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Abstract 

Street View image has interested urban planners and researchers for decades and has gradually 

ascended as a data source for geospatial analysis and urban analysis, which deriving urban 

environment improvement and urban design optimization. The data we can obtain from the 

street view images not only includes the visual information of the urban physical environment 

but also reflects information about urban functions, human activities, and urban climate. 

However, the traditional digital image processing methods are limited, and cannot extract 

effective information accurately and efficiently from street view images. Despite extensive 

research into environmental assessment factors that reflect urban environment quality such as 

urban greenery, street openness, plant shades, it is still mostly done manually based on big data. 

In recent years, with the continuous improvement of artificial intelligence technology, 

breakthroughs have been made in the use of machine learning and deep learning to extract 

semantic information from images. Image semantic segmentation and instance segmentation 

technologies based on deep learning provide strong support for extracting key information from 

street view images and analyzing the quality of urban street environments. In this process, a 

large number of new methods and new perspectives have emerged, providing new research 

ideas for urban environment research, spatial data mining, and human activity analysis based 

on big data.  

This research proposes a three-step work to develop a method for using street view images to 

evaluate the greenery of urban street-level and the openness of the built environment by 

improving the accuracy of image semantic segmentation. 

The first step is to compare the deep learning models of each image semantic segmentation to 

find an algorithm suitable for the semantic segmentation of urban street view images. Next is 

developing a method based on semantic segmentation processing of street view images to 

calculate the Green View Index of urban streets. For this phase, the Panoramic View Green 

View Index (PVGVI) is proposed for measuring the visible street-level greenery. Then, this 

method extends to automatically extracting Sky View Factor from street view images to 

measure the openness of the street-built environment. Finally, the Green View Index and the 

Sky View Factor which separately represents the greenery and openness of the outdoor urban 

environment have been visualized on the street map, which can more intuitively show the 

characteristics of the urban environment, and provide strong support for the decision-making 

of urban planners and managers. 

The outcome of this research is beneficial to both urban planners and urban managers. It helps 

to combine large-scale street view image datasets with image recognition technology and helps 

city planners to obtain urban environmental data for evaluation. With the support of artificial 
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intelligence technology and the help of street view images, it is possible to further study the 

spatial characteristics, laws, and evolution process of the city. The mentioned outcome helps 

researchers to propose better urban upgrading strategies to create a better urban environment. 
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Chapter 1 

Introduction 

 

 

1.1 Background and problem statements 

The city is essentially a huge and complex system (Batty, 2008; Isalgue et al., 2007). For 

decades, city planners and managers have been working to find a way to accurately and 

effectively evaluate the urban environment. They hope that the results of these evaluations can be 

fed back into the urban design and management process, and can be further applied in the strategies to 

improve the quality of the urban environment. Most of the human activities occur in the urban 

street environment (Madanipour, 1996). They are places where human activities intensively 

occur in cities. Urban street space is one of the most important elements that constitute the 

urban environment, and it is also the main interface between humans and the city. High-quality 

street space not only helps to enhance the vitality of the city but also increases the frequency 

of social interaction and outdoor activities (Handy et al., 2002). The perception of spatial 

quality based on urban streets is regarded as an important public product. Many cities have also 

successively proposed many street designing measures and urban renewal policies, such as the 

Urban Street Design Guide (National Association of City Transportation Officials, 2012). As 

shown in these guidelines, the focus has gradually changed from "transport-centric" to "people-

centric". At the same time, some evaluation platforms have also emerged, such as Walk Score 

and Bike Score, to assist in accurate quality evaluation and design interventions. This series of 
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actions shows that researchers are paying more and more attention to the quality of streets. 

From Jacobs (1961) to Montgomery (1998), these urbanists have published a lot of research 

about the elements which affect the quality of the urban street environment. However, they 

generally lack the discussion of these urban environment elements and the perceptual attributes 

related to the urban visual perceptions. In recent years, some quantitative analysis on urban 

spatial quality has been gradually introduced into the urban study field. They reveal some 

relationships between visual quality, spatial perception, and corresponding urban design 

elements. However, these studies are usually based on small-scale urban data sets collected 

manually, which cannot support their expansion to other areas of the city. 

Street view imagery is a new type of big geographic dataset that perceives the physical 

environment of the city. This kind of high-density image data covering the urban street network 

depicts the urban environment in detail from a human perspective, thereby effectively 

supporting the quantitative research of the urban material environment. As a big data source, 

street view images not only include the visible environment of the urban material space, such 

as buildings, roads, plants, etc., but also cover some information hidden under the material 

space, including urban functions, human activities, and society economic information. With 

the development of technology, the achievements of computer vision and deep learning 

technology in image recognition (LeCun et al., 2015) have provided a new research path for 

understanding cities through images (Reichstein et al., 2019). Continuously updated computer 

vision algorithms enable researchers to solve and predict urban problems in a more precise and 

efficient manner.  

Urban street-level greenery has long been recognized as one of the most prime landscape 

design elements in the urban ecological system (Wolf, 2005). It provides multiple benefits to 

urban environments, such as urban trees that can modify environment temperatures by 

providing shade and cooling, helping to significantly reduce the risk of heat-related illnesses 

(Mavrogianni et al., 2014). The street-side green spaces bring huge benefits to cities (Bain et 

al., 2012), it provides opportunities for community residents to engage in physical exercise, 

thereby reducing obesity and mental stress (Giles-Corti et al., 2003). It also provides more 

opportunities to be in green spaces, which is conducive to improved mental health, especially 

in reducing the risk of attention deficit disorder in childhood (Louv, 2008). Urban street-level 

greenery also makes an important contribution to the attractiveness and walkability of 

residential streets (Schroeder and Cannon, 1983; Bain et al., 2012). On the other hand, it 

provides a welcoming environment for people who have a certain impact on the occurrence of 
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various mental illnesses (Coutts, 2008; Lee and Maheswaran, 2011; Leslie et al., 2010). 

Therefore, ensuring widespread access to street-level green space is a key factor in providing 

these environments and benefits to residents (Landry and Chakraborty, 2009). 

The openness of urban streets is another one of the main indicators for evaluating 

environmental spatial quality. In Jan Gehl’s theory of public space design, human activities are 

regarded as the starting point and end of all design. In addition to the necessity and importance 

of the activity itself, people’s feelings are also one of the important factors that affect the 

activity. And a good outdoor environment can prolong people’s staying time outdoors, thereby 

inducing more public activities (Gehl, 1987). In most cases, open space is always more popular 

than closed space, and it is easier to make people feel comfortable. Sky View Factor (SVF) 

represents the ratio of the space point between the visible sky and the hemisphere centered on 

the analysis position in the urban street space, with a value between 0 and 1, where 1 indicates 

an open area without any obstructions and 0 indicates a completely blocked space (Brown et 

al., 2001; He et al., 2015; Scarano and Mancini, 2017).  

In recent studies, analytical methods on urban environmental quality have mostly relied on 

manual extraction and analysis of urban big data. In addition, the source of analysis data is 

limited by the scale and technique, and it is often difficult to be applied for large-scale urban 

analysis. The complexity of urban environmental factors also increases the risk of perceived 

errors. Numerous studies have tried to facilitate this problem by proposing automated 

techniques, among which one of the most important methods is to use deep learning systems 

to automate the process. Therefore, urban landscape analysis based on street view images using 

deep learning would be introduced and proposed in this research. 

1.2 Research objectives 

The information extraction and classification of street view images through computer vision 

technology can reduce the huge workload of urban researchers. Due to the wide range of areas 

and abundant information in urban landscape analysis, the data collection process is usually 

challenging. Moreover, due to the different attributes of urban scenes, the developed analysis 

method must be applied to all urban street scene images, and the classification result can be 

used as a training dataset to improve the detection accuracy of the semantic segmentation 

model in the future. Therefore, the objectives of this research are as follows: 
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(1) To evaluate the performance of a deep learning model for street view image semantic 

segmentation. 

(2) To propose a method that can automatically detect and classify the vegetation and sky area 

based on street view images. 

(3) To develop a method that can estimate and map the street-level distribution of visible urban 

greenery and proposed the Panoramic View Green View Index (PVGVI) to calculate it.   

(4) To develop a method that can accurately and efficiently estimate the sky areas from fisheye 

images and calculate the SVF. 

1.3 Research significance 

This research will provide an understanding of the computer vision from the urban street-level 

such as deep learning-based urban landscape elements detection issues. The proposed methods 

in this research are beneficial for both urban analysis research and practical management. For 

the research community, the proposed methods can improve the data as the basis to evaluate 

the urban environment in an all-around way, and rely on a wealth of design methods to achieve 

the effect of improving the urban environment quality. For professional practice, accurate 

urban landscape analysis elements can be achieved from street view images. The working time, 

cost, and error of handling various city data to obtain accurate details of the urban environment 

can be reduced. 

1.4 Research scope 

The focus of this research is using street view images to analyze the urban landscape 

environment based on deep learning. This research chooses the visible greenery of the urban 

street-level and the openness of the urban built environment as two starting points of this 

research. Since, in the urban street space, these are two important indicators that affect the 

quality of street space and people's visual perception of the built environment. At the same 

time, because plants are full of unique shapes and feature-rich textures, and the built 

environment on both sides of the street is updated at any time, it is more challenging to measure 

the visible greenery and sky visibility.�

1.5 Overview of the dissertation 

This dissertation consists of six chapters as follows: 
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Chapter 1 Introduction:  

This chapter presents the background information, problem statements, research objectives, 

research significance, research scope, and overview of all chapters in this dissertation. 

Chapter 2 Literature review:  

This chapter presents the concept, issues, and related works to this study. It is divided into four 

main parts. The first part explains the elements of urban landscape analysis. It consists of three 

parts, namely the natural environment, the built environment, and human interactions. The 

second part introduces computer vision information related to this research. The third part 

explains the deep learning models related to this research. The fourth part briefly reviews the 

applications of street view images in urban landscape analysis. The last part summarizes this 

chapter.  

Chapter 3: Detecting the urban design elements from street view images for urban landscape 

analysis 

In this chapter, the accuracy of the proposed semantic segmentation algorithm is examined 

through a comparative study. Subsequently, the Green View Index (GVI) and Sky View Factor 

(SVF) are proposed, which are recognized as the factors to evaluate the greenery of urban 

street-level and the openness of the built environment respectively. The results are discussed 

and summarized. 

Chapter 4: Assessing the quality of urban greenery by estimating the Green View Index 

This chapter proposes a method based on semantic segmentation processing of street view 

images to calculate the Green View Index of urban streets, and the Panoramic View Green 

View Index (PVGVI) is proposed for measuring the visible street-level greenery.  Subsequently, 

a method for improving the accuracy and speed of segmentation of street view images by using 

a pre-trained semantic segmentation model was proposed. The proposal of PVGVI and the 

evaluation system is described. Validation through a case study is conducted. The results are 

discussed and summarized. 

Chapter 5: Estimating the Sky View Factor to visualize the built environment openness 

This chapter extends the proposed method from Chapter 4 to automatically detect the sky area 

from street view images. The proposed approach can then be used to estimate the accurate SVF 

of the urban built environment. The development of the detection and evaluation system is 
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described. Validation through a case study is conducted. The results are discussed and 

summarized. 

Chapter 6: Conclusion 

This chapter concludes the entire research by giving a summary, contributions of the research, 

and limitations.  
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Chapter 2 

Literature review 

 

 

This chapter presents the literature that is related to the work in this dissertation. It is separated 

into five sections. The first section focuses on urban landscape analysis elements, which can 

be divided into other three subsections: 1) built environment, 2) natural environment, 3) human 

perception. The second section guides computer vision, which includes two parts: 1) CNN, 2) 

FCN. The third section introduces the deep learning and some representative deep learning 

models, such as SegNet, PSPNet, DeepLab. The fourth section introduce the street view images 

and the mainly providers of open source street view image data. The fifth section presents the 

applications of street view images in the urban environment analysis. This section contains two 

subsections, which are using green view index to assess the quality of environment greenery 

and using sky view factor to evaluate the openness of the urban built environment based on 

street view image. The last section summarizes all the detail in this chapter. 

2.1 The urban landscape analysis elements 

In the mid-1940s, Saarinen (Saarinen, 1948) proposed the concept of urban design, which 

began to be widely accepted in the 1960s. Urban design is a discipline that pays attention to 

urban planning layout, urban appearance, urban functions, and especially urban public space. 

The complex process of urban design is to focus on the interrelationship between the elemental 

arrangement of the city and the social and psychological health of the residents. Through the 
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treatment of material space and landscape signs, a material environment is created, which can 

not only make residents happy but also inspire community behavior. 

For example, New York vigorously promoted urban design in 1964 as a new policy to improve 

the urban environment. In the past ten years, many countries have begun to emphasize urban 

design to enhance the characteristic image of the city, improve the quality of the urban 

environment, and promote the coordinated development of people, the city, and the 

environment. Urban design is modeling design, but it is not an individual architectural model, 

but an orderly arrangement of various elements of the city. The so-called urban design is to 

establish an urban order that conforms to the lives of people in modern society. The goal of 

urban design is to create a comfortable, convenient, hygienic, and beautiful space environment 

for people. That is, through the comprehensive design of various material elements in a certain 

area, the city can achieve the coordination and coordination of various facilities and functions, 

as well as space. The form is unified and perfect, and the overall benefits are optimized. The 

elements of urban design include many aspects. In 1960, Kevin Lynch introduced the field of 

psychology into urban research. In the book "The image of the city" (Kevin, 1964), people's 

impressions of the city were summarized into five elements, which are path, edge, district, node, 

and landmark. The path is the trajectory of people's movement, which can be streets, trails, 

transportation lines, rivers or railways, etc. People move along the roads while observing the 

city, and rely on these roads to organize and connect the rest of the environmental factors. 

Edges are linear elements that are not regarded as roads by people: they are usually the dividing 

line between two areas. They play the role of side notes. The district is a medium-scale or large-

scale unit in a city. The node is the identification point, an important strategic point that people 

can enter in the city, and the focal point of arrival and departure during the journey. Landmarks 

are another type of reference point. People are outside of them without entering them. They are 

usually objects that are simply defined: buildings, signs, shops, or mountain peaks. 

These elements include street greening rate, sky visibility, continuity of building façade, 

pedestrian-friendly degree, degree of motorization. They are interdependent in the process of 

urban design. These elements together constitute an analysis system for evaluating urban 

environment quality. Urban scientists also try to use some methods to quantitatively analyze 

these elements. This research mainly focused on the urban design elements of the built 

environment, the natural environment, and the human interaction, which can be quantified by 

the visible greenery, the visible sky area percentage, etc. 
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2.1.1 The built environment 

The built environment refers to various buildings and places that are constructed and renovated 

by humans, especially those environments that can be changed by urban design and human 

behavior, including central space, public space, green space, etc. There are many factors to 

measure the built environment. Cervero and Kockelman summarized the built environment 

into three important dimensions (3D), namely density, diversity, and design (Cervero et al., 

1997); Handy et al. put forward six built environment characteristics to describe the building 

Environment, including density, mixed-use of land, street connectivity, block size, aesthetics, 

and regional structure (Handy et al., 2002); Picola and others discussed the characteristics of 

the built environment from four aspects: function, safety, beauty, and destination (Pikora et al., 

2003).�

2.1.2 The natural environment 

The natural environment is an important entry point for us to understand the city, which is 

composed of plants, animals, air conditions, climate conditions, etc. It not only affects our 

overall perception of the urban environment but also stimulates or inhibits the occurrence of 

interpersonal communication activities. More importantly, the microclimate environment of 

the city depends largely on the natural environment. Urban researchers are aware of its 

importance and published many aspects of research results. These studies include mapping 

greenery in cities, identifying the plant species (Krause et al., 2018; Sun et al., 2017), studying 

the interaction between the natural environment and wildlife (Mohanty et al., 2016).  

2.1.3 Human perception 

In the field of urban design, human behavior interacts with the surrounding environment, and 

human perception can directly feedback the quality of the environment and space. In different 

places and material spaces, people's sense of place, and activity status are different. The types, 

styles, and colors of buildings, the shape, vitality of streets, and the types and areas of 

vegetation all can affect the human perception of the urban environment (Liu et al., 2015). This 

information is closely related to the intensity of human activities, activity types, and urban 

functions, and is an important aspect of analyzing human social perception. 
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2.2 Computer vision 

Computer vision is a discipline about studying machine vision capabilities or a discipline that 

enables machines to visually analyze the environment and the stimuli in it. Computer vision 

usually involves the evaluation of images or videos. It was defined as "the automatic extraction, 

analysis, and understanding of useful information from a single image or a series of images" 

by the British Machine Vision Association (BMVA). In the field of computer vision, the main 

tasks are image classification, image location, target detection, target tracking, semantic 

segmentation, and instance segmentation (see Figure 2.1). 

 

Figure 2.1 Computer vision tasks. 

2.2.1 CNN Image classification 

Convolutional Neural Network (CNN) is a type of feedforward neural network that contains 

convolution calculations and has a deep structure. It is a representative model of deep learning. 

Its iconic model AlexNet (Krizhevsky et al., 2012) won the first place in the ImageNet 1000 

object picture recognition competition (Russakovsky et al., 2015) in 2012, with a score of less 

than 15%. The error rate far exceeds the model using traditional methods (26% error rate). 

However, there are some limitations of CNN, such as the storage overhead being too large, the 

calculation efficiency being low, and the pixel block size limiting the size of the sensing area, 

resulting in low classification performance. 

2.2.2 FCN Image semantic segmentation 

To resolve the issues mentioned before, FCN was released in 2015 (Long et al., 2015) and is 

the pioneering work of fully convolutional networks in the field of semantic segmentation. The 



 11 

main idea is to improve the image classification network into a semantic segmentation network 

and restore the size of the feature map by rotating the classifier (fully connected layer) into an 

up-sampling layer for end-to-end training. It opens up a new world for semantic segmentation. 

2.2.2.1 GoogLeNet 

GoogLeNet was developed by Christian et al. (2015). Such as the AlexNet, VGG, and other 

models be mentioned before all achieve better training effects by increasing the depth (number 

of layers) of the network. However, as the number of layers increases, it also brings a lot of 

negative effects, such as overfitting, gradient disappearance, and gradient explosion. Christian 

and his team proposed a structure called inception, hoping to improve the training results from 

another angle. This structure can use computing resources more efficiently and can extract 

more features with the same amount of calculation. 

2.2.2.2 ResNet 

ResNet was developed by He et al. (2016a). It solves the problem of the disappearance of 

gradient backhaul by introducing cross-layer links. The model won the 2016 Imagenet 

competition with 96.4% accuracy. ResNet effectively solves the problem that deep neural 

networks are difficult to train, and can train up to 1000 layers of convolutional networks. 

2.3 Deep learning 

Deep learning is an algorithm that uses multi-layer artificial neural networks as the basic 

architecture to perform characterization learning on data. It is a branch of machine learning. 

The emergence of deep learning allows computers to process more image problems more 

accurately and efficiently (He et al., 2016a; LeCun et al., 2015). According to different task 

types and model principles, deep learning can be divided into Generative Adversarial Neural 

Network (GAN), Recurrent Neural Network (RNN), Auto Encoder, Deep Convolutional 

Neural Network (DCNN), etc. The DCNN is mainly applied in the image data analysis area. 

Since then, deep learning has entered the public eye, which has been widely applied in image 

recognition, speech recognition, text analysis, unmanned driving, game competition, etc. It has 

made remarkable progress in these areas. There are numerous deep learning models, which 

have their advantages and disadvantages. Among these deep learning algorithms, SegNet 

which is a deep convolutional encoder-decoder architecture for image segmentation 

(Badrinarayanan et al., 2017), Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017), 
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and DeepLab (Chen et al., 2017a) are the representative deep learning models. The details of 

these algorithms are described in the following subsections. 

2.3.1 SegNet 

SegNet was developed by Badrinarayanan et al., (2017). It was developed based on FCN and 

was a semantic segmentation model obtained by modifying the VGG-16 network. The novelty 

of SegNet lies in the way the decoder upsamples its low-resolution input feature maps. 

2.3.2 Pyramid Scene Parsing Network (PSPNet) 

Pyramid Scene Parsing Network (PSPNet) was developed by Zhao et al. (2017), It introduces 

more context information based on the FCN algorithm through global average pooling and 

feature fusion, so the features are in a pyramid structure. 

2.3.3 DeepLab 

The DeepLab series was proposed by Liang et al (2014), mainly using DCNNs and 

probabilistic graph models (conditional random fields) to achieve image pixel-level 

classification (semantic segmentation tasks). It has been updated four versions so far, including 

DeepLab V1(Chen et al., 2017a), DeepLab V2 (Chen et al., 2017a), DeepLab V3 (Chen et al., 

2017b), and DeepLab V3+ (Chen et al., 2018). 

2.4 Street View Image 

Street view images include street view pictures and social media photos in a broad sense. Street 

view images refer to pictures collected by map service providers such as Google Maps, Tencent 

Maps, and Baidu Maps. These pictures are collected by street view vehicles crossing the city 

road network. It also includes street view images provided by crowdsourcing platforms such 

as Mapillary under certain standards. Such kinds of images are generally stored in the form of 

a panorama, which contains the 360° panoramic visual information of the shooting location. In 

the actual acquisition and use, the visual environment of each location can be expressed by 

multiple street view pictures facing different directions and natural perspectives. Social media 

photos refer to photos of indoor and outdoor urban landscapes shared by users on social media 

platforms. Such platforms include mainstream social media such as Twitter and Facebook, as 

well as sharing platforms for photography enthusiasts and travel enthusiasts such as Flickr and 

Panoramio. Street view images are strictly distributed in accordance with the road network, 

and social media photos are distributed in various public spaces in the city, which can be used 
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as a supplement to the description of the spaces within the block. Street view images have the 

characteristics of wide coverage, high density, and high acquisition efficiency. The resolution 

of street view images has also been gradually improved with the advancement of image 

technology and photographic equipment, and the coverage has also become wider. For example, 

Google Street View images currently cover most cities in 195 countries around the world. At 

the same time, street view images have covered all levels of the city’s road network with high 

density. The images formed between adjacent sampling points can be seamlessly connected 

and can fully express the built environment. 

2.5 The applications of street view images in the urban 

environment analysis 

The application of street view images in urban environment analysis includes two parts: 1) see 

cities from above; 2) see cities from a street level. In the traditional urban research process, 

researchers analyze the urban environment based on geographic information systems by 

identifying remote sensing images. Such methods have been widely applied in land use analysis, 

air pollution analysis, ecological environment analysis, and urban heat island effect analysis. It 

was found, they are very suitable for macro observation of large urban-scale areas. However, 

limited by the shooting angle of the image, it is not suitable for observing the microscopic built 

environment of the city. For example, the indicators used for environmental quality assessment, 

the urban green vision, sky openness, street valley index, etc., are difficult to be obtained from 

the remote sensing images. The emergence of street view images fills up this shortcoming, 

because it is acquired through ground-based photography equipment, which expresses the 

urban material environment from a human perspective, and has more detailed visual content 

(Gong, 2019). Some studies have pointed out that the visual indicators obtained from street 

view images are highly correlated with street feasibility and psychological conditions. On the 

other hand, because the shooting angle of street view images is similar to that of pedestrians, it 

can help researchers better understand the urban environment from the perspective of people, 

and it is usually used in the research of analyzing social perception based on big-data (Wang 

et al., 2018; Lu et al., 2019; Kang et al., 2020). The building types, colors, plants, and city 

traffic information, which are contained in street view images are all closely related to urban 

land use, urban functions, and the intensity of human activities, thereby helping researchers 

understand the impact of urban design on human activities (Zhang et al., 2019). Therefore, 

more and more researchers use machine learning and deep learning techniques to extract city 
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analysis data from street view pictures to study and evaluate the quality of the city's 

environment (see Table 2.1). 

Table 2.1  Urban environment analysis based on street view image  

Category Evaluation elements Method Representative research 

Physical 

environment 

Green plants, pedestrian safety, 

pedestrians, road facilities, 

motorized transportation, 

construction, traffic signs, etc. 

Correlation analysis 

Poisson regression 

Machine learning 

Rundle et al., 2011; 

Kronkvist et al., 2014; 

Mooney et al., 2016 

Social 

environment 

Cars, sidewalks, pedestrians, 

buildings, sky, etc. 

Machine learning 

Deep learning 

Yin et al., 2015; Porzi et 

al., 2015; 

Economic 

environment 

Green vegetation, ground, 

buildings, tree, sky 

Image analysis 

based on pixel 

Machine learning 

Arietta et al., 2014; 

Glaeser et al., 2018;  

Aesthetic 

environment 

Street trees, green vegetation, 

buildings 

Machine learning 

Deep learning 

Image analysis 

Berland & Lange, 2017; 

Liu et al., 2017 

2.5.1 Using Green View Index (GVI) to assess the quality of environment 

greenery based on street view image 

Greenery is always cited as an essential factor in the study of urban environmental quality. 

Since the 1950s, Olmsted focuses on urban park renovation and street design that combines the 

natural environment and living space (Beveridge and Rocheleau,1995). In the later period of the 

1980s, urban planners planned a large-scale green network to attract residents into the open 

space of the city. Another important contribution of green plants is to reduce the impact of air 

pollution and urban heat island effect to a certain extent. Therefore, most researchers pay more 

attention to the functional characteristics of plants but lack research on visual impact or 

aesthetics. It was found from some research by environmental psychologists (Tzoulas et al., 

2007) that people’s psychological feelings are closely related to the amount of green in the 

environment. Some research proved that 80% of people's perception of the surrounding 

environment comes from visual perception (Biocca and Delaney, 1995). Aoki (Yoji Aoki, 

1987), who is a researcher at the National Institute of Environmental Studies of Japan, proposed 

a quantitative statistical analysis method to identify basic stimuli that affect specific 
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psychological changes and environmental green spaces that can produce positive subjective 

feelings. Later, the researcher of the institute officially proposed the concept of “green visible 

value” (Yoji Aoki, 1987), pointing out that the green visible value is the percentage of green 

in the human field of vision. Yoji Aoki (2006) summarized the research on visual greenery 

conducted in Japan since 1974, which confirmed the connection between the green quantity of 

the street and the psychological activities of people. This physical quantity will be a landscape 

evaluation factor for environmental greening. After that, many researchers tried to measure 

green visible values by different methods to quantitatively evaluate the urban green 

environment. To date, it has been challenging to estimate the size and location of urban green 

spaces. Traditional approaches rely on manual data collected by trained surveyors and 

community-based crowdsourcing (Seiferling et al., 2017; Wales, 2016). However, in some 

large-scale urban survey programs, volunteers are hired to assist in collecting data in the 

preliminary survey stage. Their usual lack of professional technical knowledge can cause 

sampling errors and even repeated sampling. To address these issues, means of calculating 

green space based on remote-sensing satellites and aerial imagery have been developed 

(Barbierato et al., 2019), and the combination of traditional remote sensing and proximity 

sensing seems to be a good choice. Obtaining geographic information by traditional remote 

sensing and mapping tree canopies based on high-resolution light detection and ranging 

(LiDAR) data has proven well suited for assessing urban green environments (MacFaden et al., 

2012). However, software limitations and the high cost of acquiring high-quality data hinder 

the implementation of this approach on a large scale. The key limitation is that although satellite 

and aerial imagery quantify large-scale greenery relatively accurately, it is not good at showing 

street-level greenery (Yang et al., 2009). For this reason, the aforementioned approaches are 

useful for classifying large expanses of urban greenery, such as urban parks, urban forests, and 

gardens. Due to the lack of ground details, it is difficult to detect the contours and features of 

ground plants. Therefore, the assessment of street-level urban greenery remains a problem to 

be solved. With the development of urban planning, increasing emphasis has been placed on 

humanized urban space. The assessment of various elements of cities from the perspective of 

people has gradually become the focus of urban planning research. Therefore, an important 

aspect of assessing the level of urban greening is to evaluate residents’ perceptions and 

experiences of the urban vegetation landscape from street level. There is a large difference in 

perspective between a street-level view and remote sensing from above. A street-level 

perspective can more intuitively reflect residents’ actual perception of the surrounding 

environment. Fortunately, accessible data sources with geo-tagged data are becoming 
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increasingly common; for example, street view services on the web (e.g., Google, Tencent, 

Baidu) allow researchers to navigate virtually through urban spaces in the form of geo-tagged 

street-level images (Rundle et al., 2011). Some researchers began to use panoramic street view 

images to assess street-level greenery. Such images can fully display the surrounding 

environment as seen by pedestrians, creating what feels like a virtual tour of urban streets and 

giving people the feeling of “being there.” These images are quite similar to what people see 

when driving, cycling, or walking on the street. Based on this, many researchers have tried 

different methods to quantify the visibility of greenery to evaluate the urban green environment. 

Meanwhile, with advances in computing technology, computer vision algorithms have been 

developed for processing street-level imagery to measure perceived urban safety (Naik et al., 

2014), urban change (Naik et al., 2015), wealth (Glaeser et al., 2018), infrastructure (Zhang et 

al., 2018), and demographics (Gebru et al., 2017) and to classify building types (Kang et al., 

2018). Yang et al. (2009) developed a method for evaluating the visibility of urban greenery 

by combining field surveys and manual photographs, and they developed the Green View Index 

(GVI) to represent pedestrians’ view of greenery. However, their method relies heavily on 

manual input, which is laborious and prone to error. Li et al. (2015b) proposed a method for 

estimating the GVI by analyzing landscape images acquired from Google Street View (GSV). 

Their method involves using pixel-based color recognition in Abode Photoshop to recognize 

the green area in the images, but it still requires considerable effort. Li et al. (2015a) also 

proposed a method for calculating the GVI based on image-recognition technology and GSV 

images; this improved the work efficiency greatly and combined the latest computer 

technology with urban planning. To summarize the aims of those previous studies, they were 

focused on three key areas: (i) estimating the percentage of urban-level tree cover (Cai et al., 

2018; Li et al., 2015b; Seiferling et al., 2017; Yang et al., 2009); (ii) calculating the number of 

urban trees (Branson et al., 2018; Wegner et al., 2016); and (iii) quantifying the sky view factor 

from street-level imagery to assess the effect of plant numbers on urban temperature (Li and 

Ratti, 2018, 2019; Li et al., 2017).  

2.5.2 Using Sky View Factor (SVF) to evaluate the openness of the urban 

built environment based on street view image 

In recent decades, there has been some substantial progress in research on improving the 

accuracy and efficiency of SVF estimation methods (Matzarakis et al., 2016; Zeng et al., 2018; 

Matzarakis and Matuschek, 2011). There are several representative estimation methods for 

calculating SVF in urban environments, which can be divided into the following types: 
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geometric-based methods (Watson and Johnson, 1987), GPS signal-based methods (Chapman 

and Thornes, 2004), simulation method-based 3D models (Cheung et al., 2016; Li et al., 2018), 

photographic methods (Grimmond et al., 2001; Chen et al., 2012), and SVI-based big data 

method (Gong et al., 2019; Middel et al., 2018).  

2.5.2.1 Geometric methods 

The geometric-based method was originally developed to measure SVF by calculating the ratio 

of the street width to the height of the buildings. In 1981, Oke first developed a formula to 

estimate SVF by calculating the ratio of the height of the buildings on both sides of the urban 

canyon to the width of the ground midpoint (Oke, 1981). In 1984, Johnson and Watson 

proposed a formula for calculating the SVF of a single building in an asymmetrical canyon of 

finite length (Johnson and Watson, 1984). In 2003, Botyan and Unger improved Oke’s formula. 

They used a theodolite with a height of 1.5-m to measure two angles perpendicular to the axis 

of the street and calculated the SVF on both sides of the street (Botty´an and Unger, 2003). 

Geometric methods provide a simple theoretical basis for calculating the SVF in street canyons 

and provide a basis for accuracy and parameter analysis for future SVF estimation methods 

(Chen et al., 2012).  

2.5.2.2 Global Positioning System methods 

The GPS signal-based method estimates SVF values by obtaining GPS signal information 

through a GPS receiver (Chapman et al., 2002). Chapman and Thornes further developed GPS 

proxy technology to provide faster SVF calculations to achieve shorter processing times 

(Chapman and Thornes, 2004). This method is mostly used in the research of urban 

environment, but because the diversity of tree types, heights, and morphology increase the 

difficulty of measurement, so it is poorly applied in areas with high plant coverage. The main 

limitation is that the GPS signal-based method is an indirect modeled estimate. For example, 

the regression model coefficients need to be adjusted according to different research areas and 

land-use types, and the differences in local vegetation should also be considered. This method 

has high requirements in terms of manual operation and on-site measurement.  

2.5.2.3 Fish-eye photographic methods 

Developments in computer power have seen the use of digital mapping techniques such as 

3DSky View, Arc View SVF, and digital surface models (DSMs) for estimating SVF values in 

artificial environments. These methods are based on urban morphology modeling and computer 

geometric technology and can quickly and effectively measure continuous SVF over large 
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areas (Gal et al., 2009). However, these methods also have obvious limitations; for example, it 

is difficult to use in some areas lacking 3D model information or DSMs. Furthermore, in actual 

urban environments, plants are one of the main characteristics of space. However, 3D models 

usually lack plant information, so estimated SVF values based on 3D city models only are 

usually high because they ignore the obstacles of plants to solar radiation. Recently, many 

researchers have focused on using open SVIs such as Google Street View (GSV) images, Baidu 

Street View images, and Tencent Street View images to represent the urban street environment 

and calculate the SVF, green view index (GVI), and other street environment evaluation 

indicators. Carrasco-Hernandez et al. also confirmed the reliability of estimating SVF values 

based on GSV images (Carrasco-Hernandez et al., 2015). They proposed using open-source 

panoramas to generate fisheye images and calculate SVF values. Although this method saves 

substantial time for field surveys and photography, it remains time-consuming and laborious 

in terms of performing manual image processing using large-scale city data. Lindberg et al. 

proposed a software named sky view factor calculator which can compute the SVF on 

hemispherical photographs using a Graphical User interface (GUI) (Lindberg and Holmer, 

2012). However, it needs manual correction of non-sky pixels. Usually, light areas such as 

windows and white walls are classified as the sky and this has to be corrected to obtain correct 

SVF values. With the development of computer technology, several researchers have attempted 

to use the high efficiency of deep learning and image recognition technology to extract 

information from a large number of street scene pictures and perform relevant analysis. Dong 

et al. used image segmentation methods to identify plants from Tencent Street View images 

and calculate the amount of visual greening to evaluate the level of visual greening of the city 

(Dong et al., 2018). Li et al. proposed a semantic segmentation method based on U-Net to 

extract architectural footprints from high-resolution multispectral satellite images. U-Net is a 

popular deep convolutional neural network architecture for semantic segmentation. it is the 

most commonly used and simplest segmentation model in the field of semantic segmentation. 

Its original intention is to solve the problem of medical image segmentation, using an encoder-

decoder structure (Li et al., 2019a). Liang et al. used an open-source deep convolutional 

encoder-decoder architecture called SegNet to estimate SVF values from GSV images (Liang 

et al., 2017). Zeng et al. developed an automatic method to estimate SVF values by stitching 

SVIs into panoramic SVIs to detect sky areas based on OpenCV (Zeng et al., 2018). 
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2.5.2.4 Simulation methods 

The simulation method refers to the method of calculating SVF by simulating the urban 

environment by using digital application technology and computer computing power (Chen et 

al., 2012). This method provides a fast way to simulate and calculate the continuous SVF of a 

large area of the city based on city-based morphological modeling and computational geometry 

technology. Extension programs such as the 3DSky view program and ArcView SVF use GIS-

based 3D building data to reconstruct the city structure through a computer (An et al., 2014). 

SVF Engine is a computational framework, which calculates SVF by generating virtual fisheye 

images from a 3D city model. These techniques are suitable for urban analysis that needs to 

quantify the characteristics of various buildings and natural environments (Liang et al., 2017). 

2.6 Summary 

Street view images focus on recording city street-level scenes from a human perspective. The 

data covers a wide range and the cost of collecting data is low. It is an important new data 

source in current urban application research. The continuous development of artificial 

intelligence and computer image technology, and the combination of deep learning and high-

performance computing have solved the problem of data processing and information extraction 

of a large number of street scene images in a short period and developed a large-scale urban 

analysis based on artificial intelligence technology. At the same time, the new method of urban 

physical feature extraction and graphical expression has promoted the research of urban social 

environment and economic environment evaluation. 

In the past, due to the lack of effective technology, the use of street view images was mostly 

small-scale, artificial comparative analysis. With the development of the computer field and 

the introduction of many deep convolutional neural network algorithms, it has become possible 

to use the deep learning algorithm to identify and classify the sky, sidewalks, lanes, buildings, 

and vegetations from street view images accurately. The combination of machine learning and 

street view images has changed the situation that in the past it was difficult to obtain basic 

street data and that street view images were difficult to use efficiently. The application of 

related algorithms of machine learning technology can not only provide refined basic data for 

spatial quality research but also can quickly process large-scale data while ensuring refinement.  
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Chapter 3 

Deep learning based urban landscape 

element detection  

 

 

The traditional urban landscape analysis methods were mostly relying on manual data 

collection and analysis, which is time-consuming, error-prone, and cost-intensive. Therefore, 

the objective of this chapter is to develop an approach that can accurately and efficiently detect 

and classify the urban landscape elements from street view images, then be used to analyze the 

urban environment quality. 

In this chapter, the DeepLab V3+ model is been introduced to semantic segment the street view 

images. Then the accuracy verifying of the proposed method and the accuracy improvement is 

described in detail. The proposed method pre-train the deep learning algorithm with manually 

labeled 300 street view images combined with the Cityscape dataset. The proposed deep 

learning model is verified and the accuracy is validated through case studies. The proposed 

approach for detecting and estimating the urban landscape analysis factor is extended in 

Chapter 4 and Chapter 5. 
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3.1 Semantic segmentation of street view images based on deep 

learning 

With the development of artificial intelligence technology, deep learning has outstanding 

performance in image recognition tasks. Li et al., (2018) proposed a method to identify the 

green and blue pixels from street view images using a sematic segmentation technique. 

Therefore, this research proposed to use the DeepLab V3 model for semantic segmentation to 

automatically segment the street view images and classify them into common urban landscape 

elements (e.g., vegetation, sky). The research proposed to use the collection of annotated 

images from the CityScapes Dataset to pretrain the network, which contains a diverse set of 

stereo video sequences recorded in street scenes from 50 different cities, with high-quality 

pixel-level annotations of 5,000 frames in addition to a more extensive collection of 20,000 

weakly annotated frames. By entering a Street View image into the pre-trained network, the 

semantically segmented images can be obtained, which include vegetation, sky, buildings, and 

so on, that have been identified (see Figure 3.1). 

 

Figure 3.1 The result of street view image semantic segmentation using DeepLabV3 
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3.2 The verification of street view image detecting accuracy using deep 

learning 

100 street view images were randomly selected to verify the accuracy of semantic segmentation. 

By manually marking with Adobe Photoshop and automatically detecting using the proposed 

method to obtain the classification results of the 100 images (see Figure 3.2). This research 

created reference images by marking the vegetation using Adobe Photoshop and filled it with 

orange. The areas identified as vegetation by the proposed semantic algorithm are filled with 

green, and the remaining areas are filled with black. After combining two images into one using 

multiply-blend mode of Adobe Photoshop, the region where the orange color of the manually 

marked image (see Figure 3.2b) overlaps with the green color of the segmented image (see 

Figure 3.2c) is the correct region, which is filled with dark green (see Figure 3.2d). In the 

composite images, the definition of different color regions is as follows in Table 3.1. Then, the 

rate of pixels of each part in the combined images was calculated to perform verification 

analysis, the calculation method is as follows in Table 3.2. As shown in the table, the accuracy 

rate is about 0.94, however, the inaccuracy rate is still about 0.06, there is some part like lawns 

or poles that are hard to be detected or false detect. 

 

Figure 3.2 The accuracy verification of the proposed semantic segmentation method 
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Table 3.1 The definition of each color in the composite image 

Color Definition 

Olive Green (OG) Accurately extracted pixels 

Black (B) Accurately unextracted pixels 

Green (G) Over-extracted pixels 

Orange (O) Unextracted area pixels 

 

Table 3.2 The calculation formula of accuracy rate and inaccuracy rate 

Accuracy rate Calculation formula Result 

Extract accuracy rate [%] 

OG
X

100 

 

0.15 

Unextracted accuracy rate [%] 

B
X

100 

 

0.78 

Accuracy rate [%] 

OG
X

B
X

100 

 

0.94 

Over extracted rate [%] 

G
X

100 

 

0.03 

Unextracted inaccuracy rate [%] 

O
X

100 

 

0.03 

Inaccuracy rate [%] 
G
X

O
X

100 0.06 

3.3 The improvement of the street view image semantic segmentation 

accuracy based on DeepLab V3+ model 

Based on the results mentioned in the previous section, to improve the accuracy of semantic 

segmentation of street view images using the DeepLab V3 model. 300 street view images were 

labled manually and were combined with the Cityscape dataset to train the deep learning 

algorithm. This research chooses to rely on pre-trained weights provided by the official to train 

the DeepLab V3+ model on the PC (NVIDIA GeForce RTX 2080Ti and Intel(R) Core (TM) 
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i7-8086K CPU @ 4.00 GHz). Since the architecture has already been successfully trained for 

a similar purpose, and it can be leveraged by using the final weights. The training result as 

shown below (see Figure 3.3), after 300,000 steps the mIoU reached 0.7792. 100 street view 

images were randomly selected to evaluate the performance of the semantic segmentation 

model after training. 

 

Figure 3.3 The result of training DeepLabV3+ with proposed dataset 

The scatter plot shows the relationship between the vegetation percentage of the image detected 

using proposed method and the corresponding values based on the reference data delineated 

manually using Adobe Photoshop (see Figure 3.4). The vegetation percentages are distributed 

near the 1:1 line, and the regression coefficient is up to 0.9809, which indicates that the 

vegetation pixels classified using the two different methods were quite similar. Additionally, 

the root means square error (RMSE) is 0.018, which means that the vegetation classified 

automatically by the proposed system is of high accuracy. This verification indicates that the 

proposed method can be used to classify the urban design elements from street view images 

for urban landscape analysis. 
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Figure 3.4 A scatter plot of vegetation pixels classified using the suggested deep learning-based 
method vs the reference data delineated manually using Photoshop. 

3.4 Summary 

The application of street view images in urban environments analysis using deep learning 

outperforms traditional methods, but it still has limitations. Various studies have attempted to 

improve the efficiency and accuracy of semantic segmentation based on street view images. 

However, the urban environment is a very complex system, the urban scene contains various 

elements, which are intertwined with each other. The dataset used to train the deep learning 

model is very limited, which does not cover all possible urban scenes. At the same time, due 

to the different backgrounds, cultures, and development history of various cities, there will be 

differences in their street space, architectural styles, and plant species. This will also reduce 

the segmentation accuracy of the existing deep learning model for different elements 

classification in the street view image. Although some studies proposed improved methods, 

including using various semantic segmentation algorithms, to improve the detecting accuracy 

from street view images, no research has focused on using the manually labeled dataset to train 

the deep learning model. Therefore, this research focuses on improving the accuracy of deep 

learning-based vegetation and sky area detection from the street view images, using the pre-

trained semantic segmentation model. The urban landscape elements in this study are street-

level greenery and the openness of the built environment because they constitute most of the 

visual perception spaces at the street level. The proposed methods, the validations, the 

discussions, and the conclusion will be presented in the following chapters. �
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Chapter 4 

Assessing the quality of urban greenery by 

estimating the Green View Index 

 

 

Street greenery has long played a vital role in the quality of urban landscapes and is closely 

related to people’s physical and mental health. Also, the level of street greenery is a key factor 

of urban landscape quality analysis. However, despite extensive research into environmental 

assessment methods for urban greenery, plant identification and greenery index calculations 

are still mostly done manually. This research developed a method based on semantic 

segmentation processing of street view images to calculate the Green View Index of urban 

streets, and the Panoramic View Green View Index (PVGVI) is proposed for measuring the 

visible street-level greenery. The research validated the results by comparison with those of 

manual inspection and the Pyramid Scene Parsing Network method. The vegetation detection 

rate of the proposed method is very close to the ground truth value, which means it can 

distinguish almost all of the vegetation information from the street view images, and the 

calculated PVGVI is reliable. In addition, this research conducted a case study of street-level 

greenery using the PVGVI and confirmed that this method can better visualize urban street-

level greenery. The proposed method is scalable and automatable, and it contributes to the 

growing trend of integrating large freely available street view image datasets with semantic 

segmentation to inform urban planners.  
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4.1 Introduction 

As the global urban population expands, global environmental problems are becoming 

increasingly serious, and the human living environment is continuously threatened by extreme 

severe climate, urban heat island effects, and air and water pollution (Blanco et al., 2009). 

Urban green spaces, including parks, street trees, community gardens, and green roofs, provide 

numerous ecosystem services on a local scale and represent a potential adaptation strategy for 

offsetting the growing impact of human activities on the urban environment. Thus, there is an 

urgent need to assess whether the urban green environment can help mitigate the impact of 

climate change on human health and to increase the number of urban public green spaces.  

Urban street-level greenery has long been recognized as one of the most prime landscape 

design elements in the urban ecological system (Wolf, 2005). It provides multiple benefits to 

urban environments, such as urban trees that can adjust environment temperatures by providing 

shade and cooling, helping to significantly reduce the risk of heat-related illnesses 

(Mavrogianni et al., 2014). The street-side green spaces bring huge benefits to cities (Bain et 

al., 2012), it provides opportunities for community residents to engage in physical exercise, 

thereby reducing obesity and mental stress (Giles-Corti et al., 2003). It also provides more 

opportunities to be in green spaces, which is conducive to improved mental health, especially 

in reducing the risk of attention deficit disorder in childhood (Louv, 2008). Urban street-level 

greenery makes an important contribution to the attractiveness and walkability of residential 

streets (Schroeder and Cannon, 1983; Bain et al., 2012). At the same time, it also provides a 

welcoming environment for people who have a certain impact on the occurrence of various 

mental illnesses (Coutts, 2008; Lee and Maheswaran, 2011; Leslie et al., 2010). Therefore, 

ensuring widespread access to street-level green space is a key factor in providing these 

environments and benefits to residents (Landry and Chakraborty, 2009).  

4.2 Study area and data collection 

4.2.1 Study area 

This research was conducted in the city of Suita in northern Osaka, Japan. Founded on April 1, 

1940, Suita hosted Expo ’70 (a world’s fair held in 1970) and is home to Osaka University. 

The study area is a 3.07 km2 residential area near the Suita campus of Osaka University, the 

location and road map of which are shown in Figure 4.1. The study area has an extensive green 

urban fabric, with parks and gardens covering around 20 % of the total area, and it offers mature 
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plant morphology with which to measure and understand the greenery quality. The variety of 

greenery (e.g., street greening, courtyard greening, and private greening) provides a wealth of 

research objects, and the data obtained from surveying this area will provide a useful 

framework for assessing the proposed method.  

 

Figure 4.1 Location of the study area. 

4.2.2 Data collection 

This research used two main data sources to test the proposed image segmentation algorithm 

and estimate the PVGVI values; they are Cityscapes dataset (Marius et al., 2016) and GSV 

images. Cityscapes dataset was used to benchmark the performance of the proposed method. It 

is a new large-scale urban landscape data set and a benchmark for urban scene image 

segmentation. It contains a diverse set of stereo video sequences recorded in street scenes from 

50 different cities, especially with high-quality pixel-level annotations of 5000 frames in 

addition to a larger set of 20,000 weakly annotated frames which is very useful in urban 

research. The study used it as a dataset to train the semantic segmentation model. The GSV 

images were used to apply the proposed method to the study area, the GSV images are street-

level imagery data that provide extensive geographical coverage, and standardized, geocoded, 

and high-resolution images of the urban environment. It is a city image resource that can be 

quickly obtained in large quantities. Note that although GSV images are used here to reflect 

the complete view of pedestrians at street level to calculate the PVGVI value, however, the 

proposed method is not dependent on GSV data and can be applied to arbitrary images captured 

at the street level from multiple sources. 
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In urban planning, researchers are increasingly using street view images to audit the urban 

environment and various environmental elements. Because such images reflect cities from the 

actual perspective of pedestrians, they can give the feeling of being there. In addition to street-

view map services for user browsing, most providers have released application programming 

interfaces (APIs) to allow the development of customized web applications. The research 

obtained the street network from the Open Street Map website (see Figure 4.1). Then, the 

following steps were used to process the street network data to meet the requirements: (i) 

Applying vector clipping to the study area, this research reduced bidirectional parallel vectors 

of the same street to a single vector and connected discontinuous streets. (ii) Because the roads 

amounted to a total length of 574,285 m, and the research sampled points at 30 m intervals 

along the street lines shown in Figure 4.2; in total, the study area contained 2942 sampling 

points with coordinates. (iii) This research downloaded street view images taken along each 

street, although some sampling points had no data.  

 

(a) (b) 

Figure 4.2 (a) Road map and (b) sampling points of the study area. 

The GSV Static API was used to download the street view images. By specifying different 

parameters in the API, users can download GSV images with different fields of view and 

heading and pitch angles. The required API parameters are listed in Table 4.1 and include the 

street view image size, the location or location ID, the horizontal and vertical angles, and the 

developer’s key. In this research, by setting the acquisition requirements given in Table 4.1, 

where LAT and LON are the latitude and longitude, respectively, Fov set as 60 to simulate the 
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horizontal field of view of the pedestrians, Heading (0 by default) indicates the compass 

heading of the camera, Pitch (0 by default) specifies the up or down angle of the camera relative 

to the street view vehicle, here it was set as 0. Finally, by entering the coordinates of the 

sampling points into a Python script, 24,920 GSV images (1000 ×1000-pixels) were 

downloaded and stored for green vegetation classification and PVGVI calculation. Figure 4.3 

shows an example of the downloaded GSV image and the generated panoramic image. The 

requested GSV images were captured in 2015–2019 in various seasons except for winter; most 

were captured in 2018–2019, with the older images tending to be of quiet side streets or the 

corners of parks. 

Table 4.1 API parameters for crawling GSV. 

Parameter Description Example 

Size The output size of the image in pixels 
size = 400×400 returns an image that is 400 

pixels wide and 400 pixels high 

Location Coordinates of GSV location location = 34.80932445, 135.5066877 

Heading 
Compass heading of camera; accepted 

values are 0–360 

North: heading = 0 (360)   South: heading = 180 

East: heading = 90           West: heading = 270 

Fov Horizontal field of view of the image fov = 60 

Pitch 
Up or down angle of the camera 

relative to GSV vehicle 
pitch = 0 

Key 
Developer’s key (retrieved through 

online application) 
key = your API key 
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Figure 4.3 Example of panoramic street view image using GSV API. 

4.3 Proposed methodology 

4.3.1 Image semantic segmentation 

Image semantic segmentation refers to use machine learning to understand and segment image 

content semantically. Based on semantic segmentation, scene parsing is a fundamental topic in 

computer vision, the goal being to assign a category label to each pixel in the image. Both scene 

and image segmentation can be viewed as extensions of object detection, their purpose being 

to locate specific objects in an image and classify the image pixels into a class from a series of 

discrete categories describing the image. Consequently, scene analysis has gained increasing 

recognition and an important correlation role in applications such as autonomous driving in 

recent years. Furthermore, semantic segmentation allows the automatic detection of elements 

such as plants, buildings, sky, and roads in images, thereby facilitating the calculation of the 

greening quality, space openness, and building closure of urban streets. Deep learning is the 
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current state of the art in scene parsing (LeCun et al., 2015) and is typified by deep 

convolutional neural networks (Krizhevsky et al., 2012; LeCun et al., 1998). Recent deep 

learning research has involved various sophisticated architectures, such as fully convolutional 

neural networks (Long et al., 2015), PSPNet (Zhao et al., 2017), the semantic segmentation 

network SegNet (Badrinarayanan et al., 2017), Deep Labelling for Semantic Network 

(DeepLabV3; Chen et al., 2017b), and DeepLabV3+, a more recent iteration of DeepLabV3 

(Chen et al., 2018). These models both build on the earlier work in the related field of object 

detection and classification, where very deep convolutional networks (e.g., VGG16; Simonyan 

and Zisserman, 2015), deep residual learning image recognition (e.g., ResNet; He et al., 2016b) 

and the Inception networks (e.g., GoogleLeNet; Christian et al., 2015) have notably improved 

the ability to detect and classify objects in general terms. This research took a scene-parsing 

approach based on DeepLabV3+, using a model provided by Chen et al. (2018) for the 

following two main reasons. First, DeepLabV3+ was specifically designed to parse urban 

scenes and so is a good choice for identifying vegetation in street-level images. Second, 

DeepLabV3+ has outperformed several of the most popular deep-learning algorithms (e.g., 

ResNet, PSPNet) in major performance evaluation competitions such as the 2012 Pa VOC 

benchmark and the Cityscapes benchmark. DeepLab v3+ uses ASPP (Atrous Spatial Pyramid 

Pooling), using multiple effective fields-of-view and upsampling to achieve multi-scale feature 

extraction. At the same time, deep separable convolution is used to reduce the number of 

parameters and improve calculation efficiency. Figure 4.4 shows the workflow for semantic 

segmentation using DeepLabV3 +. The downloaded and combined panoramic street view 

image was inputted into the model, which passes through the backbone network (backbone, 

which is the part marked as DCNN Atrous Conv in the figure) to get two outputs: one is a low-

level feature (output = 4x output); the other is advanced features (output = 16x output), using 

for ASPP output. In the Encoder part, the advanced features get 5 outputs through 5 different 

operations of ASPP, and the output stride = 16x is obtained after concatenating and 1 × 1 

convolution. In the Decoder part, the low-level feature adjusts the dimension through 1 × 1 

convolution, the Encoder output is up-sampled 4 times, and then concatenates the two 4x 

features, through some 3 × 3 convolutions and up-sampling 4 times to obtain the Dense 

Prediction. Finally, the per-pixel prediction and produce a pixel-wise classified street view 

image with semantic categories can be obtained. The output image has the same size as the 

input image includes 19 classifications and features of the vegetations were extracted and 

calculated in this study. This study relied on pre-trained weights to train the DeepLabV3+ 

model on the experimental computer. Due to the fact that this architecture had already been 
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trained successfully for similar purposes, something that this research leveraged by using those 

final weights. The contribution of this research in this context is to compare the predictive 

performance of a pre-trained DeepLabV3+ model on the Cityscapes benchmark and that of the 

PSPNet model trained on the same benchmark data (Cordts et al., 2016). Both of these sets of 

weights specifically identify the urban scene. 

 

Figure 4.4 DeepLabV3+ architecture. 

4.3.2 PVGVI calculation 

In 1981, the National Institute of Environmental Studies of Japan proposed quantitative 

statistical analysis methods for identifying the essential sources of stimulation that affect 

specific psychological changes and to identify environmental green areas that can generate 

positive subjective feelings. Later, researchers of the Institute officially proposed the concept 

of a “green visible value” (Aoki et al., 1985) as the percentage of green in the human field of 

vision. This physical quantity can be used as a landscape evaluation factor for environmental 
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greening. After that, Yang et al. (2009) defined “the GVI to evaluate the visibility of urban 

greenery, this being the ratio of the total green area from four pictures taken at a street 

intersection to the total area of the four pictures, as given by the Equation (1): 

 GVI
∑ 𝐴𝑟𝑒𝑎 _

∑ 𝐴𝑟𝑒𝑎 _
100% (1) 

where Areag_i is the total number of green pixels in the image taken horizontally in the direction 

i (= 1-4) for one intersection, and Areat_i is the total number of pixels in that image. 

To represent the view of pedestrians more effectively, Li, Zhang, Li, Ricard, et al. (2015) 

proposed the modified GVI, which used six images covering the 360-degree horizontal 

surroundings and three different vertical view angles was considered at each direction for every 

street sample site to calculate the GVI. The modified GVI is calculated using Equation (2): 

 GVI
∑ ∑ 𝐴𝑟𝑒𝑎 _

∑ ∑ 𝐴𝑟𝑒𝑎 _
100% (2) 

where Areag_iv is the number of green pixels in one of these images captured in six directions 

with three vertical viewing angles for each sampling point, and Areat_iv is the total number of 

pixels in one sampling point for the 18 GSV images (6 directions × 3 vertical viewing angles). 

However, although the modified GVI considers the horizontal and vertical directions, some 

vegetation information is still omitted. Therefore, this research used a 360° panoramic street 

view image assembled using the PTGui software as a single image that represents the entire 

view of the visual environment at a specific location to evaluate the PVGVI around the street, 

as described by Equation (3):  

 PVGVI
𝐴𝑟𝑒𝑎 _

𝐴𝑟𝑒𝑎 _
100% (3) 

where Areag_i is the total number of green pixels in the panoramic image along with direction 

i, and Areat-i is the total number of pixels in the image. 

4.4 Experiments and results 

This section first presented the segmentation results given by the pre-trained DeepLabV3+ 

model, and the research compared the proposed approach against the manual approach and the 

PSPNet methods described in Section 4.3. Then, this research assessed the relative performance 
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of these methods for segmenting image pixels into vegetation and non-vegetation classes with 

some evaluation metrics. And the computational performance of these methods was also 

assessed. Lastly, GVI in the study area is visualized to help us better understand the greenery 

quality. 

4.4.1 Green vegetation extraction result 

Figure 4.5 shows a visualization result of segmentation via the semantic algorithm discussed 

in chapter 3. The elements in the street view image are classified into different classes and 

marked with corresponding colors. Then, from the segmentation results, a CSV (comma-

separated values) file is generated automatically that includes the image proportions of the 19 

categories in Table 4.2, including roads, buildings, vegetation, sky, cars, and pedestrians. 

 

Figure 4.5 Visualization result of segmentation by the proposed method. 
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Table 4.2 Categories of semantic segmentation. 

Number Sort Code 

 

Number Sort Code 

1 Road 0 11 Sky 10 

2 Sidewalk 1 12 Person 11 

3 Building 2 13 Rider 12 

4 Wall 3 14 Car 13 

5 Fence 4 15 Truck 14 

6 Pole 5 16 Bus 15 

7 Traffic Light 6 17 Train 16 

8 Traffic Sign 7 18 Motorcycle 17 

9 Vegetation 8 19 Bicycle 18 

10 Terrain 9     

A part of the CSV file is given in Table 4.3, showing some of the segmentation results for five 

sampling points. Such data could be used in future research to assess urban design factors other 

than the GVI, such as sky view factor, street wall continuity, cross-sectional proportion, and 

street accessibility. 

Table 4.3 Example of the percentage of pixel values for each type. 

Point X Point Y Road Sidewalk Building Sky Vegetation … 

34.80932445 135.5066877 0.319069 0.013988 0.1311152 0.091107 0.262751 … 

34.80933038 135.5091766 0.269873 0.010119 0.119538 0.149191 0.348329 … 

34.8093325 135.5100636 0.267972 0.004118 0.206583 0.157556 0.208733 … 

34.80933361 135.5105305 0.29529 0.003258 0.347979 0.155143 0.080301 … 

34.80933467 135.5109766 0.259571 0.024141 0.246661 0.107456 0.195494 … 

Figure 4.6 shows the semantic segmentation results for four randomly selected sample points 

in the study area. The first column of the picture matrix shows the original GSV images; the 

second column shows the vegetation and sky extracted manually using Adobe Photoshop CC 

2019 as references to validate the automatically unsupervised classification results; the third 
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column shows the results extracted by the pre-trained DeepLabV3+ model discussed in Section 

4.3.1, almost all the vegetation area of these images has been detected and marked; the final 

column shows the results extracted by the PSPNet method, compared with the proposed 

approach, some vegetation areas are not detected or are detected as other categories.  

 

Figure 4.6 Green vegetation extraction results and references. 

4.4.2 Comparative assessment 

To verify further the accuracy of the segmentation results, this study selected 300 points 

randomly from the database and estimated their PVGVI values manually and with PSPNet 

methods. All the semantic segmentation analyses were performed on a Windows machine with 

an NVIDIA GeForce RTX 2080Ti and Intel (R) Core (TM) i7-8086K CPU @ 4.00 GHz. 

Here, to compare the accuracy of vegetation extraction, the research used the following three 

main evaluation metrics that are commonly used to assess the accuracy of classification 

outcomes: (i) mean intersection over union (mIoU), which is used to measure the accuracy of 

the location of vegetation pixels; (ii) root-mean-square error (RMSE), which is used to measure 

the accuracy of estimating the overall PVGVI values; (iii) mean absolute error (MAE), which 

is used to measure the average over the test sample of the absolute differences between 

prediction and actual observation. This research calculated the mIoU based on Equation (4): 

 𝐼𝑜𝑈
1
𝑛

𝑇𝑉
𝑇𝑉 𝐹𝑉 𝐹𝑁

 (4) 
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where n is the number of images, TVi is the number of true-positive identified vegetation pixels 

in image i, FVi is the number of false-positive identified vegetation pixels in image i, and FNi 

is the number of false-negative rejected vegetation pixels in image i. The RMSE was calculated 

by Equation (5): 

 𝑅𝑀𝑆𝐸
1
𝑁

𝑇𝑉 𝑃𝑉  (5) 

where N is the number of pixels in a single image, TVi is the number of true positive vegetation 

pixels identified in image i, and PVi is the number of vegetation pixels predicted in image i. 

The MAE was calculated by Equation (6) 

 𝑀𝐴𝐸
1
𝑚

1
𝑁

𝑃𝑉 𝑇𝑉  (6) 

where m is the number of images, N is the number of pixels in a single image, TVi is the number 

of true positive vegetation pixels identified in image i, and PVi is the number of vegetation 

pixels predicted in image i. 

This research presented the relative performance of these methods based on Cityscapes datasets 

to classify image pixels into vegetation and non-vegetation classes is assessed. Performance 

results from applying DeepLabV3+ are available in Table 4.4. The various performance 

metrics consistently show a significant improvement in prediction quality compared to the 

PSPNet method. For example, the higher mIoU and the lower RMSE of the proposed method 

indicate that it offers much better prediction accuracy and quality compared with the PSPNet. 

The R2 is over 1.1 times higher than that of the PSPNet based method (see Figure 4.7). This 

research also assessed the computational performance of the two algorithms depending on the 

same implementation. It was found that the proposed method is significantly more efficient in 

terms of processing time, it took about 12 minutes to finish the 2,492 panoramic images, 

roughly 0.3 seconds per panorama image. It was demonstrating that the proposed method is 

more flexible and efficient. 
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Table 4.4 Results of evaluation metrics for the proposed method and PSPNet in the 
Cityscapes dataset. 

Method mIoU [%] RMSE [%] MAE [%] Image per Second (s) 

The proposed method 78.37 2.75 2.28 0.29 

PSPNet 77.23 8.04 6.85 0.42 

Next, the research used linear regression to compare the results of proposed method with those 

obtained manually and using PSPNet. Figure 4.7 shows the relationships among these results, 

with the fitting lines shown as dotted blue lines. Figure 4.7 (a) shows the fitting line between 

the PVGVI values calculated manually and by the proposed method; the regression line is very 

close to the 1:1 line and the correlation coefficient is 0.9716 with R2 = 0.9441, which indicates 

that the PVGVI values calculated using the two different methods are quite similar. Figure 4.7 

(b) shows the fitting line between the PVGVI values calculated manually and by the PSPNet 

method; the correlation coefficient is 0.9217 with R2 = 0.8495, and the correlation coefficient 

is less than that with the proposed method. This shows that the PVGVI values calculated by 

the proposed approach are more consistent with the results of manual extraction than those 

calculated by the PSPNet method, which means that the proposed approach can be used to 

evaluate the quality of urban greenery. 

 

(a)                                                                                       (b) 

Figure 4.7 Accuracy assessment for the proposed method: “The proposed method” = 
PVGVI calculated with pre-trained DeepLabV3+ model; “Reference” = PVGVI 
calculated manually using Adobe Photoshop; “PSPNet” = PVGVI calculated with PSPNet 
method. 
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4.4.3 Comparison of PVGVI and modified GVI values 

In this section, 300 points were randomly selected from the sampling points to compare the 

PVGVI and the modified GVI. The purpose is to determine whether the present method of 

measuring the PVGVI using stitched panoramic images could replace the measurement method 

proposed by Li, Zhang, Li, Ricard, et al. (2015).  

The GVI values calculated using the modified GVI equation [i.e., Eq. (2)] and the present 

PVGVI equation [i.e., Eq. (3)] are seemingly different and the difference was calculated as the 

modified GVI value minus the PVGVI value (see Figure 4.8). As shown, most of the points 

have negative values, which means that the modified GVI is less than the PVGVI. 

 

Figure 4.8 Value differences between PVGVI and modified GVI (value difference = 
modified GVI − PVGVI). 

100 points were randomly selected from the 2,492 sampling points to compare the PVGVI and 

modified GVI values with manually marked ground truth values through linear regression, and 

the results are shown in Figure 4.9. The regression coefficient of the PVGVI values concerning 

the ground truth values is 0.9770 with R2 = 0.9454, which is higher than the regression 

coefficient 0.7183 with R2 = 0.875 of the modified GVI values concerning the ground truth 

values. The result indicates that the PVGVI values calculated by the proposed approach are 

more accurate than those calculated by the modified GVI calculation method. 
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Figure 4.9 Accuracy inspection of the proposed method: “The proposed method” = values 
calculated with pre-trained DeepLabV3+ model; “Reference” = PVGVI calculated 
manually using Adobe Photoshop; “Modified GVI” = GVI calculated with a modified 
method. 

It is easy to understand the differences between the modified GVI values and PVGVI values. 

Unlike the proposed PVGVI, the modified GVI is based on images captured at six horizontal 

angles and three vertical angles. Figure 4.10 shows the GSV images for a sampling point where 

the modified GVI is much less than the PVGVI. Figure 4.10a shows the panoramic GSV image 

that was used to calculate the PVGVI value. Figure 4.10b shows the GSV images at the three 

different vertical viewing angles toward the west; all these images are 640×640 pixels in size 

and were used to calculate the modified GVI value. The areas of greenness in the GSV images 

at the different vertical viewing angles are very different. The panoramic image shows clearly 

that all the vegetation there in is within the viewing angle range of a pedestrian looking 

horizontal. There are relatively few shrubs or tall trees, which results in the images with high 

and low viewing angles containing almost no vegetation (see Figure 4.10b and see Figure 

4.10d). Therefore, the modified GVI value covers much sky and bare ground, making it much 

lower than the PVGVI value. By contrast, when there many kinds of vegetation are present 

(shrubs, tall trees, etc.), the panoramic image covers the whole view of pedestrians in a single 

image with no overlapping areas, however, the modified GVI values are obtained using images 

with different vertical angles that will contain the same area of vegetation, which will lead to 

overestimation of the real GVI values. 
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Figure 4.10 GSV images for a sampling point with different vertical viewing angles (i.e., 
pitches): (a) panoramic street view image, fov = 360; GSV images with (b) pitch = 45, 
fov = 60, heading = 60; (c) pitch = 0, fov = 60, heading = 60; (d) pitch = −45, fov = 60, 
heading = 60. 

The comparison results described above indicate that the proposed method, which use 

DeepLabV3+ equipped with Cityscapes pre-trained weights, has higher recognition accuracy 

and can identify and classify plant pixels from street images. The comparison of computing 

performance also indicates that the proposed method has greater advantages in computing 

speed when processing large batches of image data. Lastly, the method proposed to measure 

GVI using panoramic street view images is closer to the ground truth GVI value than the 

modified GVI method, which has high accuracy and strong reliability. 

4.4.4 Distribution of PVGVI in the study area 

Figure 4.11 shows the PVGVI values at all the sampling sites in the study area. The PVGVI 

values range from 0.019 to 0.729 with a mean of 0.25. To show the PVGVI values of the study 

area more clearly, this reseaerch used the natural break method (Chen, Yang, Li, Zhang, & Lv, 

2013) to separate them into five intervals: 0.067058–0.204220, 0.204221–0.291200, 

0.291201–0.375902, 0.375903–0.474319, and 0.474320–0.802120. The change from red to 

green as shown in the legend of Figure 4.11 represents the change of the GVI value in the study 

area. From the figure, it was found that the greenery around the streets is not “green” enough, 

based on the view proposed by Aoki (1991) that most people have a favorable impression of a 

street landscape when the GVI is at least 0.3 and they will feel the greenery quality is high 
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enough. However, the figure shows most of the streets with red color which means the PVGVI 

value of most streets is in the range of 0.067058 – 0.204220, which is lower than the mean 

value of 0.25, thus it means with better green visible planting needed to be improved on these 

streets. 

 

Figure 4.11 Panoramic View Green View index (PVGVI) results calculated using Eq. (3) 
at sampling points in the study area, overlaid on the road map. 

Figure 4.12 shows more directly the frequency distribution of the PVGVI values. As shown, 

the proportions of the five intervals are 16.5 %, 18.4 %, 21.8 %, 22.2 %, and 21.1 %, 

respectively. By analyzing the results, it was found that most of the street greenery has PVGVI 

values greater than 0.3, primarily for the following reasons: more sidewalk trees are planted 

along main streets, there are many urban parks along the road, and the distant mountains 

provide a green background that improves the PVGVI values. Meanwhile, the residential area 

in the north of the study area has lower PVGVI values, mainly because the greenery there is 

mostly in the form of courtyards surrounded by walls or fences to protect privacy, thereby 

hiding most of the vegetation and resulting in lower PVGVI values. To increase the visible 

greenery, landscape designers could use hedgerows and vines instead of walls. 
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Figure 4.12 PVGVI results based on segmentation. 

4.5 Discussion 

This research proposed to use street view images to assess street-level greenery in an urban 

area. The panoramic street view images were taken on the ground and have view angles similar 

to those of pedestrians, were used for assessing the abundance of street greenery. The research 

shows that the semantic segmentation model has higher detection accuracy, which can detect 

almost all vegetation from the street view images to make sure the reliability of the final PVGVI 

calculation. The proposed PVGVI calculation method should be more suitable for representing 

the greenery that pedestrians can see on the ground, which can prevent the overestimation of 

green vegetation results with modified GVI by Li et al. (2015) to make it more rational. The 

proposed method is a flexible and efficient method, in which many processes can be done 

automatically. For example, this research does not need to manually take pictures instead of 

download the street view images by parsing the URL using GSV image API. Then use a 

semantic segmentation model to automatically extract the greenery and calculate the PVGVI. 

The method can be used for green space assessment for any place where the street view image 

is available.  As GSV services are extended to more countries and regions, it will be possible 

to apply this method to more areas to assess visible street greenery. The proposed method for 

measuring the PVGVI based on GSV images is understandable and easy to use, especially in a 

large area of a city.  

There are a number of areas with urban greenery research that the proposed method can be 

applied in the future. First of all, the accurate and efficient computing power of this method 
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has greatly expanded the research area. Furthermore, researchers can apply the PVGVI 

calculation 

in all areas of the research city to get a more comprehensive understanding of the urban street 

greenery and use it to compare the level of greening between different cities. Second, this 

research provides a new perspective of using urban street view images to interpret the urban 

street environment. In future research, the objectives of the research will be expanded to sky 

visibility, architecture façade, and many other aspects.  By extracting information from street 

view images, city planners can better study the colors of streets, the spatial scale, even the 

social activities that occur in urban street spaces, to propose strategies to improve and enhance 

the spatial quality. Third, street view images also continue to stock continuously that will be 

useful for analysis of changes over time. Therefore, it can be used as a monitoring tool for 

analysis of gain or loss in urban street greenery and targeted designated greening improvement 

measures. Thus, it seems to be a useful tool for urban planners and urban environment 

managers, rather than a simple gadget for users. 

However, although the PVGVI values can be calculated based on GSV images and deep 

learning instead of manual measurements, some urgent concerns remain to be resolved. First, 

the semantic image segmentation could be more accurate. For example, autumn vegetation 

tends to lack leaves and exists instead as branches, thereby making it unrecognizable as 

vegetation. The future work, can include equipping the training dataset with more labeled 

images and then using it to train the existing model to obtain a more powerful subdivision 

framework and optimizing the segmentation method. 

Second, this research set the distance between adjacent sampling points to 30 m to ensure the 

availability of GSV images of every street in the study area. However, that distance was 50 or 

80 m in other studies (Li, Zhang, Li, Ricard, et al., 2015; Yu, Zhao, Chang, Yuan, & Heng, 

2019), therefore future topics to be considered are (i) how that distance affects the greenery 

assessment and (ii) what that distance should be. 

Third, GSV images indicate the urban greenery around the streets at only the time when taken, 

but plants change with time and look different from one calendar season to the next and 

between the growing and non-growing seasons. Therefore, in the present work, the time of 

acquisition is a key factor that impacts the PVGVI calculation accuracy, and one must ensure 

temporal uniformity of the entire data acquisition and that the PVGVI measurement is not 

affected by the GSV shooting time. Also, the inability to obtain quickly many GSV images 
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taken at different locations and times is currently limiting the range of applications in the 

dynamic monitoring of urban greenery. The good news is that Google and Baidu have both 

added a new feature known as “Time Machine” (Shet, 2014), which allows users to view 

images going back to different points in time the Street View feature. This updated version also 

allows users to view streetscapes at night. This function makes it possible to detect and monitor 

the dynamic changes of urban street greening, assess the visual impact of urban greening 

measures, and record the visibility of urban greening. However, such data are currently cannot 

be accessed via the user API. In the future, the time-series problem in image acquisition may 

be solved by giving access to the times when street view images were taken. Also, as unmanned 

aerial vehicle (UAV) technology develops and is gradually applied in urban research, the 

research might one day incorporate a UAV system to detect and monitor the dynamic changes 

of street greening for research into urban landscape planning. For some areas that are difficult 

to obtain street view images, it would be possible to use a panoramic camera combined with a 

UAV to manually shoot, as a supplement to the street view image dataset. 

Lastly, the PVGVI model assessment be proposed in this research is only used as one of the 

methods for evaluating the street-level greenery visibility. Based on the analysis meant on these 

data, the urban planners can check the visual impact of some urban forest management 

practices and document the visibility of urban greenery in cities. In the urban greening program, 

it is more necessary for urban planners to use these data as the basis to evaluate the urban 

environment in an all-around way, and rely on a wealth of design methods to achieve the effect 

of improving the greenery quality. 

4.6 Conclusion of this chapter 

Visible street greenery is associated with multiple positive health outcomes but is difficult to 

measure across large expanses. The purpose of this chapter is to develop an approach for 

estimating and mapping the street-level profile of visible urban greenery and propose the 

Panoramic View Green View Index (PVGVI) to calculate it. The approach is based on open-

access panoramic street view images with view angles similar to those of pedestrians, and a 

semantic segmentation technique for street feature extraction and is verified by comparing the 

results of the proposed method with manual statistics and results from the Pyramid Scene 

Parsing Network (PSPNet), verified the significantly accuracy and efficiency of the proposed 

approach. The developed approach represents a pedestrian perspective of the visibility of urban 

street-level greenery that covers complicated urban contexts. Furthermore, this research took 
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an area near the Suita campus of Osaka University in Japan as a case study, and assess the 

quantity of greenery and its spatial distribution at the street level. Section 4.4 indicated that the 

PVGVI is well suited for evaluating street-level greenery. This chapter makes the following 

contributions. First, compared to the previous GVI calculation methods using multiple images 

from different directions at a sampling point, the proposed PVGVI calculation method is 

simplified. Using one panoramic street view image can cover the 360-degree view which was 

similar to that of a pedestrian. Second, the proposed PVGVI equation is easier to understand 

and operate, and the results are closer to the visible urban greenery as seen from the ground. 

Third, the proposed framework based on a pre-trained DeepLabV3+ model has a high accuracy 

of vegetation detection in urban scenes and can be applied to a large number of cities, which 

allowed us to find universal laws of street visible greenery. Therefore, urban planners, decision-

makers, and sociologists could use PVGVI data as analytical data to better direct urban 

development and how the urban environment is improved. Future work will focus on 

improving the accuracy of the semantic segmentation method proposed herein and solving the 

time-series problem in capturing street view images. Because the method has been used only 

in GVI calculation and limited case studies to date, it is hoped that future research will involve 

more evaluation of urban design elements and the development of a system for assessing the 

urban environment.  
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Chapter 5 

Estimating the Sky View Factor to visualize 

the built environment openness 

 

 

The previous chapter introduced an approach that can automatically estimate the PVGVI based 

on street view images to evaluate the urban greenery quality. However, greening is only one of 

the indicators used to evaluate the pros and cons of the urban landscape environment. This 

chapter proposes a method to measure street-level Sky View Factor (SVF) based on semantic 

segmentation processing to extract sky area data from street view images and estimate the 

fisheye photographic-based sky view factor (SVFf). The sky view factor (SVF) has been 

recognized as an indicator to evaluate the openness of streets in the field of urban planning. It 

represents the ratio of the visible sky area to the total sky area at one point in space. However, 

due to the time-consuming and laborious acquisition of data and manual detection in traditional 

measurement methods, the SVF measurement in large-scale space has been greatly restricted. 

With the development of street view images (SVIs), some SVI services provide panorama data 

of the urban street level that can be used to estimate the SVF. This subsection shows the 

reliability and efficiency of the proposed SVF value estimated method by comparing it with 

the previous research. The generated street-level SVFf maps based on estimation results can be 

served as a design base for creating more comfortable pedestrian street spaces. The method 

proposed in this research provides a more accurate and convenient approach to evaluate the 
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openness of the built-up environment of the urban landscape. The following section first 

outlines the development system, then describes the methodology in detail, and selects an urban 

residential block as a case to verify the evaluation system. Finally, the experimental results and 

the limitations of this method are discussed, and the conclusions are summarized. 

5.1 Introduction 

With the global urbanization process, the urban heat island effect has appeared in major cities 

in the world, and the corresponding urban climate and air quality have also shown signs of 

deterioration. How to alleviate the urban heat island effect is the research focus of many 

scientists and urban planners, and it is also a climate and environmental issue that all countries 

are concerned about. Thermal comfort is a key indicator for evaluating the quality of urban 

space, human comfort, and micro-ecology at the urban street level (Huang et al., 2015; Yang 

et al., 2015a). There have been many studies on the relationship between urban thermal 

environment and urban form. Some studies have further proved that urban spatial morphology 

will impact the urban microclimate environment (Algeciras et al., 2016; Martinelli and 

Matzarakis, 2017). In 1981, Oke first proposed the concept of the Sky View Factor (SVF) to 

evaluate the heat island effect in cities (Oke, 1981). It was then denoted as one of the main 

topics for discussing the urban microclimate, air pollution, and urban thermal comfort (Venhari 

et al., 2019; He et al., 2015; Johansson, 2006; Bourbia and Boucheriba, 2010). In these studies, 

SVF represents the proportion of the radiation received by the plane from the sky in the total 

environmental radiation (Krüger et al., 2011; Watson and Johnson, 1987). 

This research used street view images (SVIs) based on deep learning to estimate sky area and 

to calculate SVF values. The sky areas were extracted from panoramic SVIs based on the deep 

learning model and generated fisheye (hemispherical) images, then calculated SVF values 

automatically. Because there are abundant SVI data, this research can quantify street-level SVF 

values in urban areas using the proposed method. 

5.2 Proposed methodology 

This research proposed a workflow following the four steps below to estimate SVF based on 

the fisheye photographic method (see Figure 5.1). The first step was to search through SVIs 

and generate panoramic SVIs. Then, semantic segmentation was applied to the panoramas to 

classify the sky areas. The third step was to generate classified fisheye images through 
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hemispherical transformation. Finally, SVFf was calculated based on the classified fisheye sky 

images. 

 

Figure 5.1 Workflow chart of the methodology proposed in this study.  

5.2.1 Panoramic SVI collection 

This research obtained the street network of the study area from the Open Street Map (OSM) 

website (Open Street Map (OSM), 2021) and set sampling points along each road at 30-meter 

intervals as shown in Figure 5.2b. In total, 2,492 sampling points with coordinates were 

determined within the study area and the SVIs of these sample points were downloaded. 
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(a)                                                                                  (b) 

Figure 5.2 (a) The street map and (b) sampling points distribution map of the study area. 

Google (Google Street View (GSV), 2021), Baidu (Baidu Street View (BSV), 2021), and 

Tencent (Tencent Street View (TSV), 2021) have provided public application programming 

interface (API) services that enable users to request and download static SVIs by using the 

corresponding APIs. This research chooses to use the GSV static API to search through 

crawling SVIs. Usage examples of the API parameters for crawling GSV are shown in Table 

5.1. The required data includes the image size, sampling point location information, pitch and 

heading angles, and the API key. Since the objective of this research is to measure the visibility 

of the sky area, the SVIs must contain the whole sky area, so the pitch value was set as 45 to 

ensure the complete sky area can be obtained. Most of the images were captured in the spring 

and summer of 2018–2019, which effectively avoided the lack of leaves in autumn and winter 

that affect the calculation accuracy of SVF. 
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Table 5.1 API parameters for crawling GSV. 

Parameter Description Example 

Size 
The output size of the image in 

pixels 

size = 500×500 returns an image that is 500 pixels 

wide and 500 pixels high 

Location Coordinates of GSV location location = 34.80932445, 135.5066877 

Heading 
Compass heading of camera; 

accepted values are 0–360 

North: heading = 0 (360)   South: heading = 180 

East: heading = 90           West: heading = 270 

Fov 
Horizontal field of view of the 

image 
fov = 90 

Pitch 
Up or down angle of the 

camera relative to GSV vehicle 
pitch = 45 

Key 
Developer’s key (retrieved 

through online application) 
key = your API key 

The previous research used tools such as Hugin (d’Angelo, 2007), PTGui, or coordination 

transformation to stitch the panoramic SVIs. Figure 5.3 shows a generated example of a fisheye 

image using in this research to measure SVFf, which involved searching through GSV images, 

generating panoramic GSV images, and generating fisheye images based on hemispherical 

transformation. 
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Figure 5.3 The location of the sample point and the example of extracting SVFf from SVIs. 

5.2.2 Fisheye images generated based on a hemispherical transformation 

As mentioned in the literature review, fisheye images were required when calculating SVF 

using the standard photography method. In previous studies, fisheye lenses are usually used to 

manually capture fisheye images. This research automatically generated fisheye images from 

panoramic street view images through the conversion of cylindrical projection and azimuth 

projection. Through the geometric model shown in Figure 5.4, the cylindrical projection of the 

panoramic image is converted into an azimuthal projection (Li et al., 2018). This projection is 

achieved by establishing a corresponding relationship between the pixels (xa, ya) on the fisheye 

image and the (xb, yb) on the panoramic street view image, as shown in Equations (7) and (8): 

                        𝑥
𝜋/2 tan 𝑦 𝑓 / 𝑥 𝑓 𝑊 /2𝜋,     𝑥   𝑓

3𝜋/2 tan 𝑦 𝑓 / 𝑥 𝑓 𝑊 /2𝜋,     𝑥   𝑓
               (7) 

                                          𝑦
𝑥 𝑓 𝑦 𝑓

𝑟 𝐻                                          (8) 

where Hb and Wb are the height and width of the panoramic street view image, r0 is the radius 

of the fisheye image, and (fx, fy) are the coordinates of the center pixel on the fisheye image; 

the corresponding relationship is shown in  Figure 5.4. 
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Figure 5.4 Geometric model for transformation of a panoramic street view image to a fisheye 

image. 

By using Equations (7) and (8), each pixel on the panoramic street view image and the fisheye 

image can be connected. Repeating the process for each pixel, fisheye images can be generated 

from panoramic street view images. 

5.2.3 Sky area extraction based on deep learning 

This research proposed to use semantic segmentation to automatically extract sky regions from 

street view images. Semantic segmentation is a very important field in computer vision. It uses 

machine learning to understand and segment image content semantically and predict an image 

in form of pixel-level, each pixel is classified into a specific category. The semantic 

segmentation model used in this paper is DeepLabV3+, which was developed by Chen et al. 

(Chen et al., 2018). It extends DeepLabV3 by introducing an encoder-decoder structure which 

is commonly used in semantic segmentation. And unlike most encoder-decoder architecture 
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designs, DeepLabV3 provides a distinctive semantic segmentation method. DeepLabV3 

proposes an architecture for controlling signal extraction and learning multi-scale context 

features. The two main reasons that this research chose to use this model were (1) that 

DeepLabV3+ has an excellent performance in the analysis of urban scenes, and has high 

accuracy in identifying the sky, vegetation and buildings in SVIs, and (2) in some major 

performance evaluation competitions, DeepLabV3+ has demonstrated a better performance 

than other semantic segmentation networks (e.g., U-Net, SegNet) as described in the previous 

paper (Xia et al., 2021). 

5.2.4 SVFf calculation 

The definition of SVF in (Johnson and Watson, 1984) is "the ratio of the radiation received (or 

emitted) by the planar surface from the sky to the radiation received (or emitted) by the entire 

hemispheric environment", as shown in Figure 5.5a. The original SVF is defined by Steyn 

(Steyn, 1980), who proposed an equation that can be used to obtain a geometrically corrected 

fish-eye image, as shown in Equation (9): 

 SVF
1

𝜋𝑟
𝑑𝑆    (9) 

where S is the area of the circular sky area projected on the ground, and r1 is the radius of the 

hemispheric radiating environment. The dS can be defined using Equation (10) below: 

 𝑑𝑆
𝜋𝑟
2

sin
𝜋𝑟
2𝑟

cos
𝜋𝑟
2𝑟

𝑑𝑟 𝑑𝛼    (10) 

where (r2, 𝛼) are polar coordinates defining dS on the equiangular projection, and r3 is the 

radius of the horizontal image on the print. 

Steyn (1980) introduced the fish-eye photographic method to urban climatology research. He 

used two steps to calculate the SVF, through dividing the fish-eye image into m concentric 

annulus of equal width and summing up all annulus sections representing the visible sky, as 

shown in Equation (11):  

 SVF
1

2𝑚
sin

𝜋 𝑖 1 2⁄

2𝑚
cos

𝜋 𝑖 1 2⁄

2𝑚
𝛼  (11) 

This method was further improved by Johnson and Watson (Miao et al., 2020) (see Figure 5.5b), 

as shown in Equation (12): 
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SVF

1
2𝑚

sin
𝜋

2𝑚
sin

𝜋 2𝑖 1
2𝑚

𝛼  
(12) 

where m is the number of annuli, i is the annulus index, and αi is the angular width of the ith 

annulus (Figure 5.5).  

 

(a) Definition of sky view factor (b) Projection of the wall on the circular plate 

through a fisheye lens 

Figure 5.5 Definition of SVF and its application in previous urban climate research. 

SVF also has many applications in architecture. A conventional SVF estimation method for the 

built environment is to analyze the fisheye image taken from a specific viewpoint to use image 

processing software to identify the sky area in the photo next, and to calculate the SVF finally. 

The SVF result estimated by this method has higher accuracy, it is easier to operate and applied 

in urban research. According to the definition of SVF and the previous calculation method of 

SVF, the research proposed to apply the fisheye photographic-based method to calculate the 

SVFf, as shown in Equation (13) (see Figure 5.6), which has also been applied and proved 

effective by Cao et al. (Cao et al., 2019). 

 𝑆𝑉𝐹  
𝐴𝑟𝑒𝑎 _

𝐴𝑟𝑒𝑎 _

4
π

 (13) 

where 𝐴𝑟𝑒𝑎 _  refers to the sky area pixels in the image taken in the ith sampling point, and 

𝐴𝑟𝑒𝑎 _  refers to the total pixels of the image taken in the ith sampling point. 
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Figure 5.6 Equation for calculating SVFf. 

5.3 Experiments and results  

This section introduces the extraction results of the sky area and SVFf estimation based on the 

semantic segmentation network. Then, the SVFf estimation results are compared with those 

from two independent methods: one is to use the image processing software Photoshop to 

manually detected and marked the sky area in the hemispherical photographic image and 

calculate SVF (SVFm) , another is using the U-Net scene parsing deep learning model to extract 

the sky area from the image and calculate SVF  (SVFu) to assess the accuracy. Through these 

two sets of comparisons, it can be verified that the proposed method has higher accuracy for 

sky area detection and SVF estimation. Furthermore, the estimated SVF values were mapped 

to the street map of the study area to reflect the sky visibility and spatial openness in this area 

more intuitively. 

5.3.1 SVFf estimation results based on deep learning 

Figure 5.7 shows the visualization recognition result of semantic segmentation. The different 

color markers represent the different elements in SVIs that have been identified and classified. 
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Figure 5.7 Example of the semantic segmentation result.  

5.3.2 Accuracy assessment of the SVIs-based SVFf estimations 

100 points was randomly selected from the study area to assess the accuracy of the SVIs-based 

SVFf estimation. Comparing the estimated SVFf value with the manually measured SVF value 

and the SVF value estimated based on the U-Net method can objectively verify the accuracy 

of the proposed SVFf estimation method based on SVIs. At the same time, the correlation 

between these methods can also be reflected. This research used the U-Net-based SVFu 

estimate method (Cao et al., 2019), which has been confirmed in previous studies to perform 

well in extracting sky areas, to verify the applicability of the proposed SVFf estimate method.  

Figure 5.8 shows three examples of the transformed fisheye images (a), (b), and (c), which 

show the proposed fisheye photographic-based SVFf and U-Net-based SVFu; (d) shows the 

SVFm based on manual extraction for reference. The corresponding SVF values are also shown. 

The result of manual extraction is consistent with the fisheye SVI-based SVFf, and the 

difference is within 0.03. However, there is a significant difference between the U-Net-based 

SVFu and the SVFm, which are mainly affected by the color of buildings in the environment. It 

was found that, by using the U-Net-based method to extract sky areas, lightly colored 

surrounding buildings were often mistaken as the sky, which will lead to higher SVF values 

than those of the ground truth. 
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Figure 5.8 Sky extraction results and reference. 

Figure 5.9 shows scatter plots of SVFm reference data from manual extraction and the proposed 

fisheye SVI-based SVFf and the U-Net-based SVFu estimates. Figure 5.9a shows the 

correlation between reference data and the proposed fisheye SVIs-based method (R = 0.9777, 

R2 = 0.9552), which indicates these two sets of data have a tight correlation. Figure 5.9b shows 

the correlation between the reference SVFm and the U-Net-based SVFu (R = 0.9212, R2 = 

0.8487), which indicates the correlation between these two sets of data is weaker than the 

previous two sets of data. This means that the proposed approach is more suitable for evaluating 

the visibility of sky areas in urban environments.  
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(a)                                                                      (b) 

Figure 5.9 Evaluation of the accuracy of the proposed method: “SVFf” = SVF estimated 
using the pre-trained DeepLavV3+ model; “SVFm” = SVF estimated manually using Adobe 
Photoshop; “SVFu” = SVF estimated using the U-Net-based method. 

Here, this research also used the following three main evaluation indicators to assess the 

accuracy of the semantic segmentation model used to detect the sky area in the SVIs. As Table 

5.2 shows, intersection over union (IoU) was used to assess the accuracy of sky pixels position 

detection, root-mean-square error (RMSE) was used to assess the overall accuracy of the SVF 

value estimation, and mean absolute error (MAE) was used to evaluate the actual situation of 

the predicted value error. As the result shows, the proposed method had higher IoU and lower 

RMSE and MAE, which means that compared with the U-Net-based method, it can extract the 

sky area more accurately and obtain a more accurate SVF estimation. 

Table 5.2 Comparison of the related evaluation metrics for the proposed method and U-
Net-based method 

Method IoU [%] RMSE [%] MAE [%] 

Fisheye photographic-based SVFf 

estimation method 
88.29 1.82 1.17 

U-Net-based SVFu estimation method 86.09 3.13 2.50 

It can be seen from the above comparison results, the semantic segmentation method proposed 

in this research has significantly higher accuracy than the U-Net-based method in the detection 

of the sky area in the street view image. 
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5.3.3 Mapping SVFf on the street map of the study area 

Figure 5.10 shows the distributions result of SVI-based SVFf estimation. The SVFf values 

range from 0.000 to 0.669, and the mean is 0.365. This research used the natural break method 

(Chen et al., 2013) to divide them into five intervals: 0.000–0.274, 0.274–0.376, 0.376–0.458, 

0.458–0.534, and 0.534–0.669. The five SVFf value ranges are represented by different colors 

from yellow to dark blue, as shown in the legend. The SVFf value ranges near 0 indicate that 

little sky area can be viewed, while the opposite is seen in the value ranges near 1.0 that 

indicating total sky openness. These SVFf values are related to the height and density of 

buildings. Areas with higher building density have lower SVFf values. Conversely, the lower 

the density, the higher the SVFf value. It is clear that narrow street canyons formed by high-

density buildings hinder the visibility of the sky, resulting in low SVFf values. 

It was found that in the southwest and northwest areas of the study area, SVFf values are 

generally higher. Because the buildings in this area are mostly two- or three-story single-family 

detached homes, most of the plants are lawns and shrubs, forming an open urban canyon space. 

On the contrary, the height of the buildings in the center of the study area is generally high, and 

the sidewalk plants are mainly arbor, which forms the narrow street canyons and led to the low 

SVFf.  

 

Figure 5.10 Mapping the SVFf values estimated by Equation (12) on the road map. 
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Figure 5.11 shows the frequency of SVFf value distribution in the study area. The proportions 

of the five intervals are 20.7%, 29.5%, 28.4%, 16.9%, and 4.5%. The analysis of the results 

shows that SVFf is uniformly distributed in the two intervals of 0.274–0.376 and 0.376–0.458. 

 

Figure 5.11 Frequency distribution histogram of SVI-based SVFf estimates. 

5.3.4 Computation performance 

In large-scale SVF measurements of cities, the research needs to analyze big data, which means 

that computation performance is another important indicator in this study. Semantic 

segmentation classification of SVIs is the most time-consuming part of the proposed 

methodology. The analyses were all run on a Windows PC with an Intel® Core™ i7-8086K 

processer at 4.00 GHz and NVIDIA GeForce RTX 2080Ti. This research ran DeepLabV3+ in 

the GPU (CUDA) mode to perform semantic segmentation on the 2,492 panoramic SVIs, with 

each image consisting of 2,000 × 500 pixels. Semantic segmentation processing took about 12 

min to complete and it almost spent about 0.3 s per image. In a previous study (Yin and Wang, 

2016), researchers spent about 2 days classifying 3,592 panoramic SVIs (each image consisted 

of 416 × 254 pixels) based on a support vector machine (SVM) machine learning algorithm. 

Also, Liang et al. used SegNet to do the classification, and the processing time to classify the 

panorama SVIs was about 1 s per image (1,024 × 1,024 pixels) in GPU mode (Liang et al., 

2017). These results show that the proposed method has higher accuracy in image information 

extraction capabilities and higher efficiency in processing big data, and it is more suitable for 

application in large-scale urban-related research. 
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5.4 Discussions 

A method for automatically estimating SVF value by acquiring open-source SVIs and using 

the deep learning framework DeepLabV3+ to semantically segment and classify SVIs was 

present in this chapter. The proposed fish-eye photographic-based SVFf estimation method 

saves a lot of time-consuming and laborious processes of on-site investigation and manual 

identification. This research proposed a framework to classify panoramic SVIs based on 

semantic segmentation to automatically extract sky area, then convert the images to fisheye 

images, and calculate SVFf values. By comparing the verification results against reference data, 

the proposed method showed good agreement with the ground truth data. The results showed 

that this proposed SVFf estimation method based on panoramic SVIs can realize fast and 

accurate SVFf automatic calculation. For urban planners and designers, the proposed method 

is straightforward, feasible, and effective. By accessing public street view image data, fully 

automated SVFf estimation is achievable. Compared with the traditional method based on 

manual fisheye image photography, the proposed method is easier to operate. Compared with 

simulation methods, the proposed method based on panoramic SVI can represent more realistic 

street conditions. It can avoid the inaccurate SVFf estimation results caused by the lack of real 

street tree information and the uncertainty of model simulation in the simulation method. 

More importantly, because the proposed method is based on computer processing, it can be 

applied to large-scale SVFf estimation. As the area covered by SVIs grows larger, the proposed 

SVFf estimation method based on SVIs can be used in any area with street view image data 

sources. The high accuracy of the SVFf estimation method can also help us understand the 

urban thermal environment and strongly support global studies of the urban thermal 

environment. 

However, the limitations of some existing methods still need to be addressed in future research. 

Firstly, this study is based on panoramic SVIs for calculating SVFf, and all the SVIs were taken 

by the street view capture vehicle in the center of the road, which cannot represent the visible 

sky area of the pedestrian view. So, this research will be more suitable for the research that 

focuses on the visibility of sky areas at the street level. Secondly, owing to the continuous 

renovation of cities, plants and buildings in street spaces are dynamically changing, but the 

shooting time of the SVI is fixed. Because of the time difference between the acquisition time 

of the SVI and the actual situation, the estimation accuracy of the SVFf value will be affected. 
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Based on the advantages and limitations discussed above, future studies should focus on the 

following: (1) applying the proposed method to different areas and cities to verify that the SVI-

based SVFf estimation method can be used as a general method and can accurately reflect urban 

street-level sky visibility and the openness of the street space; (2) while considering the 

phenology of vegetation and the surroundings of urban streets, estimate the average value of 

SVFf by searching through SVIs during each season. However, the future research can obtain 

real-time SVI by using unmanned aerial vehicle (UAV) photography technology to estimate 

SVFf more accurately; (3) considering that temperature is also an important indicator for 

evaluating environmental comfort, the proposed method can provide a data analysis basis for 

urban thermal environment improvement and urban design. 

5.5 Conclusion of this chapter 

This chapter proposes a method to automatically estimate SVFf values based on panoramic 

SVIs. This method involves the use of a pre-trained DeepLabV3+ deep learning model to 

perform semantic segmentation of SVIs, then generates fisheye images to automatically 

calculate the SVFf based on the result. By comparing the result of semantic segmentation 

recognition with the results of manually labeled sky area, the recognition rate of the sky area 

in SVI by the proposed method is as high as 98.62%. The comparison results of calculation 

performance also verify the reliability of this new method could reach 88.29% when compared 

with the U-Net-based method. 

Besides, the proposed SVIs-based SVFf method uses publicly accessible street view pictures 

as the data source to estimate the city street-level SVF. This research shows that with the 

development of wearable equipment and unmanned aerial vehicle photography technology, 

more urban areas will have street view image data, and more real-time street view image 

resources will also appear. Then, the future research will be able to use these big data resources 

to obtain more efficient and accurate assessment results of the urban environment. Furthermore, 

the future research can rely on these data to build a city information data platform to help 

planners and managers better urban planning. In future research on urban thermal environment, 

by combining the semantic segmentation of street view images with the Local Climate Zones 

(LCZ) classification system (Stewart and Oke, 2012), the urban heat island intensity can be 

calculated more accurately, making up for the insufficient distribution of the number of ground 

meteorological observation points, and providing a more comprehensive urban heat island 

intensity analyze data. 
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Chapter 6 

  Conclusions 

 

 

This dissertation has presented the development of deep learning-based methods for urban 

landscape analysis using SVIs. Chapter 1 introduced the background information, problems 

statements, research objectives, research significance, and research scope was introduced in 

Chapter1. Chapter 2 reviewed the literature on urban landscape analysis elements, computer 

vision, deep learning, street view images, and the application of street view images in urban 

environment analysis. Chapter 3 present an image semantic segmentation model for urban 

elements detection. Subsequently, a comparative study to examine the performance of this 

semantic segmentation algorithm was conducted. Chapter 4 proposed an approach to 

automatically detect the vegetation pixels from SVIs to calculate the visible greenery of street- 

level. Chapter 5 extended the proposed method from Chapter 4 to estimate the openness of the 

built environment using SVF. This chapter described the summary, contributions, and 

limitations of this research. Furthermore, the future works are discussed at the end. 

6.1 Summary  

People-oriented has always been the core concern of urban planning, but in the past, due to the 

limitations of technology and data, people-oriented means that it must rely on manual analysis 

and subjective experience of experts, and it is difficult to apply it to practice on a large scale 
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and quickly. In response to this problem, this research proposes an efficient and fast spatial 

quality quantitative measurement framework based on open data. 

Street view images have become a new data source for urban research. Extracting relevant data 

from street view images for analysis has also become a new trend in urban environmental 

research. However, the research on urban environment evaluation based on street view images 

is still in the early stage. On the one hand, the development of computer vision technology 

represented by deep learning has made it possible to recognize patterns that cannot be 

expressed explicitly. The fusion of urban analysis application research data represented by 

street view images, satellite remote sensing images, and geotagged social media images poses 

a challenge to the development of new theories and methods in urban environmental 

assessment research. 

This research aims to develop a deep learning-based analysis system, which can automatically 

analyze the urban landscape environment using street view images. First, the captured city 

street view images are processed in batches using Python code to obtain 360-degree panoramic 

street view images and fish-eye images. Then, these street view images are semantically 

segmented through a pre-trained deep learning model. And the environmental quality 

evaluation indicators such as visible greenery and the built environment openness are estimated 

from the image semantic segmentation results. Finally, the corresponding relationship is 

formed by mapping the position of each street view image to the relevant index and visualizing 

these factors which quantify the urban spatial quality. The researhc choosed two key urban 

environment elements as the starting points of the research: the street-level visible greenery 

and the visible sky area of the built environment.  

The first method is the urban street-level visible greenery evaluation method (PVGVI method) 

presented in Chapter 4. The PVGVI method can evaluate the street-level greenery using 

panoramic street view images. The calculation and evaluation system were developed, and the 

proposed method was validated with a case study. The PVGVI method effectively increases 

the accuracy of the vegetation detection from the street view images when compared to the 

PSPNet-based semantic segmentation method. The prototype system takes only a few seconds 

to execute the semantic segmentation on street view images. Therefore, this method can 

significantly improve efficiency and save time when performing large-scale urban 

environmental analysis. This method provides new ideas for evaluating other factors that affect 
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the urban environment. The future research can extract the other urban landscape elements 

from street scene pictures for analysis in the same way.  

The second method is the urban built environment Sky View Factor estimation method (SVFf 

method) presented in Chapter 5. A new perspective for evaluating the openness of the built 

environment is proposed, which is to estimate the sky view factor from the street view image. 

The SVFf estimation system was developed, and a case study was used to verify the system. 

The SVFf method calculated SVF by converting panoramic street view images into fisheye 

images. Furthermore, this research pre-trained the DeepLabV3+ model by manually marking 

300 fisheye images of the sky area as the training set, which improved the recognition accuracy 

of fisheye images based deep learning. At the same time, the GPU-based semantic 

segmentation model also improved the processing efficiency of a single image to 0.1second. 

However, in the process of generating the fisheye image from the panoramic image, the 

distortion of the figure will be generated, which may affect the accuracy of the final measured 

SVFf. Especially when the color of the building environment and the sky in the street view 

image are similar, the fisheye image generated by the proposed method is more likely to be 

deformed. 

6.2 Research Contributions 

Based on the street view images and deep learning algorithm, this study developed an automatic 

evaluation system for urban landscape analysis, showing the development direction of 

combining artificial intelligence with urban landscape research, which has inspired more 

aspects of urban research. 

The research achieves a high-precision analysis of large-scale panoramic graphics with the 

support of open-source street view images and artificial intelligence technology. It can still 

ensure high-precision and high-efficiency processing capabilities when carrying out urban-

scale spatial analysis, which can be used to reveal potential laws that were not discovered in 

the past due to analysis scales or analysis accuracy. 

The PVGVI method presents a new approach for SVIs-based urban street-level greenery 

analysis. The SVFf method presents an approach to automatically estimate the visible sky area 

in the urban built environment which can be used to evaluate the openness. All the proposed 

methods in this research can extract the urban landscape elements from the street visible 

environment in much less time than the manual site survey and manual calculation methods. 
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The time cost, error and money investment due to manual operation can be reduced. The 

proposed calculation and evaluation approaches can be further extended to analysis other urban 

landscape elements, such as the building style, architectural façade and the street walkability. 

However, the current street view image recognition and classification based on semantic 

segmentation technology is still very limited. With the continuous updating of deep learning 

models, the accuracy of image semantic segmentation is also continuously improving. At the 

same time, the improvement of computer performance also makes image processing more 

efficient. The two proposed methods in this research are both general methods that can be 

applied in any city. 

6.3 Limitations and future research 

The proposed methods still have room for improvement, and these limitations should be 

addressed in future research. The limitations of each method are highlighted as follows: 

The limitations of the PVGVI method are that, firstly, the shooting time of street view images 

is not uniform. In some street view images taken in late autumn or winter, plants are easily 

confused with light poles or architectural structures in the surrounding environment due to the 

fallen leaves, which affects the accuracy of semantic segmentation results. Secondly, the 

developed methodology was tested on only the street view images of the study area, although 

the concept of utilizing semantic segmentation to segment the urban environment elements 

from street view images is very general and applicable to extract many kinds of urban 

environment elements. However, if the training data set for the deep learning algorithm is 

sufficiently rich, it should be further verified in other cities or regions to improve its reliability 

and generalization. The Green View Index is just one of the urban greenery evaluation factors 

and is not enough to assess the whole urban greenery quality.  In future research, the quality of 

urban green space can be evaluated more comprehensively by measuring the following three 

greenery-related evaluation indicators. Urban green coverage ratio can be measured by 

analyzing satellite images, urban street plant diversity can be evaluated by using image 

detection techniques, and the visible green level of the street level can be obtained by applying 

the method proposed in this research. 

The SVFf method by generating fish-eye images from panoramic street view images will 

inevitably cause distortion of fish-eye images during the generation process, and then affect 

the accuracy of SVF evaluation. 
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Furthermore, the street view images are usually captured by street view collection vehicles on 

the roadway, however, the spaces where people stay are more in the public spaces and 

pedestrian spaces. Therefore, there is a deviation between the viewpoint of the obtained street 

view image and the viewpoint of an actual person. Future research should explore new paths 

to obtain street view images that can represent the perspective of pedestrians. For example, the 

street view image can be manually taken with wearable devices and miniature photography 

equipment or obtained from social platforms using various APIs. These images can be used as 

supplementary data to more realistically reflect the greening level of urban streets in the eyes 

of pedestrians. 

Second, because the urban built environment is in a constantly changing state, the growth state 

of street plants and the construction sequence of the city will all affect the measurement results 

of sky visibility. Therefore, not only the evaluation of SVF but also the evaluation of the visible 

greenery should be a dynamic process, which is continuously updated following the 

construction of the urban environment. 

Finally, limited by the existing street view image resolution, deep learning algorithms, 

computer computing power, etc., the proposed method cannot extract more analysis elements 

that affect urban environmental quality assessment from street view images, such as city 

skylines, architectural styles, and plant richness, etc. The future research should focus on 

improving the detection and classification accuracy of the deep learning model by creating a 

training set of street view images that contains more abundant city scene tags. And, the 

accuracy and efficiency of all methods could be improved by further case studies and various 

performance improvements of the deep learning model. 
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