, Japan.

2. T. D. Pham, T. Q. Nguyen, Y. Shibutani, and K. Sato, PCoMS
Symposium, 2019, Japan.

3. T.D. Pham, H.D. Luong, K. Sato, Y. Shibutaniand V. A. Dinh, The
9th International Conference on Multiscale Mater. Modeling (MMM2018), 2018,

Japan

4. T.D. Pham, H.D. Luong,and V. A. Dinh, ACCMS-Theme Meeting on
“Multiscale Modelling of Materials for Sustainable Development, 2018,

Vietnam.

71


https://pubs.rsc.org/en/results?searchtext=Author%3AYoji%20Shibutani
https://pubs.rsc.org/en/results?searchtext=Author%3AThi%20Dung%20Pham
https://pubs.rsc.org/en/results?searchtext=Author%3AHuu%20Duc%20Luong
https://pubs.rsc.org/en/results?searchtext=Author%3AKazunori%20Sato
https://pubs.rsc.org/en/results?searchtext=Author%3AYoji%20Shibutani
https://pubs.rsc.org/en/results?searchtext=Author%3AVan%20An%20Dinh
https://pubs.rsc.org/en/results?searchtext=Author%3AThi%20Dung%20Pham
https://pubs.rsc.org/en/results?searchtext=Author%3AHuu%20Duc%20Luong
https://pubs.rsc.org/en/results?searchtext=Author%3AVan%20An%20Dinh

