
Title Study on Post-Quantum Group Key Exchanges and
Generalization

Author(s) Hougaard, Bjoljahn Hector

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/88056

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

hougaard, hector bjoljahn

S T U D Y O N P O S T- Q UA N T U M G R O U P K E Y
E X C H A N G E S A N D G E N E R A L I Z AT I O N

S T U D Y O N P O S T- Q UA N T U M G R O U P K E Y E X C H A N G E S A N D
G E N E R A L I Z AT I O N

hougaard, hector bjoljahn

A Ph.D. Dissertation

Graduate School of Engineering
Osaka University

Supervisor: Prof. Atsuko Miyaji

January 2022

No man ever steps in the same river twice, for it’s not the same river
and he’s not the same man.

— Heraclitus (544 BC - 483 BC)

Dedicated to my family.
Without whose support I would not be here.

A B S T R A C T

The advent of quantum computing has seen many classically secure
cryptographic constructions become potentially insecure in the near fu-
ture. Quantum computers can easily solve problems that most current
cryptographic constructions use as building blocks, namely the integer
factorization problem, the discrete logarithm problem, and the elliptic
curve discrete logarithm problem. This means that we will need to
discard those cryptographic constructions or risk having information
fall into malicious hands. The nature of cryptographic proofs offers
us an alternative: Fix them. By generalizing the constructions and up-
dating the basis for their security, we can preserve these constructions
while guarding against any future adversaries, quantum included. So
far, quantum-secure, or post-quantum cryptography (PQC) secure, key
exchanges, signature schemes, encryption schemes, and more have
been proposed but there are still classical constructions that have no
PQC alternative and there are many improvements that can be made
in security, key size, and speed (complexity).

In this dissertation, we consider the generalization of classical
constructions to PQC secure versions and beyond. In particular, we
consider group key exchanges (GKEs) and pseudorandom permuta-
tions (PRPs). PQC secure GKEs do exist but they all have linear order
complexity so an improvement would be welcome. PQC secure PRPs

have yet to be constructed but recent PQC secure pseudorandom func-
tions (PRFs) point towards their inevitability.

In Chp. 3, we show that it is possible to define a GKE using the
isogeny based PQC primitive, supersingular isogeny Diffie-Hellman
(SIDH), to create a logarithmic order complexity GKE. We further give
a peer-to-peer/sequential version with similar complexity. We also
show that there is a compiler that turns both GKEs into authenticated
group key exchanges (AGKEs), also with logarithmic order complexity.

In Chp. 4, we show that it is also possible to define a GKE using
the lattice based PQC primitive, ring-learning-with-errors (R-LWE), to
create a logarithmic order complexity GKE. We also give a peer-to-
peer/sequential version and show that both can be compiled into
logarithmic order complexity AGKEs.

In Chp. 5, we take advantage of the structure of cryptography
together with the GKEs in Chp. 3 and Chp. 4, generalize the definitions
of key exchanges and hard problems, and then give generic compilers
for group key exchange, both a concurrent and sequential version.

In Chp. 6, we generalize the Even and Mansour block cipher con-
struction to using group actions as their underlying operations, giv-

vii

ing us a PRP that is secure against an unbounded adversary having
polynomially-many classical oracle queries.

Finally, we conclude by summarizing our results, discussing their
relation to the wider field of cryptography, and considering future
work based on them.

viii

L I S T O F P U B L I C AT I O N S

Journals

1. Hougaard, H. B. and Miyaji, A. Authenticated logarithmic-order
supersingular isogeny group key exchange. International Jour-
nal of Information Security. Springer, 2021.
https://doi.org/10.1007/s10207-021-00549-4

2. Hougaard, H. B. and Miyaji, A. Authenticated tree-based R-
LWE group key exchange. The Computer Journal. Oxford Press,
2021.
https://doi.org/10.109/comjnl/bxab165

Conferences

1. Hougaard, H. B. and Miyaji, A. SIT: supersingular isogeny tree-
based group key exchange. 2020 15th Asia Joint Conference
on Information Security (AsiaJCIS), pp. 46-53. IEEE Computer
Society, 2020.
https://doi.org/10.1109/AsiaJCIS50894.2020.00019

2. Hougaard, H. B. and Miyaji, A. Tree-based ring-LWE group key
exchanges with logarithmic complexity. In: Meng W., Gollmann
D., Jensen C.D., Zhou J. (eds) Information and Communications
Security. ICICS 2020. LNCS, vol 12282, pp. 91-106. Springer, 2020.
https://doi.org/10.1007/978-3-030-61078-4_6

3. Hougaard, H. B. and Miyaji, A. Group key exchange compilers
from generic key exchanges. International Conference on Net-
work and System Security (NSS). LNCS. Springer, 2021.
To be published

Conference and workshop presentations

1. Hougaard, H. B. and Cheng, C. Generic Even-Mansour construc-
tion based on group actions. Indo-Japan 2020 student presen-
tation. Department of Science and Technology (DST). Calcutta,
India. January 2020.

2. Hougaard, H. B. and Cheng, C. and Miyaji, A. Generic Even-
Mansour construction based on group actions. IEICE Tech. Rep.,
vol. 119, no. 140, ISEC2019-37, pp. 215-220, 2019.

ix

https://doi.org/10.1007/s10207-021-00549-4
https://doi.org/10.109/comjnl/bxab165
https://doi.org/10.1109/AsiaJCIS50894.2020.00019
https://doi.org/10.1007/978-3-030-61078-4_6

A C K N O W L E D G M E N T S

Many thanks to my advisor, Prof. Atsuko Miyaji, for giving me the
freedom to research what I wanted to and all the great feedback she
gave me on my articles. Thanks to Assoc. Prof. Chen-Mou Cheng for
the conversations about the generalizing nature of cryptography that
became the theme of this dissertation.

As to those invaluable persons who reviewed my dissertation and
thereby made it better, I give my thanks, first and foremost, to my ex-
ternal reviewer, Dr. Mehdi Tibouchi of Okamoto Research Laboratory
at the NTT Secure Platform Laboratories (Tokyo) and affiliated with
the Graduate School of Informatics at Kyoto University, and my inter-
nal reviewers, Prof. Noboru Babaguchi and Prof. Tetsuya Takine from
the Division of Information and Communications Technology, in the
Department of Electrical, Electronic, and Information Engineering, at
the Graduate School of Engineering, Osaka University. I also give my
thanks to the rest of the examination committee: Prof. Kyo Inoue, Prof.
Kazunori Komatani, Prof. Akihiro Maruta, Prof. Seiichi Sampei, and
Prof. Takashi Washio, also from the Division of Information and Com-
munications Technology, in the Department of Electrical, Electronic,
and Information Engineering, at the Graduate School of Engineering,
Osaka University.

I give my humblest thanks to the Japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT) for giving me the
chance to study in Japan for the duration of my Ph.D.. I thank them
for the support, financial and otherwise, that the Monbukagakusho
(MEXT) scholarship afforded me. It has been an experience that has
changed me greatly and I will be grateful for it for the rest of my life.

Thanks to everyone that gave me support throughout my Ph.D.
time, especially when I needed it.

xi

C O N T E N T S

abstract vii
list of publications ix
acknowledgements xi

i background

1 introduction 3

1.1 Motivation 3

1.2 Post-quantum cryptography 4

1.3 Group key exchanges 5

1.4 Pseudorandom permutations 7

1.5 Contributions and Copyright Notices 8

1.6 Outline 9

2 preliminaries 11

2.1 Notation 11

2.2 Algebra 11

2.3 Cryptography 15

2.3.1 Diffie-Hellman 18

2.3.2 Signature schemes 18

2.3.3 Pseudorandomness 19

2.4 Burmester-Desmedt group key exchanges 21

2.5 Supersingular isogeny Diffie-Hellman 23

2.6 Ring-learning-with-errors (R-LWE) 26

2.7 Even-Mansour 29

2.8 Security models 30

2.8.1 Security model 30

2.8.2 G-CK+ security model 33

2.8.3 Security model discussion 34

ii research

3 group key exchanges from isogenies 37

3.1 Introduction 37

3.2 Related work 39

3.3 Supersingular isogeny tree-based GKE (SIT) 40

3.3.1 CSIDH version 45

3.4 Peer-to-peer SIT (P2P-SIT) 46

3.5 Authenticated SIT (A-SIT) 48

3.6 Comparison 52

3.7 Concluding remarks 55

4 group key exchanges from ring-learning-with-
errors 57

4.1 Introduction 57

4.2 Related work 57

xiii

xiv contents

4.3 R-LWE tree-based GKE (Tree-R-LWE-GKE) 58

4.4 Peer-to-peer R-LWE group key exchange (P2P-Tree-R-
LWE-GKE) 62

4.5 Authenticated Tree-R-LWE-GKE 63

4.6 Comparison 68

4.7 Concluding remarks 69

5 generic group key exchange compilers 71

5.1 Introduction 71

5.2 Preliminaries 71

5.3 Generalized group key exchange compiler (GKE-C) 74

5.4 Peer-to-peer GKE-C (P2P-GKE-C) 77

5.5 Complexity analysis 80

5.6 Conclusion 81

6 generalized even-mansour 83

6.1 Introduction 83

6.2 Preliminaries 84

6.3 Related work 84

6.4 Group action Even-Mansour 84

6.4.1 Evidence for quantum security 92

6.5 Concluding remarks 93

iii conclusion

7 concluding remarks 97

7.1 Summary 97

7.2 Discussion 97

7.3 Future work 98

iv appendix

a table of key exchanges in the 0/1-ike notation

and their corresponding hard problems 103

bibliography 105

L I S T O F F I G U R E S

Figure 1.1 Overview of our results 9

Figure 2.1 Reduction proof overview [40] 17

Figure 2.2 BDI circle structure 21

Figure 2.3 BDII tree-based structure 22

Figure 2.4 SIDH key exchange 25

Figure 3.1 Possible SIT graph configuration for n = 12 41

Figure 3.2 The neighbours of Pi: Parent and children 41

Figure 6.1 Game R and Game X 87

Figure 6.2 Game X′ 88

Figure 6.3 Game R′ 90

L I S T O F TA B L E S

Table 2.1 Exclusive-OR (XOR) operation. 12

Table 3.1 Detailed comparison table of isogeny-based
GKEs, assuming a binary double-tree for SIT
and P2P-SIT. I and S denote isogeny tuples and
summed values, respectively. Values in square
brackets are particular for leaf nodes, if they
differ from other nodes. 53

Table 3.2 Comparision overview of isogeny-based GKEs
and AGKEs, assuming a balanced double-tree
for SIT, P2P-SIT and their authenticated ver-
sions, with l children per non-leaf node. 53

Table 4.1 Comparision overview of R-LWE based AGKEs. 68

Table 5.1 Examples of GKE-C compiled GKEs. 80

Table 5.2 Comparison of our GKE compilers. A denotes
a value from the underlying 0/1-IKE while G

denotes a value from the GKE-C. 81

xv

A C R O N Y M S

AGKE authenticated group key exchange

AKE authenticated key exchange

A-P2P-SIT authenticated P2P-SIT

A-SIT authenticated SIT

BDI Burmester-Desmedt I

BDII Burmester-Desmedt II

CSIDH commutative supersingular isogeny Diffie-Hellman key
exchange

CSSI computational supersingular isogeny

DES Data Encryption Standard

DH Diffie-Hellman key exchange

DDH decisional Diffie-Hellman

DDH-like decision Diffie-Hellman-like

DLP discrete logarithm problem

D-R-LWE decisional ring-learning-with-errors

DSSI decisional supersingular isogeny

ECC elliptic curve cryptography

ECDLP elliptic curve discrete logarithm problem

EM Even-Mansour

GAEM group action Even-Mansour

G-CK+ group-Canetti-Krawczyk plus

GDH generic decisional hard

GKE group key exchange

GKE-C GKE compiler

IKE interactive KE

Isog-GKE isogeny-based GKE

xvi

acronyms xvii

Isog-AGKE isogeny-based AGKE

KE key exchange

NIST National Institute of Standards and Technology

P2P-GKE-C peer-to-peer GKE compiler

P2P-SIT peer-to-peer SIT

P2P-Tree-R-LWE-GKE peer-to-peer tree-based R-LWE GKE

PKI public key infrastructure

PPT probabilistic polynomial-time

PQC post-quantum cryptography

PRF pseudorandom function

PRP pseudorandom permutation

R-LWE ring-learning-with-errors

R-LWE KE R-LWE key exchange

SIBD supersingular isogeny Burmester-Desmedt

SIDH supersingular isogeny Diffie-Hellman

SIT supersingular isogeny tree-based GKE

SPRP super pseudorandom permutation

SSCDH supersingular computational Diffie-Hellman

SSDDH supersingular decisional Diffie-Hellman

Tree-R-LWE-GKE tree-based R-LWE GKE

XOR exclusive-OR

Part I

B A C K G R O U N D

1
I N T R O D U C T I O N

1.1 motivation

Quantum computing is an exciting field full of potential for improving
the lives of humans everywhere. However, with this potential for
benefits comes also the risk of abuse. The reason is that quantum
computers have the potential to break most current cryptography,
leading to security concerns for personal, public, and governmental
information.

At present, post-quantum cryptography (PQC) is an attempt to safe-
guard current cryptography against these future quantum adversaries
as sensitive, encrypted data can be stockpiled and decrypted later. The
US National Institute of Standards and Technology (NIST), the leading
body pressing for a standardization of PQC protocols, initiated the
NIST competition in 2017 for exactly this reason [14]. The competition
has seen several PQC candidates proposed for encryption schemes, key
exchanges, and signature schemes, i.e. cryptographic primitives, and
is currently in its third round, having discarded dozens of potential
candidates. Among its selection criteria are security, key size, and
speed. Although, the NIST competition is small in scope, the impact
has been large. Already there are several PQC protocols proposed out-
side of the NIST competition based on these primitives: Fundamental
protocols such as group key exchanges and multi-signatures to block-
chains and zero-knowledge proofs, not to mention speed-ups of, and
attacks on, many NIST candidates themselves. From the interest within
the cryptography community - PQCrypto already having become a
major cryptography conference since its start in 2006, annual from
2016 - it is clear that there is an interest in PQC constructions. From
the inevitability of the quantum menace, the industry too will soon be
forced to adopt PQC as its standard.

What this dissertation aims to do, is to consider whether previous
cryptographic constructions, those that would be broken by quantum
adversaries, could be made secure by changing the underlying prim-
itives to PQC candidates. This requires that the constructions can be
generalized to structures that permit the PQC candidates to work and
that their security can be proven as well.

Building a library of constructions that are quantum-secure is of
course the priority at the moment, especially for basic cryptographic
constructions, but there is also a bigger question looming: What hap-
pens when an even faster and stronger adversary appears? We believe
that the structure of cryptography, the reliance on proofs by reduction,

3

4 introduction

is the saving grace of information security. If we are able to generalize
the structure of cryptography itself, the definitions and constructions,
then it would be possible to create an entire field of cryptographic
constructions based on even a single building block. Hence, this is
our ultimate goal and the theme of this dissertation, although only a
beginning towards such an endeavour.

1.2 post-quantum cryptography

Post-quantum cryptography (PQC) deals with using classical comput-
ers for cryptography while defending against quantum computers.
Four major branches of mathematics/information theory for use in
PQC have already been identified: Lattice-, multivariate-, code-, and
isogeny-based.

Each branch relies on their own collection of ‘hard’ problems, i.e.
mathematical or computational problems that are infeasible to solve
using known algorithms, both classical and quantum. The crypto-
graphic constructions such as key exchanges, signature schemes, and
encryption schemes that are based on these hard problems arise from
practical needs.

The two PQC candidates used in this dissertation are supersingular
isogeny Diffie-Hellman (SIDH) [38] and R-LWE key exchange (R-LWE KE)
[20, 52]. SIDH is based on isogenies between elliptic curves. Elliptic
curves are a special type of curve that have long been studied in
mathematics and used in cryptography, and isogenies are essentially
functions between elliptic curves. The security of this primitive comes
from the seemingly difficult task of finding an isogeny between two
given elliptic curves. R-LWE KE is a lattice-based key exchange, more
specifically based on ring-learning-with-errors (R-LWE), a primitive
that relies on error-compounding and the difficulty of error-correcting
said compounding.

Each PQC candidate has its pros and cons. For example, SIDH is
rather slow to compute but has a small public key size per party,
approximately 18 milliseconds on a 5 GHz computer with a 564 byte
(can be compressed to 330 bytes) public key size for 128-bit quantum
security [15], while R-LWE is fast to compute but has a larger public key
size per party, approximately 2.1 milliseconds on a 5 GHz computer
with a 960 byte public key size per party for 128-bit quantum security
[7, 58]. For some uses, this can have a major impact as cryptographic
implementations can have limited computation power or strict space
requirements. For example, Tor - popularly used as the gateway to the
deep web - uses data cells that require data be less than 517 bytes in
length. Hence, the different strengths and weaknesses PQC candidates
have must be considered for implementation purposes.

1.3 group key exchanges 5

1.3 group key exchanges

Most cryptography relies on the establishment of a secure channel
of communication over an otherwise insecure channel, i.e. only hav-
ing the information be accessible to the intended recipient and no
others, despite communicating over public channels where anyone
can monitor the communication (and possibly even manipulate it). To
establish a secure channel of communication, users employ a common
secret key in order to “lock” sensitive information such that it can only
be “unlocked” by a legitimate party. Without such a key, the entire
communication protocol would be insecure.

At the advent of modern public-key cryptography, a protocol was
invented that could establish a shared key between two parties, with-
out having to meet physically, a so-called two-party, public-key key
exchange protocol. Research into key exchanges progressed from there
with a focus on security and on efficiency, both for time and resources.
More security, for obvious reasons, and better efficiency because some
information is time-sensitive or large in terms of memory storage
(think gigabytes of data, back in the 1990s) and computers have a limit
on their computational resources (though it is constantly improving;
see for example Moore’s law1). Originally, cryptography was used by
governments for military and top-level secret communication such
as the secure phone-line between Russia and the USA, and by large
corporations, for example to secure business secrets. These bodies had
large computational resources at their disposal, so efficiency was less
important than security, but eventually cryptography was employed
for use by consumers, especially on the internet.

As consumer-level computational power can be severely limited,
efficiency has become a major factor. The uses for cryptography have
also changed and the number of parties involved in a single cryp-
tographic protocol have changed too. For example, IoT devices in a
home that have a single key shared by all parties that have access to it
or a group chat in the LINE or WhatsApp communication applications.
Due to the complexity of the interactions between the parties involved,
sharing a key can be a complicated and computationally intensive
procedure. For a group of parties wishing to communicate securely,
a two-party key exchange can be repeated for each pair of parties,
but this quickly leads to very large numbers of keys being stored.
For example, imagine that a group of 256 parties want to create a
WhatsApp group.2 Naively, each pair of parties would have to share
keys in order to make sure they could see each message that the
other parties might send. This would require the WhatsApp server
to process 256 · (256− 1)/2 = 32640 two-party key exchanges and

1 Moore’s law loosely states that computing power will double approximately every
two years.

2 Maximum number of parties in a WhatsApp group. [12]

6 introduction

each party would have to store 256 64-byte shared keys. This is, in
fact,3 what WhatsApp does and, granted, is not a large amount of
information to store, but it could be severely reduced. This is because
it is possible to use a group key exchange (GKE) where each party ends
up with a single session key shared by all parties in the group where
the number of computations, the information stored, and the time
required are minimized. In the WhatsApp example, the key exchanges
are redone every time a party leaves the group, which can consume
the bandwidth of parties with low data-allowance if they engage in
many groups.

If there is a need for verifying that no party outside a group has
access to a new shared key, for example a party that had previously
left the group, it is also possible to consider authenticated group
key exchanges (AGKEs), where parties cannot be impersonated. For
WhatsApp, the authentication is done by signing each message with a
digital signature, a way to prove that the message was indeed sent by
the sender and not an imposter.

Depending on the efflux and influx of group members, the stagger-
ing number of messages to be encrypted, signed, decrypted, authenti-
cated, etc., might cause efficiency problems that could be alleviated by
employing a GKE or AGKE protocol instead.

In the above Whatsapp example, the key size was rather small,
only 64 bytes per party. This is because WhatsApp employs elliptic
curve cryptography (ECC), which has small key sizes and is also
computationally efficient (fast to compute) [5]. However, ECC is based
on the elliptic curve discrete logarithm problem (ECDLP) and thereby
insecure against quantum adversaries [54]. Even switching to a GKE

based on one of the classical primitives would not help this situation.
Instead, they could use one of the several PQC (A)GKEs that have been
proposed.

In this dissertation, we choose to compare GKEs by their round,
communication, and memory complexity. The round complexity is
the maximum number of times any party must wait for information
from other parties in order to proceed. The communication complexity
considers the maximum number of messages received by any party in
one call of the protocol. The memory complexity takes into account the
maximum number of values stored until the session key computation.
These complexities are dependent on the number of parties and can
be expressed as functions thereof. Intuitively and factually, the slower
this function grows, the better the complexity.

3 A new group member generates a 32-byte “Chain Key” and a random Curve25519

“Signature Key” key pair, then combines the Chain Key and 32-byte public key from
the Signature Key into a “Sender Key” message. The Sender Key message is then
encrypted using end-to-end encryption for each group member and sent individually.
[64]

1.4 pseudorandom permutations 7

Fujioka et al. [26],4 Furukawa et al [27], and Azarderakhsh et al.
[4] all proposed isogeny based (A)GKEs while Apon et al. [3] and
Choi et al. [13] proposed lattice based (A)GKEs. The best of these
use only a few rounds of message exchanges and end up with linear
communication and memory complexity. There also exists a three-
round AGKE compiler from PQC primitives by Persischetti et al. [53]
and it has linear order complexity, just like the AGKE compiler by Katz
and Yung [41], the standard AGKE compiler in the literature. As such,
the GKEs and compilers could be improved as there are two orders
of magnitude below the linear complexity of the communication and
memory complexities, namely constant and logarithmic.

The problems that we seek to solve are therefore to minimize the
round, communication, and memory complexities while maintaining
the same or an improved level of security. We manage to reduce
the communication and memory complexities by an entire order of
magnitude (linear to logarithmic) while the other properties are similar
to PQC (A)GKEs based on the same primitives. The structure of our
(A)GKE constructions also gives us highly flexible (A)GKEs that can
be changed according to the needs of the network and individual
users. Furthermore, we generalize the GKE structure such that it can
be used as a compiler for other two-party, public-key key exchanges.

1.4 pseudorandom permutations

Pseudorandom permutations (PRPs) are a way to shuffle information in
a way that is indistinguishable from random. The Even-Mansour (EM)
block cipher [24] is a Data Encryption Standard (DES) [51] inspired
block cipher, i.e. an encryption scheme that uses a symmetric key along
with a deterministic algorithm in order to encrypt a message. However,
Kilian and Rogaway [42] showed that the construction actually satisfies
the property of being a PRP. The EM construction itself uses a PRP oracle
in its algorithm however, so it is not an explicit PRP construction, but
rather shows how to extend the usability of a PRP.

Pseudorandom functions (PRFs) satisfy a weaker notion of security
as they are not expected to be invertible. Classically, we can even build
PRPs from PRFs using a Feistel construction as shown by Luby and
Rackoff [46]. However, a quantum adversary using quantum oracle
queries is able to completely break the indistinguishability of this PRP

construction as first shown by Kuwakado and Morii [43]. Zhandry
[65] did however give some evidence that quantum-secure PRPs were
theoretically possible and while no PQC secure PRP seems to have been
created at present, Alamati et al. [2], Moriya et al. [50], and Boneh et
al. [6] independently show the existence of group action based PQC

PRFs. Alagic and Russell [1], on the other hand, gave some evidence
that the EM construction might be a PQC secure construction when the

4 [26] assumes the existence of cryptographic invariant maps, a yet unproven claim.

8 introduction

underlying group (the group of bit strings) is exchanged with certain
other groups. In Ch. 6, we therefore define and show classical security
for the most general group-theoretic EM construction we can, in the
hope that the construction may still be proven quantum secure.

1.5 contributions and copyright notices

In this dissertation, we consider whether we can generalize classical
schemes while improving the complexity and security of the schemes.
We do so by looking at GKEs, AGKEs, and the EM scheme.

In Chp. 3, we show that it is possible to define a GKE using the
isogeny based PQC primitive, SIDH, to create a logarithmic order com-
plexity GKE. We further give a peer-to-peer/sequential version with
similar complexity. We also show that there is a compiler that turns
both GKEs into AGKEs, also with logarithmic order complexity. This
chapter includes substantial portions of the conference article first
published in

• Hector B. Hougaard and Atsuko Miyaji. “SIT: supersingular
isogeny tree-based group key exchange.” In: 2020 15th Asia Joint
Conference on Information Security (AsiaJCIS). IEEE, 2020, pp. 46–
53. doi: 10.1109/AsiaJCIS50894.2020.00019

Reproduced with permission from ©2020 IEEE. This chapter also
includes substantial portions of the journal article first published in

• Hector B. Hougaard and Atsuko Miyaji. “Authenticated logarithmic-
order supersingular isogeny group key exchange.” In: Interna-
tional Journal of Information Security. Springer, 2021. doi: 10.1007/
s10207-021-00549-4

Reproduced with permission from Springer Nature.
In Chp. 4, we show that it is also possible to define a GKE using

the lattice based PQC primitive, ring-learning-with-errors (R-LWE), to
create a logarithmic order complexity GKE. We also give a peer-to-
peer/sequential version and show that both can be compiled into
logarithmic order complexity AGKEs. This chapter includes substantial
portions of the conference article first published in

• Hector B. Hougaard and Atsuko Miyaji. “Tree-Based Ring-LWE
Group Key Exchanges with Logarithmic Complexity.” In: In-
formation and Communications Security. Ed. by W. Meng et al.
Vol. 12282. LNCS. Springer International Publishing, 2020, pp. 91–
106. doi: 10.1007/978-3-030-61078-4_6

Reproduced with permission from Springer Nature. This chapter also
includes substantial portions of the journal article first published in

• Hector B. Hougaard and Atsuko Miyaji. “Authenticated tree-
based R-LWE group key exchange.” In: The Computer Journal.
Ed. by Oxford Press. 2021. doi: 10.109/comjnl/bxab165

https://doi.org/10.1109/AsiaJCIS50894.2020.00019
https://doi.org/10.1007/s10207-021-00549-4
https://doi.org/10.1007/s10207-021-00549-4
https://doi.org/10.1007/978-3-030-61078-4_6
https://doi.org/10.109/comjnl/bxab165

1.6 outline 9

Figure 1.1: Overview of our results

Reproduced with permission from Oxford University Press.
In Chp. 5, we take advantage of the structure of cryptography to-

gether with the GKEs in Chp. 3 and Chp. 4, generalize the definitions of
key exchanges and hard problems, and then give generic compilers for
group key exchange, both a concurrent and sequential version. These
GKE compilers do not only apply to PQC but to classical cryptography
and future cryptographic paradigms as well. This chapter includes
substantial portions of the conference article first published in

• Hector B. Hougaard and Atsuko Miyaji. “Group key exchange
compilers from generic key exchanges.” In: International Con-
ference on Network and System Security (NSS). LNCS. Springer
International Publishing, 2021. doi: 10.1007/978-3-030-92708-
0_10

Reproduced with permission from Springer Nature.
In Chp. 6, we generalize the Even and Mansour block cipher con-

struction to using group actions as their underlying operations, giv-
ing us a PRP that is secure against an unbounded adversary having
polynomially-many classical oracle queries. This chapter is based on
a paper to be published at an international conference but portions
have been adapted from the author’s Masters’ thesis published on the
arXiv:

• Hector B. Hougaard. “How to Generate Pseudorandom Permuta-
tions Over Other Groups: Even-Mansour and Feistel Revisited.”
In: CoRR abs/1707.01699 (2017). url: http://arxiv.org/abs/
1707.01699

Reproduced with permission from the author.
Please consult Figure 1.1 for an overview of our results.

1.6 outline

We start with a preliminary part that contains notions and definitions
used in the various chapters including definitions of group actions,
key exchanges, signature schemes, pseudorandomness, SIDH, R-LWE,
EM, and our security model. Our results are spread throughout Pt. ii
with GKEs from isogenies in Chp. 3, GKEs from R-LWE in Chp. 4, a GKE

https://doi.org/10.1007/978-3-030-92708-0_10
https://doi.org/10.1007/978-3-030-92708-0_10
http://arxiv.org/abs/1707.01699
http://arxiv.org/abs/1707.01699

10 introduction

compiler in Chp. 5, and the group action Even-Mansour in Chp. 6.
Finally, in Pt. iii, we conclude by summarizing our results, discussing
their relation to the wider field of cryptography, and considering
future work based on them. Each part has been organized linearly and
the entire dissertation is meant to build linearly as well.

2
P R E L I M I N A R I E S

In this chapter, we will present notation, definitions, and basic results.
This chapter will serve as a basis for understanding the results in the
dissertation and a reference for what is used later.

2.1 notation

We assume knowledge of some standard set and probability theory for
our notation. When χ is a probability distribution over a set S, we let

s R← χ denote the process of sampling an element s ∈ S according to

the distribution χ. As a special case, we let s R← S denote the process
of choosing an element s ∈ S uniformly at random from a set S. We
denote an algorithm as Algo and denote the output of y from the
algorithm when given the input x as y← Algo(x). As a combination
of notations, if the algorithm is probabilistic, we may draw attention

to this using the notation y R← Algo(x). Also, as a general shorthand
common to mathematics, wlog stands for “without loss of generality”.

2.2 algebra

In order to explain the cryptographic background for our results, we
will first need a mathematical foundation on which to build. In this
dissertation, the mathematical foundation is algebra. We start with the
concept of a group, one of the simplest constructions in mathematics.

Definition 1. A group is defined over a set G with a binary operation ?

such that

G× G → G,

(a, b) 7→ a ? b,

and the binary operation satisfies the following axioms:

associativity (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G.

identity there exists an element e in G, called the identity, such that for
all a ∈ G, a ? e = a = e ? a.

inverse for each a ∈ G there exists an element a−1 ∈ G such that
a−1 ? a = e = a ? a−1. Such an a−1 is called the inverse of a.

Furthermore, if it holds that a ? b = b ? a for all a, b ∈ G, then the group is
said to be commutative. We denote the number of elements in the group as
|G|, called the order of the group.

11

12 preliminaries

Example 2. The set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .} can be made
into a commutative group using the binary operation of addition, +, a so-
called additive group. Here the identity element is 0 and the inverse of any
element a ∈ Z is −a. The set of rational numbers Q = {a/b|b 6= 0} can be
made into a group with the binary operation of multiplication, ·, a so-called
multiplicative group. Here the identity element is 1 and the inverse of
a ∈ G \ {0} is 1/a.

We denote the successive operation of g ∈ G on itself n times as
n · g = g + g + · · ·+ g for additive groups and gn = g · g · · · · · g for
multiplicative groups, when n is a positive integer. The order of an
element g ∈ G is the smallest positive integer n such that n · g = e,
respectively gn = e.

If a group can be generated by a single element g, i.e. for any h ∈ G
there exists a positive integer n such that n · g = h (or gn = h, in
multiplicative groups), then the group is said to be cyclic, usually
denoted G = 〈g〉, where g is called the generator of G. In this case, if
|G| = n, then the order of g is also n.

Example 3. We can define an operation ⊕ on the set of bits, {0, 1}. It takes
two bits and outputs 0 if both bits are identical, and outputs 1 if the bits are
different. We call this binary operation exclusive-OR (XOR). The following
table shows how XOR functions.

⊕ 0 1

0 0 1

1 1 0

Table 2.1: Exclusive-OR (XOR) operation.

We may use this binary operation to turn the set of bit strings of length
n, i.e. {0, 1}n = {(bn−1bn−2 · · · b1b0)|bi ∈ {0, 1}}, into a group by using
XOR bitwise. This means that each bit in a string is XOR’ed with the
corresponding bit in the other string. Using this definition, a string is its
own inverse.

A group is a quite fundamental structure because of its simple
definition, but many of the deepest theorems in algebra are deduced
simply from the implications of their structure. We shall not go too
deep into group theory, but let us give an easy proposition giving
some of the properties we will need later. As this is the preliminary
chapter, we refrain from giving a proof but remark that each may
easily be proven from the definition alone.

We sometimes write (G, ?) for the group, in order to explicitly state
that the group is made up of the set G and the binary operation ?.
Usually, we use the binary operator + to denote an additive group
and the binary operator · to denote a multiplicative group.

2.2 algebra 13

Proposition 4. If (G, ?) is a group then

1. the identity e is unique,

2. for each a ∈ G, a−1 is uniquely defined,

3. (a−1)−1 = a for all a ∈ G,

4. (a ? b)−1 = (b−1) ? (a−1),

5. for any a1, a2, . . . , an ∈ G, the value of a1 ? a2 ? · · · ? an is independent
of how parenthesis are set.

The examples above showed that well-known sets can be made into
groups. However, some groups can be given a second binary operation
that turns the group into a ring.

Definition 5. A ring is a commutative group (R,+) with a secondary
binary operation · such that the following axioms hold:

associativity (a · b) · c = a · (b · c) for all a, b, c ∈ R.

distributivity For all a, b, c ∈ R,

(a + b) · c = a · c + b · c and a · (b + c) = a · b + a · c.

The ring is called commutative if multiplication is commutative and is said
to have an identity, if there is an element 1 ∈ R for which

1 · a = a = a · 1 for all a ∈ R.

We will occasionally skip the · notation and simply write a · b as ab
for a, b ∈ R. We may also denote the group or ring simply by G or R
when the operations are understood.

Definition 6. A commutative ring R with identity 1 6= 0 for which every
element has a multiplicative inverse, i.e. for each a ∈ R there exists an
element b ∈ R such that ab = ba = 1, is called a field.

Example 7. The set of integers Z defined in Example 2 is a ring under
the group operation of addition and the ring operation of multiplication
(having the identity 1). However, it is not a field as not every element has
a multiplicative inverse. The set of rational numbers Q under the same
operations, on the other hand, is not only a ring but a field too.

Example 8. Let us consider a subset of the integers, namely the set Z/nZ =

{0, 1, 2, . . . , n− 1}. We can turn this set into a field, the ring of integers
modulo n. Let n = 0, n+ 1 = 1, n+ 2 = 2, . . ., then Z/nZ is a ring under
addition modulo n and multiplication modulo n. For example, 5 modulo 2 is
equal to 1.

14 preliminaries

Addition modulo n and multiplication modulo n work the same as regular
addition and multiplication on the integers, however we have the following
distributive properties:

a + b (mod n) = (a (mod n) + b (mod n)) (mod n), and

a · b (mod n) = (a (mod n) · b (mod n)) (mod n).

If a (mod n) = b (mod n), we may also write a ≡ b (mod n). When
n = p is a prime, Z/pZ is a field having order |Z/pZ| = p− 1.

Groups and rings in themselves are quite interesting but sometimes
we want to look at the relationship between different groups or be-
tween different rings. For sets we have functions but for groups and
rings we have homomorphisms.

Definition 9. A map between groups (rings) that preserves the group (ring)
operation, is said to be a group (ring) homomorphism. More specifically, for
the groups (G,+) and (G′, ·), it holds for a homomorphism φ : G → G′ that

φ(g + h) = φ(g) · φ(h),

for all g, h ∈ G. A bijective group (ring) homomorphism is called a group
(ring) isomorphism.

The elements {g ∈ G : φ(g) = 1G′} is called the kernel of φ and denoted
ker(φ).

Lastly, we will need the definition of a group action. Group actions
are generalizations of group operations in that a group operation
acts on group elements, taking one group element and letting it “act”
on another group element via the group operation. A group action
however, is defined for a group acting on a set. If the set is equal to
the group, then the group action is simply the group operation. Let us
see this in more detail.

Definition 10. A group action is defined for a group (G, ·) on a set X such
that

G× X → X,

(g, x) 7→ g ? x,

and the map satisfies the following properties:

compatibility g ? (h ? x) = (g · h) ? x for all g, h ∈ G, x ∈ X.

identity 1 ? x = x for all x ∈ X.

Furthermore, a group action may satisfy the following properties:

transitive For every (x, y) ∈ X×X, there is a g ∈ G such that g ? x =

y.

free For x ∈ X and g, h ∈ G satisfying g ? x = h ? x we have g = h.

2.3 cryptography 15

A group action is said to be regular if it is both transitive and free.

If we let σg = g ? x for all x ∈ X, then σg is a permutation of X.
Any group operation on a group G can be trivially defined as a group
action G× G → G. All such group actions are regular.

2.3 cryptography

Secrets have always required secrecy. Although cryptography has
its foundations in trying to relay secrets between parties and hiding
away information, it has evolved quite a bit since its simple cipher
past. Nowadays, any computer can unscramble letters that have been
rearranged, so we need to be more clever. This is the realm of modern
cryptography, using computers to guard secrets against malicious
parties who also have access to computers, so called adversaries.

For a cryptographic construction, we must consider how to give a
guarantee of its security, a proof. At the advent of modern cryptog-
raphy, this guarantee was perfect security, i.e. that even a single bit
of a message could only be deciphered correctly with probability 1/2
without the use of the secret key, a mere coin toss. Unfortunately, this
forced the key to be as long as the message, a problem when random-
ness is expensive to create and messages can vary in length almost
arbitrarily. The solution was to loosen the security notion slightly, from
perfect indistinguishability to computational indistinguishability, i.e. we
now consider the computational limits of an adversary.

Computers follow logic operations and the combination of logic
operations constitute an algorithm. At the same time, mathematics is
built from basic logic operations, and so, many mathematical problems
can be defined for computers. Likewise, if there exists a mathematical
solution to a logical or mathematical problem, we can potentially
create a computer algorithm to solve the problem.

However, physical computers can only compute a limited number
of operations per second, so we must consider the amount of time
an algorithm needs in order to compute an answer. This is where
our notion of a “hard” problem comes from. If every computer or
algorithm - with some definition of physical capability - cannot solve
the problem in at most polynomial-time, the problem is considered a
hard problem.

Definition 11 (Efficient algorithm; [40], p. 47). An algorithm A runs
in polynomial-time if there exists a polynomial p such that, for every input
x ∈ {0, 1}n, the computation of A(x) terminates within at most p(|x|)
steps, where |x| denotes the length of the string x.

Polynomial-time is simply a measure of efficiency. As there are
many other types of functions, we have an ordering of function-types.
We usually compare function-types using what is called the big O
notation. For the purpose of explaining orders of function-types, we

16 preliminaries

write that f (n) = O(g(n)) if the positive function f (n) is a positive
constant multiple of g(n), i.e. f (n) ≤ M · g(n), for some M ∈ R+ and
for sufficiently large values of n ∈ Z, i.e. all n > N0 for some N0 ∈ Z+.
As algorithms can be analysed by the number of steps/processes they
use, we can compare algorithms by the function-types that the number
of steps correspond to, i.e. their computational complexity.

Example 12. We have that for (positive) constant functions (e.g. f (n) = 2),
logarithmic functions (e.g. g(n) = log(n)), linear functions (e.g. h(n) =
10 · n), polynomial functions (e.g. j(n) = nc for some c ≥ 1), sub-exponential
functions (e.g. k(n) = nlog(n)), and exponential functions (e.g. l(n) = en),

2 = O(log(n)) = O(10 · n) = O(nc) = O(nlog(n)) = O(en).

In some sense, the orders of complexity follow the pattern

constant < logarithmic < linear < polynomial < sub-exponential <
exponential.

A “hard” problem is then a problem where the probability that a
probabilistic polynomial-time (PPT) adversary can solve (or succeed at)
it is negligible. PPT adversaries are algorithms that run in polynomial-
time. They are usually assumed to have access to some source of
randomness that might make their attacks more successful, hence
“probabilistic”.1 Here, “negligibly” means:

Definition 13 ([40], Defn. 3.4, p. 48). A function f from the natural
numbers to the non-negative real numbers is negligible if for every positive
polynomial p there is an N such that for all integers n > N it holds that
f (n) < 1/p(n).

Hard problems themselves are not cryptographic protocols. Usually,
they are mathematical or algorithmic problems that do not have any
polynomial-time (or better) solutions. It is therefore a question of trust
in the hardness of a problem, due to time and/or attacks that fail, that
determines the worth of a hard problem. But anyone could simply
construct a cryptographic protocol and claim hardness. This is where
reduction proofs come in. A reduction proof, or simply a reduction,
is a proof-theoretic construction that explicitly links a protocol to a
hard problem. The longer the hard problem has been around and the
tighter the reduction, the stronger the security of the protocol. It is
therefore necessary to explain how such reductions work in practice.

Firstly, an algorithm that can distinguish between the protocol out-
put and a random output in polynomial-time is assumed to exist.
Secondly, an instance of the protocol is created such that distinguish-
ing between the protocol output and a random output solves the hard
problem. Per assumption the problem was hard, i.e. could not be

1 Adversaries are not forced to employ randomness. If they do not, we sometimes call
them “deterministic”.

2.3 cryptography 17

Figure 2.1: Reduction proof overview [40]

solved by any polynomial-time algorithm, hence a contradiction is
obtained. This means that the protocol itself is secure. See Figure 2.1
for an overview of this construction.

More specifically, assume that a problem X cannot be solved by any
polynomial-time algorithms. As an example, consider a polynomial-
time prime factorization of large numbers, which is considered hard
for classical computers. If we want to show that a cryptographic pro-
tocol Π is secure (according to some precise definition), assume for
contradiction that there exists some (probabilistic) polynomial-time
algorithm A that “breaks” Π with non-negligible success probabil-
ity ε(n), where n is the security parameter (a variable adjusting the
protocol instantiation).

We then construct an efficient algorithm A′, a “reduction”, which
will try to solve the problem X using A as a sub-algorithm. It must be
noted that A′ only uses A as a black box, i.e. it has no idea how A
works internally, only what it requires for inputs and what it returns
for outputs. For an instance x of X, two properties must then hold:

1. As far as A can tell, it is interacting with a valid instance of Π,
i.e. all inputs to A are identically distributed as in an instance of
Π.

2. If A does succeed in breaking the given instance of Π simulated
by A′, this should then allow A′ to solve the instance x with
probability greater than 1/p(n), for some polynomial function
p(·).

These two properties then imply that A′ solves instance x of X with
probability ε(n)/p(n), which is non-negligible. This means that an
instance of the hard problem X has been solved in polynomial-time
with non-negligible probability, a contradiction. Hence, Π must be
secure.

Alas, we must warn that using a reduction proof as detailed above
will only ever give a cryptographic scheme that is secure as long
as the hard problem is hard. This is exactly the problem for many
of the constructions that are now vulnerable due to the advent of
quantum computing. One of these vulnerable constructions is the

18 preliminaries

following Diffie-Hellman key exchange that relies on the hardness of
the decisional Diffie-Hellman problem.

2.3.1 Diffie-Hellman

Consider the group Zq, the group of integers modulo q (see Exam-
ple 8), i.e. Zq = Z/qZ = {0, 1, . . . , q − 1}. The Diffie-Hellman key
exchange protocol is a one round, two-party key exchange protocol
that consists of a security parameter 1λ (we use the cryptographic
convention of inputting the value λ using a string of 1s of length λ) as
well as a parameter generating algorithm, Gen, that given the security
parameter 1λ as input, outputs a description of a cyclic group G along
with its order q and a generator g ∈ G.

Protocol 14 (Diffie-Hellman key exchange (DH)). For parties Pi, i = 0, 1,
we define the DH protocol is as follows:

setup: For security parameter 1λ, Gen outputs to both parties the public
parameter tuple: P = (G, q, g)← Gen(1λ).

publish: Each party Pi begins by choosing a uniform secret key, xi
R← Zq,

and computes their public key, hi = gxi , before sending it to the other
party.

keygen: Upon receiving key h1−i, party Pi uses their secret key xi to
compute the shared key ki := hxi

1−i.

The protocol satisfies correctness, i.e. k0 = k1 = k.

We state without proof the well-known fact that the passive adver-
sary (eavesdropper) security of DH reduces to the following classical
hard problem.

Definition 15 (Decisional Diffie-Hellman (DDH) problem). Given a
uniformly sampled tuple from one of the following two distributions:

• (P, (gx0 , gx1), k), where P = (G, q, g) for a cyclic group G of order q
and generated by g, uniformly sampled x0, x1

R← Zq, and k = gx0x1 ∈
G is the shared key of the DH protocol (Protocol 14),

• (P, (gx0 , gx1), k′), where P = (G, q, g) for a cyclic group G of order
q and generated by g, uniformly sampled x0, x1

R← Zq, and z R← Zq

sampled uniformly such that k′ = gz is uniformly distributed in G,

determine which the tuple is sampled from.

2.3.2 Signature schemes

We also provide a definition of a (digital) signature scheme as we
will assume the existence of such cryptographic constructions for our
authenticated group key exchanges.

2.3 cryptography 19

Definition 16 ([40], Defn. 12.1, p. 442). A (digital) signature scheme,
Πsign, consists of the PPT algorithms Gen, Sign, and Vrfy used in the follow-
ing way:

setup: The key-generation algorithm Gen takes security parameter 1λ as
input and outputs the pair of keys (sign, vrfy), the signing key (or
private key) and verification key (or public key), respectively. We
assume that sign and vrfy each has length at least λ, and that λ can be
determined from sign or vrfy.

sign: The signing algorithm Sign takes as input a signing key sign and
a message m from some message space (that may depend on vrfy). It
outputs a signature σ, and we write this as σ← Signsign(m).

verify: The deterministic verification algorithm Vrfy takes as input a ver-
ification key vrfy, a message m, and a signature σ. It outputs a bit b,
with b = 1 meaning valid and b = 0 meaning invalid. We write this
as b← Vrfyvrfy(m, σ).

For correctness, it is required that except with negligible probability over
(sign, vrfy) output by Gen(1λ), it holds that 1 ← Vrfyvrfy(m,Signsign(m))

for every (legal) message m.

Definition 17 (Security of signatures; [40], Defn. 12.2, p. 443). The
signature experiment Sig−forgeA,Πsign

(1λ):

1. Gen(1λ) is run to obtain keys (sign, vrfy).

2. Adversary A is given vrfy and access to an oracle Signsign(·). The
adversary then outputs (m, σ). Let Q denote the set of queries that A
asked its oracle.

3. A succeeds if and only if (1) 1← Vrfyvrfy(m, σ) and (2) m 6∈ Q. In
this case, the output of the experiment is defined to be 1.

A signature scheme Πsign(Gen, Sign,Vrfy) is existentially unforgeable
under an adaptive chosen-message attack, or just secure, if for all PPT
adversaries A, there is a negligible function negl such that:

SuccA(Πsign) = Pr[Sig−forgeA,Πsign
(1λ) = 1] ≤ negl(λ).

2.3.3 Pseudorandomness

For our work with the Even-Mansour construction in Chp. 6, we will
need the definition of a pseudorandom permutation, which we give
below.

A pseudorandom permutation is a permutation selected from a
family of permutations by a key. We therefore talk about a keyed per-
mutation, P : K× X → X. In order to prove the pseudorandomness

20 preliminaries

of the keyed permutation, we intend to play a game of determin-
ing “pseudorandom or random permutation”, i.e. distinguishability,
but for permutations. A is given a permutation oracle P which is
chosen randomly (with equal probability) from the following two
distributions:

1. A random key k R← K is uniformly chosen and used to permute
via P(x) := P(k, x) for all x ∈ X, or

2. A random permutation π
R← PermX→X is chosen and used to

permute via P(x) := π(x) for all x ∈ X.

The adversary “wins” the game if it can distinguish from which
distribution P was chosen, with probability significantly better than a
fair coin toss. We denote the case where an adversary A, having access
to oracles (possibly including an auxiliary collection of oracles, H(·)),
wins the game with security parameter 1λ, as AH(·)

G(·)(1
λ) = 1, where

G(·) is the collection of game-specific oracles, e.g. P(k, ·) for a fixed k
or π(·).

We now redefine the classical bit string notion of pseudorandomness
(and superpseudorandomness) to arbitrary sets.2

Definition 18. Let P : K × X → X be an efficient permutation, keyed
by a group K. P is called a pseudorandom permutation (PRP) if for all
adversaries A, limited to only polynomially-many queries to a permutation
oracle and possibly to the collection of auxiliary oracles H(·), we have that∣∣∣∣∣ Pr

k R←K

[
AH(·)

P(k,·)(1
λ) = 1

]
− Pr

π
R←PermX→X

[
AH(·)

π(·)(1
λ) = 1

]∣∣∣∣∣
is negligible, where 1λ is the security parameter and PermX→X is the set of
permutations on X.

Giving the adversary access to an inverse permutation oracle gives
us a stronger notion of pseudorandomness.

Definition 19. Let P : K× X → X be an efficient permutation, keyed by
a group K. P is said to be a super pseudorandom permutation (SPRP)
if for all adversaries A, limited to only polynomially-many queries to the
permutation and inverse permutation oracles and possibly to a collection of
auxiliary oracles, H(·), we have that∣∣∣∣∣ Pr

k R←K

[
AH(·)

P(k,·),P−1(k,·)(1
λ) = 1

]
− Pr

π
R←PermX→X

[
AH(·)

π(·),π−1(·)(1
λ) = 1

]∣∣∣∣∣
is negligible, where 1λ is the security parameter and PermX→X is the set of
permutations on X.

We call a (super) pseudorandom permutation P : K × X → X a
(super) pseudorandom permutation on X.

2 As given in e.g. Definition 3.28, p. 80 in [40]

2.4 burmester-desmedt group key exchanges 21

2.4 burmester-desmedt group key exchanges

We now define the Burmester-Desmedt I (BDI) protocol [8], which is
a two-round group key exchange (GKE) based on DH. Here, a round
necessitates the exchange of new information, such as a public key or
specific message, in order for a party to proceed. We give the same
description as given by Hatano, Miyaji, and Sato [30].

Protocol 20 (Burmester-Desmedt I (BDI)). For parties P0,P1, . . . ,Pn−1,
arranged in a ring3 (see Figure 2.2), we define the BDI protocol as follows:

setup: Given the security parameter 1λ, outputs a description of a group
G of order prime p and generator g.

publish1 : Each Pi computes a public key zi = gri corresponding to a
uniformly random, secretly chosen ri

R← Z∗p, and sends it to Pi−1 and
Pi+1.

publish2 : Each Pi then computes x[i−1,i+1] =
(

zi+1
zi−1

)ri
= griri+1−riri−1

and broadcasts to this value all other parties.

keygen: Each Pi finally computes the shared key,

K = (zi−1)
nri · xn−1

[i−1,i+1] · x
n−2
[i,i+2] · · · x[i−3,i−1]

= gr1r2+r2r3+···+rnr1 .

P0 P1

PT+1

Pi−T

Pi−1Pi
Pi+1

Pi+T

Pn−1+T

Pn−1

Figure 2.2: BDI circle structure

We can think of BDI as a GKE having a closed-chain-like structure,
each party being a link connected to both the previous and next party.

Another two-round Burmester-Desmedt GKE, the Burmester-Desmedt
II (BDII) protocol [9], instead utilizes a tree structure. For pedagogical
reasons, we describe the binary double-tree version. Here, the parties
are assumed to be arranged in two trees, connected at the roots, as
shown in Figure 2.3. Each party node branches into two and we call
the parties on the lowest level of the tree the leaves.

3 The indexes are taken modulo n so that P0 = Pn and Pn+1 = P1

22 preliminaries

P0 P1

P2 P3 P5P4

. . .

. . .

level 0

level 1

level j

level j+1

level⌊
log2(n)

⌋
− 1

Figure 2.3: BDII tree-based structure

Each party Pi has a parent par(i), left child L.cld(i), and right child
R.cld(i), the collection of which we call the neighbours of Pi. For leaves,
the only neighbour is the parent. We define ancestors(i) to be the set of
the indexes of all ancestors (parents, grandparents, great grandparents,
etc.) of a party Pi, including i but removing 0 and 1. P0 and P1 are
defined to be each other’s parent.

The following definition for BDII is also as given by Hatano, Miyaji,
and Sato [30]. For the protocol, we assume that n parties P0,P1, . . . ,Pn−1

wish to generate a shared key.

Protocol 21 (Burmester-Desmedt II (BDII)). Assume the parties P0,P1, . . . ,Pn−1

are arranged in a binary double-tree.

setup: For security parameter 1λ, outputs a group G of order prime p and
generated by g.

publish1 : Each party Pi computes a public key zi = gri corresponding
to a uniformly random, secretly chosen ri

R← Z∗p, and sends it to its
neighbours.

publish2 : Each party Pi then computes both

xL.cld(i) =

(
zpar(i)

zL.cld(i)

)ri

= grirpar(i)−rirL.cld(i) and

xR.cld(i) =

(
zpar(i)

zR.cld(i)

)ri

= grirpar(i)−rirR.cld(i)

and multicasts4 the respective values to all of its left, respectively right,
descendants.5

keygen: Each Pi may finally compute the shared key

K = (zpar(i))
ri · ∏

j∈ancestors(i)
xj = gr0r1 .

Theorem 22 (Security of BDII [18]). Assuming the DDH problem over the
group G is hard, BDII is a secure GKE protocol.

4 Sends only to designated parties.
5 This means that a party Pi sends xL.cld(i) to its left child, all the left child’s children,

all their children, and so forth. Respectively, it sends xR.cld(i) to its right child, all the
right child’s children, all their children, and so forth.

2.5 supersingular isogeny diffie-hellman 23

2.5 supersingular isogeny diffie-hellman

Although it is rather complicated mathematics, we must (briefly) cover
the basics of elliptic curves we will need in this dissertation.

Let E be an elliptic curve defined over a finite field of order q, Fq,
with q = p2 for a prime p, e.g. elliptic curves in Weierstrass form
E : y2 = x3 + Ax + B, where A, B ∈ Fq. As this is a function, we may
consider the solutions over some field, in this case Fq, which generate
the elliptic curve group, E(Fq), with identity element OE. We call E
supersingular if the p torsion group, E[p] = {X ∈ E(Fq) | pX = OE},
is equal to {OE}. For Weierstrass forms, the j-invariant may be given
by the equation

j(E) = 1728
4A3

4A3 − 27B3 ∈ Fq.

We call two elliptic curves E0 and E1 isomorphic, written E0 ∼= E1, if
and only if j(E0) = j(E1). We note that since the j-invariants lie in Fq,
both addition and multiplication of j-invariants is taken over Fq.

An (separable) isogeny φ : E0 → E1 of elliptic curves over the
field Fq, is a rational map6 inducing a homomorphism between the
elliptic curve groups E0(Fq) and E1(Fq). A separable isogeny is either
surjective or the 0-map. It has a finite kernel and sends OE0(Fq) to
OE1(Fq). If such an (non-zero) isogeny exists, the elliptic curves E0, E1

are said to be isogenous. The kernel of an isogeny φ is

ker(φ) = {P ∈ E0(Fq) | φ(P) = OE1}.

This set creates a finite (sub)group and, using Vélu’s formulas [63, pp.
392-393], may be used to explicitly compute an isogeny. On the other
hand, for a given isogeny φ : E0 → E1, there exists a corresponding
finite subgroup 〈Φ〉 such that ker(φ) = 〈Φ〉. When the isogeny is
separable the degree of the isogeny will be equal to the order of the
kernel, i.e. deg(φ) = #〈Φ〉 = `. We may then call the isogeny an
`-isogeny and that E0 is `-isogenous to E1.

Given two isogenous elliptic curves, finding an isogeny between
them is called the isogeny finding problem. This problem is hard
even for quantum computers, as the fastest known algorithm takes
exponential time when the curves involved are supersingular. There-
fore, cryptosystems based on the isogeny finding problem can provide
quantum resistance. One such quantum-secure cryptosystem is the
supersingular isogeny Diffie-Hellman (SIDH) key exchange by Jao and
De Feo [25, 38].7

6 This is a geometric algebraic notion that requires more background than we are
willing to give in this dissertation. Although rational maps are not as simple as
rational functions, it will suffice to think of them as consisting of such for this
dissertation.

7 For a description of the protocol, we use subgroups generated by P + [r]Q instead of
[n]P + [m]Q, as per the supersingular isogeny key encapsulation mechanism (SIKE)
protocol. See https://sike.org/ for further details.

https://sike.org/

24 preliminaries

Consider parties P0 and P1. Given security parameter 1λ, the public
parameter generating algorithm GenSS outputs the tuple (p, E, {P0, Q0}, {P1, Q1}),
where p = f `e0

0 `
e1
1 ± 1 is prime for a small integer f > 0 and `e0

0 ≈ `e1
1

(usually `0 = 2 and `1 = 3), E is a randomly chosen supersingular
elliptic curve over Fq = Fp2 such that #E(Fq) = (p± 1)2, and {Pi, Qi}
is a randomly chosen basis of E[`ei

i] for i ∈ {0, 1}.

Protocol 23 (Supersingular isogeny Diffie-Hellman (SIDH); [25]). The
protocol is as follows.

setup: For security parameter 1λ, GenSS outputs to both parties the tuple:

params := (p, E, {P0, Q0}, {P1, Q1})
R← GenSS(1λ).

publish: Given params as input, party P0 randomly chooses r0
R←

Z/`e0
0 Z and computes R0 := P0 + [r0]Q0. It then computes the iso-

geny φ0 : E→ E0 ∼= E/〈R0〉 having ker(φ0) = 〈R0〉, along with the
points φ0(P1) and φ0(Q1). P0 has secret and public keys

sk0 := r0 and pk0 := (E0, φ0(P1), φ0(Q1)),

respectively, where it sends pk0 to P1. Likewise, P1 computes the secret
and public keys

sk1 := r1 and pk1 := (E1, φ1(P0), φ1(Q0)),

respectively, of which it sends pk1 to P0.

keygen: Party P0 takes pk1 as input and computes an isogeny φ′0 :=
E1 → E1,0 with ker(φ′0) = 〈φ1(P0) + [r0]φ1(Q0)〉 = 〈φ1(R0)〉 and
computes K0 = j(E1,0) ∈ Fq.

Party P1 likewise computes an isogeny φ′1 := E0 → E0,1 with
ker(φ′1) = 〈φ0(P1) + [r1]φ0(Q1)〉 = 〈φ0(R1)〉 and computes K1 =

j(E0,1) ∈ Fq (see Figure 2.4).

It holds that

E1,0 = φ′0(φ1(E)) ∼= φ′1(φ0(E)) = E0,1,

i.e. K0 = j(E1,0) = j(E0,1) = K1, such that P0 and P1 have the shared
key K = K0 = K1.

Except for notational changes, we give the following definitions ad
verbum from De Feo, Jao, and Plût [25] .

Definition 24 (Decisional supersingular isogeny (DSSI) problem). Let
p, `e0

0 , and E, be as in Protocol 23. Let E0 be another supersingular curve
defined over Fp2 . Decide whether E0 is `e0

0 -isogenous to E.

8 Original TikZ code courtesy of De Feo via GitHub [17].

2.5 supersingular isogeny diffie-hellman 25

E

E0

ker(φ0)
=〈P0+

[r 0]
Q 0〉

φ0(
P1)

,φ0(
Q 1)

E1

ker(φ1)=〈P1 +[r1]Q
1 〉

φ1 (P0),φ1 (Q
0)

(E
0

,φ
0
(P

1
),φ

0
(Q

1
)
)(

E
1

,φ
1
(
P

0
),

φ
1
(
Q

0
)
)

E1,0

ker(φ
′
0
)=〈φ1(

P0)
+[r0]φ1(

Q0)
〉

E0,1

ker(φ ′
1)=〈φ0 (P1)+[r1]φ0 (Q1)〉

∼=

Figure 2.4: SIDH key exchange. Quantities only known by P0, respectively
P1, are drawn in red, respectively blue. The dotted lines signify
public keys being exchanged8

Definition 25 (Computational supersingular isogeny (CSSI) problem).
Let p, `ei

i , E, and {Pi, Qi}, for i ∈ {0, 1}, be as in Protocol 23. Let φ0 : E→
E0 be an isogeny whose kernel is 〈P0 + [r0]Q0〉, where r0 is chosen at random
from Z/`e0

0 Z. Given E0 and the values φ0(P1), φ0(Q1), find a generator R0

of 〈P0 + [r0]Q0〉.

Definition 26 (Supersingular computational Diffie-Hellman (SSCDH)
problem). Let p, `ei

i , E, and the basis {Pi, Qi}, for i ∈ {0, 1}, be as in Proto-
col 23. Let φ0 : E→ E0 be an isogeny whose kernel is equal to 〈P0 + [r0]Q0〉,
and let φ1 : E→ E1 be an isogeny whose kernel is 〈P1 + [r1]Q1〉, where r0

(respectively r1) is chosen at random from Z/`e0
0 Z (respectively Z/`e1

1 Z).
Given the curves E0, E1 and the points φ0(P1), φ0(Q1), φ1(P0), φ1(Q0), find
the j-invariant of E/〈P0 + [r0]Q0, P1 + [r1]Q1〉.

Definition 27 (Supersingular decisional Diffie-Hellman (SSDDH) pro-
blem). Given a tuple sampled uniformly from one of the following two
distributions:

• (E0, E1, φ0(P1), φ0(Q1), φ1(P0), φ1(Q0), E0,1), where E0, E1, φ0(P1),
φ0(Q1), φ1(P0), and φ1(Q0) are as in the SSCDH problem and

E0,1
∼= E/〈P0 + [r0]Q0, P1 + [r1]Q1〉,

• (E0, E1, φ0(P1), φ0(Q1), φ1(P0), φ1(Q0), Ex), where E0, E1, φ0(P1),
φ0(Q1), φ1(P0), and φ1(Q0) are as in the SSCDH problem and

Ex ∼= E/〈P0 + [r′0]Q0, P1 + [r′1]Q1〉,

where r′0 (respectively r′1) is chosen at random from Z/`e0
0 Z (respec-

tively Z/`e1
1 Z),

determine which distribution the tuple is sampled from.

26 preliminaries

Theorem 28 (Security of SIDH; [25]). Assuming the SSDDH problem is
(quantum) hard, SIDH is a (post-quantum) secure key exchange (KE).9

Note 29. If P0 and P1 share a basis over E[`e], i.e. P0 = P1 = P and
Q0 = Q1 = Q, then P0 has public key pk0 := (E0, φ0(P), φ0(Q)) and
P1 has public key pk1 := (E1, φ1(P), φ1(Q)). Any adversary wanting to
find the secret key for one of the parties, say P0, needs to find [x] from
φi(P + [x]Q) = φi(P) + [x]φi(Q) = OEi , which is an instance of the so-
called elliptic curve discrete logarithm problem. Although this problem is
considered hard for classical adversaries, a quantum adversary can solve it in
polynomial-time. Be aware that because of the adaptive attack of Galbraith,
Petit, Shani, and Ti [28], it is important to choose random keys anew for each
SIDH key exchange instance (see footnote 5 on page 82)

For quantum adversaries, the SSCDH and SSDDH problems are equiv-
alent, as shown by Galbraith and Vercauteren [29] and Thormarker
[62].

2.6 ring-learning-with-errors (r-lwe)

Denote [N] = {0, 1, . . . , N − 1}. For the remainder of this dissertation,
set R = Z[X]/(Φ(X)) for Φ(X) = Xm + 1 for m = 2l , for some
l ∈ Z+. Let q be a positive integer and define the quotient ring
Rq = R/qR ∼= Zq[X]/(Φ[X]), where Zq = Z/qZ.

Traditionally, ring-learning-with-errors (R-LWE) based cryptography
relies on the quantum hardness of the R-LWE problem, either the
computational or distinguishable version. However, Bos, Costello,
Naehrig, Stebila [7] were able to give a Diffie-Hellman-like definition
of indistinguishability taking key reconciliation into account and also
showed how the ring-learning-with-errors (R-LWE) based KE of Ding,
Xie, and Lin [20] (with Peikert’s reconciliation tweak [52]) reduces
to their newly formulated problem. Newly defined problems do not
inspire trust as they are seen as ad hoc solutions but Bos et al show
that the Diffie-Hellman-like problem actually reduces to the decisional
ring-learning-with-errors (D-R-LWE) problem, so any protocol reducing
to their problem naturally also reduces to the D-R-LWE problem, giving
quantum-security.10 In order to define this new problem, the decision
Diffie-Hellman-like (DDH-like) problem, we must therefore first define
the D-R-LWE problem.

Definition 30 (Decisional ring-learning-with-errors (D-R-LWE) problem;
[7], Definition 1). Let m, R, q and Rq be as above. Let χ be a distribution
over Rq and let s← χ. Define Oχ,s as an oracle that does the following:

9 The result in [25] holds in the authenticated-links adversarial model of Canetti and
Krawczyk [10].

10 For the search problem statement and the search-to-decision reduction (equivalence
actually), see the original paper by Lyubashevsky, Peikert, and Regev [48].

2.6 ring-learning-with-errors (r-lwe) 27

1. Sample a R← Rq and e← χ,

2. Return (a, as + e) ∈ Rq × Rq.

The D-R-LWE problem for m, q, χ is to distinguish Oχ,s from an oracle that
returns uniformly random samples from Rq × Rq.

Note 31. The D-R-LWE problem given above is in its normal form, that is to
say that s is chosen randomly from the error distribution, not uniformly at
random from Rq. However, this problem is as hard as choosing s uniformly
at random from Rq [47, Lemma 2.24].

To describe our R-LWE based GKE, we must introduce the R-LWE key
exchange, on which it is based. For that purpose, we must first define
Peikert’s key reconciliation mechanism. Let d·c denote the rounding
function: dxc = z for z ∈ Z and x ∈ [z− 1/2, z + 1/2).

Definition 32 ([7], Defn. 2). Let q be a positive integer. Define the modular
rounding function

d·cq,2 : Zq → Z2,

x 7→ dxcq,2 =
⌈

2
q x
⌋

mod 2,

and the cross-rounding function

〈·〉q,2 : Zq → Z2,

x 7→ 〈x〉q,2 =
⌊

4
q x
⌋

mod 2.

Both functions are extended to elements of Rq coefficient-wise: for f =

fm−1Xm−1 + · · ·+ f1X + f0 ∈ Rq, define

d f cq,2 =
(
d fm−1cq,2 , d fm−2cq,2 , . . . , d f0cq,2

)
,

〈 f 〉q,2 =
(
〈 fm−1〉q,2 , 〈 fm−2〉q,2 , . . . , 〈 f0〉q,2

)
.

We also define the randomized doubling function

dbl : Zq → Z2q,

x 7→ dbl(x) = 2x− e,

where e is sampled from {−1, 0, 1} with probabilities p−1 = p1 = 1
4 and

p0 = 1
2 .

As done with the rounding functions, we may apply the doubling
function to elements in Rq by doing so coefficient-wise, resulting in
polynomials in R2q. We consider such an application to allow for odd q
in the KE protocol. Applying instead both the rounding and doubling
function on a uniformly random element in Zq results in a uniformly
random element in Z2q:

28 preliminaries

Lemma 33 ([7], Lem. 1). For odd q, if v ∈ Zq is uniformly random and

v R← dbl(v) ∈ Z2q, then, given 〈v〉2q,2, dvc2q,2 is uniformly random.

We can now define Peikert’s reconciliation function, rec(·). Given
an element w ∈ Zq that is “close” to a v ∈ Zq and the cross-rounding
of this v, the reconciliation function recovers dvcq,2.

Definition 34 (Peikert’s reconciliation function). Define I0 = {0, 1, . . . ,
⌈ q

2

⌋
−

1} and I1 = {−
⌈ q

2

⌋
, . . . ,−1}. Let E = [− q

4 , q
4), then

rec : Z2q ×Z2 → Z2,

(w, b) 7→

0, if w ∈ Ib + E mod 2q,

1, otherwise .

We can also consider the reconciliation of a polynomial in Rq by
doing coefficient-wise reconciliation. The following lemma thereby
allows us to reconcile two polynomials in Rq that are “close” to each
other.

Lemma 35 ([7], Lem. 2). For odd q, let v = w + e ∈ Zq for w, e ∈ Zq such
that 2e± 1 ∈ E (mod q). Let v = dbl(v), then rec(2w, 〈v〉2q,2) = dvc2q,2.

Finally, we come to the definition of the R-LWE key exchange. Let
m, R, q, Rq and χ be as in the D-R-LWE problem (Definition 30). Given
Rq, the parameter generating algorithm ParaGen outputs a uniformly

random a R← Rq.

Protocol 36 (R-LWE key exchange (R-LWE KE)). Parties P0 and P1 gener-
ate an instance of the R-LWE KE protocol Π as follows:

setup: For the input Rq, ParaGen outputs the public parameter a R←
ParaGen(Rq) to each party Pi.

publish1 : Each party Pi chooses si, ei ← χ as their secret key and error
key, respectively, computes their public key bi = asi + ei ∈ Rq, and
sends their public key bi to party P1−i.

publish2 : Party P1, upon receiving b0 from P0, chooses a new error key
e′1 ← χ, computes v = b0s1 + e′1 ∈ Rq, and uses the randomized

doubling function on v to receive v R← dbl(v) ∈ R2q. Using the cross-
rounding function, P1 computes c = 〈v〉2q,2 ∈ {0, 1}m and sends c to
P0.

keygen: In order to generate the shared key, party P0 uses the reconcil-
iation function to output k1,0 ← rec(2b1s0, c) ∈ {0, 1}m. Party P1

simply computes k0,1 = dvc2q,2 ∈ {0, 1}m.

Except with negligible probability k0,1 = k1,0 = k, i.e. this protocol satisfies
correctness.

2.7 even-mansour 29

The security of the R-LWE KE protocol reduces to a decisional hard-
ness problem dubbed the decision Diffie-Hellman-like (DDH-like) pro-
blem by Bos, Costello, Naehrig, Stebila [7]. For ease of proof later,
we give a reformulated version of DDH-like problem, equivalent to the
definition in [7, Definition 3].

Definition 37 (Decision Diffie-Hellman-like (DDH-like) problem). Let
m, R, q, Rq, χ be D-R-LWE parameters. Given a tuple sampled uniformly from
one of the following two distributions:

• (a, b0, b1, c, κ), where a R← Rq, s0, s1, e0, e1, e′1
R← χ, bi = asi + ei ∈

Rq for i = 0, 1, v = b0s1 + e′1, v R← dbl(v), c = 〈v〉2q,2, and κ =

dvc2q,2 ∈ {0, 1}m,

• (a, b0, b1, c, κ), where a, b0, b1, c are as above and κ
R← {0, 1}m,

determine which distribution the tuple is sampled from.

Theorem 38 (Hardness of DDH-like problem; [7], theorem 1). Let m be
a parameter, q an odd integer, and χ a distribution on Rq. If the D-R-LWE

problem for m, R, q, Rq, χ is hard, then the DDH-like problem for m, R, q, Rq, χ

is also hard.

2.7 even-mansour

We state the Even-Mansour construction directly from [24], but using
our notation, so our generalization will be clear.

Definition 39 (Even-Mansour (EM)). Let {0, 1}n denote the set of binary
words of length n, let P be a common and publicly known permutation on
{0, 1}n and P−1 be its inverse. It is assumed that, for any given x ∈ {0, 1}n,
it is easy to get P(x) or P−1(x), either by a direct computation or by using
an easily and commonly accessible black-box oracle.

A key k consists of two subkeys, k1 and k2, each chosen at random from
{0, 1}n. Initially, it is assumed that the key is known to the legitimate parties
only; all other parties have no knowledge about it. Also, it is assumed that the
key remains fixed and is used, by the legitimate parties, to encipher plaintexts
or decipher ciphertexts, repeatedly, for a relatively long time.

The encryption Enck(m) of a plaintext m ∈ {0, 1}n by the key k =

(k1, k2), is performed by

Enck(m) = P(m⊕ k1)⊕ k2,

and the decryption of a ciphertext c ∈ {0, 1}n, is performed by

Deck(c) = P−1(c⊕ k2)⊕ k1.

This scheme satisfies correctness.

30 preliminaries

It must be noted that the scheme is minimal, in the sense that having
access to one of the keys, the other key can be found. Also, using only
an inner key (or only an outer key) will allow basic cryptanalytic
attacks.

It was shown by Kilian and Rogaway [42] that the above EM scheme
is a pseudorandom permutation, i.e. for an adversary with only
polynomially-many classical queries to an encryption oracle and the
permutation oracles, it is indistinguishable from a random permuta-
tion. They only showed the pseudorandomness property, but state
that their proof may be adapted to include a decryption oracle making
the EM scheme a super pseudorandom permutation. They also note
that these properties hold even for identical subkeys, that is, k1 = k2.

2.8 security models

We present our standard security model in this section. We also de-
fine the stronger group-Canetti-Krawczyk plus (G-CK+) model for
authenticated group key exchanges (AGKEs). Although we only use
the former security model in this dissertation, it is paramount for any
student of modern GKEs to know what model should be employed
in security proofs when possible, hence we present the latter model
as well. We would also hope that our (authenticated) GKEs can be
made to satisfy the latter security model, though at this time, we have
not done so. The main difference between the two models is that the
latter considers adversaries that may reveal the ephemeral keys and
state information of honest parties. Our standard model is sometimes
also called a weak-corruption model as opposed to G-CK+, which is a
strong-corruption model.

2.8.1 Security model

Consider a finite set of parties P = {P0, . . . ,Pη} modelled by PPT

Turing machines with security parameter 1λ. A party Pi generates
a pair of static keys: the static secret key SSKi and the static public
key SPKi. For verification purposes, the public key is linked with Pi’s
identity in some trusted, public system like a public key infrastructure
(PKI). In the same way, a party generates pair of ephemeral keys: the
ephemeral secret key ESKi and the ephemeral public EPKi. In the case
that the GKE does not employ any static keys, the keys are left blank.

2.8.1.1 Session

At any time, a subset {Pi1 , . . . ,Pin} ⊆ P, where 2 ≤ n ≤ η, can invoke
a new GKE protocol. Such an invocation is called a session. A session
is managed by a tuple (Π,Pil , {Pi1 , . . . ,Pin}), where Π is the protocol

2.8 security models 31

identifier and Pil is the party identifier.11 For simplification of notation
and without loss of generality, suppose that Pil = Pl . Pi outputs EPKi
to all relevant (necessary) parties and in turn receives EPKi′ from Pi′

from all relevant (necessary) parties.12

When Pi is the i-th party of a session, we may define the session id
as the tuple sid = (Π,Pi, {P1, . . . ,Pn}, {EPK1, . . . , EPKn}). We call Pi
the owner of sid, if the second coordinate of sid is Pi, and a peer of sid
if it is not. A session is said to be completed if its owner computes the
session key. We say that (Π,Pi′ , {P1, . . . ,Pn}, {EPK1, . . . , EPKn}) is
a matching session of (Π,Pi, {P1, . . . ,Pn}, {EPK1, . . . , EPKn}), where
i′ 6= i.

2.8.1.2 Adversary

Consider a (not necessarily classical) PPT Turing machine adversary A
that controls all communication, including session activation and reg-
istration of parties. The adversary controls all communication through
the following queries:

Send(P i , m) : Pi is the receiver and the message has the form of
(Π,Pi, {P1, . . . ,Pn}, Init) if it is an initializing message for ses-
sion activation, and includes (Π,Pi′ , {P1, . . . ,Pn}, EPKi′) with
any other message.

Establish(P i , SPK i) : Adds a new party to the total set of parties P.
In such a case, A is not required to supply or prove possession of
a SSKi corresponding to the linked SPKi. If a party is registered
by such a query, then the party is called dishonest, if not, the
party is called honest.

Using the above queries, an adversary can start a session for any
subset of parties.

The adversary is further given access to the following attack queries.

SessionReveal(sid) : Reveals the session key of a session sid to the
adversary, only if the session is completed.

StaticReveal(P i) : Reveals the static secret key of party Pi to A.

11 Suzuki and Yoneyama [59] define their sessions with a ‘role’ for a party, which may
be indexed differently from the party index, as well as a corresponding ‘player’
definition. In our protocols, the role is uniquely determined by the party index, which
is uniquely determined by the placement in the double-tree (see Ch. 5). We therefore
remove this ‘role’ (and ‘player’) from our definition of session.

12 Suzuki and Yoneyama [59] (and other GKE security models) assume that each party
receives public keys from all other parties, but this forces all GKEs proven secure in
this model to have at least linear complexity in n, we therefore alter the model slightly.
What this means is that parties only need as many keys as are relevant/necessary to
compute the session key.

32 preliminaries

2.8.1.3 Security and freshness

We require the definition of a fresh session in order to define our final
security notion. Intuitively, freshness assures that the adversary has
not queried any information that would allow it to trivially break
scheme.

Definition 40. Let sid∗ = (Π,Pi, {P1, . . . ,Pn}, EPKi) be a completed
session between honest parties {P1, . . . ,Pn}, owned by Pi. If a matching
session exists and we let sid∗ be such a matching session of sid∗, then we call
that sid∗ fresh if none of the following is true:

1. A queried SessionReveal(sid∗), or SessionReveal(sid∗) for any
sid∗ if sid∗ exists; or

2. sid∗ exists, and A queried StaticReveal(sid∗).

Otherwise, we call the session exposed.

To begin with, A is given a set of honest users and is allowed to
make use of its attack queries as we described above. At some point,
A makes the following query that will be used to determine whether
it can break the scheme or not.

Test(sid∗) : Issues the final test. At a point when the adversary
decides that the data they have collected is enough, they may
query the Test oracle for a challenge. First, a random bit b is
generated. The adversary is then given the session key if b = 1,
or instead a random key from the key space if b = 0.

The adversary is allowed to make adaptive queries before and after
Test(sid∗) is issued, under the condition that it cannot expose the test
session. Under the condition of freshness, the Test query requires that
sid∗ is completed. Eventually, A guesses a bit b′. We let SuccA(Π) be
the event that A guesses b′ = b, i.e. guesses the Test bit b correctly,
and define the advantage

Adv(A) =
∣∣∣∣Pr[SuccA(Π)]− 1

2

∣∣∣∣ .

In this model, we distinguish between a secure GKE and a secure
AGKE. The difference is that in the GKE security, we consider only
passive adversaries that, other than using the Establish query, does
not create its own messages, honestly relaying messages between other
parties and following the protocol prescription. For AGKE security, we
consider malicious adversaries that have no such limits, freely able to
create, omit, and resend messages.

Definition 41. A group key exchange is said to be a secure GKE if for any
passive PPT adversary A,

2.8 security models 33

1. If two honest parties complete matching sessions, these sessions pro-
duce the same session key as output, except with at most negligible
probability;

2. Adv(A) is negligible in security parameter 1λ for the test session sid∗.

Definition 42. A group key exchange is said to be a secure AGKE if for any
malicious PPT adversary A,

1. If two honest parties complete matching sessions, these sessions pro-
duce the same session key as output, except with at most negligible
probability;

2. Adv(A) is negligible in security parameter 1λ for the test session sid∗.

The StaticReveal query is considered for the sake of forward
security, i.e. revealing static keys does not expose previous session
keys. Hence, if a GKE is secure in our model, it can be said to have
forward security or be forward-secure.

2.8.2 G-CK+ security model

We now define the extra requirements that make up the G-CK+ model
of Suzuki and Yoneyama [59]. The model is the same as the model
given in the preceding section but the adversary is given access to
two more attack queries, StateReveal and EphemeralReveal, which
further complicates the freshness definition.

These queries change the security model into a model that considers
active insiders, i.e. an adversary can learn even session-specific secret
information. We give the full scope of attack queries and freshness
requirements here for easy perusal but omit the other elements of the
security model as they are identical to the definitions given in the
previous subsection.

Along with the Send and Establish queries (see p. 31), the ad-
versary is given access to the following attack queries, quoted from
[59].

SessionReveal(sid) : Reveals the session key of a session sid to the
adversary, only if the session is completed.

StateReveal(sid) : Reveals to the adversary the session state of
the owner of the sid if the session is not yet completed, i.e. the
session key has yet to be established. The session state contains
all ephemeral secret keys and intermediate computation results
except for immediately erased information, but it does not con-
tain the static secret key. The protocol specifies what the session
state contains.

StaticReveal(P i) : Reveals the static secret key of party Pi to A.

34 preliminaries

EphemeralReveal(sid) : Reveals to the adversary all ephemeral
secret keys of the owner of sid if the session is not yet com-
pleted. This does not reveal other state information such that an
adversary might trivially win.

Definition 43 ([59]). Let sid∗ = (Π,Pi, {P1, . . . ,Pn}, EPKi) be a com-
pleted session between honest parties {P1, . . . ,Pn}, owned by Pi. If a match-
ing session exists, then let sid∗ be a matching session of sid∗. We say that
sid∗ is fresh if none of the following is true:

1. A queried SessionReveal(sid∗), or SessionReveal(sid∗) for any
sid∗ if sid∗ exists; or

2. sid∗ exists, andA queried StateReveal(sid∗) or StaticReveal(sid∗);
or

3. sid∗ does not exist, and A queried StateReveal(sid∗); or

4. A queried both StaticReveal(Pi) and EphemeralReveal(sid∗);
or

5. sid∗ exists (the owner of sid∗ is Pi′), and A queried both Static-
Reveal(Pi′) and the query EphemeralReveal(sid∗); or

6. sid∗ does not exist, and A queried StaticReveal(Pi′) for any in-
tended peer Pi′ of Pi.

Otherwise, we call the session exposed.

2.8.3 Security model discussion

Manulis et al. [49] and Suzuki and Yoneyama [59] both consider
malicious, adaptive adversaries, the latter being the G-CK+ model.
Their models offer security by considering leakage of state information
or ephemeral secrets in the test session itself. These are therefore very
strong models - G-CK+ being the strongest - giving the adversary
practically as much information as they could possibly get about a
GKE session through their attack oracles. Unfortunately, giving the
adversary even a single ephemeral key in either BDI or BDII allows an
adversary the ability to distinguish a GKE session key from random as
it can compute the session key by using the ephemeral key and all the
public information.

The corresponding GKEs that [49] and [59] propose are secure in their
respective security models but the other PQC GKEs that we reference
in this dissertation prove security in the same, weaker model that we
do. Nonetheless, we define the strongest of the (authenticated) GKE

security models, G-CK+, here for future work. See Sect. 7.3 for some
thoughts on this future work.

Part II

R E S E A R C H

3
G R O U P K E Y E X C H A N G E S F R O M I S O G E N I E S

3.1 introduction

Over the decades, the Diffie-Hellman key exchange protocol has been
used in copious systems to securely exchange keys between two
parties. In today’s modern environment, simple two-party KEs do
not always suffice as online services include interactions between
multiple parties all at once. As a leading example, consider that many
instances of social media allow several persons to make group chats.
The security of those group chats require a single shared key between
all the group members but that presents the problem of how to create
such a key. The process of making such a shared key for a group of
parties is what we call a group key exchange (GKE).

We might trivially make an n party GKE using n − 1 rounds of
two-party KEs. Such a trivial GKE will have O(n) communication and
memory complexity. Here, the communication complexity is the max-
imal number of messages any singular party receives and memory
complexity is the maximal number of values any singular party needs
to store for the session key computation. However, it would be ideal if
we could create a GKE that has fewer rounds and lower communication
and memory complexity, especially for larger groups. Burmester and
Desmedt [8] created the GKE we call BDI (see Sect. 2.4). Although this
n-party GKE also has linear communication and memory complexity,
it does reduce the number of rounds to 2.

The security of BDI relies on the security of the underlying two-
party KE protocol, Diffie-Hellman key exchange. Unfortunately for
Burmester and Desmedt, the emergence of quantum computers pre-
sents a real and pressing threat to Diffie-Hellman-based constructions.
DH is based on the classically hard mathematical problem called the
discrete logarithm problem. It turns out that there exist quantum algo-
rithms for solving exactly this problem in such a way that protocols
that rely on it can no longer be considered secure (against quantum
adversaries), which in turn means that also DH, and thereby BDI, can
no longer be considered secure (against quantum adversaries).

Considering the problem of quantum security and the ongoing
need for key exchanges, Jao and De Feo [38] proposed SIDH, a drop-in
candidate for post-quantum KE. This KE relies on a relatively new
problem for security, namely the indistinguishability of the SSDDH

problem. This problem relies on the difficult task of solving what is
called the isogeny finding problem, a problem which is thought to be
hard even for quantum computers.

37

38 group key exchanges from isogenies

Naturally an isogeny based GKE would also emerge. Furukawa, Ku-
nihiro, and Takashima [27] proposed supersingular isogeny Burmester-
Desmedt (SIBD), a generalization of BDI that uses SIDH as the underly-
ing KE instead of DH. The SIBD protocol arranges parties in a ring-like
structure that has each party doing equal amounts of computation in
order to compute the shared key, which is a product of j-invariants. Be-
ing based on BDI, SIBD is straddled with the same O(n) communication
and memory complexity.

Burmester and Desmedt [9] proposed yet another GKE protocol that
we call BDII (see Sect. 2.4). BDII is also a n-party GKE that completes
in only 2-rounds, but unlike BDI is tree-based. This gives BDII com-
munication and memory complexity O(log2 n). Furthermore, the tree
structure allows parties to be arranged according to processing power
and memory capability, such that BDII is applicable in unbalanced
networks.

Even though the isogeny based generalization of BDI exists, gen-
eralizing BDII using SIDH and proving its post-quantum security, is
actually non-trivial. First of all, two parties in SIDH sharing a basis has
public values that allow the secret keys of either party to be found.
This can be done because it requires solving the elliptic curve analogue
of the discrete logarithm problem, which, unfortunately, is an easy
problem for a quantum adversary, in polynomial-time even. Second
of all, consider that for DH, the group elements involved possess asso-
ciativity and transitivity, allowing the group shared key to have the
same form as a DH key: gx for some generator g ∈ Zp and x ∈ Z∗p,
where p is a prime. For SIDH, on the other hand, the shared key is
the j-invariant of an elliptic curve (or just an elliptic curve). The set
of elliptic curve does not form a group in the majority of cases and
there is no obvious way to combine elliptic curves. Furthermore, if the
elliptic curves are supersingular, then a product or sum of j-invariants
is not likely to be a j-invariant. The first problem is here circumvented
by carefully indexing parties and defining a ‘score’ function. The sec-
ond problem is circumvented by reducing our GKE protocol to the
SSDDH problem, giving our protocol the same security as SIDH. This
furthermore avoids defining a new hard problem as supersingular
isogeny Burmester-Desmedt (SIBD) must.1

We call our generalization supersingular isogeny tree-based GKE
(SIT). The shared key in SIT is the j-invariant of only a single SIDH KE

between two initial parties. SIT is a 2-round, is post-quantum secure,
and when each (non-leaf) party in the tree is assumed to have l
children, has communication and memory complexity O(logl n).

A GKE alone is not enough in the real world as there may exist
malicious outsiders able to influence a communication network as

1 The security proof SIBD given by Furukawa, Kunihiro, and Takashima [27] is unfortu-
nately faulty. Takashima [60] defines a new hard problem and supplies a correspond-
ing proof to remedy this.

3.2 related work 39

they see fit. For this reason an authenticated GKE protocol is necessary.
Although specialized AGKEs exist, Katz and Yung [41] create a generic
compiler that employs a secure signature protocol and turns any
GKE protocol into an authenticated one. Unfortunately, the compiler
results in linear communication complexity even when the underlying
GKE has lower communication complexity. We therefore introduce a
new compiler that maintains whichever communication complexity
the underlying GKE achieves. For supersingular isogeny tree-based
GKE (SIT), we call the compiled AGKE for authenticated SIT (A-SIT).

3.2 related work

Azarderakhsh, Jalali, Jao, and Soukharev [4] attempted to create the
first non-trivial isogeny based GKE, Isog-GKE. Their idea was to arrange
the parties sequentially and have each party compute isogenies on all
the previous parties’ public curves. This was repeated in the opposite
direction as well. At the end of the procedure, each party would hold
an elliptic curve isogenous to each of the other parties’ elliptic curve.
They did exceed in creating a 2 round GKE but the resulting scheme
required O(n) isogenies and the same amount of public values, com-
municated values, and stored values. Isogeny computation is rather
slow in terms of computation time, so the fewer isogeny computations,
the better. Unfortunately, their scheme has recently been completely
broken by de Quehen et al. [55] using an improved torsion-point ap-
plication on the adaptive attack of Galbraith et al. [28]. Their work is
therefore better as an example of what has been tried and what will
not work for isogeny based GKEs.

The emergence of quantum computers will threaten the security of
DH based constructions such as BDI, as we mentioned in our introduc-
tion. In order to allay such concerns, [27] brilliantly generalized the
BDI construction relying on SIDH instead of DH, where a product of
j-invariants then replaces a group element as the shared secret. As we
use the framework of supersingular isogeny Burmester-Desmedt (SIBD)
in our own protocol we first give the construction below.

Suppose first that the parties wishing to do a group key exchange
are indexed by 1, . . . , n where n is even.2 Party indexes are taken
modulo n, e.g. P0 := Pn and Pn+1 := P1. We must also introduce the
map ι = ι(i) := i mod 2. The public parameter generating algorithm
GenSS is as in SIDH (Protocol 23).

Protocol 44 (SIBD [27]). The SIBD protocol is as follows

setup: Takes security parameter 1λ and the number of parties n as inputs.
In the same way as for SIDH, the GenSS algorithm outputs:

P := (p, E, {P0, Q0}, {P1, Q1})
R← GenSS(1λ).

2 Although the authors claim their scheme generalizes to odd n, their indexing method
does not allow for such odd n.

40 group key exchanges from isogenies

publish1 : Takes the party index i and the public parameter tuple P as
inputs.

1. Party Pi first chooses ri
R← Z/`eι

ι Z uniformly at random then
computes Ri := Pι + [ri]Qι.

2. Party Pi then computes the isogeny φi and elliptic curve ERi
∼=

E/〈Ri〉 s.t. φi : E→ ERi , where ker(φi) = 〈Ri〉.
3. Party Pi then sets

sk1
i = ri and pk1

i = (ERi , φi(P1−ι), φi(Q1−ι)).

4. Party Pi broadcasts pk1
i to all the other users.

publish2 : Takes the party index i, params, the secret key sk1
i , and the

public keys {pk1
i−1, pk1

i+1}.
1. Party Pi executes SIDH with the neighbouring parties Pi−1 and
Pi+1 to obtain j-invariants j(ERi−1,Ri) and j(ERi ,Ri+1).

2. Pi then computes ui := j(ERi−1,Ri) · j(ERi ,Ri+1)
−1 and sets pk2

i :=
ui.

3. Party Pi broadcasts pk2
i to all the other parties.

keygen: Party Pi collects all the {pk2
i }i=1,...,n and uses its secret key sk1

i
to compute

Ki = j(ERi−1,Ri)
n · un−1

i · un−2
i+1 · · · · · u

2
i−3 · ui−2.

We can easily verify that

Ki = j(ER1,R2) · · · j(ERn,R1) =: K

holds for any i ∈ {1, . . . , n}.

We draw attention to the fact that the shared key is a product
of the j-invariants, indeed of all the pairwise shared elliptic curve
j-invariants.

3.3 supersingular isogeny tree-based gke (sit)

Assume that from a set of parties, P, we have a subset of n ≥ 2 parties
{P0,P1, . . . ,Pn−1}, re-indexing if need be, that wish to generate a
shared key. For supersingular isogeny tree-based GKE (SIT), like BDII,
the parties are assumed to be arranged in two trees, connected at the
roots by parties P0 and P1, and arranging the parties in ascending
order from the top-leftmost root, going right, and continuing down
the tree level-wise, not branch-wise (see Figure 3.1). We choose to call
this a double-tree. We assume that all parties are unique, i.e. a party
appears at most once in the tree.

3.3 supersingular isogeny tree-based gke (sit) 41

P0 P1

P2 P3

P6 P7 P8 P9

P4 P5

P10 P11

Figure 3.1: Possible SIT graph configuration for n = 12

par(i)

Pi

1.cld(i) 2.cld(i) · · · li.cld(i)

level

score(i)−1

level

score(i)

level

score(i)+1

Figure 3.2: The neighbours of Pi: Parent and children

As shown for BDII [9], we can let there be a variable number of
children per node (see Figure 3.1), however, our notation and defini-
tions vary from those given in [9]. Excepting the leaves of the tree,
each party Pi has a parent par(i), and a set of children l.cld(i) for
l = 1, 2, . . . , li where 0 ≤ li ≤ n− 2 is the number of children of Pi,
that are all considered the neighbours of Pi (see Figure 3.2). For all Pi
that are leaves, li = 0. We let ancestors(i) be the set of indexes of all
ancestors of a party Pi, including i but having removed 0 and 1. P0

and P1 are assumed to be parents of each other.
We define score3 recursively in the following way: score(0) :=

0, score(1) := 1, score(i) = score(par(i)) + 1, where i ≥ 2 is the in-
dex of the party Pi. We assume that each party calculates their own
score when the graph is fixed and does not occur as a bandwidth or
computational cost in our protocol. Using score, we define the map
ι = ι(i) := score(i) mod 2.

For the remainder of this dissertation, we differentiate between
broadcasting and multicasting in that broadcasting is data trans-
mission to all parties involved in a GKE, while multicasting is data
transmission to a subset of the parties: at most the parent and all
descendants. For use in our authenticated GKE compiler in Sect. 3.5,
we add a session name to the GKE protocol parameter generation. The
session name is a unique name for each instantiation of the protocol.

3 Although the original BDII scheme has no such concept, we introduce a ‘score’ for
each party, needed in order to alternate SIDH bases so as to avoid the attack outlined
in Note 29.

42 group key exchanges from isogenies

We assume there exists a set of all parties P. Consider the following
protocol. Given a security parameter 1λ and a set of n ≤ |P| parties,
GenSIT outputs the SIDH-based tuple (p, E, {P0, Q0}, {P1, Q1}, Γ, sID),
where p = f `e0

0 `
e1
1 ± 1 is prime for a small integer f > 0 and `e0

0 ≈ `e1
1

(usually `0 = 2 and `1 = 3), E is a randomly chosen supersingular
elliptic curve over Fp2 such that #E(Fp2) = (p ± 1)2, {Pk, Qk} is a
randomly chosen basis of E[`ek

k] for k ∈ {0, 1}, Γ is a double-tree for n
parties, and sN is a unique session name.

Protocol 45 (Supersingular isogeny tree-based GKE (SIT)). The protocol
is as following.

setup: For a security parameter 1λ and the number of users n, the algo-
rithm outputs to each party Pi the tuple:

P := (p, E, {P0, Q0}, {P1, Q1}, Γ, sN)
R← GenSIT(1λ, n),

where sN is the unique session name.

publish1 : Given P, individually, each Pi computes

Zi = (Ei, φi(P1−ι), φi(Q1−ι)),

where φi : E → Ei
∼= E/〈Ri〉 with Ri := Pι + [ri]Qι for a secret

ri
R← Z/`eι

ι Z chosen uniformly at random. Zi is Pi’s public key and
ri is its secret key. Pi then multicasts Zi it to its neighbours (parent
and li children), along with its identification pair (Pi, sN). Each party
Pi then computes li + 1 SIDH shared keys (or 1 in the case of leaves, as
they have no children) using the neighbours’ public keys:

Epar(i),i = φ
par(i)
i (Epar(i))

∼= E/〈Pι + [ri]Qι, P1−ι + [rpar(i)]Q1−ι〉,

El.cld(i),i = φ
l.cld(i)
i (El.cld(i))

∼= E/〈Pι + [ri]Qι, P1−ι + [rl.cld(i)]Q1−ι〉,

for each l ∈ {1, . . . , li}, where

ker(φpar(i)
i) = 〈φpar(i)(Pι) + [ri]φpar(i)(Qι)〉,

ker(φl.cld(i)
i) = 〈φl.cld(i)(Pι) + [ri]φl.cld(i)(Qι)〉.

publish2 : Each Pi with children computes

xl.cld(i) = j(Epar(i),i)− j(El.cld(i),i),

and multicasts this value to the respective descendants, for each l ∈
{1, . . . , li}.

keygen: Each Pi computes a shared key

Ki = j(Epar(i),i) + ∑
m∈ancestors(i)

xm = j(E0,1) = K.

3.3 supersingular isogeny tree-based gke (sit) 43

Note 46. Once the setup algorithm establishes the double-tree graph con-
figuration we assume that it is both fixed for the session and also publicly
available to all parties (and adversaries). The means that for each protocol
execution, the setup algorithm must be run anew. We then assume that
each party checks the tree to see their own position as well their neighbours,
descendants, and ancestors.

Proposition 47 (SIT correctness). Each party in SIT computes the same key
K = j(E0,1), i.e. the session key of the group is simply the shared key of the
initial parties P0 and P1.

Proof. Proof by induction. Obviously, K0 = K1 = j(E0,1). Assume that
Kpar(i) = K then, as

Kpar(i) = j(Epar(par(i)),par(i)) + ∑
m∈ancestors(par(i))

xm,

we have that

Ki = j(Epar(i),i) + ∑
m∈ancestors(i)

xm

= j(Epar(i),i) +
(

j(Epar(par(i)),par(i))− j(Ei,par(i))
)

+ ∑
m∈ancestors(par(i))

xm

= Kpar(i) = K.

Note 48. By Silverman [57] (V.4.4), if p ≡ 1 (mod 3), then there are
no supersingular elliptic curves with j-invariant equal to 0, but if p ≡ 2
(mod 3), then there exists at least one supersingular curve with j-invariant
equal to 0. If we use the product operation in the definition of the x-values
and the session key computation, some x-values might equal 0 forcing the
session key to be incalculable for some parties. To avoid this unfortunate
situation, we define SIT using the addition operation in Fq on the j-invariants
used to calculate x-values and session key, instead of the product as done in
SIBD. As addition is a more efficient computation this choice seems ideal and
urge implementers to do so.

Theorem 49. Assuming the SSDDH problem is (post-quantum) hard, the SIT

protocol given in Protocol 45 is a (post-quantum) secure GKE (Definition 41),
with forward security.

Proof. We must show that Protocol 45 satisfies the security notion given
in Definition 41. The first requirement is satisfied by the correctness
shown in Proposition 47.

For the second requirement, assume that there exists a (not nec-
essarily classical) polynomial-time adversary A with non-negligible

44 group key exchanges from isogenies

Algorithm 1 SSDDH distinguisher, D.
Input: E0, E1, φ0(P1), φ0(Q1), φ1(P0), φ1(Q0), E′

1: h R← {1, . . . , Λ}, where Λ is an upper bound on the number of ses-
sions activated by A in any interaction.

2: Invoke A and simulate protocol to A, except for the h-th activated
protocol session.

3: For the h-th session:
4: Set P := (p, E, {P0, Q0}, {P1, Q1}, Γ, sN), where Γ is an n-party binary

graph and sN is the session name.
5: Set Z′0 = (E0, φ0(P1), φ0(Q1)) and Z′1 = (E1, φ1(P0), φ1(Q0)).

Choose ri
R← Z/`eι

ι Z for i = 2, . . . , n − 1 and set Z′i = (Ei(∼=
E/〈Ri〉), φi(P1−ι), φi(Q1−ι)). Simulate multicasting for each Pi along
with identifying information (Pi, s).

6: Set

x′l.cld(0) := j(E′)− j(E0,l.cld(0)), ∀l ∈ {1, 2, . . . , l0},

x′l.cld(1) := j(E′)− j(E1,l.cld(1)), ∀l ∈ {1, 2, . . . , l1}, and

x′l.cld(i) := j(Epar(i),i)− j(El.cld(i),i), ∀l ∈ {1, 2, . . . , li},

for i ≥ 2 where Pi is not a leaf in Γ.
7: if the h-th session is chosen by A as the test session then

8: Provide A as the answer to the distinguishing query, i.e.
9: d← A’s output

10: else

11: d R← {0, 1}.

Output: d

advantage Adv(A) = ε. We build a polynomial-time distinguisher D
for the SSDDH problem in Algorithm 1.

As an analysis of our distinguishing algorithm, we note the follow-
ing. For the h-th session, using the public information for P0, namely
φ0(P1), φ0(Q1), it does SIDH key exchange with the secret key rl.cld(0) of
party Pl.cld(0), giving the curve φl.cld(0)(E0) = E0,l.cld(0)

∼= El.cld(0),0, for
each l ∈ {1, . . . , l0} where l0 is the number of children for P0 in Γ. Like-
wise, using the public information for P1, it does SIDH key exchange
with the secret key rl.cld(1) of party Pl.cld(1), finding E1,l.cld(1)

∼= El.cld(1),1,
for each l ∈ {1, . . . , l1} where l1 is the number of children for P1 in Γ.
All other curves may be computed as the secret keys for Pi are known
for i = 2, . . . , n− 1.4

As the ri are chosen uniformly at random for i ≥ 2, the distribution
of the Z′i and x′

l.cld(i)are identical to that in an SIT instance.

4 D needs at most (2n− 4)tisog additional time in order to generate all the necessary
isogenies for the transcript, where tisog is the amount of time needed to do a single
SIDH isogeny computation.

3.3 supersingular isogeny tree-based gke (sit) 45

The transcript given to A by D is

(Z′0, . . . , Z′n−1, x′1.cld(0), x′2.cld(0), . . . , x′l0.cld(0),

x′1.cld(1), . . . , x′(ln−1).cld(n−1)),

where we assign a blank value for the x′ value when there is no child.
If the h-th session is A’s test session, then D is issuing K = j(E′).
If K is a valid SIT key, then j(E′) = K = j(E0,1) = j(E1,0), in other

words, the tuple

(E0, E1, φ0(P1), φ0(Q1), φ1(P0), φ1(Q0), E′)

where E′ ∼= E0,1
∼= E1,0, is a tuple from the first distribution in the

SSDDH problem (Definition 27). If K is not a valid SIT key, then it is
a tuple from the second distribution in the SSDDH problem (Defini-
tion 27).

If the test session is not the h-th session, then D outputs a random
bit, i.e. it has advantage 0. If the test session is the h-th session, which
happens with probability 1/Λ, then A will succeed with advantage
ε. Hence, the final advantage of the SSDDH distinguisher D is ε/Λ,
which is non-negligible.

This protocol does not involve long-term secrets, all ephemeral
keys being generated anew in each session such that ephemeral keys
generated in one session are independent of those in another session,
so too the session key. Hence, an adversary having access to keys
from one session, will not be able to use their knowledge to learn the
session key from any previous session.

3.3.1 CSIDH version

Although we will not get into the details of the Castryck et al. com-
mutative supersingular isogeny Diffie-Hellman key exchange [11] -
another isogeny based PQC key exchange that uses group actions - it
will be illustrative to see both how group actions work and how the
SIT GKE could look for other isogeny based KEs.

For our purposes, we simply define the CSIDH group action to be
a group acting on a set of elliptic curves with the notation, [a] ? E.
The action is regular and, in particular, it is the action of the ideal
class group cl(O), for an imaginary quadratic order O, acting on the
set of supersingular elliptic curves over Fp with endomorphism ring
isomorphic to the order (see [11] for further details). All we really need
to know for this subsection is that the group action is commutative,
i.e. [ab] ? E = [ba] ? E.

The KE that can be built from this group action is exactly like the DH

KE described in Section 2.3.1, with public keys being actions [xi] ? E
for the secret keys [xi] for i ∈ {0, 1} and a fixed elliptic curve E. The
shared key is [x0x1] ? E.

46 group key exchanges from isogenies

The CSIDH GKE would first fix the relevant CSIDH parameters, includ-
ing an elliptic curve E, as public parameters, along with the graph
and unique session name. There is no need for picking bases as CSIDH

is a non-interactive key exchange (for the distinction, see Chapter 5

below). Each party would then pick their secret keys xi uniformly at
random and do pairwise CSIDH KEs with their parent and children
using the respective public keys [xi] ? E.

Each party should now have the following shared keys:

Epar(i),i = [xpar(i)xi] ? E, and El.cld(i),i = [xcld(i)xi] ? E,

for all l ∈ {0, 1, . . . , li}. Each party then proceeds to compute

xl.cld(i) = j(Epar(i),i)− j(El.cld(i),i),

for each l ∈ {1, . . . , li}, and multicast the respective value to the
respective descendants, just as in the publish2 step of the SIT protocol.
Each party may then compute the shared key in the same way, namely

Ki = j(Epar(i),i) + ∑
m∈ancestors(i)

xm = j(E0,1) = j([x0x1] ? E).

3.4 peer-to-peer sit (p2p-sit)

We also give a peer-to-peer version of our SIT protocol, as done by
Desmedt, Lange, and Burmester [18], and call this protocol the peer-to-
peer SIT (P2P-SIT) protocol. For the peer-to-peer version, the number of
rounds and the communication complexity switches. This means that
the communication complexity becomes constant at the same time that
the number of rounds becomes logarithmic. The protocol differences
may be found after step publish1.

Here, we again consider a double-tree for n-parties, Γ, and use the
term “multicast” to mean that a party only sends a message to a
discrete subset of all potential parties: at most its descendants and
parent.

We assume there exists a set of all parties P. Given a security
parameter 1λ and a set of n ≤ |P| parties, GenSIT outputs the SIDH-
based tuple (p, E, {P0, Q0}, {P1, Q1}, Γ, sN), where p = f `e0

0 `
e1
1 ± 1 is

prime for a small integer f > 0 and `e0
0 ≈ `e1

1 (usually `0 = 2 and
`1 = 3), E is a randomly chosen supersingular elliptic curve over Fp2

such that #E(Fp2) = (p± 1)2, {Pk, Qk} is a randomly chosen basis of
E[`ek

k] for k ∈ {0, 1}, Γ is a double-tree for n parties, and sN is a unique
session name.

Protocol 50 (peer-to-peer SIT (P2P-SIT)). The protocol is as follows.

setup: For security parameter 1λ and the number of users n, the public
parameter generating algorithm GenSIT outputs to each party Pi the
tuple:

P := (p, E, {P0, Q0}, {P1, Q1}, Γ, sN)
R← GenSIT(1λ, n),

3.4 peer-to-peer sit (p2p-sit) 47

where Γ includes the party arrangement, i.e. ancestors and descendants.

publish1 : Given (p, E, {P0, Q0}, {P1, Q1}, Γ, sN), individually, each Pi
computes

Zi = (Ei, φi(P1−ι), φi(Q1−ι)),

where φi : E → Ei
∼= E/〈Ri〉 with Ri := Pι + [ri]Qι for a randomly

chosen, secret ri
R← Z/`eι

ι Z. Zi is Pi’s public key and ri is its secret key.
Pi then multicasts Zi it to its neighbours (parent and li children), along
with its identification pair (Pi, sN). Each party Pi then computes li + 1
SIDH shared keys (or 1 in the case of leaves, as they have no children)
using the neighbours’ public keys:

Epar(i),i = φ
par(i)
i (Epar(i))

∼= E/〈Pι + [ri]Qι, P1−ι + [rpar(i)]Q1−ι〉,

El.cld(i),i = φ
l.cld(i)
i (El.cld(i))

∼= E/〈Pι + [ri]Qι, P1−ι + [rl.cld(i)]Q1−ι〉,

for each l ∈ {1, . . . , li}, where

ker(φpar(i)
i) = 〈φpar(i)(Pι) + [ri]φpar(i)(Qι)〉,

ker(φl.cld(i)
i) = 〈φl.cld(i)(Pι) + [ri]φl.cld(i)(Qι)〉.

publish2 : Parties P0 and P1 have already computed the same session key
K = K0 = K1 and send

xl.cld(0) = K− j(El.cld(0),0),

respectively,

xl.cld(1) = K− j(El.cld(1),1),

to their respective children, for l ∈ {1, . . . , l0}, respectively l ∈
{1, . . . , l1}.

keygen and publish3 : Upon receiving xpar(i), Pi computes the ses-
sion key

Ki = xpar(i) + j(Epar(i),i).

Every party Pi with children (this excepts the leaves of Γ), then com-
putes xl.cld(i) = Ki − j(El.cld(i),i) and multicasts this to its l-th child,
for each l ∈ {1, . . . , li}.

It is easy to see that this protocol satisfies correctness: We have that
K0 = K1 = K. Assume that Ppar(i) obtained the session key Kpar(i) = K.
For party Pi,

Ki = xpar(i) + j(Epar(i),i)

= (K− j(Ei,par(i))) + j(Epar(i),i) = K.

The security of the protocol follows from an argument analogous to
the proof given for Theorem 49.

48 group key exchanges from isogenies

Theorem 51. Assuming the SSDDH problem is (post-quantum) hard, P2P-SIT

is a (post-quantum) secure GKE, with forward-security.

3.5 authenticated sit (a-sit)

Consider simply signing each message sent in a key exchange. Intu-
itively, this should result in an authenticated key exchange as each
message had been signed before being sent and can be cryptograph-
ically verified. If we extend this to GKEs, by combining it with a
signature scheme, it should be possible to create an authenticated
group key exchange (AGKE). Indeed, using a Katz-Yung compiler [41]
(or even the improved version by Tang and Mitchell [61]), which has
each party sign each message before sending, creates a constant-round
AGKE.5 Regrettably, those AGKEs resulting from such a compiling will
have computational complexity O(n) regardless of the underlying GKE

(assuming linear or better complexity) as each party must perform
verifications proportional to the total number of parties. To fix this
handicap, we propose an adjusted version of the Katz-Yung compiler
where the computational complexity remains equivalent to the un-
derlying GKE. Our proposed compiler is a variant of the one given in
Desmedt, Lange, and Burmester [18], which takes full advantage of
the structure of the double-tree and the minimal party interactions.

As signature schemes usually require some form of public key in-
frastructures (PKIs) to link verification keys to parties, for example
using a certificate authority for registration and issuance of certifi-
cates, we assume that such infrastructure is in place by the AGKE

commencement.
In our adjusted Katz-Yung compiler, each party Pi must first gen-

erate static signing and verification keys. For each GKE instance, each
involved party then generates session-specific randomness in the form
of a random nonce. The party uses this nonce along with the party ID,
session name, and message counter, for all communication.

In SIT, assuming a balanced double-tree, i.e. the same number of
children per node, each user only needs to exchange a logarithmic
number of messages in order to compute the session key. Our compiler
preserves this communication complexity.

We assume there exists a set of all parties P. We assume the ex-
istence of a secure signature scheme, Πsign, and the forward-secure
SIT, ΠSIT. We consider the corresponding parameter generating algo-
rithms: Gensign and GenSIT. Gensign takes as input a security parameter
1λsign and outputs parameters required for secure signing. GenSIT takes
as input a security parameter 1λSIT and a number of participants, n,
and outputs the public parameters for SIT.

5 There exist other types of compilers for two-party authenticated key exchanges (see
for example [37, 45]) that may possibly be extended into compilers for AGKEs as well,
but such extensions are beyond the scope of the work included in this dissertation.

3.5 authenticated sit (a-sit) 49

Protocol 52 (Authenticated SIT (A-SIT)). The protocol is as follows.

setupsign : For a security parameter 1λsign , the algorithm outputs to all of
the parties in P the parameters for the chosen signature scheme:

PSign
R← Gensign(1λsign).

keysign : Given PSign, each party Pi ∈ P generates the signing/verification
keys (signi, vrfyi). These are static (long-term) keys.

setup II : Let Pn = {P0, . . . ,Pn−1} ⊂ P be a set of n parties wishing to
do a GKE and let gid be their group identifier (of size O(logk n)). Each
Pi ∈ Pn chooses an ephemeral random nonce ηi ∈ {0, 1}λsign for the
session.

paragen: For a security parameter 1λSIT and the number of parties,
n, the algorithm outputs to all the parties in Pn the parameters:

(p, E, {P0, Q0}, {P1, Q1}, Γ, sN)
R← GenSIT(1λSIT , n),

where sN is a unique session name.

where Γ includes the party arrangement, i.e. ancestors and descen-
dants, and sN is the unique session name.

inisign: Let relsi = {P1′ ,P2′ , . . . ,Pt′i
} denote the set of all ances-

tors and the li children of Pi in the s-th session of party Pi.6 The
size of this set depends, in particular, on the number of ancestors.
Each Pi computes σ ← Signsigni

(Pi|sN|0|ηi) and multicasts
Pi|sN|0|ηi|σ to its parent and all its descendants.7 After positive
verification, each party Pi stores the session specific informa-
tion as infos

i = gid|sN|P1′ |η1′ | . . . |Pt′i
|ηt′i

, as a part of the state
information.

SIT: The SIT protocol, ΠSIT, is instantiated with these changes:

• Whenever party Pi is supposed to multicast a message m as part
of the protocol, the party computes σ← Signsigni

(Pi|sN|j|m|ηi),
where j is the message number, and multicasts8 the concatenated
string Pi|sN|j|m|σ.

• Upon receiving P∗|sN|j|m|σ, party Pi checks that:

1. P∗ ∈ relsi ,

2. j is the next expected sequence number for messages from
P∗,

6 This s may not be the same for each party in the protocol instance.
7 Pi|sN|0|ηi|σ can just be sent to all parties to eliminate the need to store a list of

descendants, which in the case of P0 and P1 has size O(n).
8 At most this requires one re-signing of a message when a party has to send the SIT

protocol x value to a child (with which it has already exchanged more than one
previous message) and its other descendants (with which it has sent at most one
previous message).

50 group key exchanges from isogenies

3. 1← Vrfyvrfy∗(P∗|sN|j|m|η∗, σ).

If any of these are untrue, Pi aborts the protocol, ending the
session, and wiping its state. Otherwise, Pi continues as it would
in ΠSIT and uses m.

keygen: Each non-aborted instance computes the session key as in Proto-
col 45.

Theorem 53. Assuming the signature scheme Πsign is (post-quantum)
secure and that SSDDH is (post-quantum) hard, A-SIT given in Protocol 52 is
a (post-quantum) secure AGKE (with forward security).

Proof. As a received message is utilized by a party as it would in ΠSIT
if the message is verified, and so, by the correctness of SIT, the first
requirement in Definition 42 is satisfied by Protocol 52.

For the second requirement, assume that there exists a (not nec-
essarily classical) polynomial-time adversary A with non-negligible
advantage Adv(A) = ε. We use the adversary A to construct a distin-
guisher D for SSDDH, which we give in Algorithm 2.

There are three ways D may succeed: By forging a signature for a
party in the Test case, by reusing a signature, or by distinguishing
the session key from random. The success probability of the first is
bounded by the advantage of an adversary to forge a signature, i.e.
negligible. The second is bounded by a combinatorial consideration of
the number of sent messages and protocol executions compared to the
space of random nonces. The third is bounded by the advantage of
an adversary to distinguish between a SIT session key and a random
j-invariant for a curve in the same space, which by Theorem 49 is
negligible.

For any session, D has generated correctly distributed signing/veri-
fication keys and random nonces and so honestly simulates all com-
munication in the protocol instances.

For any session g 6= h, D may answer any query by A entirely.
For the h-th session, the distributions of Algorithm 1 are used,

which are distributed according to the SIT protocol as argued in
the proof of Theorem 49, giving us the session key distributed as
in the SSDDH problem. We therefore wish to show that the forging
and repeating attacks succeed with negligible probability such that
any distinguishing attack must occur on the key exchange part with
non-negligible probability, i.e. we may build a SSDDH distinguisher.

Let Forge be the event that A can output a new, valid message/sig-
nature pair with respect to the public verification key vrfy∗ of some
party P∗ before querying RevealStaticKey(P∗). The probability of
this event occurring is bounded by the total number of parties times
the success probability of forging the signature, Succ(Πsign), which
per assumption was hard, i.e. negligible. In other words,

Pr[Forge] ≤ |P| · Succ(Πsign),

3.5 authenticated sit (a-sit) 51

Algorithm 2 SSDDH distinguisher, D.
Input: E0, E1, φ0(P1), φ0(Q1), φ1(P0), φ1(Q0), E′

1: h R← {1, . . . , Λ}, where Λ is an upper bound on the number of
sessions activated by A in any interaction.

2: Invoke A and simulate protocol to A:
3: Generate static signature/verification keys for each party Pi ∈

P.
4: For the g-th session (g 6= h): Generate ephemeral random

nonces as in SetupI I and simulate the GKE protocol as prescribed
by Protocol 52.

5: For the h-th session: Simulate as in the h-th session of Algo-
rithm 1, using signature and verification keys and random nonces
as prescribed by Protocol 52 for message sending.

6: if the h-th session is chosen by A as the test session then
7: Provide A as the answer to the distinguishing query, i.e.,
8: d← A’s output
9: else

10: d R← {0, 1}.
Output: d

such that the probability that Forge occurs, is negligible.
Let Repeat be the event that a nonce used by any party in response

to a Send query was previously used by that party. Recall that the
adversary is in charge of all communications. If we ignore the unique-
ness of the session name, sN, which will only force the Send queries
considered to be from the same execution of the protocol, then the
probability of this event occurring is bounded by the maximal number
of Send queries in a protocol and the number of protocol executions,
in the sense that

Pr[Repeat] ≤ ν(ν + Λ)

2λsign
,

where ν is the maximal number of Send queries queried by the adver-
sary in a single execution of the protocol, and Λ is as in Algorithm 2.
As both ν and Λ are polynomial, this probability is negligible.

Let the sum of these two negligible probabilities, for Forge and
Repeat, be denoted as negl.

If the test session is not the h-th session, then D outputs a random
bit, i.e. has advantage 0. If the test session is the h-th session, which
happens with probability 1/Λ, then A will succeed with advantage
ε. Hence, the final advantage of the SSDDH distinguisher D is (ε −
negl)/Λ, which is non-negligible.

Due to the fact that our compiler simply adds signatures and signs
every message, any adversary that could break forward security of
A-SIT could break forward security of SIT, which has forward security,

52 group key exchanges from isogenies

by Theorem 49. This gives us a contradiction, hence A-SIT has forward
security.

The above compiler can be instantiated using P2P-SIT as the un-
derlying protocol instead of SIT, with only a slight change to the
Inisign step. The change is that party Pi still computes the signature
σ← Signsigni

(Pi|sN|0|ηi) but only multicasts Pi|sN|0|ηi|σ to its parent
and its children, as opposed to all the descendants. The session specific
information is also reduced to

infos
i = gid|sN|Ppar(i)|ηpar(i)|P1.cld(i)|η1.cld(i)| . . . |Pli .cld(i)|ηli .cld(i).

By an analogous proof as that for A-SIT, we get the following theorem.

Theorem 54. Assuming the signature scheme Πsign is (post-quantum)
secure and that SSDDH is (post-quantum) hard, authenticated P2P-SIT
(A-P2P-SIT) is a (post-quantum) secure AGKE (with forward security).

Note 55. Initially, our GKE (and thereby the peer-to-peer version and AGKE

versions) incorporates the generation of a double-tree and a session name,
sN, into the protocol creation algorithm. The AGKE compiler of Sect. 3.5 is a
variant of the Desmedt-Lange-Burmester compiler [18], where infos

i (called
direct

j
U in [18]) is no longer included in the signature of messages, but sN

instead. The reason is that infos
i has at least length O(log n) while the session

name, sN, may be much shorter, which is an improvement without detracting
from the security (see the Repeat event argument in the proof of Thm. 53). In
fact, [18] do not use a session name as we do and do not sign their random
nonces when multicasting them to the relevant parties, which leaves them
open to attacks such as replay attacks.

3.6 comparison

In this section, we compare our GKE with a trivial isogeny based
GKE, isogeny-based GKE (Isog-GKE) (sketched in Sect. 3.2), and SIBD.
Essentially, in Isog-GKE, parties are assembled in a cyclic structure,
as in BDI and SIBD, letting Pn = P0,Pn+1 = P1, etc.. However, for
Isog-GKE, each round each party computes an isogeny on the previous
party’s public curve using their own secret key. The party then uses
the resulting curve as its public curve in the next round (see [27] for
an explicit construction). The Isog-GKE and SIBD protocols both achieve
n-party GKEs with O(n) communication and memory complexity.

In the authenticated case, we compare an authenticated version of
Isog-GKE given in [4], which we call isogeny-based AGKE (Isog-AGKE).
We also compare with SIBD made into an AGKE by using the Katz-
Yung compiler [41]. The Isog-AGKE only requires 3 rounds, however
each round each party must compute many isogenies and send large
amounts of information to the next party. Although it is slightly more
efficient than a trivial isogeny based GKE with each message signed

3.6 comparison 53

Table 3.1: Detailed comparison table of isogeny-based GKEs, assuming a
binary double-tree for SIT and P2P-SIT. I and S denote isogeny
tuples and summed values, respectively. Values in square brackets
are particular for leaf nodes, if they differ from other nodes.

Protocol Rounds Isog.s Public Comm. Values

Trivial GKE n−1 n−1 (n−1)I n−1 n−1

Isog-GKE [4] 2 n−1 (n−1)I n−1 n−1

SIBD [27] 2 3 1I + 1S 2I + (n−1)S n−1

SIT 2 4 1I+2S 3I+(blog2nc−1)S blog2nc
[2] [1I] [1I + blog2 ncS]

P2P-SIT blog2nc 4 1I + 2S 3I + 1S 2

[2] [1I] [1I + 1S]

Table 3.2: Comparision overview of isogeny-based GKEs and AGKEs, assum-
ing a balanced double-tree for SIT, P2P-SIT and their authenticated
versions, with l children per non-leaf node.

Protocol Rounds Isog.s Public Comm. Values

Trivial GKE O(n) O(n) O(n) O(n) O(n)

Isog-GKE [4] 2 O(n) O(n) O(n) O(n)

SIBD [27] 2 3 2 O(n) O(n)

SIT 2 l + 2 l + 1 O(logln) O(logln)

P2P-SIT O(logln) l + 2 l + 1 l + 2 2

Isog-AGKE [4] 3 O(n) O(n) O(n) O(n)

SIBD [27] 3 3 3 O(n) O(n)

+ Katz-Yung [41]

A-SIT 3 l + 2 4 O(logln) O(logln)

A-P2P-SIT O(logln) l + 2 l + 2 2l + 3 2

54 group key exchanges from isogenies

and verified, it is still an AGKE with communication and memory
complexity O(n).

We have already stated our comparison parameters before (number
of rounds, communication complexity, and memory complexity) but
for these isogeny based (A)GKEs, we will also compare the number
of isogeny computations and the number of public values. We recall
that the number of rounds is the maximal number of times any party
must wait for information from other parties in order to proceed
(this includes sequential rounds that a party may not be directly
involved in). The communication complexity considers the maximal
number of broadcast/multicast messages received by any party in
one call of the protocol.9 The memory complexity is the maximal
number of memories needed to compute the session key. For our
section specific values, the number of isogenies is the maximal number
of isogenies computed per party and the number of public values
is the maximal number of public values (keys, etc.) computed and
broadcast/multicast per party (without multiplicity).

For SIT, P2P-SIT, and their authenticated versions, we note that hav-
ing li children, party Pi must compute li j-invariant differences (the
x-values generated in the protocol), one for each child, as well as
li + 2 isogeny computations. As we do not a priori assume a balanced
tree (where each non-leaf party has the same number of children),
complexity analysis of our protocol is difficult beyond this. For com-
parison reasons, in this section, we therefore assume a balanced tree,
i.e. li = l for some l ≤ (n− 2)/2 for all non-leaf Pi (P0 and P1 have
an extra child each, namely each other). As for l, computational and
communicational complexity depends on l. However, the number of
rounds depends on log l. Thus, if computational complexity is critical,
we use small l. If round complexity is critical, we use large l. In SIT, if
we only consider computational power, then the fewest overall number
of computations per party occurs when l = 2 (l = 1 would give lin-
ear order communication complexity). This is true of P2P-SIT protocol
as well. On the other hand, in the authenticated versions, at most
l + logl n signatures must be verified per party and at most l + 1 mes-
sages signed. Considering this, larger l are preferable, computationally
speaking. Table 3.1 shows a detailed comparison in parameters for
isogeny-based GKEs, assuming fixed l = 2 for our proposed GKEs,
while Table 3.2 shows a comparison for the GKEs and the AGKEs using
big-O notation, assuming a balanced double-tree with l children per
node for our protocols.

9 In doing so, it is assumed that broadcasting/multicasting a message is independent
of the number of receivers but that receiving l messages means that the receiver
incurs a cost of l, even if all messages are received in a single round. The reason for
this is that it takes into account that receiving messages requires being online and
also storing said messages while broadcasting/multicasting is usually a one-time
operation.

3.7 concluding remarks 55

Our SIT protocol consists of two rounds, where in the first round
the SIDH public keys are exchanged and in the second round the
differences of j-invariants are multicast. The number of isogenies per
party is one initial one and then one for the parent and one for each
child. The SIDH public key and one j-invariant difference per child (or
no difference, in the case of the leaf-nodes) are public values multicast
by each party while the SIDH public keys of the parent and each
child, as well as one j-invariant difference from each ancestor, are the
multicast values received. Finally, one j-invariant difference from each
ancestor as well as the SIDH key shared with the parent are required
by a party to compute the session key.

For P2P-SIT, the number of rounds are more or less exchanged with
the communication and memory complexity.

For the authenticated versions, simply add a round for initializing
the signature and increase the public values and communications for
each of the extra public values needed to be multicast for the signature
initialization (see Table 3.2).

For the computation of the shared session key, SIBD parties must
receive and use one extra value from each of the n parties, while SIT

parties only require one extra value per ancestor. This leads to SIT’s low
communication and memory complexity. On the other hand, in SIBD,
each party only computes and broadcasts a single j-invariant product,
while in SIT, each party computes and multicasts an extra j-invariant
difference per child. For the sake of efficiency, especially when using
an unbalanced double-tree in SIT, this must therefore be taken into
account.

3.7 concluding remarks

We proposed supersingular isogeny tree-based GKE, a generalization
of the tree-based BDII using SIDH, reducing the security to the SSDDH

problem. We also proposed peer-to-peer SIT, a sequential version
having the same security. Finally, we proposed authenticated SIT and
authenticated P2P-SIT, AGKEs resulting from a modified Katz-Yung
compiler that combined SIT, respectively P2P-SIT, with a signature
scheme, retaining the low complexity of SIT, respectively P2P-SIT.

Versatility, low complexity, and security are the three things make
SIT and P2P-SIT highly competitive GKEs. The versatility of tree-based
constructions in the design of communications networks, where the
double-tree may be structured according to processing power or mem-
ory capabilities of the parties, transfers to SIT and P2P-SIT. The trivial
isogeny based GKE, Isog-GKE, and SIBD have no such versatility, forc-
ing each party to shoulder equal work. SIT and P2P-SIT also allow for
more or less equal work distribution (barring the leaves), but even
in such a balanced version, where each non-leaf party has l chil-
dren, SIT has O(logl n) communication and memory complexity, as

56 group key exchanges from isogenies

opposed to O(n), while P2P-SIT has constant communication and mem-
ory complexity. Lastly, the security proofs of SIT and P2P-SIT reduce
simply and directly to the SSDDH problem, like SIDH, rather than a
related problem, which the proof of SIBD does (see [60]), inspiring
more confidence in the post-quantum security of SIT and P2P-SIT. The
authenticated versions retain the versatility, low complexity, and secu-
rity of these constructions as well. We are therefore confident in the
utility of SIT, P2P-SIT, A-SIT, and A-P2P-SIT, in PQC.

On top of the utility of our own protocol, we hope that our con-
struction helps to inspire trust in, and promote the use of, SIDH as a
post-quantum secure KE.

4
G R O U P K E Y E X C H A N G E S F R O M
R I N G - L E A R N I N G - W I T H - E R R O R S

4.1 introduction

Ring-learning-with-errors (R-LWE) is a cryptographic approach for PQC,
a candidate for maintaining security against the upcoming quantum
computers while using classical computers to enact the cryptographic
protocols. As is, it has been applied to fundamental cryptography such
as the two party KEs by Ding, Xie, and Lin [20] (and with Peikert’s
reconciliation tweak [52]). Apon, Dachman-Soled, Gong, and Katz [3]
at PQCrypto 2019, and Choi, Hong, and Kim [13] from 2020, both
manage to extend the applicability further by showing how to create
AGKEs from the D-R-LWE problem [48]. Their schemes are interesting
generalizations of DH based GKEs, one by Burmester and Desmedt
[8] and one by Dutta and Barua [23]. However, for n parties, their
protocols both have linear order communication complexity.

In this chapter, we generalize BDII to the R-LWE framework (see
Sect. 2.6) by combining it with the Ding et al [20] KE using Peikert’s
tweak [52], and call it the tree-based R-LWE GKE (Tree-R-LWE-GKE).
Like SIT given in Chapter 3, it is a constant round protocol with
logarithmic order communication and memory complexity. We also
generalize the sequential version, the peer-to-peer tree-based R-LWE
GKE (P2P-Tree-R-LWE-GKE). P2P-Tree-R-LWE-GKE achieves constant com-
munication and memory complexity but logarithmic order round
complexity. The security of these protocols reduces to a decision Diffie-
Hellman-like version of the D-R-LWE problem, shown by Bos, Costello,
Naehrig, and Stebila [7] to have comparable security to the D-R-LWE

problem (see Theorem 38 on p. 29).
As we did in Chapter 3, we extend these protocols by creating

a compiler that turns both of them into AGKEs, while maintaining
logarithmic order complexities. The security of the compiler is given
by a reduction to the decision Diffie-Hellman-like (DDH-like) problem
(Defn. 37). The specific differences between our compiler and the one
given in [18] are explained in our concluding remarks.

4.2 related work

We give here a sketch of the Apon et al [3] and Choi et al. [13] R-LWE

GKEs. The first is based on BDI directly while the second is based
on a modification of BDI called Dutta-Barua. We give a sketch of the
unauthenticated GKEs as given in [13], albeit in our notation.

57

58 group key exchanges from ring-learning-with-errors

Both GKEs arrange the parties in a ring structure, letting Pn =

P0,Pn+1 = P1, etc., and achieve post-quantum R-LWE n-party AGKEs

with communication and memory complexity O(n).

Protocol 56 ([3] and [13] R-LWE GKEs sketch). For n parties, the protocol
is as follows.

setup: Upon being given a security parameter 1λ, outputs a ring Rq and
ring element a← Rq to all parties.

publish1 : Each party Pi chooses a ‘small’ secret value si ∈ Rq and ‘small’
noise ei ∈ Rq and broadcasts zi = asi + ei to all other parties.

publish2 : Each party Pi chooses another ‘small’ noise e′i ∈ Rq and broad-
casts xi = (zi+1 − zi−1)si + e′i to all other parties.

keygen: Each protocol generates keys in the following ways, respectively.

Apon+ : ki = nzi−1si + (n− 1)xi + (n− 2)xi+1 + · · ·+ xi+n−2.

Choi+ : Each party Pi calculates yi = xi + zi−1si and yi+j = xi+j +

yi+(j−1) for j = 1 to n− 1. Then ki = ∑n−1
j=0 yi+j.

Needless to say, both GKEs have a linear complexity as keys and
value need to be sent to and received from all the other parties in the
instance. Both may be made into AGKEs using the Katz-Yung compiler
[41].

4.3 r-lwe tree-based gke (tree-r-lwe-gke)

We again use the concept of a double-tree as given in Section 3.3
(p. 40). We recall that excepting the leaves of the tree, each party Pi
has a parent par(i), and a set of children {l.cld(i)|l = 1, 2, . . . , li} where
0 ≤ li ≤ n− 2 is the amount of children of Pi, which are all considered
the neighbours of Pi (see Figure 3.2). For all Pi that are leaves we have
li = 0, i.e. the lowest rungs of each branch have no children. The set
ancestors(i) is the set of indexes of all ancestors of a party Pi, including
i but having removed 0 and 1. Parties P0 and P1 are parents of each
other.

For use in our AGKE compiler in Sect. 4.5, we add the session name
to the GKE protocol parameter generation.

The tree-based R-LWE GKE (Tree-R-LWE-GKE) protocol for n parties,
Πn, takes as input the security parameter 1λ and the number of parties,
using the security parameter to determine the parameters m, R, q, Rq

and χ for the DDH-like problem (Definition 37), and outputs a session
key K ∈ {0, 1}m.

The parameter generator algorithm, ParaGen, takes as input the
security parameter 1λ and the number of parties, n. The algorithm
outputs a tuple consisting of the DDH-like parameters m, R, q, Rq, χ, a

uniformly random a R← Rq, a double-tree for the n parties, Γ, and a
unique session name, sN.

4.3 r-lwe tree-based gke (tree-r-lwe-gke) 59

Protocol 57 (Tree-based R-LWE GKE (Tree-R-LWE-GKE)). The parties Pi
for i = 0, 1, . . . , n− 1 generate a GKE protocol Πn as follows:

setup: Given a security parameter, 1λ, and the number of parties, n, the
algorithm outputs to each party Pi the tuple:

P := (m, R, q, Rq, χ, a, Γ, sN)← ParaGen(1λ, n),

where sN is a unique session name.

publish1 : Given P, each Pi individually and randomly chooses secret
keys si, ei, e′i

R← χ and then computes a corresponding public key
bi = asi + ei. Pi then multicasts its public key to its neighbours
(parent and li children).

publish2a : Upon receiving a public key bpar(i) from its parent, Ppar(i), Pi
generates the value vi = bpar(i)si + e′i. Using the randomized doubling

function, Pi finds the value vi
R← dbl(vi) ∈ R2q. Then using the

cross-rounding function, Pi computes

ci = 〈vi〉2q,2 ∈ {0, 1}m,

which is the reconciliation key for its parent. Finally, Pi sends this
reconciliation key to said parent, Ppar(i).

We assume, wlog, that P1 generates c1 and sends it to P0, while P0

generates no reconciliation key c0.

publish2b : Upon receiving the respective reconciliation keys cl.cld(i) from
each of its li children, and using the value vi, Pi computes the respective
shared keys kpar(i),i and kl.cld(i),i for each l ∈ {1, . . . , li}:

kpar(i),i = dvic2q,2 ∈ {0, 1}m,

kl.cld(i),i ← rec(2bl.cld(i)si, cl.cld(i)) ∈ {0, 1}m,

using the modular rounding function, d·c , and the reconciliation
function, rec.

Again, wlog, P1 sets k0,1 = dv0c2q,2 ∈ {0, 1}m while P0 computes
k1,0 ← rec(2b1s0, c1) ∈ {0, 1}m.

publish3 : Each Pi with children (this excepts the leaves of Γ) computes

xl.cld(i) = kpar(i),i ⊕ kl.cld(i),i,

and multicasts this value to its respective descendants, for each l ∈
{1, . . . , li}.

keygen: Each Pi computes the session key

Ki = kpar(i),i ⊕
⊕

h∈ancestors(i)
xh = K.

60 group key exchanges from ring-learning-with-errors

Proposition 58 (Correctness). Except with negligible probability, each
party in the Tree-R-LWE-GKE protocol (Protocol 57) computes the same session
key K = k0,1.

Proof. Proof by induction. By key reconciliation, except with negligible
probability, K0 = K1 = k0,1. Assume that Kpar(i) = K then, as

Kpar(i) = kpar(par(i)),par(i) ⊕
⊕

m∈ancestors(par(i))
xm,

except with negligible probability, we have that, except with negligible
probability,

Ki = kpar(i),i ⊕
⊕

m∈ancestors(i)
xm

= kpar(i),i ⊕
(

kpar(par(i)),par(i) ⊕ ki,par(i)

)
⊕

⊕
m∈ancestors(par(i))

xm

= Kpar(i) = K.

We draw attention to the session key being the shared key, K0,1, of
the initial parties P0 and P1.

Theorem 59. Under the assumption that the D-R-LWE problem (Defini-
tion 30) is hard, the Tree-R-LWE-GKE protocol given in Protocol 57 is a secure
GKE (with forward security).

Proof. We must show that the protocol in Protocol 57 satisfies the
security notion given in Definition 41. The first requirement is satisfied
by the correctness shown in Proposition 58.

For the second requirement, assume that there exists a (not neces-
sarily classical) polynomial-time adversary A, allowed polynomially-
many classical queries, with non-negligible advantage Adv(A) = ε

(see Definition 41 for this notation). We build a polynomial-time dis-
tinguisher D, allowed polynomially-many classical queries, for the
DDH-like problem in Algorithm 3.

As an analysis of our distinguishing algorithm, we note the follow-
ing.

For every session, except the h-th, D simulates the Tree-R-LWE-GKE

protocol to A, choosing new random secret keys for each party in
each session and simulating all communication through A. As all
randomness is generated anew for each session and there are no
long-term keys, all sessions are independently generated. Hence, any
attack on any other session does not reveal anything about the h-th
session except through repetition of secret keys, which happens with
negligible probability.

4.3 r-lwe tree-based gke (tree-r-lwe-gke) 61

Algorithm 3 DDH-like distinguisher, D.
Input: (m, R, q, Rq, χ, a, b0, b1, c, κ) as in the DDH-like problem.

1: h R← {1, . . . , Λ}, where Λ is an upper bound on the number of
sessions activated by A in any interaction.

2: Invoke A and simulate protocol to A, except for the h-th activated
protocol session.

3: For the h-th session:
4: Set P := (m, R, q, Rq, χ, a, Γ, sN), where Γ is an n-party double-

tree and sN is the session name.
5: Set b′0 = b0, b′1 = b1 and c1 = c. Choose (si, ei, e′i)

R← χ3 for
i = 2, . . . , n− 1 and set b′i = asi + ei. Set vi = bpar(i)si + e′i, generate

vi
R← dbl(vi) ∈ R2q and compute ci = 〈vi〉2q,2 ∈ {0, 1}m. Simulate

multicasting for each Pi along with identifying information (Pi, s).
6: Set

x′l.cld(0) := κ ⊕ k0,l.cld(0), ∀l ∈ {1, 2, . . . , l0},

x′l.cld(1) := κ ⊕ k1,l.cld(1), ∀l ∈ {1, 2, . . . , l1},

x′l.cld(i) := kpar(i),i ⊕ kl.cld(i),i, ∀l ∈ {1, 2, . . . , li},

for i ≥ 2 where Pi is not a leaf in Γ.
7: if the h-th session is chosen by A as the test session then
8: Provide A as the answer to the test query,
9: d← A’s output

10: else
11: d R← {0, 1}.
Output: d

For the h-th session, using the public information for P0, namely b0,
D simulates R-LWE KE (Definition 36) with the secret keys sl.cld(0), el.cld(0),
and e′

l.cld(0) of party Pl.cld(0), obtaining the shared key k0,l.cld(0) =

kl.cld(0),0, except with negligible probability. Likewise, using the public
information for P1, namely b1, D simulates R-LWE KE with the se-
cret keys sl.cld(1), el.cld(1), e′

l.cld(1) of party Pl.cld(1), obtaining k1,l.cld(1) =

kl.cld(1),1, except with negligible probability. All other shared keys may
be computed in polynomial-time as the secret keys for Pi are known
for i = 2, . . . , n− 1.

As the si, ei, e′i are chosen uniformly at random for i ≥ 2, the dis-
tribution of the b′i , x′

l.cld(i) in Algorithm 3 are identical to that in a
Tree-R-LWE-GKE instance.

The transcript given to A by D is

(b′0, . . . , b′n−1, x′1.cld(0), x′2.cld(0), . . . ,

. . . , x′l0.cld(0), x′1.cld(1), . . . , x′(ln−1).cld(n−1)),

where we assign a blank value for the x′ value when there is no child.

62 group key exchanges from ring-learning-with-errors

In each session, all attack queries are answered fully and honestly.
If the h-th session is the test session and κ is a valid Tree-R-LWE-GKE

session key, then κ = k0,1, i.e. (a, b0, b1, c, κ) is indeed a valid DDH-like

tuple, where κ = dv0c2q,2.
If the h-th session is not the test session, then D outputs a random

bit, i.e. it has advantage 0. However, if the test session is the h-th ses-
sion, which happens with probability 1/Λ, then A will succeed with
advantage ε. Hence, the final advantage of the DDH-like distinguisher
D is ε/Λ, which is non-negligible.

Corollary 60. Assuming the D-R-LWE problem is post-quantum hard, the
Tree-R-LWE-GKE protocol is a post-quantum secure GKE with forward security.

4.4 peer-to-peer r-lwe group key exchange (p2p-tree-r-
lwe-gke)

Here we give our peer-to-peer (sequential) version of Tree-R-LWE-GKE,
calling it peer-to-peer tree-based R-LWE GKE (P2P-Tree-R-LWE-GKE).
The protocol is sequential, which here means that a party completely
recovers the session key before computing and sending any message
to its children. As it is sequential and performed in such a manner,
the number of rounds is bounded by the height of the double-tree
but the communication and memory complexity become constant.
Although overly similar to Tree-R-LWE-GKE, differences are found af-
ter step Publish2b. Through an analogous proof as that given for
Tree-R-LWE-GKE, the peer-to-peer version achieves post-quantum secu-
rity, which we therefore omit.

Peer-to-peer tree-based R-LWE GKE (P2P-Tree-R-LWE-GKE) for n par-
ties, Πn, takes as input the security parameter 1λ and the number
of parties, using the security parameter to determine the parame-
ters m, R, q, Rq and χ, as in the DDH-like problem (Definition 37), and
outputs a session key K ∈ {0, 1}m.

The parameter generator algorithm, ParaGen, takes as input the
security parameter 1λ and the number of parties, n. The algorithm
outputs a tuple consisting of the DDH-like parameters m, R, q, Rq, χ, a

uniformly random a R← Rq, a double-tree for the n parties, Γ, and a
unique session name, sN.

Protocol 61 (P2P-Tree-R-LWE-GKE). The parties Pi for i = 0, 1, . . . , n− 1
generate a GKE protocol Πn as follows:

setup: Given the security parameter, 1λ, and the number of parties, n, the
algorithm outputs to each party Pi the tuple:

P := (m, R, q, Rq, χ, a, Γ, sN)← ParaGen(1λ, n),

where sN is a unique session name.

4.5 authenticated tree-r-lwe-gke 63

publish1 : Given P, each Pi individually and randomly chooses secret
keys si, ei, e′i

R← χ then computes a public key bi = asi + ei. Pi then
multicasts its public key to its neighbours (parent and li children).

publish2a : Upon receiving a public key bpar(i) from its parent, Ppar(i), Pi
generates the value vi = bpar(i)si + e′i. Using the randomized doubling

function, Pi finds the value vi
R← dbl(vi) ∈ R2q. Using the cross-

rounding function, Pi then computes ci = 〈vi〉2q,2 ∈ {0, 1}m, the
reconciliation key for its parent, which Pi sends to said parent, Ppar(i).

We assume, wlog, that P1 generates c1 and sends it to P0, while P0

generates no reconciliation key c0.

publish2b : Upon receiving the respective reconciliation keys cl.cld(i) from
its li children, and also using the value vi, Pi computes the shared keys
kpar(i),i and kl.cld(i),i for each l ∈ {1, . . . , li}:

kpar(i),i = dvic2q,2 ∈ {0, 1}m,

kl.cld(i),i ← rec(2bl.cld(i)si, cl.cld(i)) ∈ {0, 1}m,

for l ∈ {1, . . . , li}, using the modular rounding function, d·c , and the
reconciliation function, rec.

Again, wlog, P1 sets k0,1 = dv0c2q,2 ∈ {0, 1}m while P0 computes
k1,0 ← rec(2b1s0, c1) ∈ {0, 1}m.

publish3a : Parties P0 and P1 have already computed the same session
key K = k1,0 = k0,1 (except with negligible probability) and send
xl.cld(0) = K⊕ kl.cld(0),0, respectively xl.cld(1) = K⊕ kl.cld(1),1, to their
respective children, for l ∈ {1, . . . , l0}, respectively l ∈ {1, . . . , l1}.

keygen and publish3b : Upon receiving xpar(i), Pi computes the ses-
sion key

Ki = xpar(i) ⊕ kpar(i),i.

Every party Pi with children (this excepts the leaves of Γ), then com-
putes xl.cld(i) = Ki ⊕ kl.cld(i),i and multicasts this to its l-th child, for
each l ∈ {1, . . . , li}.

Corollary 62. Assuming the D-R-LWE problem is post-quantum hard, the
P2P-Tree-R-LWE-GKE protocol (Protocol 61) is a post-quantum secure GKE with
forward security.

4.5 authenticated tree-r-lwe-gke

In the compiler we give in this section, all parties Pi generate static
(long-term) signing and verification keys before any GKE has been
begun. For each GKE instance, each involved party then generates
session-specific randomness in the form of a random nonce. The party

64 group key exchanges from ring-learning-with-errors

uses this nonce along with the party ID, session name, and message
counter, for all communication.

As signature schemes usually require some form of public key in-
frastructures (PKIs) to link verification keys to parties, for example
using a certificate authority for registration and issuance of certifi-
cates, we assume that such infrastructure is in place by the AGKE

commencement.
In Tree-R-LWE-GKE, assuming a balanced double-tree, i.e. the same

number of children per node, each user only needs to exchange a
logarithmic number of messages in order to compute the session key.
Our compiler preserves this communication complexity.

We assume there exists a set of all parties P. Consider the follow-
ing protocol, which uses a secure signature scheme, Πsign, and the
forward-secure Tree-R-LWE-GKE, Πtree, where the latter is assumed to
be instantiated on the parameters m, R, q, Rq, and χ as in the DDH-like

problem (Problem 37). We consider the corresponding parameter gen-
erating algorithms: Gensign and Gentree. Gensign takes as input a security
parameter 1λsign and outputs parameters required for secure signing.
Gentree takes as input 1λ and a number of participants, n, and outputs
the public parameters for Tree-R-LWE-GKE.

Protocol 63 (Authenticated Tree-R-LWE-GKE). The protocol is as follow-
ing.

setupsign : For a security parameter 1λsign , the algorithm outputs to all of
the parties in P the parameters for the chosen signature scheme:

Psign
R← Gensign(1λsign).

keysign : Given Psign, each party Pi ∈ P generates the signing/verification
keys (signi, vrfyi). These are static (long-term) keys.

setup II : Let Pn = {P0, . . . ,Pn−1} ⊂ P be a set of n parties wishing to
do a GKE (re-indexing if need be) and let gid be their group identifier
(of size O(logk n)). Each Pi ∈ Pn chooses an ephemeral random nonce
ηi ∈ {0, 1}λsign for the session.

paragen: For the security parameter 1λ and the number of parties, n,
the algorithm outputs to all the parties in Pn the Πtree parameters:

Ptree := (m, R, q, Rq, χ, a, Γ, sN)
R← Gentree(1λ, n),

the tuple of the public values for secure Tree-R-LWE-GKE, public
value a, the double-tree Γ, and the unique session name sN, as
prescribed by Tree-R-LWE-GKE.

inisign : Let relsi = {P1′ ,P2′ , . . . ,Pt′i
} denote the set of all ances-

tors, party P0 or P1 (depending on which side of the double-
tree Pi is on), and the li children of Pi in session s.1 The size

1 This s may not be the same for each party in the protocol instantiation.

4.5 authenticated tree-r-lwe-gke 65

of this set depends, in particular, on the amount of ancestors.
Each Pi computes σ ← Signsigni

(Pi|sN|0|ηi), and multicasts
Pi|sN|0|ηi|σ to its parent and all its descendants. After positive
verification, each party Pi stores the session specific informa-
tion as infos

i = gid|sN|P1′ |η1′ | . . . |Pt′i
|ηt′i

, as a part of its state
information.

GKE: The Tree-R-LWE-GKE protocol, ΠTree, is instantiated with these changes:

• Whenever party Pi is supposed to multicast a message m as part
of the protocol, the party computes σ← Signsigni

(Pi|sN|j|m|ηi),
where j is the message number, and multicasts the concatenated
string Pi|sN|j|m|σ.2

• Upon receiving P∗|sN|j|m|σ, party Pi checks that:

1. P∗ ∈ relsi ,

2. j is the next expected sequence number for messages from
P∗,

3. 1← Vrfyvrfy∗(P∗|sN|j|m|η∗, σ).

If any of these are untrue, the session is aborted, i.e. Pi does not
complete the session, wiping its state. Otherwise, Pi continues as
it would in Πtree and uses m.

keygen: Each non-aborted session computes the session key as in Πtree.

Theorem 64. Assuming that the signature scheme Πsign is (post-quantum)
secure, the D-R-LWE problem is (post-quantum) hard, the authenticated Tree-
R-LWE-GKE given in Protocol 63 is a (post-quantum) secure AGKE (Defini-
tion 42), with forward security.

Proof. As a message is utilized in a session as it would in Πtree if the
message is verified, by the correctness of Tree-R-LWE-GKE, and as we
assume that Πsign is secure (and thereby has correctness), the first
requirement in Defn. 42 is satisfied by Prot. 63.

For the second requirement, assume that there exists a (not nec-
essarily classical) polynomial-time adversary A with non-negligible
advantage Adv(A) = ε. We use the adversary A to construct a distin-
guisher D for the DDH-like problem, which we give in Algorithm 4.

There are three ways D may succeed: By forging a signature for a
party in the Test case, by reusing a signature, or by distinguishing a
correct session key from random. The success probability of the first
is bounded by the advantage of an adversary to forge a signature, i.e.
negligible. The second is bounded by a combinatorial consideration of
the amount of sent messages and protocol executions compared to the

2 At most this requires one re-signing of a message when a party is required to send
the Tree-R-LWE-GKE protocol x value to a child (with which it has already exchanged
more than one previous message) and its other descendants (with which it has sent
at most one previous message).

66 group key exchanges from ring-learning-with-errors

space of random nonces. The third is bounded by the advantage of an
adversary to distinguish between a Tree-R-LWE-GKE session key and a
random key in the same space, which by Theorem 59 is negligible.

Algorithm 4 DDH-like distinguisher, D.
Input: (a, b0, b1, c, κ)

1: h R← {1, . . . , Λ}, where Λ is an upper bound on the number of
sessions activated by A in any interaction.

2: Invoke A and simulate protocol to A:
3: Generate static signature/verification keys for each party Pi ∈

P.
4: For every session except the h-th: Generate ephemeral random

nonces and simulate GKE protocol Πtree as prescribed by Prot. 63.
5: For the h-th session, using signature and verification keys and

random nonces as prescribed by Prot. 63 for message sending/-
multicasting:

6: Set Ptree = (n, m, R, q, Rq, χ, a, Γ, sN), where Γ is an n-party
binary graph and sN is the session name.

7: Set b′0 = b0, b′1 = b1 and c1 = c. Choose (si, ei, e′i)
R← χ3 for

i = 2, . . . , n− 1 and set b′i = asi + ei. Set vi = bpar(i)si + e′i, generate

vi
R← dbl(vi) ∈ R2q and compute ci = 〈vi〉2q,2 ∈ {0, 1}m.

8: Set

x′j.cld(0) := κ ⊕ k0,j.cld(0), ∀j ∈ {1, 2, . . . , l0},

x′j.cld(1) := κ ⊕ k1,j.cld(1), ∀j ∈ {1, 2, . . . , l1},

x′j.cld(i) := kpar(i),i ⊕ k j.cld(i),i, ∀j ∈ {1, 2, . . . , li},

for i ≥ 2 where Pi is not a leaf in Γ.
9: if the h-th session is chosen by A as the test session then

10: Provide A as the answer to the distinguishing query,
11: d← A’s output
12: else
13: d R← {0, 1}.
Output: d

DDH-like distinguisherD generates correctly distributed signing/ver-
ification keys and random nonces to be used in sessions, and using
them, honestly simulates all communication requests in the sessions
(recall that the adversary A is in charge of all communications in our
model).

For any session g 6= h, D may answer any query by A entirely.
For the h-th session, the distributions are as in Tree-R-LWE-GKE, giving

us the session key distributed as in the DDH-like problem. We therefore
wish to show that the forging and repeating attacks succeed with
negligible probability such that any distinguishing attack must occur

4.5 authenticated tree-r-lwe-gke 67

on the key exchange part with non-negligible probability, i.e. we may
build a DDH-like distinguisher.

Let SignForge be the event that A can output a new, valid mes-
sage/signature pair with respect to the public verification key vrfy∗ of
some party P∗ before querying StaticReveal(P∗). The probability of
this event occurring is bounded by the total number of parties times
the success probability of forging the signature, SuccA(Πsign), which
per assumption was hard, i.e. the probability is negligible. In other
words,

Pr[SignForge] ≤ |P| · SuccA(Πsign),

such that the probability that SignForge occurs, is negligible.
Let Repeat be the event that a nonce used by any party in response

to a Send query was previously used by that party. Recall that the
adversary A is in charge of all communications. If we ignore the
uniqueness of the session names, sN, which will only force the Send

queries considered to be from the same execution of the protocol, then
the probability of this event occurring is bounded by the maximum
number of Send queries in a session and the amount of protocol
executions, in the sense that

Pr[Repeat] ≤ ν(ν + Λ)

2λsign
,

where ν is the maximum number of Send queries queried by the
adversary in a single execution of the protocol, and Λ is as in Algo-
rithm 4. As both ν and Λ are polynomially-bounded, this probability
is negligible.

Let the sum of these two negligible probabilities, for SignForge and
Repeat, be denoted as negl.

In each session, all attack queries are answered fully and honestly.
If the test session is not the h-th session, then D outputs a random

bit, i.e. has advantage 0. If the test session is the h-th session, which
happens with probability 1/Λ, then A will succeed with advantage
ε. Hence, the final advantage of the DDH-like distinguisher D is (ε−
negl)/Λ, which is non-negligible.

Forward security comes from the forward security of Πtree combined
with the ineffectiveness of replay attacks.

The above compiler can be instantiated using the P2P-Tree-R-LWE-GKE

as the underlying protocol instead of Tree-R-LWE-GKE, with only a
slight change to the inisign step. The change is that party Pi still
computes the signature σ← Signsigni

(Pi|sN|0|ηi) but only multicasts
Pi|sN|0|ηi|σ to its parent and its children, as opposed to all the respective
descendants. The session specific information is also reduced to

infos
i = gid|sN|Ppar(i)|ηpar(i)|P1.cld(i)|η1.cld(i)| · · · |Pli .cld(i)|ηli .cld(i).

By an analogous proof as that for authenticated Tree-R-LWE-GKE, we
get the following theorem.

68 group key exchanges from ring-learning-with-errors

Table 4.1: Comparision overview of R-LWE based AGKEs.

Protocol Rounds Communication Memory

Apon et al [3] 4 O(n) O(n)

Choi et al [13] 3 O(n) O(n)

Auth. Tree-R-LWE-GKE 4 O(log2n) O(log2n)

Auth. P2P-tree-R-LWE-GKE O(log2n) O(log2n) 2

Theorem 65. Assuming the signature scheme Πsign is (post-quantum) se-
cure and that the D-R-LWE problem is (post-quantum) hard, authenticated
P2P-Tree-R-LWE-GKE is a (post-quantum) secure AGKE, with forward secu-
rity.

4.6 comparison

In this section, we compare our AGKEs with other post-quantum R-LWE

GKEs: Apon, Dachman-Soled, Gong, and Katz [3] and Choi, Hong, and
Kim [13] (see Sect. 4.2).

We choose to consider our auth. Tree-R-LWE-GKE and auth. P2P-
Tree-R-LWE-GKE having binary double-trees as their graphs, which
are double-trees where each party (excepting leaves) has exactly 2
children. Due to the signature initialization, there is a communication
overhead in both AGKE of at most O(log2 n). This gives auth. Tree-
R-LWE-GKE a constant number of rounds with communication and
memory complexity log2(n), while the values are more or less reversed
for auth. P2P-Tree-R-LWE-GKE.

Let us reiterate our chosen evaluation parameters for the AGKEs (see
Section 3.6, p. 52): the number of rounds, the communication com-
plexity, and the number of values needed to compute the session key,
i.e. the memory complexity. The number of rounds is the maximum
number of times any party must wait for information from other par-
ties in order to proceed. The communication complexity is the maximum
number of broadcast/multicast messages received by any party in one
call of the protocol. The memory complexity is the maximum number of
values stored until the session key computation. Table 4.1 shows these
parameters for our selected AGKEs.

Our auth. Tree-R-LWE-GKE consists of four rounds, where in the
first round the signatures are initialized, in the second round the R-LWE

public keys are exchanged, in the third round reconciliation keys are
computed and exchanged, and in the fourth round the exclusive-or
of shared keys are exchanged. The multicast values received during
the protocol are the signature initialization values of all ancestors
and each child, R-LWE public keys of the parent and each child, a
reconciliation key from the parent, as well as one exclusive-or sum

4.7 concluding remarks 69

from each ancestor. In order to compute the session key, each party
must store one exclusive-OR sum from each ancestor as well as the
R-LWE key shared with the parent until the final round.

The number of rounds, communication complexity, and values
needed to generate the session key differ considerably between the
auth. Tree-R-LWE-GKE and auth. P2P-Tree-R-LWE-GKE protocols. We
remark that the overall smallest number of operations per party is
achieved when the graph is constructed as a binary double-tree, in
contrast to having multiple or variable children per node. However,
if the structure of the network and the computational power of the
parties is taken into consideration, among other factors, it might be
advantageous to select one protocol over the other and also arrange
the double-tree according to the factors.

Parameter Constraints. Beyond the parameter constraints required
for the hardness of the D-R-LWE problem, the parameters of [3] and
[13] (including the number of parties) are required to satisfy further
bounds set by the key reconciliation and Rényi bounds, for correct-
ness and security. Fixing the ring, noise distributions, and security
parameters therefore limits the amount of parties their protocols can
support, while our security proof sets no further constraints on our
parameters and our correctness bound makes the amount of parties
inconsequential (see below). Although our protocol does not have
constraints other than those required for the hardness of the DDH-like

problem, the advantage for an adversary in solving the DDH-like pro-
blem is less than the sum of the advantages of solving two instances
of the D-R-LWE problem (see [7, Theorem 1]), meaning that our R-LWE

parameters must be adjusted accordingly. For example, [7] suggest
n = 1024, q = 232 − 1, σ = 8/

√
2π to achieve statistical 128-bit classi-

cal security, giving theoretical 64-bit post-quantum security, assuming
Grover’s algorithm corresponds to a square-root speed up to the
search problem. Using these parameters and Proposition 2 of [7], we
find that the failure rate of our two AGKEs are equivalent and bounded
by the probability of at least one party having the wrong session key:
n · 2−214

.

4.7 concluding remarks

We gave a compiler for our Tree-R-LWE-GKE, relying on the hardness
of the D-R-LWE problem (via the DDH-like problem) and the security
of the signature scheme employed in the compiler. Our protocols
give us versatile post-quantum R-LWE n-party AGKEs that, when bal-
anced with 2 children per node, in one case achieves constant round
complexity with communication and memory complexity O(log2 n),
and in the other case, constant memory complexity with round and
communication complexity O(log2 n).

70 group key exchanges from ring-learning-with-errors

We admit that although the R-LWE AGKEs of [3] and [13] have high
communication and memory complexity, they may have some advan-
tages as they integrate the R-LWE KE mechanics into the protocol steps.
Our protocols require each pair of parent and child to complete a
R-LWE KE before proceeding so it might be possible to improve our
GKE by likewise integrating R-LWE KE mechanics into the tree struc-
ture. We have not yet considered the possibility. A great advantage
of our protocols is that they are tree-based, thus benefiting the ability
to structure the tree according to processing power and/or memory
capabilities. We further consider that signatures might not be required
for authentication if we employ an authenticated key exchange (AKE)
as the underlying KE, such as the one proposed by Zhang et al [66],
but the purpose of this chapter was to construct a compiler from the
basic R-LWE KE.

In conclusion, the added security benefit from reducing to the in-
distinguishability of a single instance of Ding, Xie, and Lin’s R-LWE KE

with Peikert’s tweak, the versatility of tree-based constructions, and
most importantly, the low communication and memory complexity
apparent in our constructions, make our protocols highly competitive
R-LWE based PQC AGKEs.

5
G E N E R I C G R O U P K E Y E X C H A N G E C O M P I L E R S

5.1 introduction

In secure communication, the cryptographic concept of a key exchange
is indispensable. No secure key exchange equals no secure communi-
cation. This is why when Diffie and Hellman presented their famous
Diffie-Hellman key exchange, they ushered in a new age of cryptog-
raphy. Their key exchange relies on the difficulty of solving the DDH

problem in order to create a public key exchange, the security of which
itself relied on the hardness of the discrete logarithm problem (DLP).
Since then, cryptographers have built on the foundation laid by this KE

and have presented KEs similar in form, but based on other hard prob-
lems than DLP. Now, with the age of quantum computing slowly but
surely approaching, the quest for a new world of secure cryptography
has begun. On this quest, quantum secure cryptosystem alternatives
to classical cryptosystems are the treasure at the end. However, due to
the breadth and depth of modern cryptography, this is an gargantuan
undertaking, and unfortunately, one with a deadline. Looking past the
current needs, it also beckons the question, what shall we do when an
even more powerful form of computing is emerges from the dark?

Collecting the efforts of the previous chapters, in this chapter, we
generalize the work and present a GKE compiler that relies not on the
security of an established KE currently available, but on the security
of almost any underlying secure two-party KE to achieve its security.
This is essentially what Desmedt, Lange, and Burmester set out to
do in [18], however they only gave a proof for the DH based case
and waved their hands at the more general compiler and security
proof. We therefore give both a generic and generalized definition of
a two-party KE as well as a related generic decisional hard problem
before describing and proving the GKE compiler secure.

5.2 preliminaries

The following generic KE protocol definition is based on DH [19] (see
Sect. 2.3.1), SIDH [25] (see Sect. 2.5), and R-LWE KE [20, 52] (see Sect. 2.6).

Public-key KEs are usually categorized as either being non-interac-
tive or interactive. Both types begin with some handshaking: agreeing
on a set of common and public parameters, which is usually assumed
to be output to each party by a parameter generator, before any actual
calculation begins. In a non-interactive protocol, parties then randomly
choose a secret key and output a public key. They may then retrieve

71

72 generic group key exchange compilers

the other party’s public key at leisure and calculate the shared key.
In an interactive protocol, after an initial public key is published, a
round occurs wherein a party calculates a new public key using at
least the initial public key of the other party. Yet another interaction
round (by the party having the initial public key) may then occur,
using this newest public key (if the newest public key is not used, we
may consider the public key calculated to be part of the initial round,
since all used information was already available). Such rounds may be
repeated as necessary, until both parties are able to calculate a shared
key.

As non-interactive KEs are not general enough for our purposes, and
interactive protocols too general, we will need an inchoate concept of
interaction. For this purpose, we define an encompassing concept, a
0/1-interactive KE (IKE). This definition encompasses non-interactive
KEs (0-interactive KEs (0-IKEs)) and once-interactive key exchanges,
1-interactive KEs (1-IKEs) (or “one-sided” interactive key exchanges,
as only one party is expected to publish a new public key, related to
the other party’s public key). Our definition can be generalized to
arbitrary n, but as our main results only hold for n = 0, 1, we restrict
our definition to these values. This also significantly simplifies our
notation throughout.

In the below protocol, for the security parameter 1λ, we consider
the algorithm Gen that generates the public parameters for the key
exchange. Furthermore, we consider the algorithms: secret key genera-
tors Sec, Sec′, public key generators Pub,Pub′, and KeyI and KeyA, the
inactive party and active party session key generators, respectively.

Protocol 66 (0/1-interactive KE (0/1-IKE)). The parties P0 and P1, gen-
erate a two-party key exchange protocol Π as follows:

setup: Given the security parameter, 1λ, Gen outputs to both parties the
tuple of public parameters:

P = (P0,P1)
R← Gen(1λ),

where P0 and P1 are party-specific tuples of public values.

publish: Each party chooses a random secret key and uses it to compute a
public key:

sk0
R← Sec(P0), pk0 ← Pub(sk0,P0),

sk1
R← Sec(P1), pk1 ← Pub(sk1,P1),

where sk0, sk1 ∈ KS and pk0, pk1 ∈ KP, i.e. elements of the primary
secret key and public key spaces, respectively. Each party then sends
their public key to the other party.

interact: This round can be activated by either party. Designate the ac-
tivating party the active party, PA, and the other the inactive party,

5.2 preliminaries 73

PI (for example, PA := P1 and PI := P0). Party PA, upon receiving
pk I , generates a second secret key and computes a second public key:

sk′A
R← Sec′(skA, pk I ,PA), pk′A ← Pub′(skA, sk′A, pk I ,PA),

where sk′A ∈ KS′ and pk′A ∈ KP′ , i.e. elements of the secondary
secret key and public key spaces, respectively. PA sends pk′A to PI and
continues on to the next step.

keygen: After receiving the necessary public keys, the session keys are
calculated in the following ways.

PI : k I ← KeyI(sk I , pkA, pk′A,PI),

PA : kA ← KeyA(skA, sk′A, pk I ,PA),

where kI and kA are elements of the session key space K.

If k I = kA, with non-negligible probability, then we say that the protocol
satisfies correctness, i.e. K = k I = kA is a shared key.

Note 67. Let us consider a few specificities of the above protocol definition.

1. In a non-interactive key exchange, the interact round is simply omit-
ted, such that sk′A and pk′A are empty values, resulting in session
keys:

PI : k I ← KeyI(sk I , pkA,PI),

PA : kA ← KeyA(skA, pk I ,PA),

as expected.

2. Not all values need to be used in each of the algorithms but are presented
in the definition for the sake of generality. It may also, for example,
be the case that only one party publishes a public key in the publish
round, while the other party acts as the active party in the interact
round (leaving pkA, and possibly skA, as empty values). It may also
be the case that some values are equal, such as P0 = P1 or KS = KS′ ,
depending on the specific key exchange, but have been indexed here for
the sake of generality. The definition is left as general as possible to
include as many key exchanges as possible, past and future.

3. The protocol definition says nothing of the security of the protocol and
the only extraneous requirement is that it satisfy correctness.

Taking the above definition and notation into use, we may define
the generic decisional hard (GDH) problem that will be needed for our
security reduction later. The definition is inspired to encompass the
decisional problems used to prove the indistinguishability property
of KEs and GKEs. It is primarily based on the (decisional) hardness
problems for DH, SIDH, and R-LWE KE, i.e. the DDH (Defn. 15), SSDDH

(Defn. 27), and DDH-like problem (Defn. 37).

74 generic group key exchange compilers

The hardness problem can be defined for KEs and GKEs alike; the
limiting factor is notational, not conceptual. For applicability in future
protocols, where security reduces to either an underlying two-party
KE or to a decisional problem on the GKE itself, we therefore define
the generic decisional hard (GDH) problem to cover both types of hard
problems.

Definition 68 (Generic decisional hard (GDH) problem). Consider a
(G)KE protocol Π satisfying correctness. Given a tuple sampled with proba-
bility 1/2 from one of the following two distributions:

• (P, pk, κ), where P and pk are the party-specific public values and
keys in Π, and κ ∈ K is the corresponding key in the session key space
for Π,

• (P, pk, κ), where P and pk are the party-specific public values and
keys in Π, and κ ∈ K′ is a key sampled uniformly at random from
K′ ⊇ K,

determine from which distribution the tuple is sampled. If any probabilistic
polynomial-time adversary solves this problem with at most negligible proba-
bility, we say that the GDH problem is hard.

Note 69. The problem is considered in regards to the computational ability
of the adversaries such that hardness w.r.t. classical/quantum/etc. adversaries
gives corresponding classical/quantum/etc. hardness.

Note 70. For the 0-IKE, we generally have (P, pk, κ) = (P, (pk0, pk1), κ).
For the 1-IKE: P = (P0,P1) and pk = (pkI , pkA) = (pk0, (pk1, pk′A)).

For an n-party GKE, we could potentially have

(P, pk, κ) = ((P0,P1, · · · ,Pn−1), (pk0, pk1, · · · , pkn−1), κ).

To ease the reader into these generic definitions and as an overview,
we have compiled a table of KEs and their corresponding hard prob-
lems in the 0/1-IKE notation in Appendix A.

5.3 generalized group key exchange compiler (gke-c)

For our GKE compiler, it is absolutely crucial that the key space for
the session keys, K, is a subset of a group (G, ·), i.e. a group with
multiplicative operation,1 so that we may manipulate session keys by
using inverses and the group operation. It could also be a subset of a
ring, but we require only the group superset property.

1 Note that “+” could be used instead, but the notation is pedagogical for our compiler.
We also do not assume that the group is commutative. Furthermore, note that any set
S can be made into a group, namely the free group, or universal group, generated by
S, so this requirement is trivially satisfied. For computation purposes however, we
assume that the group operation is efficient.

5.3 generalized group key exchange compiler (gke-c) 75

We would now like to define the GKE compiler. We yet again use the
concept of a double-tree as given in Section 3.3 (p. 40), except that we
now consider a binary version, as in BDII. We recall that excepting the
leaves of the tree, each party Pi has a parent par(i), a left child L.cld(i),
and a right child R.cld(i), which are all considered the neighbours of
Pi (see Figure 3.2). For all Pi that are leaves we have no children.
The set ancestors(i) is the set of indexes of all ancestors of a party Pi,
including i but having removed 0 and 1. Parties P0 and P1 are parents
of each other.

We define score recursively as the following: score(0) := 0, score(1) :=
1, and score(i) = score(par(i))+ 1, where i ≥ 2 is the index of the party
Pi. We assume that the score is calculated individually by the parties
when the graph is fixed and does not occur as a bandwidth or com-
putational cost in our protocol. Using this score, we define the map
ι = ι(i) := score(i) (mod 2). Score itself will not be used explicitly,
but ι is used in our security proof for Theorem 74 below.

The GKE compiler (GKE-C) for n parties, Πn, given below, takes as in-
put a security parameter 1λ and a 0/1-IKE protocol, Π, (using the same
security parameter) including the algorithms: Gen, Sec, Sec′,Pub,Pub′,
and KeyI ,KeyA, the public parameters generator, the secret key gener-
ators, the public key generators, and the session key generators. GKE-C

outputs a shared key k ∈ K where K ⊆ G is the same key space as the
session key space of Π and is a subset of a group (G, ·).

The multi-party parameter generator algorithm, Genmp, is used
to decide public parameters for the GKE protocol. It takes as input
the security parameter, 1λ, the number of parties, n, and an 0/1-IKE

protocol, Π, and outputs a tuple consisting of public parameters for
each party Pi and a double-tree for the n parties.

Protocol 71 (GKE compiler). Parties Pi, for i = 0, 1, . . . , n− 1, generate
a GKE protocol Πn as follows:

setup: For the security parameter 1λ, number of parties n, and two-party
0/1-IKE protocol Π, the algorithm outputs to each party Pi the tuple:

P = ((P0,P1), Γ)← Genmp(1λ, n, Π),

where (P0,P1) is as given by Gen(1λ) in Π and Γ is a double-tree.

publish1 : Each Pi chooses a random secret key ski
R← Sec(Pι) and

generates a public key pki ← Pub(ski,Pι). Pi then multicasts its
public key to its neighbours (parent and up to two children).

If using a 1-IKE, each child acts as the active party with its parent
acting as the inactive party.2 Regardless, the parties continue and
complete their respective key exchanges, culminating in the shared keys
for each i: kpar(i),i, kL.cld(i),i, and kR.cld(i),i, between Pi and the parent,
left child, and right child, respectively.

2 This means that at most a single secondary key is chosen per party as each party has
only a single parent.

76 generic group key exchange compilers

publish2 : Each Pi with children computes xL.cld(i) = (kL.cld(i),i)
−1 ·

kpar(i),i and xR.cld(i) = (kR.cld(i),i)
−1 · kpar(i),i, and multicasts these

to all its left and right descendants, respectively.

keygen: Each Pi computes a shared key

Ki = kpar(i),i · ∏
j∈ancestors(i)

xj = k0,1 = K.

Proposition 72 (Correctness). Each party in GKE-C (Prot. 71) computes
the same key K = k0,1, with non-negligible probability.

Proof. This can be seen by induction. Obviously, K = K0 = K1 = k0,1

with non-negligible probability. Assume that Kpar(i) = K, then, as

Kpar(i) = kpar(par(i)),par(i) · ∏
j∈ancestors(par(i))

xj,

we have that

Ki = kpar(i),i · ∏
j∈ancestors(i)

xj

= kpar(i),i · (ki,par(i))
−1 · kpar(par(i)),par(i) · ∏

j∈ancestors(par(i))
xj

= Kpar(i) = K,

with non-negligible probability.

The session key of the group is equal to the shared key of the initial
parties P0 and P1, so the security of the GKE must rely on the security
of the 0/1-IKE in some form.

Note 73. Although we can define the GKE-C for variable children per node,
just like the constructions in the previous chapters, for ease of proof and
explanation we consider all the nodes to have the same number of children,
excepting the leaves and initial two parties, namely a balanced double-tree
with two children per node.

For our security proof of the GKE-C, we show a reduction to the
GDH problem. It is a simple reduction showing that breaking the
GDH problem for the GKE-C equates to breaking the GDH problem for
the underlying two-party 0/1-IKE. This is the same as reducing the
(in)distinguishability notion of our security model given in Sect. 2.8.1
to the GDH problem for the underlying 0/1-IKE. For this reason, be
mindful that our GKE-C can at best have the same security as the
underlying 0/1-IKE.

Theorem 74. Suppose we have an 0/1-IKE, Π, with security parameter
1λ and algorithms Gen,Sec,Sec′,Pub,Pub′, and KeyI ,KeyA. If the 0/1-IKE

satisfies correctness and reduces to an instance of the GDH problem that is
hard, then GKE-C, with security parameter 1λ and using Π as its underlying
0/1-IKE, is a secure GKE.

5.4 peer-to-peer gke-c (p2p-gke-c) 77

Proof. We must show that Prot. 71 satisfies the security notion given
in Defn. 41. For the proof, we consider the more complicated case
of using a 1-IKE. The first requirement is satisfied by the correctness
shown in Prop. 72.

For the second requirement, assume that there exists a (not nec-
essarily classical) polynomial-time adversary A with non-negligible
advantage Adv(A) = ε, distinguishing between the correct session
key in a GKE-C instance and a random key in the key space, which
is by definition the same as that of the underlying 1-IKE. We build a
polynomial-time distinguisher D for the GDH problem (Definition 68)
for an instance of 1-IKE, i.e. the security of GKE-C reduces to the security
of 1-IKE. The distinguisher is given in Algorithm 5.

As an analysis of our distinguishing algorithm, we note the fol-
lowing. For the h-th session, using the public value P0 for P0 and
Pι(2) = P1 for P2, the algorithm completes a 1-IKE instance with
the secret key sk2 = (sk2, sk′2) of party P2, giving the shared key
k0,2 = k2,0, with non-negligible probability, as we have assumed that
the 1-IKE satisfies correctness. Likewise, it finds k0,3 = k3,0, using
sk3 = (sk3, sk′3) and the public values Pι(3) of P3. Using the public
values P1 for P1, and public values Pι(4), it completes a 1-IKE instance
with the secret key sk4 = (sk4, sk′4) of party P4, giving the shared key
k1,4 = k4,1, and likewise k1,5 = k5,1 using sk5 = (sk5, sk′5) and the
public values Pι(5). All other shared keys may be computed as the
secret keys for Pi are known for i = 2, . . . , n− 1.

As the ski are chosen uniformly at random for i ≥ 2, the distribution
of the pki = (pki, pk′i) and x′i = (x′L.cld(i), x′R.cld(i)) are identical to that
in a GKE-C instance.

The transcript given to A by D is (pk0, . . . , pkn−1, x′0, x′1, . . . , x′n−1),
where we assign a blank value for the x′ value when there is no child.

If the h-th session is A’s test session, then D is issuing K = κ, as
A’s test key. If K is a valid session key for the GKE-C, then κ = K =

k0,1 = k1,0, i.e. (P = (P0,P1), pk = (pk0, (pk1, pk′A)), κ) is indeed a
valid GDH tuple for the underlying two-party 1-IKE protocol Π and
can be distinguished.

If the test session is not the h-th session, then D outputs a random
bit, i.e. it has advantage 0. If the test session is the h-th session, which
happens with probability 1/η, then A will succeed with advantage ε.
Hence, the final advantage of the GDH distinguisher D is ε/η, which
is non-negligible.

5.4 peer-to-peer gke-c (p2p-gke-c)

We here also give a peer-to-peer version of our compiler as in the
preceding chapters, calling it the the peer-to-peer GKE compiler
(P2P-GKE-C), and review the differences between it and the previously
given GKE compiler. A benefit of our peer-to-peer version is that it is

78 generic group key exchange compilers

Algorithm 5 GDH distinguisher, D.
Input: P = (P0,P1), pk = (pkI , pkA) = (pk0, (pk1, pk′A)), and κ

1: h← {1, . . . , Λ} uniformly chosen, where Λ is an upper bound on
the number of sessions activated by A in any interaction.

2: Invoke A and simulate protocol to A, except for the h-th activated
protocol session.

3: For the h-th session:
4: Set the public parameters as (P = (P0,P1), Γ), where Γ is an

n-party double-tree.
5: Using A to relay messages (such as public values), simulate

the 0/1-IKE between P0 and P1 using (P0,P1), i.e. by setting the
inactive party to be P0 and the active party to be P1.

Generate ski
R← Sec(Pι) uniformly at random for i =

2, . . . , n − 1, and set pki ← Pub(ski,Pι). Simulate multicasting
using A and follow protocol Π for each Pi and neighbour, letting
the parent in each pair act as the inactive party and the children
act as the active parties, generating secondary secret and public
keys as needed.

Eventually, for each neighbour of Pi, i = 2, · · · , n− 1, there
exists shared keys available to Pi: kpar(i),i, kL.cld(i),i, and kR.cld(i),i.

6: Set

x′L.cld(0) := (k0,2)
−1 · κ, x′R.cld(0) := (k0,3)

−1 · κ,

x′L.child(1) := (k1,4)
−1 · κ, x′R.cld(1) := (k1,5)

−1 · κ, and

x′L.cld(i) := (kL.cld(i),i)
−1 · kpar(i),i,

x′R.cld(i) := (kR.cld(i),i)
−1 · kpar(i),i,

for i ≥ 2 where Pi is not a leaf in Γ. Simulate multicasting for each
applicable Pi.

7: if the h-th session is chosen by A as the test session then
8: Provide A as the answer to the test query,
9: d← A’s output

10: else
11: d R← {0, 1} uniformly at random.

Output: d

sequential and can therefore be used when memory and communica-
tion complexity need to be reduced due to, for example, bandwidth
restrictions. We note that the number of rounds and the communica-
tion complexity switches, the communication complexity becoming
constant and the number of rounds becoming logarithmic. For our two
protocols, differences between them begin after the publish1 round.

The protocol P2P-GKE-C for n parties, ΠP2P
n , takes as input a se-

curity parameter 1λ and an 0/1-IKE protocol, Π, (using the same

5.4 peer-to-peer gke-c (p2p-gke-c) 79

security parameter) including the algorithms: Gen, Sec, Sec′,Pub,Pub′,
and KeyI ,KeyA, the public parameters generator, the secret key gener-
ators, the public key generators, and the session key generators. The
P2P-GKE-C outputs a shared key k ∈ K where K ⊆ G is the same key
space as the session key space of Π and is a subset of a group (G, ·).

The multi-party parameter generator algorithm, Genmp, is used to
decide public parameters for the GKE. It takes as input the security
parameter, 1λ, the number of parties, n, and an 0/1-IKE protocol, Π,
and outputs a tuple consisting of public parameters for each party Pi
and a double-tree, Γ, for the n parties.

Protocol 75 (Peer-to-peer GKE compiler). The parties Pi, for i = 0, 1, . . . , n−
1, generate a GKE ΠP2P

n as follows:

setup: For the security parameter 1λ, number of parties n, and 0/1-IKE

Π, the algorithm outputs to each party Pi the tuple:

P = ((P0,P1), Γ)← Genmp(1λ, n, Π),

where (P0,P1) is as given by Gen(1λ) in Π and Γ is a binary double-
tree.

publish1 : Each Pi chooses a random secret key ski
R← Sec(Pι) and

generates a public key pki ← Pub(ski,Pι). Pi then multicasts its
public key to its neighbours (parent and up to two children).

If using a 1-IKE, each child acts as the active party with its parent
acting as the inactive party.3 Regardless, the parties continue and
complete their respective KEs, culminating in the shared keys for each i:
kpar(i),i, kL.cld(i),i, and kR.cld(i),i, between Pi and the parent, left child,
and right child, respectively.

publish2 : Parties P0 and P1 have already computed the same session key
K = k0,1 = K0 = K1 (with non-negligible probability) and send

xL.cld(0) = K · (kL.cld(0),0)
−1, respectively

xL.cld(1) = K · (kL.cld(1),1)
−1, and

xR.cld(0) = K · (kR.cld(0),0)
−1, respectively

xR.cld(1) = K · (kR.cld(1),1)
−1,

to their left, respectively right, children.4

keygen and publish3 : Upon receiving xpar(i), Pi computes the ses-
sion key

Ki = xpar(i) · kpar(i),i.

3 This means that at most a single secondary key is chosen per party as each party has
only a single parent.

4 The products in these x values could also be reversed, as long as the rest of the
procedure remains consistent, for example in the keygen and publish3 round,
regardless of the commutativity of the group.

80 generic group key exchange compilers

Table 5.1: Examples of GKE-C compiled GKEs.

BDII [18] SIT [32] Tree-R-LWE-GKE [33]

0/1-IKE DH [19] SIDH [25] R-LWE w/ tweak [20, 52]

GDH DDH [19] SSDDH [25] DDH-like [7]

Each party Pi with children (this excepts the leaves of Γ), then computes
xL.cld(i) = Ki · (kL.cld(i),i)

−1 and xR.cld(i) = Ki · (kR.cld(i),i)
−1 and

multicasts this to its left, respectively right, child.

It is easy to see that this protocol satisfies correctness: We have
that K0 = K1 = K with non-negligible probability. Assume that Ppar(i)
obtained the session key Kpar(i) = K. For party Pi, we have Ki =

xpar(i) · kpar(i),i = Kpar(i) · (ki,par(i))
−1 · kpar(i),i = K, with non-negligible

probability. Security follows from an analogous argument to that of
the proof for Thm. 74.

Theorem 76. Suppose we have an 0/1-IKE protocol, Π, with security pa-
rameter 1λ and algorithms Gen,Sec,Sec′,Pub,Pub′, and KeyI ,KeyA. If the
0/1-IKE satisfies correctness and reduces to an instance of the GDH problem,
then P2P-GKE-C, with security parameter 1λ and using Π as its underlying
0/1-IKE, is a secure GKE.

Parties in P2P-GKE-C have the same session key as in GKE-C, namely
the shared key of parties P0 and P1.

As our compilers require a 0/1-IKE and GDH problem, for the 0/1-
interactive KEs (IKEs) explained in this dissertation and their associated
hard problems, Table 5.1 gives an overview of the (literature of the)
GKEs that result from them.

5.5 complexity analysis

In this section, we consider the computation and communication
complexities of our GKE-Cs.

We consider the following comparison parameters, similar to those
in the previous chapters (see Section 3.6, p. 52): round complexity,
number of public values, communication complexity, and memory
complexity. The number of rounds is the maximal number of times
any party must wait for information from other parties in order to
proceed (this includes sequential rounds that a party may not be
directly involved in). The number of public values is the maximal
number of public values (keys, etc.) computed and multicast per party
(without multiplicity). The communication complexity is the maximal
number of broadcast/multicast messages received by any party in one
call of the protocol. The memory complexity is the maximal number
of stored values needed to compute the session key.

5.6 conclusion 81

In this chapter, unlike the previous two, we have assumed a binary
double-tree, meaning that parties in both compilers have a maximum
possible complexity O(log2 n). Table 5.2 shows comparable parameters
for our two GKE-Cs.

Table 5.2: Comparison of our GKE compilers. A denotes a value from the
underlying 0/1-IKE while G denotes a value from the GKE-C.

Compiler Rounds Public Comm.s Memories

GKE-C 2A+G 2A+2G 5A+(log2 n)G A+(log2 n)G

P2P-GKE-C 2A+(log2 n)G 2A+2G 5A+G A+G

Our GKE-C consists of three rounds. In the first round and second
round, the 0/1-IKE public keys are exchanged, while in the third round
group element products are multicast. The public values multicast by
each party consist of the 0/1-IKE public key(s) and one group element
product per child (or no product, in the case of the leaves). The
multicast values received are the one 0/1-IKE public key of the parent
and one for each child, as well as one group element product from
each ancestor (minus itself, plus either P0 or P1), which is maximally
log2 n, for a leaf. For the session key computation, each party requires
one group element product from each ancestor (minus itself, plus
either P0 or P1) as well as the 0/1-IKE key shared with the parent.

Our P2P-GKE-C, more or less, exchanges the number of rounds with
the communication and memory complexity.

5.6 conclusion

We introduced definitions of generic two-party KEs, with up to one
interaction, and GDH problems for (G)KEs. We then proposed our
GKE compiler (GKE-C) based on these generic definitions and showed
how the security of our compiler reduces to the security of the un-
derlying KE, which we assumed relied on the hardness of an un-
derlying decisional problem. We also proposed a peer-to-peer GKE
compiler (P2P-GKE-C).

We would like to again note that both the GKE-C and P2P-GKE-C can
be modified to have multiple children per node, e.g. l > 2 (giving
O(logl(n))-complexity), but also modified to have a variable number
of children per node, e.g. 2 for party P2 and 3 for party P3. What
this means is that the tree can be built taking into consideration
the computational power and memory capacity of individual nodes.
However, it must be kept in mind that the compilers essentially turn
a two-party ephemeral key into a static key for the duration of the
GKE. This means that, as the security of the GKE relies entirely on

82 generic group key exchange compilers

the security of the underlying KE, static key vulnerabilities may be
transferred to the GKE.5

The astute reader may question the lack of a generalization of
BDI (Defn. 20) into another GKE compiler. Unfortunately BDI does
not derive its security directly from the underlying KE and its hard
problem, but rather a hard problem that must consider products
(or compositions) of shared keys. Based on the literature so far [3,
13, 27, 60], it seems that each PQC secure BDI instantiation requires
the definition of a new and specific problem for the GKE security,
instead of relying on an already defined hard problem. Lastly, BDI

session key generation relies on the rather limiting requirement that
the underlying group be commutative, which we do not require for
GKE-C, only a group.

We sincerely hope that the generality of our definitions and com-
pilers inspires more research and publications towards generalizing
current works and creating a system of cryptographic protocols such
that regardless of the computational power paradigm that may come,
we have a ready-set system of cryptography, ready to go.

5 As SIDH is vulnerable to the static key adaptive attack of Galbraith et al. [28], SIT

is as well. However, as the attack relies on multiple successful key exchanges with
non-random keys, each successful key exchange giving away 1 bit of information
about a secret key, the attack is limited by the number of children per node. If even a
single bit of the secret key of either P0 or P1 was known, their shared key might be
discernible from random and thereby also the group shared key. An easy fix is simply
to limit the number of children for P0 and P1 to one each (other than each other).

6
G E N E R A L I Z E D E V E N - M A N S O U R

6.1 introduction

In 1997, Even and Mansour [24] introduced and proved security for the
DES inspired block cipher scheme we now call the EM scheme: Given
a public random permutation, P, over n-bit strings, with two different,
random, secret, n-bit subkeys k1 and k2, a plaintext x ∈ {0, 1}n could
be enciphered as

EMP
(k1,k2)

(x) = P(x⊕ k1)⊕ k2,

with an obvious decryption using the inverse public permutation.
Their scheme was minimal in the sense that it is necessary to XOR a
key before and after the permutation, otherwise the single key may
easily be found. As an improvement, Dunkelman, Keller, and Shamir
[22] showed that even with identical keys the scheme would be indis-
tinguishable from a random permutation, i.e. it was a pseudorandom
permutation.

Eventually in 2012, Kuwakado and Morii [44] showed that the
EM scheme could be broken by a quantum adversary with quantum
queries. Rather than discard the EM construction entirely, Alagic and
Russell [1] considered whether it was possible to define the two-key EM

scheme over other groups in order to retain security against quantum
adversaries with quantum queries.

Group actions (Defn. 10) are general algebraic structures of which
groups and their group operations are special cases. Recently, group
actions have come into vogue due to their usage in the post-quantum
commutative supersingular isogeny Diffie-Hellman key exchange
(CSIDH) of Castryck et al [11], based on work by Couveignes [16]
as well as Rostovtsev and Stolbunov [56]. See Chapter 3, Section 3.3.1
for a short introduction to CSIDH.

In this dissertation, we show that given a regular group action (see
Definition 10 for this definition) and a public random permutation on
the underlying set, the EM permutation is indistinguishable from a
random permutation to a computationally unbounded adversary, hav-
ing access to only polynomially-many classical queries to its oracles.
We also give evidence that for certain group actions (those with no
group structure on the set), the Kuwakado and Morii attack fails.

83

84 generalized even-mansour

6.2 preliminaries

In this chapter, we assume that the (probabilistic) adversary A is un-
bounded computationally, but may only make polynomially-many
queries to the oracles involved, where all oracles act as classical query
black-boxes. We assume the existence of efficiently computable per-
mutations of set elements. We also assume that all algebraic groups
specified are finite.

6.3 related work

In extension of their simplification of the EM scheme, Dunkelman,
Keller, and Shamir [22] attacked the construction using variants of
slide attacks in order to show that the security bound was optimal.
These slide attacks make use of the commutative property of the
underlying group. They further considered other variants of the EM

scheme, such as the “addition Even-Mansour with an involution as
the permutation” (two-keyed) version. Kilian and Rogaway [42] were
also inspired by EM to define their FX construction, of which the EM

scheme is a special case.
As referred to in the introduction, if able to query their oracle with

a superposition of quantum states, Kuwakado and Morii [44] are able
to break the EM scheme on n-bit strings, using Simon’s algorithm.
Kaplan et al. [39], using Kuwakado and Morii’s results, showed how
to break many classical cipher schemes, which in turn incited Alagic
and Russell [1].

6.4 group action even-mansour

We now define our generalization of the EM scheme. Essentially, we
replace the XOR operation with a group action.

We define the group action Even-Mansour (GAEM) scheme to be
the triple of a key generation algorithm, encryption algorithm, and
decryption algorithm.

The key generation algorithm takes as input a security parameter
1λ, outputs a group G and a set X such that G acts on X as a regular

group action, as well as a key k = (k1, k2) for k1, k2
R← G. We let P be

given as a common and publicly known random permutation on X
and we let P−1 be its inverse. It is assumed that, for any given x ∈ X,
it is easy (i.e. polynomial-time) to get P(x) and P−1(x) by using an
easily and commonly accessible classical query black-box oracle.

Definition 77 (Group action Even-Mansour (GAEM)). The encryption
algorithm Enck(m) takes as input the key k and a set element m ∈ X as
plaintext, and outputs

Enck(m) = k2 ? P(k1 ? m).

6.4 group action even-mansour 85

The decryption algorithm Deck(c) takes as input the key k and a set
element c ∈ X as ciphertext, and outputs

Deck(c) = k−1
1 ? P−1(k−1

2 ? c).

This definition satisfies correctness.

We will exclude the key subscript in Enck where applicable.
As a remark on the public random permutation: Since the set X

is finite (because of the bijection that follows from the group action
and G is assumed finite), the public random permutation must be a
random permutation over a finite set.

We present our GAEM pseudorandomness result as the following
theorem.

Theorem 78. For security parameter 1λ, let a group G and a set X be given
such that G acts on X as a regular group action. Assume P is a random
permutation on X and let the key be k = (k1, k2) for k1, k2

R← G. For any
adversary A, limited to polynomially-many Enc- and P/P−1-oracle queries,1

the adversarial advantage of A, Adv(A), is bounded by

Adv(A) def
=
∣∣∣Pr

[
AP,P−1

Enc (1λ) = 1
]
− Pr

[
AP,P−1

π (1λ) = 1
]∣∣∣ = O

(
st
|G|

)
,

(6.1)

where π is a random permutation on X, s is the number of Enck-queries and
t is the number of P/P−1-queries, i.e. the success probability is negligible.

Proof. We may assume that A is deterministic (in essence, being un-
bounded computationally affords A the possibility of derandomizing
its strategy by searching all its possible random choices and picking
the most effective choices after having computed the effectiveness of
each choice. For an example, see [21].) Letting Si and Ti be the sets of
i Enc- and P/P−1-queries, respectively, we may also assume that A
never queries a pair in Ss or Tt (the final query transcripts) more than
once.

Let us define two main games that A could play through oracle
interactions, Game R and Game X (see page 87 for the explicit game
descriptions). Intuitively, Game X behaves like Game R except that
Game X checks for consistency as it does not want A to win on some
collision. Neither game is exactly the game that would be played in
(6.1), but we wish to show that the probability of an adversary winning
in Game R or Game X is equivalent to the corresponding probability
in (6.1).

Note that the steps in italics have no impact on the response to A’s
queries, we simply continue to answer the queries and only note if

1 The adversary is allowed access to the black-box oracles in the following way: Upon a
classical query of an element x ∈ X, return Enck(x) = k2 ? P(k1 ? x), P(x), or P−1(x),
depending on which oracle is queried.

86 generalized even-mansour

the key turns bad, i.e. we say that a key-pair k = (k1, k2) is bad w.r.t.
the sets Ss and Tt if there exist i, j such that either k1 ? mi = xj or
k−1

2 ? ci = yj, and k is good otherwise. There are at most 2st− |G| bad
keys.

Game R: We consider the random game that corresponds to the
latter probability in (6.1), i.e.

Pr
[
AP,P−1

π (1λ) = 1
]

. (6.2)

As we are simply giving uniformly random answers to each of A’s
queries in Game R, the probability in (6.2) is equal to the probability of
the adversary winning when playing Game R, i.e. letting PrR denote
the probability when playing Game R,

PrR

[
AP,P−1

Enc (1λ) = 1
]
= Pr

[
AP,P−1

π (1λ) = 1
]

. (6.3)

Game X: Note that for Game X, the parts in italics have no impact
on the response to A’s queries, however, when a key becomes bad,
we choose a new random value repeatedly for the response until the
key is no longer bad, and then reply with this value. Game X is much
like Game R in choosing random values as answers, however the
behavior just outlined “forces” consistency for query answers if an
inconsistency was about to be created. Game X also does not quite
correspond to the game in the former probability given in (6.1) but
their probabilities are indeed equal as the following lemma shows.

Lemma 79. Letting PrX denote the probability when playing Game X,

PrX

[
AP,P−1

Enc (1λ) = 1
]
= Pr

[
AP,P−1

Enc (1λ) = 1
]

. (6.4)

Proof. We begin by defining Game X′ (see page 88). Notice that the
only difference between the game defining the former probability in
(6.1) and Game X′ is that the former has defined all values for the
oracles beforehand while the latter “defines as it goes.” Thus, their
probabilities are equal.

What we wish to show is that no adversary A may distinguish
between playing Game X and playing Game X′. We will do this by
showing that no adversary A may distinguish between the outputs
given by the two games. As both games begin by choosing a uniformly
random key k = (k1, k2) and as we show that for this value the games
are identical, we hereby assume such a key k to be a fixed, but arbitrary,
value for the remainder of this lemma’s proof.

Considering the definitions of Game X and Game X′, we see that
the two games define their Enc- and P/P−1-oracles differently: the
former defining both, while the latter defines only the P/P−1-oracle
and computes the Enc-oracle answer. We show that Game X also
answers its Enc-oracle queries by referring to P/P−1, although not
directly.

6.4 group action even-mansour 87

Notation: We let S1
i = {m|(m, c) ∈ Si}, S2

i = {c|(m, c) ∈ Si},
T1

i = {x|(x, y) ∈ Ti}, and T2
i = {y|(x, y) ∈ Ti}.

GAME R: Initially, let S0 and T0

be empty and flag unset. Choose

k = (k1, k2) for k1, k2
R← G, then

answer the i + 1-st query as fol-
lows:

Enc-oracle query with mi+1:
1. Choose ci+1

R← X \ S2
i .

2. If P(k1 ? mi+1) ∈ T2
i , or

P−1(k−1
2 ? ci+1) ∈ T1

i , then set flag
to bad.
3. Define Enc(mi+1) = ci+1 and
return ci+1.

P-oracle query with xi+1:
1. Choose yi+1

R← X \ T2
i .

2. If Enc(k−1
1 ? xi+1) ∈ S2

i , or
Dec(k2 ? yi+1) ∈ S1

i , then set flag to
bad.
3. Define P(xi+1) = yi+1 (and
thereby also P−1(yi+1) = xi+1)
and return yi+1.

P−1-oracle query with yi+1:

1. Choose xi+1
R← X \ T1

i .
2. If Dec(k2 ? yi+1) ∈ S1

i , or
Enc(k−1

1 ? xi+1) ∈ S2
i , then set flag

to bad.
3. Define P−1(yi+1) = xi+1 (and
thereby also P(xi+1) = yi+1) and
return xi+1.

GAME X: Initially, let S0 and T0

be empty and flag unset. Choose

k = (k1, k2) for k1, k2
R← G, then

answer the i + 1-st query as fol-
lows:

Enc-oracle query with mi+1:
1. Choose ci+1

R← X \ S2
i .

2. If P(k1 ? mi+1) ∈ T2
i then

redefine ci+1 := k2 ? P(k1 ? mi+1)

and set flag to bad. Else if
P−1(k−1

2 ? ci+1) ∈ T1
i , then set flag

to bad and goto Step 1.
3. Define Enc(mi+1) = ci+1 and
return ci+1.

P-oracle query with xi+1:
1. Choose yi+1

R← X \ T2
i .

2. If Enc(k−1
1 ? xi+1) ∈ S2

i
then redefine yi+1 :=
k−1

2 ? Enc(k−1
1 ? xi+1) and set flag

to bad. Else if Dec(k2 ? yi+1) ∈ S1
i ,

then set flag to bad and goto Step
1.
3. Define P(xi+1) = yi+1 (and
thereby also P−1(yi+1) = xi+1)
and return yi+1.

P−1-oracle query with yi+1:

1. Choose xi+1
R← X \ T1

i .
2. If Dec(k2 ? yi+1) ∈ S1

i then
redefine xi+1 := k1 ? Dec(k2 ?

yi+1) and set flag to bad. Else if
Enc(k−1

1 ? xi+1) ∈ S2
i , then set flag

to bad and goto Step 1.
3. Define P−1(yi+1) = xi+1 (and
thereby also P(xi+1) = yi+1) and
return xi+1.

Figure 6.1: Game R and Game X

Given the partial functions Enc and P in Game X, i.e. functions
having been defined for all values up to and including the i-th query,
define the partial function P̂ as the following. For x ∈ X,

P̂(x) def
=

P(x) if P(x) is defined,

k−1
2 ? Enc(k−1

1 ? x) if Enc(k−1
1 ? x) is defined,

undefined otherwise.

88 generalized even-mansour

GAME X′: Initially, let S0 and T0 be empty. Choose k = (k1, k2)

for k1, k2
R← G, then answer the i + 1-st query as follows:

Enc-oracle query with mi+1:
1. If P(k1 ? mi+1) ∈ T2

i return k2 ? P(k1 ? mi+1).

2. Else choose yi+1
R← X \ T2

i , define P(k1 ? mi+1) = yi+1, and
return k2 ? yi+1.

P-oracle query with xi+1:
1. If P(xi+1) ∈ T2

i , return P(xi+1).

2. Else choose yi+1
R← X \ T2

i , define P(xi+1) = yi+1, and return
yi+1.

P−1-oracle query with yi+1:
1. If P−1(yi+1) ∈ T1

i , return P−1(yi+1).

2. Else choose xi+1
R← X \ T1

i , define P−1(yi+1) = xi+1, and
return xi+1.

Figure 6.2: Game X′

Using the above definition for P̂, we see that defining a value for Enc
or P implicitly defines a value for P̂. The first question is, whether or
not P̂ is well-defined, i.e. whether there are clashes of values for some
x for which both P(x) and Enc(k−1

1 ? x) are defined.

Lemma 80. Let Enc and P be partial functions arising in Game X, then
the partial function P̂ is well-defined.

Proof. Proof by induction on the number of “Define” steps in Game
X (i.e. steps Enc − 3, P − 3, and P−1 − 3, see page 87) as these are
the steps where P̂ becomes defined. The initial case of the induction
proof is trivial as S0 and T0 are empty such that no values may clash.
Suppose now that in step Enc− 3 we define Enc(m) = c. The only
possibility that P̂ becomes ill-defined will occur if the new Enc(m)

value clashes with a prior defined P(k1 ? m) value: If P(k1 ? m) was
not defined, then no clashes can arise. If P(k1 ? m) was defined, then
by step Enc− 2, the value is k−1

2 ? Enc(m), such that there is no clash.
Analogously, for P and P−1, no clashes will arise, hence P̂ must be

well-defined.

We may also consider P̂ in Game X′, in the sense that when we
define a value for P in the game, we implicitly define a value for P̂
where P̂(x) = P(x) as Enc(k−1

1 ? x) = P(x) in Game X′.
We wish now to show that the oracle query answers of Enc, P, and

P−1 in Game X, expressed in terms of P̂, correspond exactly to those
in Game X′, i.e. we want to show that their outputs are equivalent in

6.4 group action even-mansour 89

terms of P̂. We will also drop subscripts for Si and Ti for the remainder
of this proof.

Case 1: Enc-oracle query. Beginning with Game X, we first note
that Game X never defines Enc(m) unless m has been queried to
the Enc-oracle. However, as A never repeats a query if it can guess
the answer, i.e. never re-queries any Enc-oracle message, we may
assume that Enc(m) is undefined when m is queried. Therefore, we
see that concurrently with m being queried, we have that P̂(k1 ? m)

will be defined if and only if P(k1 ? m) is defined, and if defined then
P̂(k1 ? m) = P(k1 ? m). Let us consider the two cases: when P̂(k1 ? m)

is defined and when it is undefined.

case 1a : When P̂(k1 ? m) is defined, Game X returns c = k2 ? P̂(k1 ?

m). Setting Enc(m) = c leaves P̂ unchanged, i.e. the value P̂(k1 ?

m) remains the same, unlike the next case.

case 1b : When P̂(k1 ? m) is undefined, Game X repeatedly chooses

c R← X \ S2 uniformly until P−1(k−1
2 ? c) is undefined, i.e c is in

the set U = {c ∈ X|P−1(k−1
2 ? c) 6∈ T1}. From the definition of P̂

it follows that y = k−1
2 ? c is uniformly distributed over X \ T̂2.2

In this case, setting Enc(m) = c = k2 ? y also sets P̂(k1 ? m) = y.

We now consider the same query on Game X′.

case 1a ′ : When P̂(k1 ?m) = P(k1 ?m) is defined, c = k2 ? P(k1 ?m) =

k2 ? P̂(k1 ? m) is returned, and P̂ is unchanged.

case 1b ′ : When P̂(k1 ? m) is undefined such that also P(k1 ? m) is

undefined, we choose y R← X \ T2 = X \ T̂2, where T̂2 is the set
{y|∃x s.t. P̂(x) is defined and P̂(x) = y}. P(k1 ? m) is set to y
such that also P̂(k1 ? m) = y, and c = k2 ? y is returned.

Thus, the behavior of Game X and Game X′ are identical on the
Enc-oracle queries.

2 For a proof of this statement, note that T̂1 and T̂2 are the corresponding sets to T1

and T2 on the query pairs of P̂. We must first show that S2 ∪U{ = k2 ? T̂2:
“⊇”: Assume that c := k2 ? y ∈ k2 ? T̂2 for some y ∈ T̂2, then either y ∈ T2 or
k2 ? y ∈ S2 per definition of P̂. If y ∈ T2, then ∃x ∈ T1 s.t. P−1(y) = x ∈ T1 ⇔
P−1(k−1

2 ? c) ∈ T1 ⇔ c ∈ U{ ⇒ k2 ? y ∈ U{. If k2 ? y ∈ S2, we are done.
“⊆”: If c ∈ S2, then ∃m ∈ S1 s.t. Enc(m) = c. This means that P̂ is defined for
x = k1 ? m. Hence, ∃y ∈ T̂2 s.t.

k2 ? y = k2 ? P̂(x) = k2 ? k−1
2 ? Enc(k−1

1 ? x) = k2 ? k−1
2 ? Enc(m) = c,

s.t. c ∈ k2 ? T̂2. If c ∈ U{, then P−1(k−1
2 ? c) ∈ T1, i.e. ∃x s.t. P(x) = k−1

2 ? c. As P(x)
is thereby defined, we have that P(x) = P̂(x) s.t.

P̂(x) = P(x) = k−1
2 ? c⇔ c = k2 ? P̂(x) ∈ k2 ? T̂2.

Picking c R← X \ (S2 ∪U{) uniformly at random is therefore the same as picking

c R← X \ (k2 ? T̂2) uniformly at random. We may thus infer that y = k−1
2 ? c R← X \ T̂2

is picked uniformly at random.

90 generalized even-mansour

GAME R′: Initially, let S0 and T0 be empty and flag unset.
Answer the i + 1-st query as follows:

Enc-oracle query with Mi+1:
1. Choose ci+1

R← X \ S2
i .

2. Define Enc(mi+1) := ci+1 and return ci+1.

P-oracle query with xi+1:
1. Choose yi+1

R← X \ T2
i .

2. Define P(xi+1) := yi+1 and return yi+1.

P−1-oracle query with yi+1:

1. Choose xi+1
R← X \ T1

i .
2. Define P−1(yi+1) := xi+1 and return xi+1.

After all queries have been answered, choose k = (k1, k2) for k1, k2
R←

G. If there exists (m, c) ∈ Ss and (x, y) ∈ Tt such that k becomes
bad then set flag to bad.

Figure 6.3: Game R′

The arguments for the cases of P and P−1 can be treated in a likewise
manner, which we therefore skip. We conclude that the behavior of
Game X and Game X′ are identical on the oracle queries. Hence,
an adversary cannot distinguish between the two games and the
probabilities must be equivalent.

Returning to the main proof, we have defined Game R and Game
X in such a way that their outcomes differ only in the event that a
key turns bad. Thus, any circumstance that causes a difference in the
instructions carried out by the games, will also cause both games to
set the flag to bad. Let BAD denote the event that the flag gets set to
bad and the case that the flag is not set to bad by ¬BAD, then the two
following lemmas follow from the previous statement.

Lemma 81. PrR [BAD] = PrX [BAD] and PrR [¬BAD] = PrX [¬BAD].

Lemma 82. PrR

[
AP,P−1

Enc = 1|¬BAD
]
= PrX

[
AP,P−1

Enc = 1|¬BAD
]
.

The following lemma then follows by using (6.3), (6.4), and lemmas
81 and 82.

Lemma 83. Adv(A) ≤ PrR [BAD].

Let us define yet another game, Game R′ (see page 90). This game
runs as Game R except that it does not choose a key until all of the

6.4 group action even-mansour 91

queries have been answered and then checks whether or not the key
has become bad.

Lemma 84. PrR [BAD] = PrR′ [BAD].

Proof. We need to show that the flag is set to bad in Game R if and only
if the flag is set to bad in Game R′, which we do by first introducing
the following definition.

Definition 85. We say that two Enc-pairs (mi, ci) and (mj, cj) overlap
if mi = mj or ci = cj. If mi = mj and ci = cj, we say that the pairs are
identical. Likewise for P/P−1-pairs (xi, yi) and (xj, yj).

If two pairs overlap, then by the definition of the Enc- and P/P−1-
oracles, they must be identical.

“⇒”: We want to show that there exists (m, c) ∈ Ss and (x, y) ∈ Tt

such that either k1 ? m = x or k−1
2 ? c = y (i.e. such that k becomes

bad). We have to consider the 6 cases where the flag is set to bad. All
of the cases use an analogous argument to the following: If P(k1 ? m)

is defined then P(k1 ? m) = y = P(x) for some (x, y) ∈ Tt such that,
as overlapping pairs are identical, k1 ? m = x.

“⇐”: We assume that there exists (m, c) ∈ Ss and (x, y) ∈ Tt such
that k becomes bad. i.e. such that either k1 ? m = x or k−1

2 ? c = y. We
need to check that in all three oracle queries, the flag in Game R is set
to bad, which needs a consideration of 6 cases.

Assume that k1 ? m = x, then

Enc-oracle on m : P(k1 ? m) = P(x) = y ∈ T2
t ,

P-oracle on x : Enc(k−1
1 ? x) = Enc(m) = c ∈ S2

s ,

P−1-oracle on y : Enc(k−1
1 ? P−1(y)) = Enc(k−1

1 ? x)

= Enc(m) = c ∈ S2
s .

Assume now that k−1
2 ? c = y, then

Enc-oracle on m : P−1(k−1
2 ? c) = P−1(y) = x ∈ T1

t ,

P-oracle on x : Dec(k2 ? P(x)) = Dec(k2 ? y)

= Dec(c) = m ∈ S1
s ,

P−1-oracle on y : Dec(k2 ? y) = Dec(c) = m ∈ S1
s .

Using the above lemma, we now only have to bound PrR′ [BAD]
in order to bound Adv(A), but as the adversary queries at most s
elements to the Enc-oracle, at most t elements to the P/P−1-oracles,
and the subkeys of k = (k1, k2) are chosen uniformly at random from
G, we have that the probability of choosing a bad key is at most
2st/|G|, i.e.

Adv(A) ≤ PrR′ [BAD] = O
(

st
|G|

)
.

92 generalized even-mansour

Stated simply,

Theorem 86. For any adversary A, limited to polynomially-many Enc- and
P/P−1-oracle queries, the GAEM scheme over a regular group action G acting
on X, is a pseudorandom permutation.

By adding a decryption oracle, we get the following theorem:

Theorem 87. For any adversaryA, limited to polynomially-many Enc/Dec-
and P/P−1-oracle queries, the GAEM scheme over a regular group action G
acting on X, is a super pseudorandom permutation.

We remark that, as in [42], our proof also works with minor changes
for the identical subkeys case, i.e. where k1 = k2.

6.4.1 Evidence for quantum security

There are two major questions applicable to our generalized con-
struction of the EM scheme: 1. Is the construction secure against
Kuwakado and Morii’s attack in [39, 44]? and 2. Is the construction a
post-quantum PRP?

Although we have not yet been able to prove the latter, leaving it
for future work, for the former, we argue below in the affirmative.

6.4.1.1 Resistance against Simon’s style attacks.

In essence, Kuwakado and Morii’s attack is a differential cryptanalysis
attack, i.e. by manipulating plain/ciphertexts and using the oracles,
they are able to tease out a key and thereby both keys in EM. More
specifically, they use the oracles to create an instance of Simon’s
problem.

Definition 88 (Simon’s problem [39]). Given a Boolean function f :
{0, 1}n → {0, 1}n and the promise that there exists s ∈ {0, 1}n such that
for any (x, y) ∈ {0, 1}n, [f (x) = f (y)]⇔ [x⊕ y ∈ {0n, s}], the goal is to
find s.

There is a quantum algorithm (Simon’s algorithm) that solves this
problem with quantum complexity O(n) (see Kaplan et al. [39] for
more details). To explain Kuwakado and Morii’s attack, Kaplan et al.
use the EM oracles to define the function,

f : {0, 1}n → {0, 1}n (6.5)

x 7→ E(k1,k2)(x)⊕ P(x) = P(x⊕ k1)⊕ k2 ⊕ P(x).

This function obviously satisfies the promise in Simon’s problem with
s = k1 and so it may be solved. We call such an attack a Simon style
attack.

6.5 concluding remarks 93

In the case of GAEM, unless X has a well-defined group structure,
there is no operation defined on X as it is simply a set, hence we cannot
define f as in (6.5). Assuming X is such a set, the only functions we
can define on it, using the given oracles, are through composition and
using the group action. However, such functions, being compositions
of bijective functions, will be bijective, such that the condition on the
function in Simon’s problem can never be satisfied as there cannot
exist a function with a non-trivial shift s. Thus, a Simon style attack
cannot work directly on GAEM when X is not a group.

6.5 concluding remarks

In this chapter, we generalized the Even-Mansour scheme to regular
group actions and proved that classical results pertain to the group
action version.

Our version is as general a construction as we might reasonably
construct entirely based on group theory. We have given evidence
that it is not vulnerable to the quantum attack of Kuwakado and
Morii [44] when the set does not have a group structure. A proof of
post-quantum security would require extensive research into how to
prove quantum indistinguishability for classical constructions, which
is the next logical step in our research.

Although our construction has yet to be proved post-quantum
secure, we hope that it opens avenues for classical schemes to be
generalized so that we may preserve the cryptographic heritage from
many decades of research.

Part III

C O N C L U S I O N

7
C O N C L U D I N G R E M A R K S

7.1 summary

In this dissertation, we gave the mathematical and cryptographical
background needed to understand both isogeny based and lattice
based approaches to post-quantum cryptography relevant key ex-
changes and group key exchanges as well as for pseudorandom per-
mutations. We then defined and proved security for isogeny based
and lattice based group key exchanges, both a concurrent and a se-
quential version. We furthermore gave compilers turning these group
key exchanges into authenticated group key exchanges by using a
signature scheme to sign all messages between parties. Furthermore,
we considered the generalization of the underlying key exchanges and
their hard problems in order to generalize the group key exchanges
themselves, resulting in a GKE compiler that only relies on the form
of the underlying two-party key exchange and its associated hard
problem. Finally, we generalized the Even-Mansour pseudorandom
permutation from bit strings to group actions and proved the indistin-
guishability against arbitrary adversaries having only a polynomial
number of classical oracle queries.

7.2 discussion

At present, PQC is quite a new field within modern cryptography and
modern cryptography is itself a rather new field in applied mathemat-
ics. Modern cryptography has seen increasingly more usage thanks to
the invention of the internet and the consequent need for information
security in the public, private, and governmental sectors. The cause is
the quandary of the information age: the ability to decide when and
where information is shared. We not only need to be able to provide
security, we also need to be able to deliver on speed and size, i.e.
efficiency. The GKEs presented in this dissertation deliver that by being
an entire order of magnitude more efficient than the best alternatives
making them highly competitive PQC (A)GKE candidates.

Both BDII and EM are relatively old ideas, both first published in
1997. They also build on fundamental cryptographic ideas, two-party
KEs and pseudorandom permutations, respectively. That we can adapt
these constructions to newer/more general ideas is not entirely sur-
prising. The structures they build on are already quite general and
their original purpose was to make minimal schemes. However, the
focus of cryptography generally seems to be to work with what exists.

97

98 concluding remarks

It makes sense to only consider existing constructions and build from
them as they are usually already implemented and widely in use. It
is also easier to get published when there is an incentive behind the
work, such as improving designs or giving further uses for widely
used constructions. Mathematics too used to be focused on practical
applications, but mathematics did not truly become the giant it is
today until it became the standard to abstract it. This abstraction fed
back into the real world applications, indeed in many fields. We there-
fore aim to abstract cryptographic constructions, and cryptography in
general, in the hopes that they too can lead to such a feedback loop.

Creating a system of generic cryptographic constructions that only
rely on hard problems also frees cryptographers to focus on attempt-
ing to create and break hard problems. The more work that is put
into breaking hard problems, the more secure they become, is the
mode of thought in cryptography. Furthermore, the more hard pro-
blem candidates there are, the better the chance of having some that
are secure against even the most outlandish of adversaries. Hence,
we hope that the aim of this dissertation sees a trend growing in
the wider cryptographic community, namely that of generalization
and creating a generic framework from basic building blocks. The
more fundamental and generic we can make cryptography, the more
obvious the flaws and strengths will become. This is not to say that
specialized constructions are unneeded, just that a framework will
benefit cryptography greatly in the long-term.

We also hope that our results can be expanded upon, implemented,
and even improved. Although we have shown that a generic GKE
compiler exists, we have not shown that it is minimal. Depending
on the underlying two-party KE, there may even be ways to improve
the resulting GKE by integrating mathematical properties inherent
in the KE. There may also be better AGKE alternatives that integrate
the signature scheme in a different way, or get rid of it entirely. If
other parts of cryptography become generalized we may have more
constructions to work with, leading into a cycle of improvement. Our
constructions are also fundamental enough that there is hope that
other fundamental constructions, and the constructions that build on
them, will be generalizable as well.

7.3 future work

Although we were able to improve the complexity of the best PQC GKE

and AGKE candidates, and we were able to generalize the structure
of both our GKEs and the EM scheme, we were not able to make the
GKEs and AGKEs more efficient than logarithmic communication and
memory complexity, with a small constant time trade-off to the round
complexity. We were not able to improve the security models such that
the GKEs and AGKEs were secure in the strong-corruption model nor

7.3 future work 99

the EM scheme against adversaries with polynomially-many quantum
queries.

As for future work in extension of the GKEs presented in this dis-
sertation, the first priority should go to proving security in the G-CK+

model because the stronger the security model, the wider the applica-
bility of the construction. We may have to alter our GKEs substantially,
in which case we will need to consider the cost of doing so. The pri-
ority should be to maintain the logarithmic complexity, and for the
isogeny based versions, as the isogeny computation is generally slow
so we would hope that such an alteration will not add to the number
of isogeny computations performed.

The work of Choi et al. [13] also inspire us to try to integrate
the structure of the KEs if possible, as those authors have done by
integrating the R-LWE KE into the Dutta-Barua GKE [23]. If possible, we
would seek to do so with both SIDH and R-LWE.

Our work is largely theoretic so an obvious next step would be to
create implementations and do implementation analysis for all our
GKEs. A choice of signature scheme would be required for this step,
which would require an extensive review of the literature. There may
also be possibilities of integrating the signature schemes further with
the AGKEs, depending on which is chosen. Implementations would
also require us to consider parameters in detail, giving us specific
security bounds.

Trust in and application of our GKE compiler can also be improved
by showing how other KEs fit into our framework and definitions.
That is only a start of course, as the generalization work that we
propose in this dissertation would require an extensive review of all
cryptographic constructions.

As for our EM generalization, future work would include an im-
plementation with some PRP. If we could create a PQC secure PRP

candidate and show security, then such a PRP would be ideal for an
implementation. Promising frameworks have been proposed indepen-
dently by Alamati-De Feo-Montgomery-Patranabis [2], Moriya-Onuki-
Takagi [50], and Boneh-Kogan-Woo [6] at Asiacrypt 2020, giving PQC

secure pseudorandom functions from group actions. We hope that
PRPs from group actions are not far behind.

Our security proof for GAEM is perfectly fine for classical security,
but proving security for an adversary with access to polynomially-
many quantum oracle queries, i.e. PQC security, is still an open problem.
This should also be a priority for future research.

Part IV

A P P E N D I X

A
TA B L E O F K E Y E X C H A N G E S I N T H E 0 / 1 - I K E
N O TAT I O N A N D T H E I R C O R R E S P O N D I N G H A R D
P R O B L E M S

K
ey

exchanges

D
H

[
1
9]

SID
H

[
2
5]

R
-LW

E
K

E
[
2
0,

5
2]

0/
1

0
0

1

P
0

(G
,q,g

)
(p,E

,{P
0 ,Q

0 },{P
1 ,Q

1 }
)

(n,m
,R

,q,R
q ,χ

,a)

P
1

Sam
e

as
P

0
(p,E

,{P
1 ,Q

1 },{P
0 ,Q

0 }
)

Sam
e

as
P

0

sk
0

x
0

R←
Z

q
r0

R←
Z

/
` e00

Z
s0 ,e0

R←
χ

sk
1

x
1

R←
Z

q
r1

R←
Z

/
` e11

Z
s1 ,e1

R←
χ

pk
0

h
0
=

g
x

0
(E

0 ,φ
0 (P

1),φ
0 (Q

1))
b

0
=

as0
+

e0
pk

1
h

1
=

g
x

1
(E

1 ,φ
1 (P

0),φ
1 (Q

0))
b

1
=

as1
+

e1
sk ′A

N
one

N
one

e ′1
R←

χ

pk ′A
N

one
N

one
c
=
〈v̄〉2q,2

k
I

h
x

0
1

j(E
0,1)

r
e
c
(2b

1 s0 ,c)

k
A

h
x

1
0

j(E
1,0)

d vc
2q,2

H
ard

problem
s

D
D

H
[
1
9]

SSD
D

H
[
2
5]

D
D

H
-like

[
7]

P
(G

,q,g
)

P
i
=

(p,E
,{P

i ,Q
i },{P

i−
1 ,Q

i−
1 }
)

for
i
=

0,1
(n,R

,q,R
q ,χ

,a)

p
k

(h
0 ,h

1)
(pk

0 ,pk
1)

(b
0 ,(b

1 ,c))

k

g
x

0 x
1

E
0,1 ∼=

E
/〈P

0
+
[r0]Q

0 ,P
1
+
[r1]Q

1 〉
d vc

2q,2

or
or

or

g
z

for
z

R←
Z

q
E

x
∼=

E
/〈P

0
+
[r ′0]Q

0 ,P
1
+
[r ′1]Q

1 〉
k

R←
{0,1}

n

for
r ′i

R←
Z

/
` eii

Z
,i
=

0,1

In the table, we consider DH, SIDH, and R-LWE KE, from left to
right. In the upper half, we note whether the KE is 0-interactive or 1-
interactive and then list the protocol specific values for P0,P1, sk0, sk1,
pk0, pk1, sk′A, pk′A, k I , and kA, if applicable. In the second half, we do
the same for the respective hard problems DDH, SSDDH, and DDH-like.

103

B I B L I O G R A P H Y

[1] Gorjan Alagic and Alexander Russell. “Quantum-Secure Symmetric-
Key Cryptography Based on Hidden Shifts.” In: EUROCRYPT
(3). Vol. 10212. LNCS. 2017, pp. 65–93. url: https://arxiv.org/
abs/1610.01187.

[2] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar
Patranabis. “Cryptographic Group Actions and Applications.”
In: Advances in Cryptology - ASIACRYPT 2020. Ed. by S. Moriai
and H. Wang. Vol. 12492. LNCS. Springer, Cham, 2020, pp. 411–
439. doi: 10.1007/978-3-030-64834-3_14.

[3] Daniel Apon, Dana Dachman-Soled, Huijing Gong, and Jonathan
Katz. “Constant-Round Group Key Exchange from the Ring-
LWE Assumption.” In: PQCrypto. Springer, 2019, pp. 189–205.

[4] Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev.
“Practical Supersingular Isogeny Group Key Agreement.” In:
IACR Cryptol. ePrint Arch. (2019).

[5] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed
Records.” In: Public Key Cryptography - PKC 2006. Ed. by Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Springer
Berlin Heidelberg, 2006, pp. 207–228.

[6] Dan Boneh, Dimitry Kogan, and Katharine Woo. “Oblivious
Pseudorandom Functions from Isogenies.” In: Advances in Cryp-
tology - ASIACRYPT 2020. Ed. by S. Moriai and H. Wang. Vol. 12492.
LNCS. Springer, Cham, 2020, pp. 520–550. doi: 10.1007/978-3-
030-64834-3_18.

[7] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas
Stebila. “Post-Quantum Key Exchange for the TLS Protocol from
the Ring Learning with Errors Problem.” In: IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2015, pp. 553–570.

[8] Mike Burmester and Yvo Desmedt. “A secure and efficient con-
ference key distribution system.” In: Advances in Cryptology —
EUROCRYPT’94. Ed. by Alfredo De Santis. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 275–286.

[9] Mike Burmester and Yvo Desmedt. “Efficient and Secure Conference-
Key Distribution.” In: Proceedings of the International Workshop
on Security Protocols. London, UK, UK: Springer-Verlag, 1997,
pp. 119–129.

105

https://arxiv.org/abs/1610.01187
https://arxiv.org/abs/1610.01187
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18

106 bibliography

[10] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange
Protocols and Their Use for Building Secure Channels.” In: Pro-
ceedings of the International Conference on the Theory and Application
of Cryptographic Techniques: Advances in Cryptology. EUROCRYPT
’01. London, UK, UK: Springer-Verlag, 2001, pp. 453–474. isbn:
3-540-42070-3. url: http://dl.acm.org/citation.cfm?id=
647086.715688.

[11] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes. “CSIDH: An Efficient Post-Quantum Commu-
tative Group Action.” In: ASIACRYPT (3). Vol. 11274. LNCS.
Springer, 2018, pp. 395–427.

[12] WhatsApp Help Center. How to create a group. 2022. url: https:
//faq.whatsapp.com/kaios/chats/how-to-create-a-group/

?lang=en.

[13] Rakyong Choi, Dongyeon Hong, and Kwangjo Kim. Constant-
round Dynamic Group Key Exchange from RLWE Assumption. Cryp-
tology ePrint Archive, Report 2020/035. 2020.

[14] Information Technology Laboratory Computer Security Divi-
sion. Public-key post-quantum cryptographic algorithms: Nomina-
tions. 2016. url: https://csrc.nist.gov/news/2016/public-
key-post-quantum-cryptographic-algorithms.

[15] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient
Algorithms for Supersingular Isogeny Diffie-Hellman.” In: CRYPTO.
Springer, 2016, pp. 572–601. doi: 10.1007/978-3-662-53018-
4_21.

[16] Jean Marc Couveignes. “Hard Homogeneous Spaces.” In: IACR
Cryptology ePrint Archive 2006 (2006), p. 291. url: https://ia.
cr/2006/291.

[17] Luca De Feo and David Jao. defeo/sidh-paper. url: https://
github.com/defeo/sidh-paper/blob/master/eprint.tex.

[18] Yvo Desmedt, Tanja Lange, and Mike Burmester. “Scalable
Authenticated Tree Based Group Key Exchange for Ad-Hoc
Groups.” In: Financial Cryptography and Data Security. Springer
Berlin Heidelberg, 2007, pp. 104–118.

[19] Whitfield Diffie and Martin Hellman. “New Directions in Cryp-
tography.” In: IEEE Trans. Inf. Theor. 22.6 (2006), pp. 644–654.
doi: 10.1109/TIT.1976.1055638.

[20] Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably
Secure Key Exchange Scheme Based on the Learning with Errors
Problem. Cryptology ePrint Archive, Report 2012/688. 2012.

http://dl.acm.org/citation.cfm?id=647086.715688
http://dl.acm.org/citation.cfm?id=647086.715688
https://faq.whatsapp.com/kaios/chats/how-to-create-a-group/?lang=en
https://faq.whatsapp.com/kaios/chats/how-to-create-a-group/?lang=en
https://faq.whatsapp.com/kaios/chats/how-to-create-a-group/?lang=en
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://ia.cr/2006/291
https://ia.cr/2006/291
https://github.com/defeo/sidh-paper/blob/master/eprint.tex
https://github.com/defeo/sidh-paper/blob/master/eprint.tex
https://doi.org/10.1109/TIT.1976.1055638

bibliography 107

[21] Yan Zong Ding and Michael O. Rabin. “Hyper-Encryption and
Everlasting Security.” In: STACS 2002, 19th Annual Symposium
on Theoretical Aspects of Computer Science, Antibes - Juan les Pins,
France, March 14-16, 2002, Proceedings. 2002, pp. 1–26. doi: 10.
1007/3-540-45841-7_1.

[22] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Minimalism
in Cryptography: The Even-Mansour Scheme Revisited.” In:
EUROCRYPT. Vol. 7237. LNCS. Springer, 2012, pp. 336–354.

[23] Ratna Dutta and Rana Barua. “Constant Round Dynamic Group
Key Agreement.” In: Information Security. Springer Berlin Hei-
delberg, 2005, pp. 74–88.

[24] Shimon Even and Yishay Mansour. “A Construction of a Cipher
from a Single Pseudorandom Permutation.” In: J. Cryptol. 10.3
(1997), pp. 151–162.

[25] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-
resistant cryptosystems from supersingular elliptic curve isoge-
nies.” In: J. Math. Cryptol. 8.3 (2014), pp. 209–247. doi: 10.1515/
jmc-2012-0015.

[26] Atsushi Fujioka, Katsuyuki Takashima, and Kazuki Yoneyama.
“One-Round Authenticated Group Key Exchange from Isoge-
nies.” In: Provable Security - 13th International Conference, ProvSec
2019, Cairns, QLD, Australia, October 1-4, 2019, Proceedings. Ed. by
Ron Steinfeld and Tsz Hon Yuen. Vol. 11821. Lecture Notes in
Computer Science. Springer, 2019, pp. 330–338. doi: 10.1007/
978-3-030-31919-9_20.

[27] Satoshi Furukawa, Noboru Kunihiro, and Katsuyuki Takashima.
“Multi-party Key Exchange Protocols from Supersingular Isoge-
nies.” In: 2018 International Symposium on Information Theory and
Its Applications (ISITA) (2018), pp. 208–212.

[28] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo
Ti. “On the Security of Supersingular Isogeny Cryptosystems.”
In: Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.
LNCS. 2016, pp. 63–91. doi: 10.1007/978-3-662-53887-6_3.

[29] Steven D. Galbraith and Frederik Vercauteren. Computational
problems in supersingular elliptic curve isogenies. Cryptology ePrint
Archive, Report 2017/774. 2017. url: https://ia.cr/2017/774.

[30] Tetsuya Hatano, Atsuko Miyaji, and Takashi Sato. “T-robust Scal-
able Group Key Exchange Protocol with O(Log N) Complexity.”
In: Proceedings of the 16th Australasian Conference on Information
Security and Privacy. Springer-Verlag, 2011, pp. 189–207.

https://doi.org/10.1007/3-540-45841-7_1
https://doi.org/10.1007/3-540-45841-7_1
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-31919-9_20
https://doi.org/10.1007/978-3-030-31919-9_20
https://doi.org/10.1007/978-3-662-53887-6_3
https://ia.cr/2017/774

108 bibliography

[31] Hector B. Hougaard. “How to Generate Pseudorandom Permuta-
tions Over Other Groups: Even-Mansour and Feistel Revisited.”
In: CoRR abs/1707.01699 (2017). url: http://arxiv.org/abs/
1707.01699.

[32] Hector B. Hougaard and Atsuko Miyaji. “SIT: supersingular
isogeny tree-based group key exchange.” In: 2020 15th Asia Joint
Conference on Information Security (AsiaJCIS). IEEE, 2020, pp. 46–
53. doi: 10.1109/AsiaJCIS50894.2020.00019.

[33] Hector B. Hougaard and Atsuko Miyaji. “Tree-Based Ring-LWE
Group Key Exchanges with Logarithmic Complexity.” In: Infor-
mation and Communications Security. Ed. by W. Meng, D. Goll-
mann, C. D. Jensen, and J. Zhou. Vol. 12282. LNCS. Springer
International Publishing, 2020, pp. 91–106. doi: 10.1007/978-3-
030-61078-4_6.

[34] Hector B. Hougaard and Atsuko Miyaji. “Authenticated logarithmic-
order supersingular isogeny group key exchange.” In: Interna-
tional Journal of Information Security. Springer, 2021. doi: 10.1007/
s10207-021-00549-4.

[35] Hector B. Hougaard and Atsuko Miyaji. “Authenticated tree-
based R-LWE group key exchange.” In: The Computer Journal.
Ed. by Oxford Press. 2021. doi: 10.109/comjnl/bxab165.

[36] Hector B. Hougaard and Atsuko Miyaji. “Group key exchange
compilers from generic key exchanges.” In: International Con-
ference on Network and System Security (NSS). LNCS. Springer
International Publishing, 2021. doi: 10.1007/978-3-030-92708-
0_10.

[37] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk.
“Generic Compilers for Authenticated Key Exchange.” In: Ad-
vances in Cryptology - ASIACRYPT 2010 - 16th International Con-
ference on the Theory and Application of Cryptology and Information
Security. Vol. 6477. LNCS. Springer, 2010, pp. 232–249. url:
https://www.iacr.org/archive/asiacrypt2010/6477232/

6477232.pdf.

[38] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryp-
tosystems from Supersingular Elliptic Curve Isogenies.” In: Post-
Quantum Cryptography. Ed. by Bo-Yin Yang. Springer Berlin
Heidelberg, 2011.

[39] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María
Naya-Plasencia. “Breaking Symmetric Cryptosystems Using
Quantum Period Finding.” In: CRYPTO (2). Vol. 9815. LNCS.
Springer, 2016, pp. 207–237.

[40] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography. 2nd ed. CRC Press, 2015.

http://arxiv.org/abs/1707.01699
http://arxiv.org/abs/1707.01699
https://doi.org/10.1109/AsiaJCIS50894.2020.00019
https://doi.org/10.1007/978-3-030-61078-4_6
https://doi.org/10.1007/978-3-030-61078-4_6
https://doi.org/10.1007/s10207-021-00549-4
https://doi.org/10.1007/s10207-021-00549-4
https://doi.org/10.109/comjnl/bxab165
https://doi.org/10.1007/978-3-030-92708-0_10
https://doi.org/10.1007/978-3-030-92708-0_10
https://www.iacr.org/archive/asiacrypt2010/6477232/6477232.pdf
https://www.iacr.org/archive/asiacrypt2010/6477232/6477232.pdf

bibliography 109

[41] Jonathan Katz and Moti Yung. “Scalable Protocols for Authenti-
cated Group Key Exchange.” In: J. Cryptol. 20.1 (2007), pp. 85–
113.

[42] Joe Kilian and Phillip Rogaway. “How to Protect DES Against
Exhaustive Key Search (an Analysis of DESX).” In: J. Cryptol.
14.1 (2001), pp. 17–35.

[43] Hidenori Kuwakado and Masakatu Morii. “Quantum distin-
guisher between the 3-round Feistel cipher and the random
permutation.” In: ISIT. IEEE, 2010, pp. 2682–2685.

[44] Hidenori Kuwakado and Masakatu Morii. “Security on the
quantum-type Even-Mansour cipher.” In: ISITA. IEEE, 2012,
pp. 312–316. isbn: 978-1-4673-2521-9.

[45] Yong Li, Sven Schäge, Zheng Yang, Christoph Bader, and Jörg
Schwenk. “New Modular Compilers for Authenticated Key
Exchange.” In: Applied Cryptography and Network Security. Ed.
by Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay.
Cham: Springer International Publishing, 2014.

[46] Michael Luby and Charles Rackoff. “How to construct pseudo-
random permutations from pseudorandom functions.” In: SIAM
J. Comput. 17.2 (1988), pp. 373–386.

[47] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “A Toolkit
for Ring-LWE Cryptography.” In: Advances in Cryptology - EU-
ROCRYPT 2013. Ed. by Thomas Johansson and Phong Nguyen.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[48] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal
Lattices and Learning with Errors over Rings.” In: J. ACM 60.6
(2013), pp. 43–78. doi: 10.1145/2535925.

[49] Mark Manulis, Koutarou Suzuki, and Berkant Ustaoglu. “Mod-
eling Leakage of Ephemeral Secrets in Tripartite/Group Key
Exchange.” In: Information, Security and Cryptology – ICISC 2009.
Ed. by Donghoon Lee and Seokhie Hong. Springer Berlin Hei-
delberg, 2010, pp. 16–33.

[50] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. “SiGamal:
A Supersingular Isogeny-Based PKE and Its Application to a
PRF.” In: Advances in Cryptology - ASIACRYPT 2020. Ed. by S.
Moriai and H. Wang. Vol. 12492. LNCS. Springer, Cham, 2020,
pp. 551–580. doi: 10.1007/978-3-030-64834-3_19.

[51] National Institute of Standards and Technology. Data Encryption
Standard (DES). FIPS Publication 46-3. 1999. url: http://csrc.
nist.gov/publications/fips/fips46-3/.

[52] Chris Peikert. “Lattice Cryptography for the Internet.” In: Post-
Quantum Cryptography. Springer International Publishing, 2014,
pp. 197–219.

https://doi.org/10.1145/2535925
https://doi.org/10.1007/978-3-030-64834-3_19
http://csrc.nist.gov/publications/fips/fips46-3/
http://csrc.nist.gov/publications/fips/fips46-3/

110 bibliography

[53] Edoardo Persichetti, Rainer Steinwandt, and Adriana Suárez
Corona. “From Key Encapsulation to Authenticated Group Key
Establishment—A Compiler for Post-Quantum Primitives.” In:
Entropy 21.12 (2019). doi: 10.3390/e21121183.

[54] John Proos and Christof Zalka. “Shor’s Discrete Logarithm
Quantum Algorithm for Elliptic Curves.” In: Quantum Info. Com-
put. 3.4 (2003), pp. 317–344.

[55] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martin-
dale, Lorenz Panny, Christophe Petit, and Katherine E. Stange.
“Improved Torsion-Point Attacks on SIDH Variants.” In: Ad-
vances in Cryptology - CRYPTO 2021. Ed. by T. Malkin and C.
Peikert. Vol. 12827. LNCS. Springer, 2021, pp. 432–470. doi:
10.1007/978-3-030-84252-9_15.

[56] Alexander Rostovtsev and Anton Stolbunov. “Public-Key Cryp-
tosystem Based on Isogenies.” In: IACR Cryptology ePrint Archive
2006 (2006), p. 145.

[57] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate
Texts in Mathematics. Dordrecht: Springer, 2009.

[58] Vikram Singh. “A Practical Key Exchange for the Internet using
Lattice Cryptography.” In: IACR Cryptology ePrint Archive 2015

(2015), p. 138. url: https://eprint.iacr.org/2015/138.

[59] Koutarou Suzuki and Kazuki Yoneyama. “Exposure-Resilient
One-Round Tripartite Key Exchange without Random Oracles.”
In: IEICE Transactions 97-A.6 (2014), pp. 1345–1355.

[60] Katsuyuki Takashima. “Post-Quantum Constant-Round Group
Key Exchange from Static Assumptions.” In: International Sym-
posium on Mathematics, Quantum Theory, and Cryptography. Ed. by
Tsuyoshi Takagi, Masato Wakayama, Keisuke Tanaka, Noboru
Kunihiro, Kazufumi Kimoto, and Yasuhiko Ikematsu. Singapore:
Springer Singapore, 2021, pp. 251–272.

[61] Qiang Tang and Chris Mitchell. “Efficient Compilers for Authen-
ticated Group Key Exchange.” In: LNCS. Vol. 3802. Springer,
2006, pp. 192–197.

[62] Eric Thormarker. “Post-quantum cryptography: Supersingular
isogeny Diffie-Hellman key exchange.” Thesis. Stockholm uni-
versity. 2017.

[63] Lawrence C. Washington. Elliptic Curves: Number Theory and
Cryptography, Second Edition. 2nd ed. Chapman & Hall/CRC,
2008. isbn: 9781420071467.

[64] WhatsApp. WhatsApp Encryption Overview -Technical white paper.
2018. url: https://www.whatsApp.com/security/WhatsApp-
Security-Whitepaper.pdf.

https://doi.org/10.3390/e21121183
https://doi.org/10.1007/978-3-030-84252-9_15
https://eprint.iacr.org/2015/138
https://www.whatsApp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsApp.com/security/WhatsApp-Security-Whitepaper.pdf

bibliography 111

[65] Mark Zhandry. “A Note on Quantum-Secure PRPs.” In: CoRR
abs/1611.05564 (2016). url: http : / / arxiv . org / abs / 1611 .

05564.

[66] Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook, and
Özgür Dagdelen. “Authenticated Key Exchange from Ideal Lat-
tices.” In: EUROCRYPT (2). Springer, 2015, pp. 719–751. url:
https://www.iacr.org/archive/eurocrypt2015/90560281/

90560281.pdf.

http://arxiv.org/abs/1611.05564
http://arxiv.org/abs/1611.05564
https://www.iacr.org/archive/eurocrypt2015/90560281/90560281.pdf
https://www.iacr.org/archive/eurocrypt2015/90560281/90560281.pdf

	Dedication
	Abstract
	 Abstract
	Publications

	 List of publications
	Acknowledgments

	 Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms

	 Background
	1 Introduction
	1.1 Motivation
	1.2 Post-quantum cryptography
	1.3 Group key exchanges
	1.4 Pseudorandom permutations
	1.5 Contributions and Copyright Notices
	1.6 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Algebra
	2.3 Cryptography
	2.3.1 Diffie-Hellman
	2.3.2 Signature schemes
	2.3.3 Pseudorandomness

	2.4 Burmester-Desmedt group key exchanges
	2.5 Supersingular isogeny Diffie-Hellman
	2.6 Ring-learning-with-errors (R-LWE)
	2.7 Even-Mansour
	2.8 Security models
	2.8.1 Security model
	2.8.2 G-CK+ security model
	2.8.3 Security model discussion

	 Research
	3 Group key exchanges from isogenies
	3.1 Introduction
	3.2 Related work
	3.3 Supersingular isogeny tree-based GKE (SIT)
	3.3.1 CSIDH version

	3.4 Peer-to-peer SIT (P2P-SIT)
	3.5 Authenticated SIT (A-SIT)
	3.6 Comparison
	3.7 Concluding remarks

	4 Group key exchanges from ring-learning-with-errors
	4.1 Introduction
	4.2 Related work
	4.3 R-LWE tree-based GKE (Tree-R-LWE-GKE)
	4.4 Peer-to-peer R-LWE group key exchange (P2P-Tree-R-LWE-GKE)
	4.5 Authenticated Tree-R-LWE-GKE
	4.6 Comparison
	4.7 Concluding remarks

	5 Generic group key exchange compilers
	5.1 Introduction
	5.2 Preliminaries
	5.3 Generalized group key exchange compiler (GKE-C)
	5.4 Peer-to-peer GKE-C (P2P-GKE-C)
	5.5 Complexity analysis
	5.6 Conclusion

	6 Generalized Even-Mansour
	6.1 Introduction
	6.2 Preliminaries
	6.3 Related work
	6.4 Group action Even-Mansour
	6.4.1 Evidence for quantum security

	6.5 Concluding remarks

	 Conclusion
	7 Concluding remarks
	7.1 Summary
	7.2 Discussion
	7.3 Future work

	 Appendix
	A Table of key exchanges in the 0/1-IKE notation and their corresponding hard problems
	 Bibliography

