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Table 1.1 Measures to prevent weld distortion.

Phase Measures item Contents
Change to a structure with high rigidity Increased rigidity against weld distortion
Reduction of welded joints and welded lines Adoption of continuous welding

Design  [Adoption of welding method with small specific  |Adoption of high-speed large—current
welding amount automatic welding method
Weld joint position optimization Symmetrical placement of welded joints

Increase in plate length by the amount of
welding shrinkage

Addition of reverse strain in the direction
opposite to weld distortion

Addition of welding shrinkage allowance

Cutting
Addition of reverse strain

Use of restraint jig Restraint by hydraulic cylinder or vise

Weld symmetrically from the center to the
peripheral edges

Application of SS method*, SH method™,
SSH method™**

*SS method; straightening method by streching, **SH method; straightening method by heating

*SSH method; straightening method by streching and heating

Welding Welding sequence optimization

Adoption of in-plane pre-strain addition method
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Fig. 2.1 Shrinkage force and shrinkage moment of bead-on-plate welded joint?%),
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Fig. 2.2 Inherent strain distribution in thickness cross section.
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Fig. 2.3  Arrangement of angular distortion by each parameter based on thermal conductivity theoretical parameter®®).
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Fig. 2.4  Arrangement of angular distortion by each parameter based on thermal conductivity theoretical parameter?®).
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Fig. 2.5 Schematic illustration of integrated simulation model for MAG welding
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Fig. 2.6  Arrangement of angular distortion by parameter, (bm/h)(dm/h) 23?.
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Fig. 2.7 Application of thermal elastic-plastic analysis for large structures?38-249,
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Fig. 2.8 Application of inherent strain method for large structures®4"- 249,

B OT 2B G 2 W TR ERATE 2R B Tl - Bl 5 72 0121%, £TOANT—#
THHOTHOEZ FNEEL /D, D 290, BEETatR - HEBGEHGLLTEZLD
72T, —TmiRIER TR SN ENBBIRZ 2T 258 2R L, BAOTHORAEICIT RS
BIFEEIE S RO 2 SORF N HEHTHL Z L ZHALMNI L. AT, EHEOTAICKIET K
B &SR OB OV TGS LICiE R, WE O E A 09 23 Fig. 2.9 @R T XL 5
2, EBEREORELHEVZITPTIC, MROBEBLBIZTLILERLE. —5T, B
BRIEAZ T O [EA O F0% Fig. 2.9 (OISR T & D IR OB L Z 1T, RmBIEEIRE ORENR K
NI EERLE. GEMICAD &, FRNRBNEEIRL T CIXER O TAXITIEEr TH Y, /1%
HIA R B2 D &, IRE ERICE- TEAOT HOMIMENR KREL 2D, Zh b DORERIC
EOWTHREBFERENEAN THLHAICBIT 2EROTHOREERLRE L, FEXL Hv-EH
HOTHRENEELEEO TR FLEE LTHATHL Z L 2R L.

0000 T =\T‘l T T LI | T 11 | T T ] O.ws —T e 1T . o i —T
= —001,500 : ‘ :
. - i y 7 . 0.000 [ = N e .
W' L0002 TR W™ r b
oo | \ rrrrrrrrrrrr B -‘\‘; = E -0.005 {ﬁ, =001 B, =0 R
& T \ - E 7 f—t ]
T _0.004 F : A— e 7 = | —e—p3,=03 ]
g : —— ﬂx =10.3 L‘_‘_\‘. g -0.010 N g - 0 sI ]
:g -0.005 H—— B.=05 g 3 E M — '°—[3: =07 \\ 1
0,006 | —o— B, =07 3 -0.015 | B, =09 Y .
U —=—pB,=09 p - E . ; ]
_0007 T BT R P ' -0.020 T AT A | ]
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Tmax (°C) Tmax (°C)
(a) welding direction (b) transverse direction
243)

Fig. 2.9 Relation between inherent strain and maximum temperature
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Fig. 2.10 Distribution of inherent strain around the welded zone?*®.
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Fig. 2.12 Inherent strain distribution in thickness cross section 249
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Fig. 3.1 Configuration of cylindrical structure.

Table 3.1 Welding condition in hot wire TIG welding.

Welding current (A) 300
Arc voltage (V) 17.0
Welding speed (cm/min) 10
Material of welding wire SUS309
Wire feed (m/min) 55
Hot wire current (A) 100
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Simplified shrinkage zone

® Welding direction

Weld bead shape in actual welding Weld bead shape in analytical model

Fig. 3.2 Schematic illustration of the bead shape obtained by multi-layer welding and simplification in ana-
Iytical model.
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Fig. 3.3 Configuration of bead-on-plate welded joint.
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Table 3.2 Material properties used in thermal shrinkage technique.

SM490A SUS309
Young’s modulus (GPa) 203 195
Poisson’s ratio 0.3 0.3
Yield stress (MPa) 412 430
Strain hardening coefficient (MPa) 520 1800

Bead width, w

(D

&

\_

Shrinkage width

:WS

Bead height , h
1
Shrinkage depth , d;

Fig. 3.4 Factors of shrinkage zone.

Table 3.3 Control factors of L18.

Control factor Level1 Level 2 Level 3
A | Not assigned, - (-) - - /
Shrinkage width, wg (mm) 12 16 20
C Shrinkage depth, d; (mm) 4 6 8
D Eﬁas::_i;’th / shrinkage width, 0.7 08 0.9
E Bead height, h (mm) 3 4 5
F Shrinkage strain, £ (%) 1.2 1.6 2.0
G Not assigned, - (-) - - -
H | Not assigned, - (-) - - -
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Table 3.4 Analytical condition of L18.

A B C D E F G H

No. - W ds A h £ - -

) (mm) | (mm) ) (mm) | (%) ) )
1 12 4 0.7 3 1.2
2 12 6 0.8 4 1.6
3 12 8 0.9 5 2.0
4 16 4 0.7 4 1.6
5 16 6 0.8 5 2.0
6 16 8 0.9 3 1.2
7 20 4 0.8 3 2.0
8 20 6 0.9 4 1.2
9 20 8 0.7 5 1.6
10 12 4 0.9 5 1.6
11 12 6 0.7 3 2.0
12 12 8 0.8 4 1.2
13 16 4 0.8 5 1.2
14 16 6 0.9 3 1.6
15 16 8 0.7 4 2.0
16 20 4 0.9 4 2.0
17 20 6 0.7 5 1.2
18 20 8 0.8 3 1.6

FEFTHRGR & LTS DAV ZENL U LSH S D HEIR - OO K E S 2 RTHRZRK Z Fig. 3.5 (2
A RFEEID AT TR A, G HAIDRESFE S 202 &b, Hl#ERFRICR T 2 A
MADOFEN/NE S, ARENIADRERERAT S TSIz LT TE 5. 207 U ISR L Tl bIREAS R
EVRTIUGHERS ds TH Y, ROTHFEOTAeTH o7, —HT, E—FESh, E—Figw,
LA ws [ LZEAZIC RS D REEE I/ N S Ao o BRI A JETE CHlEELS 5 2 & &8 X 5 &, ZNLITH
T HRREEDY/ D S VIR 2 B E LT, DR S DA &/ T A —2 & U TIHRBEIRO R E & 2 05ET
D L CIRBERMFIDIS LI BB R B &2 B TE 5 Z L AR S L.
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o L g / oy / —t e
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Q
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D 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1620 4 6 8 0708059 345 121620
A B cC D E F G H
Not Shrinkage Shrinkage Bead width/ Bead Shrinkage  Not Not
assigned, width, depth, shrinkage width, height, strain, assigned, assigned,
-2 Ws (mm) d; (mm) wiwg () h(mm)  £(%) -3 -5

Fig. 3.5 Response graph of displacement based on L18.

(b) JEFERIR % F 9 2 B BRI O 3 1E ~¥E D FEAf

FeN T, I T Bl U 72 DUREREIR OO 36 1F 72 ~HE 2 P E T 2 72912, Fig. 3.3 1278 L7 A A X4
E— N7 — MNEEEZ S L. B 200 A, 77— 2 FBJE 255 V, REEEE 20 cm/min @
FIET MIG WHEA i .U, RERICIINE~ 7 a8l B L OB Z2HE L. MircxsRe 42
B A TR LU R 1Y, T F N Fig. 3.3, Table3.2 1Rk L7-i@ bl TH 5. H 2 HUHEOT %4
1—0.02(8R I IRIR S o =2.0 X 10°°,  {REZALAT =1000) & L7=. Z U, WA OLERIE CTH D [EA
O BB HAEBIR L ECRICRET D 2 0D, WO A% D DR IEER ok L O
TEEZAAT DA % S AARNEE (A T > L ZHO A1 1000°C3) 2 ML L TikE L. I
MafEdk i, Fig. 3.6 @Q)IZ/RT ' — KAV 7 L — MNEER QWi ~ 7 v Bl RISV T, Fig. 3.6
I RTHEY BT ML LT, HR Tl L7 IHEEIS O w & &S h ik, REOE— NiEs v —
R ST S, BUER & ws l2 DWW T, BUZEORS dy 2 EHELLT-Sdy & LTz,

w=11.2 | w
|
»- S
dh = 4.9( Adh
_1 0 mm.
(a) Cross-sectional observation (b) Simplified shrinkage zone

Fig. 3.6 Definition of simplified shrinkage zone based on the cross-sectional observation.

BUHGTE T O VI ZAL & IR S OBMRZ Fig. 3.7 1ORT . ZEALITIUHETR SISk L CTRIE O
RTHY, IHERS O > CTEM B EINT M 2R L, KHPICE O CRisl L2 EZR o
ZA0 3.1 mmiZxf LT, PHERES 2 9.8 mm OFRFETRLS —F L7z, Zhudp=2Thsd. T720bH
Gl L2 RIS OME w, &S h, & 20k &35 28T, EBREREZHH TS LV 5.

ZORERIZHESNT, Ky FUA Y TIG BT D IUHEFIR 2 P E L7z, 3.3.1 THIZR L7
P E OV COERICRT LT L 8AD Ry b U A ¥ TIG ¥4 i T U 7=, i T#ICHE S -k~
7 uBIEEAE R % Fig. 3.8 (I d. Wik~ 7 nBIEF R L VIEw=18mm, & h=35mm, ¥
BIOEES dv=35mm Th o722 & 75, Fig. 3.8 (D)ITRT X 9 1T Tl L 7= IGHE SR o ~F ik
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ZiEw=18mm, & h=35mm, IfEES 2dv=7.0mm & L7-.

F experiment, Ugp =3.1 mm

w
o

g
(3

g
[

d,=4.9 mm

approximation

r___%i::::L“u

-
w

Displacement, U (mm)
o

o
(&)

o
o

4 5 6 7 8 9 10
Depth of shrinkage zone, 84, (mm)

Fig. 3.7 Relationship between displacement and shrinkage depth.

w=18.0
d l =
h - .
10 mm
(a) Cross-sectional observation (b) Simplified shrinkage zone

Fig. 3.8 Simplified shrinkage zone of hot wire TIG welding based on the cross-sectional observation.

3.3.3 BUEMANTET LI L OBABEMHT &M

MR RRBRIR DENTE 7 /L % Fig. 3.9 IC- 3. kI L ONHEIR Fig. 3.1 1R L7z st & R U
Tho. HTET MBI HREBIRIL, AIEOBRGFHREREZEEZ T, E18 mm, &3 35 mmd
FEIE Tl U TR L2 (B FE ). £72, IUEER S 2dh=7.0mm TH L Z &0 0, B REND
7.0mm OTEENZIBT, HEmEI & IR Ik A (XA T & 5 L 9 ET /Wb LT, TE7 VIToNHE
R—WEHRTHERETIL, FFRHL 120,156, Himdkix 129,952 ThH 5. MRS L LT, Fig.3.10
R, R k}iﬂﬁﬁﬂ@ﬁﬁﬂﬁ%%/ﬁ?@ﬁ L7z.
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- Weld bead
(Shrinkage zone)
Base metal
(Shrinkage zone)

- Base metal

(Unit : mm)

Weld bead

Constraint; x, y, =

Fig. 3.10 Boundary condition of cylindrical structure.

3.3.4 Shrinkage %D £t 51

BN O U7 pPRHRRE & Table 3.5 12" 3. RMICIEEERBRIKOME ThH 5 SMA00 %, 4
BRI IR T A Y OME Tdh 5 SUS309 % 4HE L 7= IR OMEMRHE A2 U E ] Lz, ZUHsE
EOREMEIE, WO 7 1 —0.02(8 IR e =2.0 X 10°,  {REZLAT =1000), /S A Z & OULHEE
1% Table3.6 [T R9@Y TH S, #lxiE, 18 1/52 B OUMEHEENL, N S ADE#EE— NS
(1) EBMEZRDBEVEY)THY, 2 8 11 /32 B OUUHEEEIL, %Y/ SAOFEEE— FE5(11)
ERME ), TH S.
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Table 3.5 Material properties used in thermal shrinkage technique.

SM400 SUS309
Young’s modulus (GPa) 203 195
Poisson’s ratio 0.3 0.3
Yield stress (MPa) 330 430
Strain hardening coefficient (MPa) 520 1800

Table 3.6  Shrinkage zone in each welding pass.

Number of Group number of Number of Group number of
welding pass shrinkage zone welding pass shrinkage zone
1 (1)(21) (31) 11 (1) (11)(21)
2 (2) (22) (32) 12 (2) (12) (22)
3 (3) (23) (33) 13 (3) (13) (23)
4 (4) (24) (34) 14 (4) (14) (24)
5 (5) (25) (35) 15 (5) (15) (25)
6 (6) (26) (36) 16 (6) (16) (26)
7 (7) (27) (37) 17 (7) (17) (27)
8 (8) (28) (38) 18 (8) (18) (28)
9 (9) (29) (39) 19 (9) (19) (29)
10 (10) (30) (40) 20 (10) (20) (30)

3.3.5 BWEEROHBICESL A 7 FHE1EW~0D 5 AR

Shrinkage 51T & DIREEZSTEMRATIC X 0 15 S 7 EREBRIAR O LR F M OENIZEA LT, a5
BRIZED < FEHIE & ol U724 Fig. 311 1T 7. BT, WRSEEHEOHIPH (0 < L <180) % i
LTW5. BEEFBROMR, TBICHBEEENCEMMNRAEL TR Y, WHETLIIN O CIIENIT
FE 0 &g oie. BN OMERITHERL = 0) CUHME (B DOZEM) R K E Y, #FmE S L O
2> TENOMERHED /N E < 2o 7o, BUNGHEE T B2 22000 E Bk U7z Rl o m 2 FFEL T &
TEBY, EEMREMMIZOVTHELS —EH L. ZOE XY, Shrinkage H512 & 0 KE B < I8HE4
BAEHBTE L 2 EDNMHERTE . 7ods, AMHTICE LIFERRITN 30 7 Th Y, RGHED
REUEED BT H R CHAE T2 02 5.
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08 F O Measurement

Circumferential displacement,

p Welding zone 5! | — Thermal shrinkage technique
10 F ........ o T R
0 100 200 300 400 500

Axial distance from edge, L [mm]

Fig. 3.11 Comparison of displacement between thermal shrinkage technique and experiment.

3.4 BISHEDOKREEEYIZHE A 3 5 £ To Shrinkage =D&

AT TR L7z &k 918, IUHEREIROFANICIHE O T A% 52 % Shrinkage (B2 X0, A > 7 T4
EY O TH 2 MERBRIE CE U BEATE A RERSHATEL e 2R L. — /5T, A
NT =4 T HUHEOT I & I TEIC B LT, AFCIEERFEEZEN L CEY AR el
RO DD, 7 —AZO XD R PRET &7 5 DIFIFBENTH D LB X b, BHESRMTN
U7 B L S S IE R EMNEE > TWD Z ENEFE L.

3.5 AWFF TRRET 5 BUNEIEDOBIE

AT E TOMBHT LV, BB KA EYIC Shrinkage Ve AT 281, AT —% D%
EFREF AT N E N E W2 D ARIFSE TR T 2 BMUHRIEIE, Shrinkage V54 $ik5E L T
BRI SWIE AN T —Z OFEFIECOWTHETTHZ LT, BEROM L2550 THD.
32 HiTHRANTEAN T =2 2 ik 32 &, IHEEEIC OV T TBEEDORE 243 280 &
720, BHEOT I HONTIE NREZEAT ITHY T 28O0 T ) L7225, EEEOGBHBRIZE T
LEHEOT IEERICAE L B0 T HRICERT 2 Z &0, WHEOTHOMEI, BOT Ha i
AT 2 B IRRE S IR GICBEE S TRET 2 Z L B3IEICHEI THh D LB bD. Lt
Mo T, BUHEEIC I T DUUE O 213 Shrinkage 1 & FIBRIC, BRI o & IREZSALAT Z A0
TUTOXTEHAETHZ L L LT

e=—adT (3.1)
Fak L7z L5102, IHFERNICIEREOOT AaE 525 2 00, MEOTANEIZADEEZ & 5 X

NZRBDIZAF A LTS, WHEOTAOMEIZ—ETHY, »o, 3 8HMICE LTI
252 L& LTz, RBLYOHMERE AT R E T OMEIORIRICB T HMEESTH. 22T,
BEZAT 1 HMEECTHRET H/NNTA—FTHDHD, EAOT HAORARME L BT TRETX
HTENEE L.

RN T, BRI B LTI, WA O EZERL, WY A 7 VT U TR BNOT B ki)
ICEREEME O (HAOTH) L LTEFETDIZETHD. T OEAOT HORAFE K &S
BEEEISCTRESAZ L AN TV 39, Lz - T, [UEEI AR Do s Lz 3T
AR TH Y, IWEIC L DRBRIRO I @& BIEEIRE DS Ta UL E O 2 [ sk O &G & U7, e
B T HMEETRETDHINRNTA—FTHHN, TG EAOTHORAERE L BT TRET
EHZEDREE L.
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UL bEEEE 2 72 B CEUHEE ORX % Fig. 3.12 (R, EHTICKEE L 72 B AT — 2 13(3.1)
MHFET HIHEOT A &, BemBlERE D T L EOfEK & EE SN DNHMEERD 2 > Th 5. &
P P & LTe 3 RSt 72 IGREREIR O &N I IUE O3 A % - 2 CHEEMENT 35 = & Tl
BlRwaROD. £z, BUNHSEID X 2 HBMEARIT IC LB BRI, S|IRICBIT oY 73 E,
ATV by, BRI oy B X OW{LIREH TH 5.

. Shrinkage zone
<— Shrinkage strain

ShenkageZone / Within the shrinkage zone \
€;

Assumption :
Ex=Ey=§;

Input data

Weld bead

Qlement in finite element analysy

Fig. 3.12 Schematic illustration of thermal shrinkage technique.

3.6 BUHEEIC L AE T Ial—Ya v OB EHEORN

AHFIE CHERT 2 BUNREIEIC L DIRBEA TN O R % Fig. 3.13 \0R3 . B S s (o B A
IR 2 U E T B 7201, £ EVSEMNT & F2h L TR R R ORISR 2R 5. ZORRIC
BIBAERL L 72 7 L —F T & 0 @ B Toax 23R0 5. FEWVT, BUEIED AN T — & D%
EEITH. AT =2 Th DO Bk IHEHE (R EIRE T. DL EOFIR)OME 2 00E L1,
FENT X ROFE Sy SN T, BVREFENT T O iz B B R 2 DWW T fE IR 2 H ET 5 .
HEOFER,  IUHE IR O FLPH N (Thax = Ta) THAIUZIME O T Fre% 52, ICHETEIR O FFH M (Tmax < Ta)
THITIGHRO T el d G- 2720, ASIT— X OFRE D% ITHBIERNT & FH L, WHEER 2R
%. B, WHEEROHE S L OFICES IEEO T 2O GA2iZ 7 v —F &2 v THEME
LTHY, 1EEFIIMTEIT 2T AL ERDD 2 LR TED. ZOLS AT —4
DR L O BEETH S Z L0 b, BUGHEHEZ THICERARTEE R D Z LA ans.
F7-, IREREIOHIEICE LTI, BECIRERIE R 812 & o TG OREHERMABEMOBAIL,
FEAT R R OB IREFE T T WAERRRIZ, IR & R OTER T/ —T 4 v a U EXEID, £
FECRMT D HELH D, ZOBRAE, S—TF 4 v a v TR S NIGEER IO R E 5 1
DRECT D2 LT, WEMERT O ERT 5 2 LT, BUNKERIC L D BT & £ 5 =
LNTHETH B, AT, MIITIE UT, Fig. 3.18 1057 L7 2V A & I A % 2
BHEE, T AR IR 2 KBS B HEO WP TR L
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Thermal conduction analysis

+ Heat conduction equation

Output
¢ Temperature field ; T
« Maximum temperature ; 7.,

Parameter settings

Setting of parameters
Shrinkage strain ; ¢
Shrinkage zone ; T,

Judgement of shrinkage zone;

Toww = T, 7
_I YES NO I
Shrinkage strain, ¢is Shrinkage strain, ¢is not
given to the integration point given to the integration point

Elastic — plastic analysis

« Strain — displacement
« Stress — strain relation
+ Equilibrium equation

Output
* Weld shrinkage and Weld distortion
« Weld residual stress

End

Fig. 3.13 Calculation flow of proposed thermal shrinkage technique.
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3.7 BUNMEEDY I 2L —v a VETV
3.7.1 BMmEMAT

Fig. 3.13 (2R L 7 BIUHEVE D — 8 O fEHT CIXEMRIE AT & BIBMEMRAT 2 NER 33 5. Bvmigfig
Hr & BRIBMERRAT O R R U DN TENENLLTITIR R 5 . BMmE M o 3hd AL FREITR
TERRE SR TH D 3.

oT 02T 92T 9°%T
ch—AaT+%+E)+W (3.2)
T, p: BE (kg/mmd), c: HeEL (UkgK), A BMmER (WmmK), T:RE (K), t: FEE (),
W NERFEEL (WImmSs), X,y,z : 3RICHERE (mm), TH 5. BEHACK T 2 BVMZEMAT CIXEEOR
FESGZ T & D K DI, WEIEEUE w OfE% Goldak ZAJ5 3907 7 A AR ER 3970 K 2 VT %
DINT A= YNGR ET 20BN H 5.

BB TS %nt(mfffz—# R F DR EBEIEEEICE SO TRIEED AN T —2 ThH D
INHE BRI DHIE 24T 5 7o), wmBlEREZ B HT 272000 7V —F % Fig. 314 (TR 7 /L=
U X BIZHE - THER LTz, {eri’zw 22 AR D & 5L 23T DI (4 ; Tempy) & BVREfEHT
T BT RA) At (236 1T DI (Z A Tempeay) & V7 0 —F L NOZEBUITRAFL, 2 bD
B2 i3 5. REWH OIRE % m 2R (84 ; MaxTemp) DEBUCARAT S, Zhals
PRI DR T & CRHIT I R 2R OFE Sy I B W TE T2 2 & C, Tt RO @ BERE N AL

H MaxTemp |ZfR7F S 5.

Update of temperature

Computation of temperature
by thermal conduction equation
t=1t+At

Judgement of temperature

Temp s 4y = Tempy ?

—I YES I NO

MaxTemp = Temp;, 4, MaxTemp = Tempy,

NO

All step computed ?

YES

Fig. 3.14  Algorithm of calculating maximum temperature during thermal conduction analysis.
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3.7.2 TREBMARAT
BRBPERRHT I 1) 2 B0 AR EE, O3 AR 0 R, IS -0 HBERO HRRA L 90
AWVWHRERAD 3 >ORN DR IS 30, OF B EMERRAIT, OF e Bfru, B0 0T %A
OBfREERT B~ ) v 7 AEHWTLUFOX Y IcEzDIND.
{e} = [BJ{u} (3.3)
IEN-OFTHBRNE, 6o, OFhe I6H—0OFTH~ M) 72D EFHWCTUTOL I ICEDE
nb.

(o} = DI(e) (34)
ETo, WIRA Y B VIRIEIC B 5 L OIED IO S M (R FOFBIT KA TR S5,
| war@av = | wwreyav- [ uras (3.5)

|4 %4 S

I, {8} RABEOT I, {A} BN, Fo BAEARE Y720 oWk, T BALRRE Y
72V ORE ), VKR, S RififE, Thd. BUGHRIEIZ K 5 BB I — R 7R FHE OFAIC
MoTiED S, £9, Bw Y v 27 2L D~ U w7 20 5R8(3.5) TR LA HE D FEIZ LS
WTRRHIE~ R v 7 ZA(K v hU v 7 22 ElkT 5. £0%, WE (BHEE DS G TINHE O
PTH) LK< M) w7 AKXV ENERETS. 20%, XKEBIYNLOTHERHL, it TX(2.4)
K VIR EREHT 5. BUHEIEIC X 2 BT T, Fig.3.13 TRLZED, 7 —F &l
U T SRS D FE PP O T 3 2 5 5 LTz, LA OB E AT 3 S OB MEARAT 1 I A TR
BERY 7 U2 T HHWCEHEARETH Y, A% TIL Abaqus & ADVENTURECIuster Z£H L
7-. 783, ADVENTURECIuster (X452 - 5RBEIS DT 23 % 1C, Abaqus Zhh & L 7o 4
VIR —L W L CRISDRE A2/ LTV D 2 & &2 BIRHERE A~ TH D 310,

3.8 =

A TIE, BUHEEOBMBIZOW TR D & &b, fiffT b B L 22 B AT)T7 —Z Wkl L.
F72, BUNMEED A ST —F OREFERFHESL SN TOARWEBERIC BT, FEBREFmEE L THE
Bz L CEOBREMER D LT, SEHBO UEED OF & LTA > 7 TS % 21T
BUKRIEZ B L, 704 MR L OSEIc ST L-. AETEONhE B EEZITFIC
R

(1) BUHEED AT — & T HUUHE O A3 KOG TEIR D8 2, SEBRFTHEIAIC & 2 BT %
RIZHESWTIRIE LTz, ZOMEEZ RN TA v 7 THIEW & X U BUNHNEE 2 L7k R, 52
BROLEFRZEE LR HETE

() A7 THEEMEMNRE LIoRE 2@ U T, WEEARO T - FHETIE L L TORIEEDH
AT R SN b DD, A7 —4% Th HUHEOT 735 L OUHE IR O 5% EHE #2337 L C
WRWZ ERRETH D E V2D, EESRMICRHE L2 TEA O T HORAREICE SN T
ANT =2 OFRFEENRENL, EHEOBEANLOLAERETHL VR D.

_37_



F3EDSEM

3.1)

3.2)

3.3)

3.4)

3.5)

3.6)

3.7)

3.8)

3.9)

3.10)
3.11)

ESI Group : Visual-Assembly, https://solution.esi.co.jp/virtual-manufacturing

(ZHH :2021.12.03)

ESI Group : ¥ #/##8T > 7 & Visual-Assembly (22> C, https:/solution.esi.co.jp/virtual-manufac-
turing/blog/welding-assembly/about-visual-assembly, (ZM H : 2021.12.03)

B2 IS, MO, BIEENE, EEE . VA YIRS OV R ER A WA Yy R T A
Y TIG IEBAE DB OV ABEEMEE » b U A ¥ TIG IREEDOMIIEEE 1 #)-, RS
SC4E, Vol.37, No.4 (2019), pp.141-151.

HOf: %752y KAM, BABMKEEHS (2016).
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AT BHEIED AT — F REFH iR OESR

4.1 #=

H3ETIE, BHEEAFROMS Y 2 21— a Tk Th D Shrinkage % I LT, ABFZE T
R L EBUEEDIRIT FIEB L OED AN T —ZIZOWTEB L=, 0%, BUHEEOMETIC
B L 72 D ANTT — ZIINHEOT B L PHEREIR D 2 D TH H Z L 2R L, IHEOT A a kb iR
TACAT & WHEREIR Z 1R 3D 5 B BRI Ta O EEH B BUR CIIL T L HEIC e > TE BT,
TETRETDINRNTA—HLRoTNDL I LEMRE LI, ZOBRMET, 127 THIEY & RTGITE
INHSEDF RAMEZFHI L7z & 2 A, BUHSEDMATHER & U TR G AVTo A TR I L SR HIME 2 (EfEl
HEHTETEBY, FEOFAENRRENZ. —FT, AT —X OREMEED D 7= LRt
% & TEREZFAL TR, HEZDO L R FIETANT — ¥ OB E[EE ED D Z L ITBLEM
Tlx7eWnWeEBEZ o5, T7hbb, BUHECEID2MHS I a2 b—ra VRIEEHETH LT, A
NT =2 OREFRZMLT D Z SIXEHNICEFICERETH L LEBIALND. ZhbDORERE
XEBEE R OZER 1 Th 5 EA 0T HORARE L BEMT TRETE LI ENEE LN EW
2%, TITARETIE, E—FFr7b— MaEzxgR s U TEUWNEED A7 — & (IREZELAT
R EIERE TS T 2T A =2 25T ¢ 2 Fi L, FERNET K OBHEEEERRNT O 4255 %
BRAETHABWIERANT —Z OREMICE L THRE Lz, SN MRICHOWT, AEEOS
A A T) = X L OBLE R E E R K D EAOT HOFAERFEICTE SN TELE L.

4.2 MAG BEERTIE

ARFEBRIAE U= EHZIE A & I AEEAS SMA90YB THh 0, Z Db Ak % Table 4.1 127”77
BRI Fig. 4.1 1R T8V, ARE 200mm, #HiE 500 mm, HE 122mm OFRTHSH. Z OFRIT
*LT, MAGIERIZ LD — RA V7 L — MEBEZ FM L7 4D, WIEH RS 2R E S L, &
BRI ER 25 mm o &2 U2 150 mm & L=, v—/b K4 A1 80%Ar & 20%CO, DIRA T A%
FER L. YA YOELIT 1.2mm & Lz, MAG I8 T U725 % Table 4.2 (27”9,
FRHZFEDE 200 A, EHEHEE 3.33 mm/s (No. 3) & FE¥E L L C, &4 100A (No. 1), 160 A (No. 2) IZ%
b &B 725 & IS HEHE 2 4.67 mm/s (No. 4) , 6.67 mm/s (No.5) 22k S 7-5EDA5 5 &b%
RE LTo. IRERICRBRIADS T i H(ZEm) S IVIIREE T, Fig. 4.2 12T X O ITHERVEALEH 2
T oA d ZEHIL, 7hbAEIZESWTHAEROZ0=d250 LY B L.

Table 4.1 Chemical composition and mechanical properties of SM490YB used.

Chemical composition (mass %)
C Si Mn P S Fe
0.16 0.28 1.45 0.015 0.003 Bal.
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(Unit : mm)

Fig. 4.1 Configuration of bead-on-plate welded joint.

Table 4.2 Welding conditions in MAG welding.

No. 1 2 3 4 5
Welding current, 7 (A) 100 160 200 200 200
Welding speed, v (mm/s) 3.33 3.33 3.33 4.67 6.67

Angular distortion, & (rad)
6=d/250

_—

1
f V4
1

oy

-

/]
12

L

[P
<

' 250

W

Fig. 4.2 Method of calculating angular distortion.

4.3 BAEEBAMEFRYT D FEHE T IE

BMNHETE O LB « MRRED 72 D ([ BGHIBERAT Z2 ff TR L7z, L7y R ab—va U ET
JUXFIg 25 IR LAY I 2 b—va VA2 TH D, KRTFER, EHEERSCEEERE R E
DEENBGANE N STRBET — 7 D ANBSAGRT — 7 [ fi it E4 5 77— « 75 X~ (BJF)
ETILASA0 ) RO B — NERCIRELRHELZFE TS T8 — RER(T rER)ET V4D,
B — NIIR S IREG R DA 23R T2 IR - BIR(1IF) T4 2 —HmER S
THETHETALTHD. FHEOHNIL, T—7 « 7T AETNMIBWC, IBESFEE AT —
BELTT =7 « 77 X)L ~OBJREHE(RA ~D ABE, VA Y ORAEE, ABVIN)
RO D, FENT, B — FERET VIZEBWT, ZOHERMETH 2B EZ AT —# & LT,
BYmEH R L U — FREEBIRHREAER S TS 2 L TREIBIRZ GO EEL 2 R0 5. K&,
RESGR LOREE & O ITRIGORIRE AT — 52 & U TR 235 2 & C, WA
EaERDD., LLFIL, =BTt R)ETLVOFEOBEICOWTHRARSD & &g, Bk
RIS LT BRI BT 2 AT — 2 (BRAAS0T — 7 R 15040, WG ER E)DRIE k%
B2, = FNEHR(T ' R)ET LT, R@DIRTEYRE TR S K@G2)IRTE— FREA
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ARG REA A R S B TR ET 5.
OH 0 9T a oT

P =55 ¢ a)*‘@( @)‘i‘&( 5, T @.1)
(1+ $2)ax — 202y by + (1 + p2)¢b
i G m A 42

ZZT, p:BE (kg/mmd), H: X LE— (JKg), A:BYRER (WmmK), T:EE (K), t:
i (s), w: PNERFEEL (WImmds), X,y,z: 3 IRJCHERE (mm), g: EAIEE (mm/s?), ¢: 267 (mm),
P:7—2ESN (Pa), o: #HES(ELONMM), |: 7770 V2R (), THDH. X@4.2)EHAN\iz
EHeh o v — RREGIRGHRIZIE,  “WRMICERT 20037 —2 £, B, REERIOH &
57 BXO “FHENBIOEEIT—ELTE” EVosREEZE N TN,
eI, B— FREIRGHE O N (AR 2 0 &35 B8 R OF)ITHBWT, U1 it
B Vo Z2ie T 5 L0t — FRER TR EZ ML 2 LT, EENORREMERD S, £l
IREINIE & 7 DRI EHZ A BINTH 2 L TE— FERER) 2 L, 7T—27E P ORETE
AN A &R DI ER ZHIRT 5 2 & ClaMMRmOEAZBEET 5. 295 L Th LI
SFITHBITDHE— RIRMBTET LIS, B8 RIS LV IREGFEEZTT 5. WEREVE w 1 XH
PEIRE Y 72 0 DOFEINAE Querd & KIS ST, FENAB Quena 1LV A Y MRE T 2EVE Quie & 7 — 7
7T AN BRI MRS S D EE Qe IS L, BTE TR Y A Y ICH Y 9 50800 L 72 BRI %
LCHZ, BEIBMEGDOERICH L TEZS. ZNOLOHREARMBES ZLIiTH> 2 LT, B
FERENCE D IRESFEB LU A YRR LR LTEO NI REORRNEEL 72D,
E— REACET VBT D2 AT —4 & ZDfE% Table 4.3 1277 49, BVREHFEAXOFHETH
WD NT A—HB % Table 4.3 (a)l, B — RERMEBIRFIE THW /37 A —4 % Table 4.3 (b)IZ~7.
ALY 72 0 DTN AR 2 KT Quetd (US)IE Quetd = 71V (77 : BAZD=R, | @ VRN, V © 7 — 7 L)
TRO-. 2B, BRI A NSO CEERMIC L 53 n=085 T—EME Liz. F%)
ANV Qued (X, VA YIMEA T DEE Quie &£ 7 —7 + 77 A= BRI~ MEG S D BE Qare DFD
(Qweld = Quire + Qarc) TR T T ERNTE D, U A YIRA T DEE Quire 13 wire =0 HVuire (0 : HJE, H : =
VHNVE =, Vuire : TA YIEFRIRE) TR I, TA Y EFRRIEE Vaie IXEBRFE RICES L TFORXT
HeE T X B 410,
Viire = al + bL,I? (4.3)
IIT, L VA YEHLES (F15mm), |: EEER (A), ab: %, ThD. BEEMHEICLD
HRERMRHT AN\ T, p=8.0X10%, H=183%x10% a=0.311, b=463X10°& L7=. 7—7 -
TGRS ETFNLDOHEMRELY, T—2 « TR LRMICHRG S D ABSARIZLL DO H w7 2
SADOXTHEETE S. i i
Ware(x, 3, 1) = nqz;;; exp {_(ng:t) } exp {;;rc} (4.4)
ZIZTC, Wae(X, Y, t) 2 BEZt, EEE(X, YIZEIT D ABE (Us), Rac: ABAD T 7 Z540 48 (mm),
Thd. 77— « 7R LEM MRS S DB E Qurc T Gare = Queld — Quire (2 KL D 3RD, T R 55
A P18 Ra (XFEWE L BIEORTH L5720, LLFOFHERXNGRD T
Rgre = kIV +2.56 (4.5)
728, EEKkITk=000024 EHEEOLT-. FERICLTC, BE—FRHETHWDT—ZENbL DA
DAV TFTOXTET Z ENTES.

N2 2
P(x,y,t)szaxexp{M}exp{ 4 } (4.6)

2 2
Rpress Rpress
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T, Py, t) s BREZI L, JBERE(X, OWICET DT —2E )] (Pa), Pmax: 7 — 727 [EJIOEKIE (MPa),
Roress : 77— 7 JEJID T 7 A543 48 (mm), Toh 5. Tabled.2 TR LI-AMIE CEMT 5 (;m(100~
200 A)DEIFHNTIZX, 77— 7 ENEERD 2 |2kl L, WEEOHIMI > TR T 28 mIcH
LI, T—2ET)DORKME Prax 1Z, LLTFOFRERADGRDT.

Pax = SI?V 2 4.7)
7R, TEEL S IXBAEMENT 2 L7k A DN, s=198 EHEE L7249, F£7=, H U AR5y
A7 Ropress 13, L FORTHEAMNG RO T,

Rpress = mI~'V ™1 +1.60 (4.8)
7RES, TEH m ITEAEMEAT A G L7k ST, m=791.8 EHEE L7 49, Fefkiz, B—
REFROFHRGEL Ry 13, BEAEMIZE 492 SB 1L T OHEEX TR L7z,

R, = 0.002783IVv 05 + 1.41 (4.9)
ZOXEICLTRELIZAT T —# (Table 4.3) % i B — RERET VO 21T -7, I HIZ,
FERELTHEONDIRESGB IO — NERE AT —& & U CEGENEMIT 2 4252 & T
TR 2 RO T, RIEHT I AW T2 BB % Fig. 4.3 127,

Table 4.3 Heat source parameter settings used in bead formation model.

(a) Heat source parameter

Welding current  Arc voltage Welding speed Heat source parameter
No. I(A) V (V) v (mm/s) Gwetd (J/'s)  Gwire (J/s)  qarc (J/s) R rc (mm)

1 100 15.8 3.33 1343.0 557.0 786.0 2.94
2 160 16.6 3.33 2257.6 988.8 1268.8 3.20
3 200 19.6 3.33 3332.0 1317.3 2014.7 3.50
4 200 19.6 4.67 3332.0 1317.3 2014.7 3.50
5 200 19.6 6.67 3332.0 1317.3 2014.7 3.50

Gweld : quantity of net heat input per unit welding time

G are . heat input provided directly fromthe arc plasma

Grire : heat input involved with the melting wire

Ry : radius ofthe Gaussian distribution

(b) Bead fomation parameter
Welding current  Arc voltage Welding speed Bead formation parameter
No. I(A) V (V) v (mm/s) Vwire (mmsr‘s) R (mm) Puax(Pa)  Rpress (mm)

1 100 15.8 3.33 38.0 3.5 793.1 2.10
2 160 16.6 3.33 67.5 4.9 1839.5 1.90
3 200 19.6 3.33 90.0 6.5 2061.6 1.80
4 200 19.6 4.67 90.0 57 2061.6 1.80
5 200 19.6 6.67 90.0 5.0 2061.6 1.80

V ire : wire melting rate

Ry, : radius of bead surface calculation area

P : maximum value of arc pressure

R : radius ofthe Gaussian distribution

press
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(a) Thermal properties used in thermal conduction analysis
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(b) Mechanical properties used in thermal elastic-plastic analysis

Fig. 4.3 Material properties used in thermal elastic-plastic analysis.

4.4 BIHEE D EHE S 1k

BN T L72frE 7 Vi, Fig 4.1 1R LB ERI UK - SHEO b o2 HW =, #4
WA 1A DFRNTIZ I 1T DA BRI Table 4.4 (2759 SM4A90YB 2 45E L 7=l 2 5% & L 7=. BUUEED
WIE 7R A2 AT D 72012, Table 45 1R L2 12 JfECTHRT A =X AEZT ¢ ZFEi Lz, L
MEOT TG TR LIZL DI, BIEEREa BEZIAT O TRO NS, BRIEEREKT
SM490YB D= DETH 5 1.2X10° 23 E L. IREZ(LAT IIEE TRET H T A =X Th D
7=, Z ZTl%, 300°C, 500°C, 800°C, 1000°C, 1200°C, 1500°C% 6 &bz ELT-. Tihbb,
WO T Zreld, —3.60X10°, —6.00X107%, —9.60< 1073, —1.20X 102, —1.44Xx10?, —1. 80><1o-2@6%
HETh 5. IHEFERE 725 RS ERERE T LOMFEBRIMEE CRET DT A2 ThHhHD, =
Z Tl Ta=500, 800 @ 2 &b &iE Lz, 723, UUHE Eﬂw)k%éi BMREMEITIC LI D BN
EEBERE 2ROz, T7b b, Table 4.2 (28 LTZIAHE4E (A5 5 S) 2%t L T Table 4.4
IR LTz 12 /DT A—H AL T ¢ ZFEfi LizT=, At 60 JEOEENSELND Z LT
5.
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Table 4.4 Material properties used for thermal shrinkage technique.

Young’s modulus, E (GPa) 210
Poisson’sratio, v 0.3

Yield stress, oy (MPa) 417

Strain hardening coefficient, H (MPa) 970

Table 4.5 Numerical conditions of thermal shrinkage tehcnique.

Themal
N Shrinkage expansion Temperature  Maximum
0 strain, coefficient, change, temperature,
& o AT T,
1 3.60x 1072 1.2x107 300 500
2 £.00x 1072 1.2x107 500 500
3 9.60x 102 1.2x107 800 500
4 -1.20x 102 1.2x107 1000 500
5 1.44 %102 1.2x107 1200 500
6 -1.80x 102 1.2x107 1500 500
7 3.60x10°  1.2x10° 300 800
8 £.00x 1072 1.2x107 500 800
9 9.60x 102 1.2x107 800 800
10 -1.20x 102 1.2x107 1000 800
11 1.44 %102 1.2x107 1200 800
12 -1.80x 102 1.2x107 1500 800

4.5 EHEEFOHBIZEDS S BUEE/ ST A —F OBEIEAL

BUNAREIC LB N AER A Fig. 4.4 (2R T. RIS AT AR T 17 o Hh ek (x = 100) T
D, 7T 7T ERRE R (RO I L OB (K O % 0F8COR L7z, 2L
MEORER LV, IREZEAT © L5, IHEREI A R D 5 fem BEIRE Ta DA E > TAHER N
RKEL 2o TS, IBEZEOBEMTIGE O T OB U, B B 15 O 1 XU 8 5
DN HKIGET D720, SN2 5 &, AT 28 L OUUHEER OB E-> TREL
72 % . BUNHETE ORGSR & TS R ds L OEGRIBMEREAT OFE R & i 9~ 5 & IREZE AT = 1000, UX
i ek 2 P 80 2 B i BIFEIRE Ta= 500 O EM DG AEIZ, 2 TOSRMFIZE W TERE L OB
FRNTOAER & B —F Lz, ElROAERICRHT 2 UHE O3 A2 L IHEER O @R 2 E 2 5 &,
R 2L AT = 1000,  YUAfE B 2 7 6D 2 fe i BIEETRE Ta= 500 LIS ORREEICB VT H ALK 2 FHE
TEXLAEEERS D OO, AL TILIZOFMICER LT, ALEDO A D =X LO/LEI LW
SRS TR L D EAOTHORAEREOB AN D, REMOZLYECE L CREICHREELT-.
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Fig. 4.4 Comparison of angular distortion among thermal shrinkage technique, thermal elastic-plastic analysis,
and experiment.
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4.6 BEEEHP—B L-ERICETIEE

BUNAEIED/NT A —5 D3, IREZE(LAT = 1000, UHERE 2 D 5 e i BIEIR B To= 500 DX EfE

T, FEHER L OB O A AR AR E R < B CE 2 HBIZ oW T, AEFO BT &
ENTWBEAOTHOBE AINLER LT, 22T, EAOTHZEHERRE AT m(y J5m)o¥s

POT & LTz, T s BEE R 200 A, #H2HE 3.33 mm/s (Table 4.2, No. )05 EICR T 5
[EA O B0 & Fig. 4.5 1283, IR (x = 100)0 y — z Wi 2B D EA O T Aoz~ L
TEY, Fig. 45 @QIFEHEFLEEES U COREERERTAIZEAEOTAO0M%Z 72y hL7EbO
TH Y, Fig 45 O)FEETLEEE LS L CTREFAICEAOTA0MME 7y hLEEbDOTHD.

fERE D &, MFEOEAGOTAOMIRR LMW ERL TS Z LR35, Fig. 45 ()2
WT, BUHEEORERIZ Y =10 mm IZEB W THIBROTHBE L TN D OITK LT, BB ARAT#E
BiZy=0~10mm TEMOTHANAEL TS, £, Fig. 4.5 (0BT, BGHEEMEARIT O E A O
FTHITz=3mm TN T, BUHEE D 2 F5FREE O fE (BB © —0.03, ZUNHETE : —0.015) & 72
ol ZOREREIY, BN TEUERE CALEZ BB CE 2B Hh L L TUIEAOT A2 T
TR CE N2 2R .

BT, ALK ABIITEHEBE LT, ALKBORNEN /b E—A 0 MIER L. AXF
DFERA T = X % Fig. 4.6 (TR d . RIS, BEAOT Ay T OT ) D3 e i 5 | 517
T57=0, MBIy T 5. 2ok &, HEESRIEIT BICARE 24 U A 13K
B L LefiiF e — A v MLV mANEREAER)NAEL D,
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Fig. 4.5 Comparison of inherent strain between thermal shrinkage technique and thermal elastic-plastic
analysis.
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Fig. 4.6 Schematic illustration of the moment which is a driving force for angular distortion.

— AN, E—A L N MIIEF CHEBEL ZFEH LU ToXNTRINS.
M=FL (4.10)
fE FIZEEA LV 7RE, BERIIBITL0THE=AN)EZFEHALTUTORTERIND.
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F=(4E) - (Al/]) (4.11)
I, BEHEIA R(EE A, BRA X)L TR, BUHEE & BEBIERRIT Ol 5 TR U
ThHHNL, WEES (= AT ToXNTRIND.

S(=A4l)=2gl
2T, WFEHFEOy HRESTHY, GIEFERIIBITLIEAOTATHS.

ZHDORUTESNT, BUNHEE & BVIBPEITIC B 1T 2 UE R S ik L7 2 J 7 % Fig. 4.7
RS RRRIIT, BIHETE OUUHE RSBV OIEE L D 12 BIRE< Lo TS, Th
lX Fig. 4.4 T L7 BUIGHATE O 28 TG DS BGRIBIEREAT D AT L 0 1~2 FIRE W2 & &xbia LT
Ll lEZOND. ZOXIRETOERISHD LOD, FICE U THE OERHEREIT R < xhii
LTWhEnxsd., ZZETOEmmEMEZ DL, BUHEE & BT <L, BA 07 201
E—FHLTWARNLD0, IUEREIFES —&HLTWb Wz s, Thbb, BUUEEDFRITIZE W,
T, BGRIBVERENT )N DR E D EAOT B0 L i ICHERET &b, AZLOBRE ) & 725 E— A
Y EBREBETENE, ALEERERHETEEEZLN, TOFREMMN Ll L-REEL
AT =1000, UNifapEIk 2 R D % Fem B IR EE T.=500 TH D LW\ 2 5.
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Fig. 4.7 Comparison of shrinkage between thermal shrinkage technique and thermal elastic-plastic analy-
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4.7 BIKSED AN T —Z OREMHEICET 5 BEAOTHARERMEICE S BREE

ATETCUE, BUMHEEIC X DA TN CIXA LT OBEh /) & 72 5 — A M BB TE UL,
EREOMEREFR TED 2 2R L. AETII LV EECELRT 572012, WiREEED T )
7 V4 SN TEURIE O BEA O T AOFEFHEICONWTERT H L L b, RO EM
B L CHGGIE L 72, 2 2 T, WE S0 7 o —I1cES3< EAOT 22 [BEREA O3 72,
BUNMEIED B X FIZHESWCTHE LIZBEROTHE DEYEFEOT A EIERZ L LT 5.

FF, HREAOTAEZENT . MEEEO T 71 Po—Tix, BT OOTHdImtEO3 74
&, WHEOTHgB LUOROT Hhar HNTLLFTORTREIND.

E=&t ot & (4.13)
IHEOT I (e=) aATs BISREERIC 52 b= HiE, ARMTOOTRIIUTORTEINS.
E=&+ & — adl; 4.14)

K (4.14)I2BN T, FIRDIRDEEER ST (X ST D BT OO eI 0 Th D, IWHEOTHNE 2
BV Z & Tl EEESBRIR LT 6, EHE T 1 OO Zr gox 1XFEIRONT 2 v (= ov/E) & H
WTLLFOXTREND.

&n = adAT; — & (4.15)
PR 31T 2 RFE—E DARE D T TlX, BT M OMEMEONT Zrgox, WSHERRIELAZ S5 7] D IO
T Frgpy, BESOPMEOT Frgp (FUL T OXETRET 5.

Ext &+ &:=0 (4.16)

T DT, BHERMEAZ M ERIE T MO ESWRE U Th D EARET 5 &, BHERRE AL O ¥
PEOT Frgy 13R(416) L0, LT X oicRIhb.

&y = —0.55 (4.17)
EHOTH g 1ZRNTOOT e bMEOT g 22 LIWTRODD Z ENTEDLDT, HHMH
EARFMOEFOT 7 gy s IFELTORTRO HND.

gyis = gpy - aAT;' (418)
Tpbb, HEREAOTH gy s 13X(4.15), @1NE WU ToXTcEEND.

AAIFZE TN TZ S (E = 210000, oy =417, a=1.2X10°, AT:=1000)% (4.19)IfCAT 5 &, [EHA O
FT-0.017 L7p .

BT, RS DIEHEAOT F gy 1 3RO 7=, SRR 2 388 1 OIR /34 ORI %
Fig. 4.8 127”7, Fig. 48 DR TR LI K DI, BHEMEFF CRIRE R0, BWHEHNOREN D120
NTREMETT 5. ALBIEIINODIRE EFICHE-TAELLZOTAICEVELND. BULHEE
TlE, X@BL)TRLIZE I, —EEOWHOT A A2 MG 2 TWDHTes, Fig.48 DEHRTRHL
& olz, —EDIRE EAAT % & 2 SR E T RE O O WIZEX TWDH Z & EFEME VR
H. 2T, MAT ot RAIB T 22 TOEOTARBEAOT e LTEFT DL EVIRESE
BEWTWD. BEICIE, HEOTHORELZETLMNERH D LN D0, BMEOT A& T
HELHNSNWZ ELIH L THEMICA LA RNWEEXD. VXD L, REHRER M
DEAOTHIIUTORTEEIND.

gi = —adT; (4.20)
BGRIPVERRIT OFER 2 VT, FHEAOT A gyt Z L FORX TR L7z,
g 1= —a2AT/w 4.21)

_49_



2T, R w IRIHE R A TR 8 D i = B Ta = 500 L2 AR TH S, H(4.19) L 0 R 7Bl
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TR, —HEEOT AL LD T-DARIOFKR TITORBKFEEL CWb EBEx 55, Lol
R D, BEELELHTFETRES —H LTS ENZ 5.

UEDiEm LY, MmEEEO T Fr o —22B | U CEM LEEA 0T A0 END, Eilko
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Fig. 4.8 Schematic illustration of temperature distribution during welding.
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HOE WIE b L7 2R D Z s~ A

5.1 &=

ATEE CHME L 72 BUHEE O EMEICEAT 2 3T A =2 22 T ¢ OfER, BEOEERIFTOAE
&% FEBL AT RE 72 5% B (IR EE A AT = 1000, fmRIEIREE T.= 500) & BAfE(k L7z, FERIZESW T,
F—A 2 b OBLRF I OMEEEREICHES S EAOT O EREOB R HIRE LR EMD
MR LT

ARETI, ZOREMEE AW BMHREIC L D IEBEETEMNT 2 B S A L e 6 D%
BEFBIZOWTIME L=, £, E#ENLRHRFIE LT 2 X200 — N4 7 b— MEBEZXIRIZ,
BRI & BAHPBMEARNT &2 FEhE U, W FIE TR LT 2 N REHER O MET 2 i Uiz, R0
ST, 2 NARBCBT D AETORAERIEICOWTELR LT, VT, FERERIKZHBHE L -k
F& LT 6 N ADOESEEHEABRIRZ IR HEFER L T Lo, T a2 R IZBUNHEEIC K D%
PR TR 2 Tl U, B S A BT 2 IR BE L TRl L 7=,

5.2 B— KF v 7L — MEEICET 5 BE

AREITIE, EBENRBRGE LT, 2 320 — N4 U7 b— MNEBEZRSICBEIEC X D iaE
IEFEHRNT 20 Fh U 7. BIUGHIE LS L 2 TR TR /6 R O FLl g K ORHli D 72 D12, B MBPE AT
P CFE e L7z,

5.2.1 EAEMRYTFRA:

(a) REBRABRIG L OBEEEM

B R 2 b— 3 X DBREHT O T PEAGRER 13X Fig. 5.1 1IR3 0, A& 150 mm, ARIE
300 mm, HJE 15 mm OYAR TH 5. VAR O E IR A E I EIEHAS SMA90A Z# 4 E L7z, Z D
PHIZHF LT TIG I L b — RA V7 L— MEBEABEE L HE Y R 2 L —va U aSE i L
7o WREENLEIIHE TR & L, WEERITWE 15mm F o 2R 2 120mm & L7z, i U728
S % Table 5.1 127~ . ¥HEEDE 200 A, ¥AHZEE 100 mm/min (No. 1) JE#E L LC, i 4 180A
(No. 2), 160 A (No. 3), 140 A (No. 4), 120 A (No. 5), 100 A (No. 6) (2L S 7-45F 6 &% E L
7o 728, 132 H, 232 H & BICE—OEHSRME, WHEAE S Lo, W%, RBRIERTom
HZER)SNDETHTZERL, ZORICAZRZE T Lz, 7ok, BUUHEIC X DISHEE VR
B0 LSRRI FR S S0 U 7= BB MR RRAT (S 810 D8RS & LTI, Fig 5.1 ICfifFE TR L2 Y,
[ElEENZ2 bSO EIL g ) W Oy
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Constraint

Welding

150 direction

> 4 Constraint
X,z

Constraint (Unit: mm)

¥,z

Fig. 5.1 Configuration of 2-pass bead-on-plate welded joint.

Table 5.1 Welding conditions used in numerical analysis.

No. 1 2 3 4 5 6
Welding current, 7 (A) 200 180 160 140 120 100
Welding speed, v (mm/min) 100 100 100 100 100 100

* Welding conditions for the 2nd pass are the same as for the 1st pass

(b) BAGHIEMEARAT D FH S5 ¥

BUNHEE ORER O Ll - REED T2, BEIER A B8 U - BVEEYERRNT 2 FE0 L 7= Y. Bafr
ZIE, —ARAY7R 490MPa #hAE IE S A4 A8E L 7B E 2 W T 0, IREKRFHEEBR L7z, #
{REFRENTIZ WM BRI 2 Fig. 5.2 (@), EAHIBMEREATIC 7o BHRFME & Fig. 5.2 (D)ICR T
JIFHIERBIEE 1L 800°C & LTV, 800CHEBA TN &Y VR EMD TUNSVMEE TS
T L THEMERIREASE LT-. TIGIABIC L D — N4V 7 L — MABZTE L iaBRRIX
Fig. 5.3 \I/R ¢ HAHEM A 7 ABRET L& V2. ZhUE, BURFL LRI &% TR D5y
HizeHT D0 AGHEIRET A TH Y, BT BRATT OANBNAR &% OANBSHITENE
h((5.1), XG2TEINS.
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(a) Thermal properties used in thermal conduction analysis
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(b) Mechanical properties used in thermal elastic-plastic analysis

Fig. 5.2 Material properties used in thermal elastic-plastic analysis.

Fig. 5.3 Weld heat source model used in thermal conduction analysis.

We(x,y,2z,t) = 6\/§ffq ex {—3(x — %o = vt)z}ex {——B(y _ YO)Z}ex {—_3(2 _ ZO)Z}
(AC o benvm p a]% p b2 p ) (5.1
W.(x,y,7,t) = 6\/§frq exp {_3(x —Xo — Vt)z}exp {—3(}’ - yO)Z}exp {_3(2 - Zo)z} (52)
R a,bcrVm a? b2 c2 :
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727170, q: BUROEAREERS 720 D AZ (fs), v WHESEEE (mmis), t: B (s), ar @ BRSO
DY TR D A5A0/35 A—4 (mm), ar : BRSO S IEEERR T 8 LiED B v 2454
XT A =% (mm), b: RIEFTROT T R554G/37 A—52 (mm), ¢: ETFRDHT U A545/37 X —
Z (mm), XY,z : EEBAERF OB F.OALE O Xy, 2 JEEE (mm), fi @ RABIIKHT 28T 06
A ~DABDEE, fo: RABTHHT 2BWRF LN LR IT~OANBOEE, Thsd. 22T, 2R
TTFNDANRAERET H/NT A =X ThD qs)a BAFFMYS 720 ORBEABLT572012, f +
fi=2 L LTWD. 7o, AREITIIH Y A5/ T A—F ar & ar DRFERRIC K fi=1:2 2 LT
WD BN T A — & % Table5.2 12”9 & D ITERE L7c. AR 72 0 D AB q () DR & X 13,
T — 7 WIERCEGH RO T 5 30k P2 VAR E X C, WBWHEEEIRIC L ARERmO TREND
EMD, BTG D6 D S ARE LTz,

Table 5.2 Heat source parameter settings used in thermal conduction analysis.

.5 ay (mm) 5.00 470 4.88 4.28 410 3.95
3

;E % a,(mm) 10.0 9.40 8.96 8.56 8.20 7.90
-

c

u g b (mm) 9.00 8.46 8.06 7.70 7.38 7.11
U] ¢ (mm) 2.00 1.88 1.79 1.71 1.64 1.58

Welding speed,

v (mm/min) 100 100 100 1% " "
Heat input 1670 1390 1200 1050 930 840
g (J./s)

(c) BUHEEDER S L

BRI OfFFT ClE, Table5.3 12789 X 912 SMA90A ZA8E L 7= RiE O EHE I 2 v 72, B0
YRMERRAT CHEF L 72 VEE(Fig. 5.2) D=IROME L R U Th 5. BUNFEIEOR EMIE, 1 /NAH, 23
Z A & HITHHEOT H23-0.012, A BIEEE 500°CLL Lo sEk 2 [UEfEmR & Lz, 7ok, IWHEeE
BT AT CIEHE L 72 BMREMRNTIZ L 0 15 6 7 i m BRSO AR IS FE DT, B B CUUHERE I & 1
ELTCIHEOTHRE2 52 5% E L L7=(Fig. 3.13). 2 /%2 RIZBWTH 132 H L[EkEIC, 252 H
OimEEREAZRHB LT, ZRICESWTIHEOT A2 52 2R EE Lic. 1 /32 Z &AW AF
Br AT v 7 %58 TR O A&+ 5 LTz

Table 5.3 Material properties of SM490A used in thermal shrinkage technique.

Young’s modulus, E (GPa) 203
Poisson’sratio, v 0.3

Yield stress, oy (MPa) 412

Strain hardening coefficient, H (MPa) 520
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5.2.2 1 NAEER B KO 2 NABRER OBRELETE O AT

FP, BT T b R R & Fig. 5.4 R 7035, 15K H b 2 5% H LR U
Sk, [FCHEBEME Ch D720, WMEROKE SIIRL LR 20D, 1 ARADED, %
RLTWD., MOFREGE S IR ERLERE 5000CLL EosEs:, T2 bbiEiEik ch 5. B
ISP TRUERIR S KE <eo TN D Z BB TE 5. TNTHORIFIZI T 2 WU Z A
N7 =5 L LT, BUUEIEIC L DEEATMT 2340 LTz, T, 1 NAEHHZRB L OV 2 SRR
B%OMEL% Fig. 55 10RT. 7T 7 ORENIIABUIT A —2 TR L. 2P, BZEEEL
THF L7272, ABUST A—Z O/ SUVMEDBIEIZ 100A, 120A, 140A, 160A, 180A, 200 A
DEAE LR LTS, Fig. 5.5 (@QITR L7 1 7S AEHES OB ETGIIW FIEO A AT RS TR
C—ELTWS. —JT, Fig.55 O LT 2 S AGHEROBATL, Wi 100 A-160 A 0
SN TRURIE D AL/ NS, ZOFRERICE L TRIEICTEE L.

(a)No.1, 7=200 A (b)No.2, /=180 A

(¢)No.3,1=160 A (d)No4, I=140 A

(&) No.5, 7=120 A (f) No.6, 1= 100 A

_%@mmn.%ﬁmmﬂ

Fig. 5.4 Maximum temperature distribution (shrinkage zone) obtained by thermal conduction analysis.
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Fig. 5.5 Comparison of angular distortion between thermal shrinkage technique and thermal elastic-plastic
analysis.

5.2.3 2 NAWERIZBIT I EETOREZEICETEE

2 MATRPERIC BT DIREE T DR AR B 2 35 TR D720, 1 S AUEHHE & 2 SR
(233 1T 2 BNIHELE O Mg 7 [ B O3 A a3 A ([T OS5 4i7) & Fig. 5.6 127597, 1=180, 200A Tl
BRI, 1 SABERICEMREEOTHRREELTEBY, 2 /SAREBERICT OMENBINT 5 A
R Ll —J7T1=100~160 A TiX, 1 /SABEHERICBWTRENDOES d =3 mm iLfF Tolak
IEOTHFAEL TERY, 2 N AREERICE OMEPEINT DM &2~ L7z, Fig.5.5@)ITr L7z 1
PRAVHES DAETGTE LT, BEBITIE, 1=100~160 A O HiFH T 2B &5 5 X 0 & BUNiEE
DAETFGI/NES, U Bk Uz 1 SRS T U3 B OF oo @B Ll S n s, &
HIZ, 2 7N AR BEBIEOT AN L= 2 LIk - T, BUHEE TR E 2 AETEOHINAN
Pl XA, EAHIBMEMEATAE R L OEDIEN T B X B,

HRG AR CTd 5 | = 100~160 A DO THBRPMOT AR LRR & LT, BUUHHTE
DAST =24 & UThH Z 7= IUEREIR - PO A2 & 20006 & 0 b IHEREIR O A BHIZ 31T 2 Fsins
BN OIS, IE S B IR SN THRIBIE O T AR L- LB 2 b D . TGk (B e 2
IREEDS 500°CLLE & 72 BRI ORI T E I LB 5 Z & o, IREFR TIEZ OFEFER /NS <
720, FXRNCEBEOWMERIELS oot BEX LD, TNERIET 72012, EERPIEICE
T % Wi DA T 2 EPEONT 340 & BEE T Fig. 5.7 1037, 7238, BIBERITZ 5 FICIiR L TFR
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RLTZ. 1=100A OFMFIZET 5 1 SAREGRB L N2 S AEERORBRE B2 &, IUHEEEGTEE
DHNERLTEY, FMIZIEEAEER L TV, £/, ICHEEROFIHAN TIEg]REME O
HPFEEL TND. ZHUTKT LT, 1=200A DRETIE, 1 AAEEZB LU 2 "ABEEZ L I,
IR IS JOVE DA LT v IR FEI O #iH N TR EMEEE O 22338 E L Tn
HZEMIND.

— 5, BIZIEFig.56 (@)% A5 E, d=3mm T1/SREHEEGEOWMIEOT 7 1 0.004, 2 /SA¥RE:
BOWMPEOT 2 1 0014 L7p->TEY, BIRMEEOT AN 2 FLL EOfEIC/R>TnD 2 b, 8
O HRIC L DEEOHLTITHHATE 2N E VWA S, SIEBEEOTANEELLEL 9 —2DFA L
LT, 1 RAHTHAUTBFEOOT HIGICHELZT, 2 RABICBWTHIRBIEOTANEE S
NizeBZ b, 1ERAMRLEY, BEfFOOT - FREIC D34 U D 5E MR OT B D3 4E
BN T AHEANSH D Z L5 5, B L= Fig. 5.6 () d =3 mm s & T 5K —R (28
W, JERFIMEOT RN L2 & T, 5IIROTARORENEF T2 tEZDND. Zhb
2 OOJFRIZEI LT, Fig. 5.5 (@) TR LN 1 NAEEZR O AL OZRITMD T/NINWZ Lrb,
JEFOFHRIC L 2B/ & <, FRANCEBEAFE DO OT B35 K 2 BIIRBIEOT I8 OR8N K &
WEBZOLND. Ry —ATIX, 2 /32 HOREALE DR U GHEEIRAE )72, BEFEO T 4
D2 R < Z T T2 B Ot 2 Efi L T\t ESND.

Fhi TCIIN—7 7 v IRORBERE . I X0, ERICHE UALE ISR S D ATREMEIXERV 2 &
BISE T, 23 AHOEPENNAEE/NT A—H L L THME L7z, )t 1 =200, 160, 100 A @ 3
AT, 2 %A H OB S ANEE 18 A HOBEESAMENS 4,6, 8 mm 5 L7HAICE
ORISR E L CTEONT-ALIEDO L L IR S ANLE ORfR % Fig. 5.8 1279, L=0mm Ofi R
3D —ZALFELETHD. FEREY, AEBOEMBIH S 1=100A 2B\ T, B SANL
BOELBRELRDIIZONTHEROLL L KE 25 TEY, L =8 mm DM TR
CRRBEOHME L Ipole. 2D NG, AERBIIH L TR AMEORELZIT 52 LN
SV NSy

COFEREBEE X T, 2352 B OREALE L = 8 mm D5t TRUNHETE & BRI fRAT 2 206 L,
BN AR & g U fE R % Fig. 5.9 IR 7. 2 N2 HOEHE/ SANEN 1 8 A B LR UM
(Fig5.5(b)) & bl 9% &, Fig. 5.9 1278 L7=fERIE, 1=100~160 A & o 7= FhEG KBTI 81T 5
BN RIFIC—E L WD Z ENgnDd. EIR L L HIZEm L ClInNn—"77 v 772 81z LR
ANLEET LT ENEHE TH D20, L=8mm OFMEIED & U EEORBEHRITITVIREET
2 XA DOAERBBERSFHTE LW 5., Z0Z D, BKFEEIZZ SAZBNTH
WHRRETH D Z &R S LTz,
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Fig. 5.6 Plastic strain for each welding pass obtained by thermal shrinkage technique.
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Fig. 5.6 Continued.
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(d) After second pass welding with /=200 A

7 y - direction plastic strain (-)
L -0.03 -0.02 -0.01 0.0 0.02
y I

Deformation factor: 5

Fig. 5.7 Comparison of plastic strain distribution with 1 = 100 A and that with | = 200 A obtained by ther-
mal shrinkage technique.
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Fig. 5.8 Effect of welding position of the second pass on the angular distortion.
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Fig. 5.9 Comparison of angular distortion under the condition that the welding position of the second pass
is 8 mm away from that of the first pass between thermal shrinkage technique and thermal elastic-
plastic analysis.

5.3 ZERBISEICE T o)

ATEIOMERER LV, 2 32 B OBEELEN 132 &R LHAEITE, ?Mﬂffﬁ{ii@ﬁwﬁ/ EEAT

PERRATRE R E B T OZERP R ONT b DO, EHEANZNEDNHENL DO T, MFECLVED
NI=AEROERN NS Dl 2R LTz, N—T T v TRZBRKIERE MR & TEJ?@B’@I’C“
%, S ANERR CIZ2 2 \REMEIIRWE B2 6D 2 &0 h, BHEANAMEDNHEN D IT2N
THAERZREE R B CEaifiofsRIE, St TB W T HiEH T 2 algetEy R S,

AEITI, 5%75@]:67_%”é%77)%'@@?ﬁ%“@@?Mifﬁfﬁ?f@iﬁﬁﬁﬁ%fﬁﬁﬁ'6f:&) 6 "AEHT D
REEMF LRI Lc. AR CHE THEEFER O ER L, L EERITFEVIRETO®EL - 31
iz T >7-.

5.3.1 FEBREM:

A CIEZ BN BRIAB T 2 BUUEE OB A ORG 2 B L LT, ZBEATEEERE2E
s U7z 5550, SERIAT1EIT Fig. 5.10 2R3 YD, #Hk 300 mm, Hifig 300 mm, #HRJE 25mm & L7-.
BRSEMEEB0° OV EHEE L, L —FFvy v lZ0mm, L—F7=A AEX3mm & L7z, RERAEKD
BEF&EER I A 7R (BCE 100 mm, B 100 mm, #JE 25 mm) & o — WIREEC L0 B fHiF 72, 7k,
VIR EE TR LT RIS AR T 5 728, o — IR 12 600°C X 1h @ PWHT(Post Weld Heat
Treatment; ¥EHE%EVLER) 2 520 U 7. SRERIR DM B I EBAEE FEAEMAT SM490 A L7=. =

OFERBIKT L TrAR Yy MZX 2 HE) MAG a4 T U7-. WHEMEHEZ YGWILL 2 L7z, %
BEHICER A RR LenE 21, £, BREEmNZERUICMND K 912757291, Fig.5.11 1R
LT U TN TR IR Z SR LTz, WSS Table 5.4 [ Z/R 37180 6 /NADHE T & 72
ST, NAMIEEIZS0CLA F Tl T L7z, £72, Fig.5.10 IZHFE TR LY, HE MmO HIER
B X OMMEIFE P58 30 mm BENALE IS K BVER 2B [, T —X i —Z2 AW CiEgs
BRtG D |IRICHA SN D £ TOREBEAZFHHI L. BHZIZIE, —kooiHilZE#E FARO
GAGE(HIEREE 6um)z W THAZLETE R L ORI 2 FH L. if:, PRI 2 s B T ST a
L, Wi~ 2 v Bl821C X 0 AR L ORGZ 2 2 514 L 7-.
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Fig. 5.10 Configuration of weld specimen.

Support jig

Fig. 5.11 Specimen support method using angle material during welding.
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Table 5.4 Welding conditions.

Pass Welding current, Arc voltage, Welding speed,
1(A) V (V) v (mm/min)
1 220 26 200
2 270 29 150
3 220 27 250
4 210 27 250
5 240 27 150
6 220 27 200

5.3.2 BUEARNT R
() RBABRE L OBEESRE

B> I = b—v 3 AL DHEHZAH W BRIRIT Fig. 5.10 IR L7 b D R UK - ~SHETH
% . fNTET NV ERBRIR & R T Fig. 5.12 128 T, 72ds, SRR, W% OBIREZ BT S
K ONIRHTET NV AAERL LT, AT 7 WIdOSTEIR — R EHR CHERSEIL, FHEHUT 91,840, Him
%1% 101,360 THDH. ZORBIKICHK LT MAG IBHAC L D 2 BEAKEEZE Ly Ia b —v
a U aRFEM LS., WERSEE LT, RIEBE) L BEROL AR L. £z, BIHE S B L OALE
QILLTORICE Y HH L.

S = (Ay_B)—_A})/C + Ayp —_A_y)cr)/z (5.3)
(AB-CD A’B’-C’D’>

0=+ ———
|AB||cD| |A'B’||c'D’

5.4)
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(a) Test specimen (b) FEM model

Fig. 5.12 Analytical model.

(b) ZAGHPBMEARNT D EHE 1A

BEhER 2 2 8 L 7o BMRE RT3 X OB fRNT 2 920 U 7o BB IS, —i%AY 7 490MPa
A 8 2 ARE U 7o B BHRE I S92 W TR 0, IBERIFIEEZ BB LT, BMEEMATIC W 724k
e % Fig. 5.13 ()i, BAGHEAVEREHT I W 7o M BHRFIE 2 Fig. 5.13 (b)I2 7~ 7. TP AOTARNEEE 13 800°C
ELTEY, 800CEMATFERIG LYo VREMD T/NIVMEL T 5 2 & THEERINEEZ
il U7z, MAG 1582 2 188 U 7o BUEMHT b O 2R IIRTHET O Fig. 5.3 (128 L7z —H M AT ¥ A
BYRET L& AV CEEE L. R(5.1), RG2)TESNHEED /ST A — 4% Table5.5 (TR & 9
WCREE LT, mifh &[RRI, BURET VO ABRERET /37 A—HXTh D q (Is) % HEALRERF Y 7=
D OBEBEABRETHEDI, i +1=2 L LTWA. £, AR TN T ADMT A—4 g &
ar DILRFEREICf:fi=1:2 L LTWD. FW T, BMREMNTRE R 2 AT — % & L CEGRIAMEfENT
% Sk L7z
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(a) Thermal properties used in thermal conduction analysis

500

'S
o
o

Mechanical properties

300

Poisson's ratio (x 102)

\ ——

I yield stress (WM) (MPa)

thermal expansion coefficient
(*107 /K)

L™ ~._ Yield stress (BM) (MPa)
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900
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Temperature, T (°C)

1500

(b) Mechanical properties used in thermal elastic-plastic analysis

Fig. 5.13 Material properties used in thermal elastic-plastic analysis.

Table 5.5 Heat source parameter settings used in thermal conduction analysis.

< ay (mm) 2667 2667 2667 2667 2667  2.667
g
=8 4, (mm) 5333 5333 5333 5333 5333 5333
2 &
c S
S5 b (mm) 4.0 73 6.0 6.8 9.2 7.0
:
3 ¢ (mm) 7.0 73 4.0 4.0 4.1 4.8
Welding speed, 4576 6655 5049 5386 5184 5049
v (mm/min)
Heat input, 3333 2500 4167 4167 2500  3.333
q (J./s)
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(c) BUNHEIEDE L

BNAEEOfRNT TIE, Table 5.6 (2779 X 912 SM490 Z485E L 7= RIEOM MR 2 2. 24
SRMEFRAT CREF L7 PEE (Fig. 5.13) O=IROMEF L TH D, BUGHRE DR EEILE 6 /N A &
HIZPHEOT H203-0.012, FemBERE 500°C LA EO M A AR & Lz, 7ods, IO 20X
BVREMEHTIC LV 15 DN RS BERE SRS N T, BB CUUHERER A HE L T O %
B2 5#0E & LT2(Fig. 3.13). 2 XA BLIREIZEB W TS 1 3R H LEERIC, YU R IZB T 2@ E
BIREZFHLT, ZTHUIESWTIHEOT A2 52X HREE Lz, 1 /3R Z LIZNERENT AT >~
T ERT CAEOT a5 L.

Table 5.6 Material properties of SM490 used in thermal shrinkage technique.

Young’s modulus, E (GPa) 228
Poisson’sratio, v 0.3

Yield stress (base metal), oy (MPa) 338

Strain hardening coefficient (base metal), H (MPa) 228
Yield stress (weld metal), oy (MPa) 442

Strain hardening coefficient (weld metal), H (MPa) 228

5.3.3 BAEMRHTHRE R

(a) BMREMATIZ XV 5 DN AR TIR OBAEARNTHE R

BVREMRHT T D IV ERIA AR & BGEBIAR & Wi~ 7 m BLESRE R % Fig. 5.14 IR T, Ikim
BEEIR D 1400°CLL E DRI A VEIA A, 800°CLL EDfEk 2 G B85 & U CREl L 7=, AT Ci
RN CTAE U2 R HRBISR 2 BB L TV RN, WAL DR RBIRITER TE TWiane 25
EHDbDD, RENRBIREW R~ 7 e BlIEERNOHEONTRREBRS —HLTVnDHENZ 5.
Mz T, EEBERED 800°CLL O Th 2 B AT OFEBITAEMIC R —&K L. Fi,
WREE P & 30 mm BENL - EATIC 38 1T 2 IR B A Fig. 5.15 127~ 9718 YV bhiik L 7= 1 HI1% (t=1000)
23T DEAERRAT & TR OIRE N 10CTHh TWAD. T, BVEEEEEEENT 52 LT, &
D EWEE CORERBENMEOND ZEMEESNDS. LovL, FHILSIZE T 28T oRE R
MR —E AR L2 &0 n, Table 5.5 Tk L7 ERE T LV OFREME A T2 BVREAEHT I,
R 23T 2 DI+ EEZ R LT\ D Ll cE 5.

LN J8w
Ny AT
2

‘l;‘;_‘:?’ S

(a) 1-pass (simulation) (b) 1-pass (experiment)

Maximum temperature (°C)
200 800 1400 2000
I I

Fig. 5.14 Comparison of melt pool and heat affected zone between simulation and experiment.
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(e) 3-pass (simulation)

(g) 4-pass (simulation)

[N
il
T
R

(1) 5-pass (simulation)

(k) 6-pass (simulation)

—
(j) 5-pass (experiment)

S o

%
i ——— i ———
(1) 6-pass (experiment)

Maximum temperature (°C)
200 800 1400 2000
I I

Fig. 5.14 Continued.
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Fig. 5.15 Comparison of temperature history between simulation and experiment.

(b) ZUNMEER K CBGEEB AT TF b N2 IEBEET OB AT R

BEUN T, BAEAMEREAT B L OVBIRETE CfF DT & S ARBL O 7 J7 0L 53 4 % Fig. 5.16 (2%
T B, BIRMEREZ SEFIC L TRR L., BUGHRIED RN A, 46 /32 & bIZaRm 2L
DAFE ) BSEEIBVERRAT DN AT & B < —E Uz, X0 FEMICEHE 2 721, RBidihn, 2
PEFRAT 3 K OBUNAETE D 515 B IV A ZETE O E &l % Fig. 5.17 12, H{UHE D & &fl % Fig. 5.18 |Z/R~
TRk, AETEE L ORI I XAEERR T A O RS Z B W TRl L 72, AZAICE LTI, SEHIME,
EABHIE PTG B30 L OBMNHETE DT HE SR & B ICH SRS O RAFIC—E L7z, BRIUHEIZ
DWTH AR, 3 FEICRIT D5/ S AR OMEN BAFC —E L7z, 4.6 HiCigim L7280, BUX
MEIIRE 2B A O T Ao a2 BB 50 TIER, AEEOREN) LD E—RA Y ME—A YV
N ZRERCT DG &) 2 BT 5 £ 0 OFT AR L O A X E L T\ 5. Fig.5.18 127~ L 7oA
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Ha DAEN /S A & B IZ RAFIC RSP VERRNT 15 & BRMEOR R A2 HHR TE W Z &0 h, BUHE
BT 2 EABRBHEICB O COHEHETH L B2 DND. AT, BUHEEIC B TRUIGH 2 B
HZCHBTETCWEZ LI VAZE L RBRICHEBR TE VR 5.

F7-, BIEiCBRAETH o7z, BHEASAMENITWEREIZ, 2 232 BICBIT 5 BUUHEEO A ZE A
INEWZ EIZB LTI, Fig.5.17 (R L7245/ R A DA ZETE N BGRBMEfAT I L OVFRIE & B < —%&
LTWDHIEND, FEHTIZBWTEOEVEERRNEDLEZOND. ZNOLO/BRND, £
JE PSR HEICBW T O BURIE S EH AR Ch 5 Z LR E N7,

(a) 1-pass (thermal shrinkage technique) (b) 1-pass (thermal elastic-plastic analysis)

(c) 2-pass (thermal shrinkage technique) (d) 2-pass (thermal elastic-plastic analysis)

(e) 3-pass (thermal shrinkage technique) (f) 3-pass (thermal elastic-plastic analysis)

z - direction displacement (mm)
65 -50 -35 -20 -05 05

“F mmeewssms omm

z

Fig. 5.16 Comparison of displacement distribution between thermal shrinkage technique and thermal elas-
tic-plastic analysis.
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(g) 4-pass (thermal shrinkage technique) (h) 4-pass (thermal elastic-plastic analysis)

(c) 5-pass (thermal shrinkage technique) (d) 5-pass (thermal elastic-plastic analysis)

(e) 6-pass (thermal shrinkage technique) (f) 6-pass (thermal elastic-plastic analysis)

z - direction displacement (mm)
y'\I/vX 65 -50 -35 -20 -05 05

Fig. 5.16 Continued.
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—O—Experiment
—0O—Thermal elastic-plastic analysis
—0O—Thermal shrinkage technique

Angular distortion, & (rad)
S
I

0.00

0 1 2 3 4 5 6 7
Number of welding pass, (-)

Fig. 5.17 Comparison of angular distortion among experiment, thermal shrinkage technique and thermal

elastic-plastic analysis.
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c —O—Experiment
n —0—Thermal elastic-plastic analysis
—0O—Thermal shrinkage technique
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Fig. 5.18 Comparison of shrinkage among experiment, thermal shrinkage technique and thermal elastic-
plastic analysis.

(c) BUNHNEETS L OZGHEBHEAFAT D 3B Re [ oD L

etgic, BIUHGTE & BRIBPERRIT O R 2 bl L7, BIHEIE Y, Fig. 3.13 itz » ¢
HE L. bbb, IUHHER &R 5 720 OBMEMNT & U O 2 & 5 2 5 72 80 O TR i
Mr & MR 20 U 7=, W FIEOFERRE 2 Fig. 5.19 1239, BUHEEIZ 38\ TEVRERFAT & Mg
W& G TRt R R O Ll 2 Fig. 5.19 (a)I2, BMmEMET 2 BRU 7o SRBMERRAT O FH A IRF R OO bhig &
Fig.5.19 (b)IZ/~ 9. Fig.5.19(a) £V, TERDENGRIPMfENT O FHRIRFH S 6.85 FFfH] Td 5 DIZx LT
BUHEIRIL 122 BT 0, BUNHETE TRNT 2% 2 & T U6 ICMfEFiE Ch 5. F7-, Fig.5.19(b)
£ 0, BURERRAT 2 BR O T BUEAS X 2 VAT O FHREFRIE 26 4 TH D, MERTIE & R
LC 1130 (AR RE T 5. —HOBHEIEOMNT CIL, WHEOT A% 5 2 TR 3 2 7
HT Tl 2.6 57(0.04 FFH)ET 2 DITxt LT, UGHETEI Z 8 3 5 70 O OBMRE AT Tl 1.18 Wefi] &
L CND I END, BMRAEMITICES 25 ERFM AR &V 2 5.

— T D BN HETE O AT (R SARAT + SR PEARNT) TRORFIA L I L T 1/6 ICHEM TS 2 &
5, BhRMRRFNTREL WO M THHTH S EWR D, 5%, BMREMITOHRETEZ T RTS
Z L CHRLHERMOEENETHD EEZLND. AlEH L7 Goldak & " E:AEH 4 v
ABIRET IBEEE CTh 575, WHEEIR AR T 5 72 O1iE, HemBlEEiR LY 500°C LA EOfH
WA TE IRV 0D, BEBR CIZ R BRMEVRE W2 Hikb o B2 05, B
WA CIIBEHER O X 5 \12iEE: b —F OB E T 2R M 2 5 E T 2 0N <, /i £ T b
FEREDE 552179 Z & CRHAETHZ &b, FHERMOEMEN RIAEN S, BREEJR T
RS DR EE S 2 IEREICHBLTE RN E WO RBIEH 2 b DD, HEHURIEBIZHS W TITREER
SHBTE A Z L0, IFEERZ RS 2 72D OBMREMRT FEDO —> & L THREEJEL AT
HoERBIND.
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Numerical analysis methods

(b) Excluding thermal conduction analysis

Fig. 5.19 Comparison of calculation time between thermal shrinkage technique and thermal elastic-plastic
analysis.

54 M5

ARFETIL, &4 FECTRE LIl E AR BUHEE ST A — 2 2 S ARBICEA L, 2232 H
VUBDOAEREHE T 5N E WS 28U8T, TOFEMAMICOVWTIMELZ. £, 2 /820 —
RA > 7 U— A2 P BICEBUHEE S K D VB TAfRAT % 9k L, ZRGRIBMEMRNT & O Lhik 418 L
THEEBASARETE U 2ALBFEICE L TEL L. KRIZ, BAEE 6 AREMRTEZRIEL, f#
W LB L R DIREBRSCAETR L W ol T — X S LTk, 2541 6 /S AREEET 2 xR ICE)
INHEHES X D IR BT & ol L, EBRRER L Ol zm U CE omArEicE LG Lz, A
ECHONTZERERELLTITRT.

(1) #BRLFEBWMEE ST A —Z ZHNT 220 — R4 7 L— M A ot 812 BUGHEE %3
M LTSE, 25 A BOEE SAMEN 132 H EIEWGE, BUGEEICK TS 2 7S2AHOA
BT BBEMERRATAE R K 0/ h S < 2B R 6. Zhud 1 232 B OHEOT 441 5-C
Az U 7 e AU B 00 5 [BRYBME ONT 23, B BRI - 2 T2 O A K D IR 2 R 95
BEEZRZLTWDHTEOTHDLEEZLND. —HT, 2XABOBEEMNEN 1 NAB LD G
BEN TV AEAIZIE, 1 SABTALL5EBEHOTAORELHE VT, 2 SAEHER
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DAL ZRER BHRTE L.

Fhi TAZH T 2 BURE OISR T 2 RET 0720, 261 6 S AT 2 RIEL, R
M OIRERRE X OREROMETREZ R Lz, Zhadgd Uiz BUHEE O T 5 T,
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PHOE AKFFE THRRE L BUNETE DRERBEBIE &Y~ D

6.1 &=

%4 BT, HEEOBEHERITR U TEUGHRE DR EEIZET 2/ A =2 A2 7 1 & FEfii L,
FEH IS L OBHIEPEMENT & DL 208 U C, @IERREMICET 2 Mata i L7z, T OfRE, K
AL ETORESRMCH LT, 1 DOREMTALREZRKERS BT Z EBNAHRETH o 72,
ZORERIZONT, AEEOWREN L2 5F— A NUIUHEE)DBLEN LB L, BEREAEOT
HEBEET LS, T—A LV MR —HTLLITUGHEOTAZ G 2VUTRWZ E 2B LN L.
WEETIE, ZNEZBEEIICHTRETHINE I NCOVWTIMET 572012, 2 /32D — R
F TV — MNEHEL 6 N A DGEEETER A X GUTEARIEC K DR TEMNT & F2hi LT=. & DfE
B, FHABETHOLNICLEREWE 1 SN2 TOE 22 2 LI Lo TEBBEHEOEHEAIZB VT
FERL THFETHDL Z &R LT,

Z ZCARTETIE, BUIHEE A R HUE C O KRR EW i H ATRE CTh 2 M OW TR 5 2 &
FHBE LT, B sy 2 s I BUUHEEIC & DIEEETMT 2 3506 L. i, B
EWERGE LIEGAICB N TS, BUHHEIZ X5 — A 2 MIEDSW AL A8 O BB ATHE
THHNE I DITHOWTEEH L 7.

6.2 EABEARNTET VB L USERENT &5

LRI B R O TR K OVHE R Fig. 6.1 1R T, — A saAE S I AESAS SS400 THRIE S
DA E OREROTETES 39m, E27m, HS309m ThbH. BEHOFIRITAIET
LA =T L= EZOMANNLET LA R 7 L—ah bk Sh, v —T7 L —ALH A
N7 L—A34 40 NRAOTHRAEHEIZ L > TEEIND. PICE#ERZFE TORL TV S, &%
WEHEIIABE 12K)em DT AA ZNT — 7 Tl LS5 . e 7 VI3ON A —IREEHR T3
FOEIL, BEHEIT 1,363,412, HiskiE 1,736,345 TH 5. WH LML LT, Fig.6.2 (2T X 91T,
FTEEEX TR =7 L—ARAEO -HZ 52K L. Fig. 6.1 (IR L7IoHEEW & X4
BMIVAEIEC & DIRBEE M 2 0 L, BIUHETE O R 0 el X OWREED 72 O I B AR % B &
U 7 BRI MERRAT & Of & C 50 L 7.
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Weldingline

Side frame

Fig. 6.1 Analytical model of the base of construction machinery.

— Welding line Constraint point ; x, y, =

b

Fig. 6.2 Constraint condition to the construction machinery.

6.2.1 ZVHEBYERRAT O FE T

BNHETENZ & DB TR RG SR Dt I L OMREED 720, Fig. 6.1 18 L 7o G 2 xf 421, 24
FAVEREHT 2 DR C3EhE L7z oY, fi#HT TH W APBHRRE 2 Fig. 6.3 127777, AMEHREFMEIE SS400 2 A8 E
LTRERFMEEZ AT HEZMEH L TRV, BYREMATICH WA BH 2 Fig. 6.3()12, ZAai
PEFEATIZ W T2 A BRI E 2 Fig. 6.3(0) 1R L7z, IWEEERIL 3 ROt ENER & L, HHEENICTT
ET D ERE —RICEFERENT 2 H1EEZ8H L. Eit TORARTIRZ T 25 L 5 IR EEIR
ARE L. 7ok, BUhERIT08 & L. WESRICHEY T 2 ERITEERGRF T L ST
BY, BEPIC T REESBICEE LS TEOERNEMMEENDE T L A L b A— RS
FAVNTZ 69,
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(a) Thermal properties used in thermal conduction analysis
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(b) Mechanical properties used in thermal elastic-plastic analysis

Fig. 6.3 Material properties of SS400 used in thermal elastic-plastic analysis.

6.2.2 BINEYE D E N ik

BNAEE O RN TI, Table6.1 12759 & 912 SS400 A 48 L 7= RIE O EBH M & AV 2. BIGHE
EOFREMIE, IO 2 53-0.012(EE Z5{LAT=1000), # &R 500°C BL_E o> fE ik A I3 fE
& LTz 728, WAEREII X% R O BMREMEATIC L 0 & D i@ B E AR I SO TR E LT,
40 NARBER T 57212, EBEOEB S RIEFIZHEST 1 RS2 DL ICEOT 22 M 575

REE LTz, 20O, WHEARBICHY T2 ERITLY RADHNT AT v T OERAINHBL S 53R E
L7

Table 6.1 Material properties of SS400 used in thermal shrinkage technique.

Young’s modulus, E (GPa) 212
Poisson’s ratio, v 0.29
Yield stress, oy (MPa) 295
Strain hardening coefficient, H (MPa) 212
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6.3 TREEETH DT E S < RS G~ D Fi M 2L
6.3.1 PUNMNEIEIS L OBEEMEART T/ b W 7 I R TH O BB RE R

EP, BEAF A LR L BYSEMITIC & - CRURED AT — % T 5 I A R 7.
ABAENTAS 2 D82 T 12K)em TH LW 2w, BYREREHTIC & 015 6 e RER RIS S 2 2k
LR BIEIRE % Fig. 6.4 (O~7. @ BEIRE A O 2 > 7 —ITIGHEEE & 725 500°CLL Eo
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Fig. 6.4 Maximum temperature distribution in cross-sectional view after welding.
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(a) Thermal elastic-plastic analysis (b) Thermal shrinkage technique

Fig. 6.5 Comparison of displacement distribution between thermal shrinkage technique and thermal elastic-
plastic analysis.
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Fig. 6.6 Comparison of displacement in each welding pass between thermal shrinkage technique and ther-
mal elastic-plastic analysis.
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0, —HHERTETCWRWEEASARH D, T O ADERZEE DB LT OV I LR T
%.

F 7z, BUGREIEC X 2 VS TEARAT (S B U 72 FHRLRE ] 2 BB VAR AT OO FHRLRERR] & Lhii U 7o A 51
Z Fig. 6.8 (27”7, 40 NREHAH T 549 170 J5 #i sl B OREIEM 63 2 BUHETE DO FHRRE [ I
13.7 B CTdp 0, BGHIPEMRYT & Hle U CHI 1/10 OFH R CREAT FTRE T 5. BABHRIAMEMRAT L [F
FLEOREZA Lo, M T ATRE 2 BUNGHETE X B AU O & W R B S Y DV T %
I ABRICHATH D EEXBND.

(a) 4th welding pass (view from bottom) (b) 22th welding pass

(c) 33th welding pass

Fig. 6.7 Welding positions and lines in 4™, 22th, and 33th welding pass.
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Fig. 6.8 Comparison of calculation time between thermal shrinkage technique and thermal elastic-plastic
analysis.
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Evaluation point (displacement)

(a) Overview

Thermal elastic-plastic analysis Thermal shrinkage technigue
| _Top plate | |_Top plate
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(b) Cross-sectional view

Fig. 6.9 Welding positions in and cross-sectional view of 15th pass.
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Fig. A.1 Configuration of bead-on-plate welded joint (same as shown in Fig. 5.1).

_89_



A3 BUNHEIER X OBRBMERENT CF O N - BRI 71 O BUERENT RS R

BN E I KX OBHIBVERRIT O O N IR BIREIC ) OFRER & LT, A RIS o=
X —[X] % Fig. A2 [Z/R9.  Fig. A2 @), ()1 L7 2AMEMNT CH D= IE 1o 2 v 2 —[X]

O, WERAEPLE L TEWBEBRISANEELTE Y, WERNOEEN D12 LI > TR IHMK
TLTERY, ftkmisREOHEMNELNTZ. — T, Fig. A2 ()R L7=BUEETE O
RIS D a2 — L0, BGEBIERRNT OFE R & FIERIC, EHRZ B0 & L TRV SIRIG ) D%
RPN BN DI HON TSR T oMM N Ao 5. Fig. A2 (IR LZBmk E v, w7
[y HR)DBAERCRERL D L) ICRZ T 6ND. Thbb, BWEIRIS NN GIET DR TES
UNDSEAE YR AT G R & B L CAUR & 7 > TV DL 7, BUE Sz 7)) IR R R ER AT IS
~300MPa F2 D JEREI TN FAEL TEY, ﬁ#ﬁi@ﬁ#%&%% THIRD.

FREE I 150 A0 O ) 2 BRI - 5 7o 01, BREHEICRIT 2588815046 % Fig. A3 12, HRE
31T DFRFA I J1 04 % Fig. A4 12 wmw BT DFREIE 1041 % Fig. A5 | %m%Mm#.
Fig. A3 |Z/R L72ARERIHIZ Té?ﬁﬁﬂf‘ﬁ S, WFREE D w=0mm IZBW TEW SRS S A3 %
AL TODD, B IITBHEE CHRONRIN R E V. 2, BULiEECH 2 5 IUHE O A
0)@75%&‘*4@[&@(0?‘7%&@%3‘6 TREWNWTD, ﬂnlﬁﬁftwﬁnﬁéhtt&)k%z%ﬂé Kr—

BIFDUHEO T D K& £13-0.012 (0=1.2 X 10%, AT=1000) TH 2 DIZxt LT, BAROT Frey 1T
m«wmmmmawma3iw,m_mzaawmmf%étw,H%Ltﬂ%@#ﬁﬁ%wmfﬁ
LI HFIHRENZ ENGND. E£72, w=110 mm F2E TR T LG 578, BHiis

F%fi%@ﬁTﬁAwﬁ%M@&é BN AT (RER O BLR) Tldik m 2R IS T

M OT B AT 2 OITHF LT, BUHEE TR O AR OTHE G52 5 FIETH L7290
_@ctofcﬁ%ﬁ%%\éébf:k%z%né

Fig. A4 TR LT AREmIZI T RIS Do, miFEE S w=0mm 23T 200 MPa f2/#
DEIRISBFEL TEBY, TOOMELHMA—HL T\5. &#%IZ, Fig. A5 [T LIZRNERIC

B DG 0AE, d <6 TIEHTEE S 400 MPafREDS RGN RELTEY, TOHEDL
B —%L7. 6<d<12 O#PHTIE, BT OS] RIS D BECHITIR N2 DIk LT,
BUNAEE OB RIG NI ABNAR T U CTEMEIS NCEE Uz, ZOZR G Rl &[RRI ISOHE SEIE 0 2112
OTHEEZTHD0, IHEEEMN( < 6) TAELZBIRIG T DT v Rk & 5 72 DITHRNES T
FISHDRRELIZEEZBND. F0%, ISHENEIGIEES )L, d = 12 (755 THIES 035
LTS, d>12 TIEBFEE ORISR EELTHEY, ZOELRE L

_90_



Cross-sectional view

(a) Thermal elastic-plastic analysis (whole view) Stress,
o (MPa)

£ 400 I
T—»y 300

(b) Thermal elastic-plastic analysis (cross-sectional view) 200
100

-100
-200
-300

Cross-sectional view

(c) Thermal shrinkage technique (whole view)

L.,

(d) Thermal shrinkage technique (cross-sectional view)

Fig. A.2 Comparison of longitudinal residual stress distribution between thermal elastic plastic analysis and
thermal shrinkage technique for bead-on-plate welding.
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Fig. A.3 Comparison of residual stress on the plate surface between thermal elastic plastic analysis and ther-
mal shrinkage technique for bead-on-plate welding.
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Fig. A.4 Comparison of residual stress on the back surface between thermal elastic plastic analysis and ther-
mal shrinkage technique for bead-on-plate welding.
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Fig. A.5 Comparison of residual stress inside the plate between thermal elastic plastic analysis and thermal
shrinkage technique for bead-on-plate welding.
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Cross-sectional view

(a) Thermal elastic-plastic analysis (whole view)

z
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(b) Thermal elastic-plastic analysis (cross-sectional view)

—

Cross-sectional view

| —

(d) Thermal shrinkage technique (cross-sectional view)

Fig. A.6 Comparison of transverse residual stress distribution between thermal elastic plastic analysis and

thermal shrinkage technique for bead-on-plate welding.
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Fig. A.7 Comparison of residual stress on the plate surface between thermal elastic plastic analysis and ther-
mal shrinkage technique for bead-on-plate welding.
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Fig. A.8 Comparison of residual stress on the back surface between thermal elastic plastic analysis and ther-
mal shrinkage technique for bead-on-plate welding.
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Fig. A.9 Comparison of residual stress inside the plate between thermal elastic plastic analysis and thermal
shrinkage technique for bead-on-plate welding.
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