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1.1 A EOE=E LB

ITAEIZBT 5 BAROREE CTIE, BE(LSCZHRRIEOT- DIk~ G YR EH S LD
— 5T, ZBEIEHSOLL—W « T—I A7V v RIEER PO S E 8 ERESEOMH
M7 ZI2kY, BROEEIEWVEBRFNEZHELTND. LR b, B LEREICZE
W, i EORESCE T EORMBESEA L TEY, TOMEAO—DIC, EEmmiEE
NEOREF BN D.

EIREIUL, ALSE T ORERERICE W TA U TH Y, BEOEITICHEVET
% Vsl B ORI, R PR OB, BEENAER X OERIC K 251950 BMERT 2561
ALLBGEDTHD. @MIRFINASHAE LTSE, BHEEOMER L OHEY ORE MK T
DA REMERe, Hix RBROKERLERDEREEZA L TS, 20D EIEREINREAED ITH
PER R VEBEICIE, M LR ICIEIER AN Thil, BN RINHE121E, FEL
DT 57: 81, RG] - 22X FOHREZ L6 L TW5D.

Z O DERENICET 278, H< o IThbRTRY, FEi LIz T,
SRR OL Bl T 5 - RMFOEFIZLY, BIEENEZIET 2R A0S TnD
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B L LR baBROMAE T TAEL LB TH V BIEEHINRE 2 2 L bHINEA
DA =ALIFEA SN TE LT, SBOEE - BEEBR L Vo Ioin &t RIK 7 & s
AT D 51E D BRCB O & W o 72 N2 R DRI A G O BIRTHH Z
END, EREINEZERICB T AITIEE S TR,

WA, 3y Ea—XOMWRER RICEY, Vo b—va VEIEH LR, T7h0b
HCAE(Computer Aided Engineering)?y, FEFESFIZHB W CTREMAICIEH SN TS, ZHIZ X
0, AEEORM ERLEAOFEBENERINTEY, RIEEBOANHSS, HFtERICE
T AR OREIZ LY, BRI LEIEICES ETOa X MO I TS0, N
2TV ab—a T, EROICEHHNEREERS 00T D00, EEORERE
DOAFUERFREL 725 Z &0 h, EHERRENEZXNSRE LT, vYIalb—raraHniz
FFEDIN K OFAE LS, B DR A FREMECB IR R IO W T ORFBITHOI T\ 5.

LU, BN BEOHENR R TH L Z N b EENZRFIEZ L, M T,
NFEBLOEEFHR TN EDO LI ITHELE D O, WfERERIIRIZICEL LTV
VL R, EROIFRIZE W T, IEBIWGEFN G 2 BB LIRanbel, £
ERLE AN 2SN TN Thid EEZLND.

T CAMFR T, WHESRFNARMBEICER L, EMEMEEREO SRS ORAEE R
IFICHHTE, N7k JOREFHIR T OFEBIZ OV T OGS /I Re 7208 72 72 m i B AU fig
BriEDORFEEZHE T 5. £7-, FABRFELHE A2 OBEESEFINEEICS L CEMT2 2
&, BB TIENF AN MEREZH LT L, BINBIEER L OB IESRIC > W TR
5.

1.2 BRIFEDOMHE S &K UHRIK

ABFFETIE, N8 L ONE@FHIR T & B8 TR R T FiEOMELZ A L LT 5.
AREITIE, @IREINORAEZ M 5L L OEEEREIN BT 2 FE, &iREn
DOFAEFFATIZE LT, ZENENOMHREOMEL & BURIZ DWW TR~ %,

1.2.1 BiREIN & £ DFETER

EiEEIE, R oo@ Y @RE TORERTELC 2% TH Y, BEEEN - wikFh -
FEMER FEIND 3 DTS LD .

BEEFINE, WESBEMICAELLHNTHY, TRICHRIETH - 1B EEE 25 B
CAELLDENTH S, BALFUIEE B OMBIRICIS W TA L SEN TH Y, BUERH
DEBBERTHNNAET 5 Z & TELLENTH D, EHETEIIE ERE 2 >oflh & i



1.2 BEEORFER L OELIR 3

B0, BEAREBORFICAECHENTH .

BEE BB L ORAEEINE, SRA IS 5 IR & 22 ERIC 2 b
AR EE O O A & AR AT T D @lRE N ORECTAEC LB L TH L. AR T
E, D URIRMI O EEE ORE S E 26T DIREHIC B W TR AT 28R TH 5 20,

BEEEIALE, WRESRICAE TSR T, GEEICHE S R OTERmICRB W TEL 53
VRIES, BIO3 5 Z & TALLZEINTHY, ZOWmEIZIX, 7 NI A4 Meimd iR <
X%, BINRAEMBEIL, Eé L THRBREOEEEHBLIRIRT Y FI4 FEH LAE
BT DAENZET H 2D, BT 1RT Y R4 MCBESn L HELH D P,

HALEIIL, BB ORI W T, EREA Ao OB S DT, R
RETEY, MBRHRIR O —ENAER L, A CTRESAHN T 52 L TRAETHHLOT
b5 MW, Fio, ZREBEERR SRR UNAIN D 5GE R I bR S, WElE7r v R
TA N X ORADRE LT EREEZ RT 2.

FEPEAR FEFUE, @RIV TR OIEME D ZE L <R T 2 Ml BRIz B T
SR BWAEUTBRICHAET 2N TH Y, R E AR I D P,

AW TIE, WIEAB PN L CTAE L 2BEFNLB L RIbEINZ 5 L LT, mats
KON TG DR A% AT rTRE 22 RHT FIE ORI LY, EiRBINORELZ THIT L2 &
ZHBE LTS,

EIRFIAUVE, WEEH L OB BT R AT, EEM2EOERIZLY, i
MEEOND ZETHOT 285 TH L, TORAEMEICE L CL, fAE T ORIRK
ThndZ e, BEZMED) I 7 nREICB T 28R THL Z Lo, WERIEEA T =
ALFHER INTE LT, WL ODLDIEEFEIEINDOREY 747 VT RREEI LT
5. TROLRELSFITT, ENEIULT - OF A - @ikids oz s itz & L
7z, 3oIEKBlENSD. LLFTHE, ®iEEhos 747V TICLT, ThENOMED
JES L BURICOW TR B,

1.2.1.1 [SHhZEERIZCLE=EEENETH

S EFRAE L Lo @R BN O AT, SRV IR MERE 2B 2 23551,
BEEA B AR SN D EHEL TS, BENELD 7 T4 TV TO—2L L
T, Lahaie b1, $HERFCAE T2 @IBEINEXIGE LT, BB FEET HENRELZG| &
BE3 I ) &R & TR & OB E IS T SR EIR ) E OBERNSISTI DI FAT VT
EPGE L, FERE I KOS OBERRE A BE LIS 747 ) T2 REEZEL TN D 29,

FRENOERZ T4 7 VT L LT, EROIF, &g, RERLofasmEsn
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TeBED, i iaRE O LI A, IS EREEE & LB Ot RN 217 > 72 2729,

12.12 OFHZEEIZLI=-EEE N

OF 7% AT UT2REAf T, EEAMEORBEED, OFHRDOMIMEIC L2 b DI EMEL
TS, 1952 4 Pellini 128D, @RSV SR CRAET D EEEIGHIC &> TERL
ZOTHRD, HOEFEIZELERIGEZ 2 Wolz, OTAHICERT2BLTHD LW
O FAHERARIE S 2. E£72, Singer b A S ZAFIZ, EEFEFINVOIAITE L TEERE O
Bl a0, HEXDICBWTENREDTET 2 Z ENRYTHD L FRSATND 0,
£ LT, 1962 #EIZ Prokhorov |, iR 4 &K L 78I T & % iR ME L IR B8 (Brittle
Temperature Range : LLF BTR & d) D, FINNRET HHR/NOOT HEZRFTOT
HEEFRL, MRIKTOMEOIEMEZ FHVT, BTR FOBEEGEMICER T 220 £ 7213
OF 7 & EHREMEERRIC & > TEINOFEZFM T D L W oo B ZREL TS 3D, &
HIT, Al - A2 H 51, AR AN B IREIC T O 22 5 2 2BRiEEELRL,
A LIEOTAREFNE S 2T 5 2 & C, mIEEERARE L. ZOMf»s,
R FIIVEEEFI) A2 BT 537 A—2 L LT, BTR RRAOT 5 emin, £ O ZHAE
4>t 7= CST(Critical Strain Rate for Temperature Drop) % #2545 L TV 5 3239,

FTo, WAROBIEIZER LSRR, OFTAETIIRS, OFHEEL I LEAHE b2
RINTWD. RGBT DRHEINICEGZ 20T HORELELEIEDLZ LT, H
N L DRAOT HEHEDNFET D 2 E MR I TN D 3537,

1.2.1.3 BREHBRZEEIZ L -5 REINTH

ZIZTIE, SIEVICK DIEIEDR N &4 O KO & BRE L I FHIR R DV Tl
NG, =0k, BEEOEITICHEY, WA SEENIAEICB VT, o RliE o
BN Z T N 7BZ T, ENPELDEBXZONT-HDTH D, Feurer 1L, Fhifh
DY A ZARURARDRENED B IR TE U TS 2 (Rate Of Feeding: ROF) &, [EAHER &R AL D
BARRSOIEIA « AR TOBPBEFER & BIRE U 7= BEE LA 25 (Rate Of Shrinkage: ROS) & #£ %
L, ROS DfEiAS ROF DE#H % 7236, T/ BLEEICHE D RIEOB N2, iROHEHS
F O REWVGEIZENDBELLT N E WS TFHlELRE L TN D 3.

F7- Clyne & Davies 1%, BEAEEN 0.4 705 0.9 OfEk%E, o R@iR O3 Z T Hh
DIREEL, F-[EMEN 0.9 22 7ok A, BEEOETIC X BikOMEAZ T bk
WIREESRCTH 2 LARE L, N ENOTEBIC TR 3 2 R Ot & El o arRE 2 34
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DIEERELTND .

Rappaz &%, @il EINOFA %, 51HR D O3 A ds O O UHE I 5 @ik DR 2 %,
O ZEMTERSROTEBRITAL D EE X, BIROUHE 2 EIRET & Bl T, g
ICRIARERT HF v © T — g VIENEAWT, BV E Rt 2 Rl T 5 R A 1R R
LTV O ZOET MIEER D DATRIH D Rappaz-Drezet-Gremaud: RDG E7 /L & X
n, OFTHEELZEINEEDY Z 47 Y7 L LTWAH. Coniglio & Cross 5%, RDG E7T
NERT VI =0 LEEROENFHMCEMA L, ZO/RE, BREICBWTENRTICES
FrET—TasE, BIVARNWIEERLTEY, bV, BREERNDOKFENE
B, [ILRICE S BERENMREZ SN 4. 72 Draxler 51X, Coniglio DX R 5
BWHREST, KT XA AT FRIEN & 2V —RlE A G TSR OE R T %
AHETLETVERELTND 29,

1.2.1.4 EREIND 54 T 7 RN -EINnEH

Michel 1%, 2011 4, $EiERFOEFLICKT L CHBRZEFE L (Finite Element Method : FEM) %
Mgtz £ L, LRoBNGFMEEOF AMEEZBRIEL T\ 5. ZORR, 0T %%
BT U7 BYER, ERFERERBRN—HERD I LEREL TVD P, F72 2017 FI
%, ERRDZ 947V 7 %, EEESEFINOMATICEH L, SERhoRERIZB T, Fl
NDE U 2 el EEINDVE U WM TOZNENOHIEIZ O\ T, FEM BABIRM:fRAT 4
ANT, Z2oFRAMEEHFL, OTHEEE LT 20E, EROBmE RS X< FERT
DREF L o2 EWE LTS, Z LT, I5H2 747 U 7 CTORMIE, EBROFIHE A
EHBECETP, EAM T COEI, BBLEHNEEENERTRHRE o7 %,

LLbEoD X5z, @ASE T OEERO 2 7 o 2880\ TE U o EIIE, EEEORE
EHERT DML <, WS ONDREICHEASNT, IHBXOENBR T ZEICLE®
TNABRREINTND OO, EBEICHAET 2@mEENE TRIT 5 2 LIXREETH D00
BRTHD. 2D b, EREEFOREESIESINORAEZ TR W72 miE & v
FRIER OO FIEORB N EE THLEE TH DL EEFZE 2 OND.

1.22 EREINEHIESE

eI EIAL, R EERE DRSS D BROBLE T ORI BN T, RER5ED O
THBMMER LIZBICAECSEERTH Y, WERoREtE2%E LR TSE28N 03 H
5. XD, WHEEIREITVIE A D FTRENEDS SO I I TR B I IR R A 03 T D,
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FINAHEGR SNTZG A ITITMERERE SN D 70 Y, BEa X MERO—RER>TND.
ZOZEND, BEESEFNZIET S LITEELRRETHD.

R BB T 2R B ICER T 2518k ORAFERIIREL ST T2H0,
— DOV RA R B ROEEEICAE D BEIE CH Y, b — D ITEMEEE L O MERSE
Thsd. 2FV, BRI TZITCOTHAENEESIRTINORAE LM T2 ECTEHEETH
D, ZOUOTHELEBTENDL, BESEFNAYIETEDLEEILND.

BEERIREIN A LT 2 ke LT, IRE&FNICE, BWESEBDILFRNEETTHZ
LIZXY BTIR Z/NELFTH 2 ERABTELZERT L, fhaaidR 77 & OREE R 2 224k
SHDLZERENBFETOND. IUTHIE, REMAEICE O CEESRE D OLFR D DN
58 TR RITTRBICOWTHF L, BERSTHD C BNENREICKRE SEEL K
IFF LA T D 4. Branza DITMHEAEEROMIEEREIEIC, BME2 TET LB X
OBEREIC=y Z IV ER"Z ) 735 2 L TERBAEMIUBTE 5 2 & % ERIICTHER
LTWnD ® F@sEImEZ{bSE5/Mate LT, Oshita B, RRFMOZEEH
BHEZRWT, R E S LOSEAERENRAEICKE S EET D 2 L2 ERIVICHR
LTWD 9 Hbb, EEEREROFRIAZIGIRIZONT, BE— FES P L — FRED
g W Ok P/W DEFVEAICKRE S EHEL, P/W D 1.3 UL E TR ATREMEN E < 722 &b
T D 30, F7= Zhang Hl1E, L —W AR v MNEBERFOIRALIR ZZL &, HiAH
RO T AT A HET 52 & C, HFzPiETELZ 2R LTS S, Zo X
N, WREHOIREZ(L S, ROREH A T 2 2 & ChEESREIN AT
EHLEBEZLND. LLARRG, ORI M & EEEBITERT 2 09 & & O BRIX
B ST o TR L.

TIFHRBLEIN G, WHESREEET 35 2 LI LD E LT, Schaefer &1,
VRO L —FOM D EE2 B S5 2 LT, IEEEEE Z L ICEIN A Z KIEIC
R T E DB H D Z L Lic 2. RRRIZERIR OIX, B 4E 3 2 mEikuminic
BOWTHEEREAZT T2 LT, KEHOEADERERAZHEL, FhizbilkT&?
oLl B FEEBICENT20THE82EBT 22 L2 ANE LT, R
SO Fr i 7~ — U7 — 7 BEER ORI B T A EIN AR IE T 5 Z L& BIC, H#F
Moo — U 7 E— R ERICE S, BE— 2Bl ETIChRe— N&2%kd 2 &
TEREMRT D — U T H A — Rk SORMIERO X THRIZAY v bEFRITHZET,
Z THUCEBRDBIEE L7ZBRIS, # THRDBEERT 2 2 L2 ko TRAT 2 2R A & 1l
L, 7= R RETIZRY EF L RETOME N EHEFFT 2R v hZ Tk 5
REMRBEINTVDN, MERENNEL 2D 0T RTCOENEIETE 2D T



1.2 BEEORFER L OELIR 7

72N & E, YERNETHD.

Lee H1F, AR U BIEIREINRBRICHE N T, BEELFRRHIKBZITI 2 & T, #l
DB ELRNZ EEZMERE L TWD SO LLRns, MM D X 9 28+ A — bk
B DM & TET D 2 & OWHEEROEHEN 2 KN T 5 2 SIEBENTIIRNWEEZEZDL
n5.

ZDORITENEBIET 2 HEE, FICEBRIVTHG S, FEREDEEICE ST
WHHEBIL H D, EINPIEEIIHENL ST TE LT, EAARTIROR AR 7 18 D IR
DOT R IIEFTHECOWTERMIEZBFT 22 L3Ea A FTHY, ZOME
(20X, EREM R TR 72 B AR PR LB 72 BRI A1 5 M OB TR d6 L O
A BRI OBEE A D OF A ISR TR AR I = L—rv a VAR EE A b
5.

1.2.3 SIREIN LTI O AT Bl

B IREIN O AT 2 M TIEIE, Dl s, W OroFIHFRHE S
THY, FRoOFE 2 OFERFEIZEIZ G U7 it 23 320 S T 2.

FRWNITI VAR BLED S, BSHERF OIS T/ TEFEATIZ A B 2 BVEIB MR AT 2
W NEE A ETH Y, T Zacharia B, EEEEIN J1EHIR T & 1648 FAIR O
FiEBETHLEND D E LN, IRE&EFNRMR LKL T, HEVED LN TR
W ETE LT, B O SRR T 26 B L OOFTRIZOWTHRF L TEHY
D, REDFAERCEEE U O T B e E OG- FHIRRFOBENLEL 2D LB BRD.

RIEOFEE BB L, BHEIEfENT 2 F\ 7= 36 & LC, Ploshikhin (39ARIEIR R L OY
BRI AR X OVRIROWPENE 2 Fi O 2 BV YEVEENT 2 F O C, B 2SR BEBR A
(LIE D D IHERR T 5 BAERABR 6T L C, IR SR DYt 2 52 5 2 & TRIE L iRiED
SEAEHL L, WA IN G DA R FICBW - SEIT, IRIEDINED S ZUEDMNEC
PACEEDH Z LT, BnOEREZEHET LT 217> Tnd 3. [FERIC, RIFESE, FbE
TWHREZHNT, FANCENRBAENBEEZRET D 2 & T, MR &R L U CREREE
NOFAE R AFIEICEL T A2 BET 2T 21T o T 5 29, Zo X5 IZHh
FHAEMBELZRET HZ & T, HInzERIELMTBITHITND.

WEDIE I T 2B fake & L2345l & LC, Niel 5%, &4 — b~ & BUS Tt
EAAHED Z & T, BRI O 225 mEE ORI BT D E R T EFR LTS
63, F7- Rajani HIE, ERIEICEE S 7GSRI OWIROFIN G ENE T 2R T 2
AT FIE 2R L, BINIFEDFM 21T - TV % 469, [[EEEIC Draxler & % FEM Ok R4
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RBTFDET VR ORI DO ZE) L M AGHE D 2 & THEE ORI T 5 EI R
TEFHAEL, FNOREESEZFHEL TVDE Y. 20X 5 RIREMEIRN OB 724 b O
1 L RIEOREM OFHRIE, FIRENBED A D =X LAOHO B 72D L EZ HNDHD,
WRISEI DOH A RIIRES THHE IV Th Y, EMEMREREOEINFAENE O TR
Z O IEEORFZITH @ L TnenEE2 bR 5.

LLED & 91Tk 2 Bl f IR AR IC D &, T O 0T BZE@IZ SOV THRET DM T
NWTNDN, EREEMEBEREOEINANEO FRIT 2 b OMEIT L 7- 5T, —im
(IR AV B 5 BRI IZ 3 Uk, BEERATPIR LD O BEEGHE O A, D
IR EMBE STV RN, HFHEFIIINA T, HeymRr2EZEL, b
DB OV TIRFT ATRE R MRIT FIE OB N EEN .

1.3 REFEXDIERK

ARWFFEDET=2 BIE, REBERTICRAET 2EEmREIN LD ATREMEZ Tl L,
B 115 2 st rTRE 22 m iR EINVENT FEZ R T 56 2 L Th H. AL, Fig 1.3.1 1R T
E9IL, ZOIDOEMBEAIFIAAT S TR EE L Db D TH L. KigLITFimb &0
TOENDHERIND.

2 BmT, BRERERFNORAEEZMNL, /1%E I ONEEFNIR T ORI oW T
BRI RE 2R EHR B AT THEOBRRIC DWW TR RS . Z O T4 TIE, FEM BB fElT %
AW, FRRT-E LT, BWRLSAE D BIROTRE A DT T ki KOO 05y
ROV EBEINGIEEEZ L LD, £, SROEEIEE S Sk E 7 <o EEE
mAT, EEREIHE, BEEEE & OBEFHRFOET IZ OV T HIRR 5,

53 ETIHE, BETFHEORYMERIET 2 LA HNE LT, EiEEmEEL a5l
U= miR BN 2 i 5. 2 E CHERE L7270 o T BB IHE O A0 ik D 5
FEFE DB BT D M RET 21T ) 2 & CARTEOF A E MR T 5. - REPE
SOUSIAB TR DS EEE BN R AT RIET B O T, ERFER L IikT 52 LT, #RF
ED BN EE R

%4 mTHE, RBETEEZHVT, DB X ORI BS0 B EEE S 2K, B
IEFTREZR VAR 2 BT 2 Z L A BN E LC, EEEMIEE x5 & LR EN
BRI 2 M3 5. IREAEL - BEEFREA ST 5 2 &I X 2B 7072 BInph Lk
BIZONT, ERFERE OAE L TEOHAMIC OV TRGET 2. £ 150 7E N
Bilkyk & LT, ABARMECHMIR G2 AT 25 2 & O BEERIZIBIET 2 A mEVE v



1.3 ARG SCORERK 9

DT LI RV EHEH AR D Z LI K D2 RIROT AR R 2 MR T 5. Iz TRE
L 7o SRR FINVERNT 1k & Rl b LA AE b o mIRFINB LSRHE > 27 A K
OEIREIAUE IR0 72 3 OARAT T il T b s A7 L2 WS L, < om A >V CTRar
5.
%5 mCE, Bhd@EmRFINET FEOSEE BRE LT, BERFOFERSEOME

% F B RERATIE DR SR B X ORI OME RN 2 i3 5. A TlE, FEM BMEfigtr
DifERE HNTT — 7 W ORB DR EZ S LTZET U v 7 FEIC DN TR A
7o, & U CIREEE SRR MR ICKIET ROV TR L, AFEOZREMITONT
MGET 5. #%F CTIE, B TEZEEEINOLBERER TH D Trans-Varestraint s8R (25 H
L, BEFEOHAMEEARRRO N FNRERIZONTHLNIT 5.

UL EOERIC L S o N FERR R A RIS, H 6 ETIIARMIIEDOMEIT OV TOR
FHa17o.

Research topics

- Development of hot cracking analysis method considering mechanical
and metallurgical factors (Chapter 2)

« Prediction of hot cracking generation (Chapter 3)

« Study of methods for reducing and preventing hot cracking (Chapter 4)

 Simplified prediction method for columnar crystal growth and analysis
of crack propagation (Chapter 5)

~

Application to hot cracking problems during welding of actual structures

Butt welding for ship Hot cracking test T-joint full penetration
hull (Chapter 3&4) (Chapter 3&5) welding (Chapter 3&5)

Achieyment |

« To develop an analysis method for welding hot cracking using 3D
Finite Element Method(FEM) for thermal elastic plastic analysis.

« To verify the applicability of the developed method to hot cracking
problems during welding of actual structures

Fig. 1.3.1 Framework of this research.
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Table 2.2.1 Chemical composition of SM490A%).

Composition C Si Mn P S Ni
[wt%] 0.06 | 0.40 | 1.73 | 0.014 | 0.008 | 0.60
Table 2.2.2 Thermophysical data’.

Element | k D a |m;| C
5 10200(6.4x1073| 64 |90
C > 0.160
y 10.360 |6.4 X 10 6.4 |70
5 10.130(4.0%x107>| 04 |50
P — 0.012
¥ 10.060 [2.5 % 10 0.025 | 50
S5 10.060|1.6x107%| 1.6 |20
S — 0.005
¥y 10.015(3.9 x 10 0.39 | 20
1500
O 1480
© 1460
E [
= 1440 |
[<P] L
= 1420 |
<P L
= 1400 |
1380 £2°27 — e,
00 02 04 06 08 1.0

Solid fraction

Fig. 2.2.1 Relation between temperature and fraction of solid.
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T,=T,-> mC, (1)
i k-1
C, =C, {1-(1-20k) f }(lmkj (2)
1) 1 1
Q= a{l—exp(—;j}—aexp(—zj (3)
4Dt,
a= /;tf (4)

ZIT, TUIE@OWAIRIRE, Ty TMEROERLS, mITEEIORMBRAE, CHIRE
RETHD. £, GIEIEFAEOEERE, I FHIERE, foIIEM=R, o Q3%
[E/3F A =24, DJIEMNILHERER, tp3hR AR, AT RT > KT A4 b7 —ARRTH
5.

222 BEEDBEZEZEL L VEBEREBOEA

VR4 VBRI fE 9 4 B 72 S DFE AT EYY, BTR IT 1.0 MPa FRE OIS & {14
AIREZR 2 &%, miESIERER CHEFE SN TV D Y. £ 2T, AR W TH [EFERRRE
TH 5 1390 ]CORARIEINCDONTIE, 1.0MPa & L7z, F7-, RAREELL EOEEgIC
BT, BEGEOMEIXIZFEr £E X, 1.0 MPa L0+ &S WMoy ZHWD 2
L7z, b h, BTR NTIE, Fig 222 1ZRF X 5 IZEFHSIZ LB U7 BRI T &)
ETHZET, EMHEEMOMESEEZBE L. £, AHFE CIXEEEBROMEE 270 J/g
ERE L, Fig. 223 1R Lo @iz s i) 2 g W CREL L -

1.0 MPa -

O.J’melt

0

Fig. 2.2.2 Yield stress in high temperature range.
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—@— : Specific heat [10%]/kg K]
S 15 — O : Density [107¢ kg/mm®] .
% | == : Thermal conductivity [107? W/mmK] ]
2 - | —J- : Yicld stress [10°MPa]
72 [ | = : Young’s modulus [10*GPa]
: 10 _ b— : Thermal expansion coefficient [107° /K] k
,g - | —ff— : Poisson’s ratio [107'] ]
— ’ 2\ .
s :
o [
5 D
p—
x
&
Yo
2]
~—
s

0....|....|..
0 300 600 900 1200 1500
Temperature [°C]
Fig. 2.2.3 Temperature dependent material properties for JIS G3106 SM490A.
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T EDWHEGILTNS 006D, Z U LD —H NI, 1.0 %FfRE OREFEINAE O T 0N 4ET 5.
FER AT RIS 51T 2 AR ALZE T DB D, BEEIHEOT OB/ HAeg, 1E, RAD
rolckansg.

Ae, = Af, (&— j (5)

Pr

DT, pslEEEOHBIE, p HEEOBETH Y, FDO(E - 1)1, FEEHHRE 00

ThD. RRETIHE, (%—1):0.03& L, Fig. 2.2.1 \RTIREE & FEHAEORIGN D, B
L
I OT A OEME %, SO HAE AW TEE L.

224 SEENFELEIEIE IBIR BV T H1ES ] DIRE

EEE BT, BEE SR AET D AR 2> O BERE 2358 T 97 2 [ FEAR IR oD [ oD ek [ Rt
EER, (BTR) &, WEICIEAT 531 OOFRICKE ENS. $72bb, Fig 224 12
AT, HEIFO BTR IZBW CRESBICER T AN E 721303 A & EEFE D[R
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Liquid BIR Solid
qut (Solidification Brittleness o1
Temperature Range)
g
s — ]
E Ductility !
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|
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1
1
i >
1 1
T, T Temperature
Liquidus Solidus
(Temperature) (Temperature)

Fig. 2.2.4 Schematic illustration of initiation of hot cracking.
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BTR B L URAOT e M2 T, b a2t G o7 CST(Critical Strain Rate for
Temperature Drop)Z #£4 L 7, £ HITBIEICB W TH @iREFURSZEOFEN T A —4& &
LTHWHLNTWD., 2%V, ®IRTZIT 0T AENEGIRFINOBAEZFMNT 5 LT
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FEM E\BUBPEARYT 22 VT, EiRFIN OR AL TN T 2 FRIC W TETT 5. 2
PEFRITIZ 31 2O A3, s OBRIEERIT IO OB 2 BB LR TERSND.
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— 07, BEFEISUNEIE, AR DSBS R 28R TH H. Lo TH(OFITrmEn D
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Fig. 2.2.5 Schematic illustration of plastic strain increment in BTR during cooling.
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WRmE D LOSEAELENFEOBRKRIZONTIE, FRAZRAFICESEFHEELTE
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EEGHNCTHT 5. I, AR E D) LORKSEMEICBIT 286/AEEZ AW,
TN AEME ORI ZAT 5. £z, HEREOSEAEIT, FINEEIIRELSEETLHZ
EREESINTEY 8, R E 9 LATATICEE L, JRWFEPRIZHBIEARE 5 & 9
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0 : Associate angle
between columnar crystals

Temperature gradient in BIR —
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Fig. 2.2.6 Temperature gradient vector in BTR for columnar crystal

growth direction and associate angle.



i

L3
FREFEDSERIINEENDEMH

3.1 #

ARETIE, BEFIEOZYECOWTHGEET 2 Z &2 B E LT, EMEMERE x5
& LTt mIR RN RT 2 T 5. 72, TAUE T FEM BB 2 F o @R gL
FRATICB W TEBE SN R0 o T2iG@ PR 7O BIC T 2 Mt 4179 2 &L TRFRIEDOH
MAMEICHOWTHER T 2. S 61T, BETEZEEIAZ AR DN EEE BV I LI KT T REI
WTC, EBRRER LTS LT, BETIEOZ YL RT.

£, VU UVEBEC KD RE IR A FEa T 5 2 & T, BIROTRE D FELT ik
B L OBEEIHE O H 2N R BV AR RE TR W THEm T 5. it T, THEFES
BEIAB B DIRIT 24TV, EEABTEIR D EEEEN I RIET B W TERT 5. £
72, TWI=TU LG8 TIG 7—7 ARy MEEOENTIZI W TS, INEGAE23 EBEE FlH
F OV HAZ i AbFI R I RIET BRI OV TR 2.



20 FHoFE RAEFEOEREIREA~OwE M

32 DU IR IA RO BB ERAT
321 # &

LA, ik = A N OFEIE B & U7 0 KRAEUICHE 5 vaBEE TR OB K & iRBEE
¥ B OMRMAIREEZ RG22 1T R0, SISO TR Lo BBEIE2RE A BT
% 7. AENAACB O TIE, TEEMEOBLA O M AR O N A T ~DZE T 3R
HILD. TORBRIIE, BHEAREORN RN 2 BT 52 EnnEty, A
BEORERFENROLND. L LD, KABUAEBRICIE, EEEERENO%
VRSN . EHERIREIIUL, EHESREDEE T 5 BEORAE N OREKIC S )
T, RERBIED OFTHIMER LIZBUCE U DIRERRTH Y, WOt z23 1L
SIERTFEELENDRHD. ZOTD, EHEEIREINVIEAE D FTRENED B O AHE I I X
BICIRIER AT O, BEINOSHER S NS A I BRSNS N5 Y, ko
A MERO—HERSTWVD., ZOZ s, EHEEIREINEZHIET 52 L ITEE2H
BTHD.

AREITIE, R LESIRENGHMEFiEZ S v AT — 2 I K A EE IR LT
AL, FEBfER L DIENDREFIEOZYEART & &b, PR TICEEE K
ET L EZ LN D EIRECTORKIE T &, H&FHIK T Td D EREIHEO T 508 miR S
MBI KT T REICOW TR 2.

322 ARFEDEEGEBIE~DEH

2 TR L7 ER BRI TIE O 24 MR X OGER T OB OV CTHRFTT 5 7201, %
BHEHC L CTIREFEZEM Lz, a8k & LT IS G 3106 SM490A % MW C,
GMAW (2 X 5 T iaE#E2{T>72. U4 YL JIS Z3313 T49J 0 T5-1 C A-U @ Flux Cored
Wire % HIWC, BAZEPICITWS R O 2 Ak & @i (b O 72 D IZBR e FoIa A 4 HiAii L 7-. Fig.
321 \RTEDIE, BE600mm, JIE 150 mm, HJE 25 mm O 2 AR OHK & 2¢AH v
WX VAT 2R ERGHTRE Uz, fAKEEIZIE, KBS 150 mm, i@ 150 mm, RE
25mm OX THEHNTWS. £72, x=125mm, 425mm BEL N 725 mm OLEIZ, ES
50 mm, JE X 5mm O AESITEY, x=200mm, 440 mm, 3550680 mm DL E
VIR (2R & D e B A B D 1 H A0TSR, 18 300 mm, /& & 200 mm,
JEE20mm O U FROREZA L TN D, EHEBAAALE T x =50 mm, EHGE TALEIT x =
850 mm, T 7RO HLEHRIL 800 mm Th 5. EHEHR 800mm D EH/yENTIEHER T A1IZ 800



3.2 ¥ ¥ T OVIRHKER A OV [ BT 21

Nodes : 1,059,664 N
Elements: 1,122,416

Plate thickness : 25 mm

r\ﬁ,‘) o
o
2 ]
/ 35mm _I_1
—
...... $0mm 200mm
’ 300mm |
(a) Over view of test specimen. (b) Constraint plate.

Fig. 3.2.1 Shape and size of test plates on butt welding.

Fig. 3.2.2 Appearance of test plates and tack welds.
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(d) oy, = 0.5MPa (e) oy, = 1.0 MPa

Fig. 3.2.3 Distribution of plastic strain increment in BTR on transverse cross section at x = 275 mm.
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Fig. 3.2.4 Influence of yield stress above liquidus temperature oy, . on
plastic strain increment in BTR along A-A’.
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Fig. 3.2.5 Influence of yield stress above liquidus temperature oy, .
on plastic strain increment in BTR along A-A’.
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(b) Analysis result.

(a) Experimental result.

Fig. 3.2.6 Comparison of penetration shape.
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Fig. 3.2.7 Comparison of columnar crystal associate angle between analysis

and experimental results along A-A’.
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(a) Without solidification shrinkage.  _ (b) With solidification shrinkage.

Solidification crack

(c) Experimental result.

Fig. 3.2.8 Distribution of plastic strain increment in BTR and cracking position on

transverse cross section at x = 425 mm.
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Fig. 3.2.9 Temperature history of plastic strain on point I and 1II.
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Fig. 3.2.10 Influence of solidification shrinkage on plastic strain increment in BTR along A-A’.
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I 0.4 (a) Analysis result.
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2.0 7 ? 7
-2.8 < B : Tack welds ##: Cracked area
-3.6 v (b) Experimental result.
-4.4

Fig. 3.2.11 Comparison between distribution of computed plastic strain
increment in BTR and cracked area obtained by experiment.
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Fig. 3.2.13 12, AHEBHAA D 84 PRI B, x =344~360 mm OHEWTH T O FEIRIEFEIZ

B DREDO M ZRT. MPOFWHOMEL 2 mm THY, HRETRLUZZHPAL BTR
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4 Wet|d| - ggTR - Large
Large metal | ' influence
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Fig. 3.2.12 Schematic illustration of influence of solidification shrinkage.
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Fig. 3.2.13 Transient temperature distribution in transverse cross section.
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Fig. 3.2.14 Transient distribution of plastic strain increment in BTR in transverse cross section.
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Fig. 3.2.15 Transient distribution of temperature in transverse cross section.
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Fig. 3.3.1 Photo of full penetration welding experiment of T
joints using high current pulsed MAG welding.
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Fig. 3.3.2 Influence of heat input Q and aspect ratio of
penetration shape # on occurrence of cracking.
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Fig. 3.3.3 Shape and size of analysis model.
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Table 3.3.1 Comparison of Maximum temperature distribution computed by proposed
method and experimental photos of transverse cross section.

[°C]
1500
1350
1200
1050
900
750
600
450
300
150

Heat Input Q (J/mm)

Q=2170

Q=2170

crack

Table 3.3.2 Comparison of plastic strain increment in BTR of transverse cross
section and experimental photos of transverse cross section.

[%]
33
2.7
2.1
1.5
0.9
0.3
-0.3
-0.9
-1.5
2.1
2.7
-33

Heat Input Q (J/mm)

Q=2170

crack

Q=2170
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Fig. 3.3.4 121%, AB\VE Q 22 b S E -S40 mAIF O BTR WIZE 1T HiERIEZ 7~ LT
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Fig. 3.3.4 Temperature history during cooling.
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Table 3.3.3 Influence of aspect ratio on plastic strain increment in BTR
and temperature gradient of z-direction in BTR.

Arilzieoa Penetration shape Plastic strain Temperature gradient in
n increment in BTR BTR in z—direction.
1.21
[°cl 300
1500 240
1350 130
1200 120
1050
[ 900 63
1.43 750
600 -60
450 120
300 -180
150 240
0 -300
1.73
Ly
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Fig. 3.3.5 Influence of heat input and aspect ratio on plastic strain increment in BTR.
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5 EERR, R OEL, —857.5mm OEFET, WE3.0mm THDH. £
U A v — & LT AL043 #F & AS356 & L7c. VaEEgebE, itz 1500 A &L, &
INRETE] 2 2.0~4.0 b & L7z, Z2D%, 74 7 —%EETHEETIE, F—ABET, 1.05
T T7 4 7 —%ER LTz

3.422 HERER

Fig. 342 (27 =27 ZmkiINL, 74 7—FERBEiThRNoTEETORBRAWH~ 7 25
Haat. FREY, 747 =% 51T07m0 o 1250 CIRuRmh oe sk P 0 L2 B [l B A 23 %
AELTNDZ ENHERTE S,

Fig. 3.4.3 (27 — 7 Ol E2Z(L S, AS356 M D7 4 7 — %5 LIZSIFICBT
LB AW~ 7 e BEZ R L, RN OICEREROILRGFEZ /T, FX@k ) 7—7
DR KE < 72 21200 T, WRBEED B A EE AL > T D 2 LR,

Fig. 3.4.2 Photo of solidification cracking without filler feeding.
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F£7o, FB)G) K9 7 — 7 SRS 3.0 O T, FRhiEs) bR EmE To
PR 1.0 mm RN & 72 0, FK(a)iv) £ 0 A0LREH 4.0 ORMETIE, EilE#E CHmE L <
WD Z eSS ERIKIB)LY, 77— 7 JNRERIDS 3.0 UL EOSETHEILRAE L T
WL DR TED.

Table 3.4.1 12, 7 4 7 —% 588 LICSRMFIZH T 2 sl & & OFIN A DO A I -
FOWEEDORMOA A RT. [FX L0, AS3S6 D7 4 T7—% W4T, ASIRE
728 2.5 LT ORIMEICIB W TEINOFAITMRGR ST, AR 3.0 B3 KU 4.0 ok
RICHB W T HAZ RISHRAEEIN S AET DR NG o7, 2ok, AREICIE, SIS AENE

(i) Arc time=2.0 s (ii) Arc time=2.5 s (iii) Arc time=3.0's (iv) Arc time=4.0 s

(a) Over view of penetration shape.

wxn

(i) Arc time=2.0's (ii) Arc time=2.5 s (iii) Arc time= 3.0 s (iv) Arc time=4.0 s
(b) Zoomed view of fusion boundary.

Fig. 3.4.3 Photos of penetration shape and solidification / liquation cracking with filler feeding.

Table 3.4.1 Influence of heating time on generation of cracking.

. Arc | Filler Condition on
Filler time | feeding Type of crack back side
2.0s No cracking Not melted
25s No cracking Not melted
A5356 1.0s — -
3.0s Liquation cracking Not melted
4.0s Liquation cracking Melted

Liquation cracking
3.0s + Not melted
Solidification cracking

A4043 1.0s — -
Liquation cracking

4.0s + Melted
Solidification cracking
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(a) Arc time=3.0 s (b) Arc time=4.0 s

Fig. 3.4.4 Photo of both solidification and liquation cracking with A4043 filler.

X o TENOREEAHR L TR Y, WRERNOSIN A EER, EREESOEh %
HAZ b b EIn & Lic, AT, A4043 M D7 ¢ 7 — % W4Tk, ABIERT 3.0 B
BELOA0OFEMTIE, EEENI X O HAZ KIREFIIL O T T OFED R I 7.
Fig. 3.4.4 12 A4043 M D7 4 T —% &R L, 7—27 OLEFE 3.0 B & 40 B & L7245
HCB T 2R BT~ 7 v BEZRT. FXK@) LD 7 —27 Ol 3.0 oS4
1T, WRELER O RISV T, IRAMSIBN D HAZ S/ THRARE L TR Y, &)
BRI C HAZ RLRALEIN DAL THhD 2 EX gD, £FKDb) L0, 5L
1 4.0 BOSMETIE, EEEKO T sV CREFEEIN S BAE L TR, 3BT =i
DYRTEE FUT B TEFE B3 L O HAZ BRIV EUARRAE L TWAD = L AR TX 5.

343TIG 77— ARy MatEHBROSRSINEN

AKIATIE, A6005C #f DEEE DHETT 2 KT D 7-01Z, A6005C Z X4 & L 7= Martikainen
DIFFE 2 FEIT, Fig. 3.4.5 (R EARROIR AR 2 F 7z 8. @R RIS )IZ>n»W T,
TR =0 AAEORIRS BRRBREHI G SN 2E ) W ERISD 1.0 MPa & L, JE)03E]
B UERD DIRFECTH D 0.6 LL FIZB W CHEBHEE & T30/ S0 0.1 MPa &
L7z, &7z, B 0.6~1.0 OFFAICE W TIE, EMRICS CEBRIGHEHRETHZ L
T, [EfH S OMEEE EE L.

TIG 7—7 AR v MEHERBRIZI W T, B &2 BT 5 DB D5 TIIBEE R’ A L,
7 4 T — &G LT RMETCIL HAZ S8 HAZ RLFURILEIN DB AET D2 2 L 2R L2, K
HTIE, TIG 7—7 ARy MEERBRIZ I T 2 EEEEIN I L O HAZ KL FHEA LB D F8 A4 A
71 = X LDV THRFTT 5 72 8 FEM ZAIPEfZAT 2 O 7= miREIUET 2 8 L, TEEE
ERT 20T TR 5. T72bb 7 — 7 sz 25 B & Liz&b 7 4 7
—HEEET, BWREICBRESNNECTESGE L, T4 T BRIk o TEES ROk
BEENDFAE L2 WBBOFBEZRADL. Z0%, BINEAEA D= XLIOWTHRETZAT

9.
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Fig. 3.4.5 Temperature dependent solid fraction.

3.43.1 fRWEH

3.42 TR L2 BEEEINIS KOV HAZ RLRALBEI DI EIC OV TRRETT 272012, TIG
T = ARy MEERBRIC U CREFEAEH L7z, Fig. 34.6 [T koI, —i575
mm O 1IE 5 OHIE 3.0 mm D A6005C BiZxt LC, R HREE TIG 7— 7 IR LY
BT 2R, BXOMBERICY ¢ 7 — %8R DR Mg s Lz, P dko
MBS DTSy ENT, 1 EHE % 0.025 mmx0.025 mm=0.050 mm & L, AIEGHIE &l A%
SRR Lz, 8iRd, BERBITENEN 773,452, 733,400 Th 5.

Wi, BEBLOBREL, THEN150 A, 9.7 VEBXU08 &L, 7—7 fillEf %
25 & Lic. £, 74 7—%E BT D5MTIE, 74 7Y T 2 EEE TOMEAL,
25 BPORMINERE TH, =L A2 M= EEZ AT, WRLIREBICH 28R O BEHEZH4)
fbl, 747 —OERETH L. 7ok, =RT20°C & L7z,
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Plate thickness : 3 mm

Fig. 3.4.6 Shape and size of test plates on TIG-arc spot welding.

3432 7—9 ARy MBEROEEEINEGER

Fig. 3.4.7 (@27 — 7 WO B D GIFIZ BT DB ERE oA %2, RO 7 17—k
WaE LIS oEBIEREZ R, FXLY, BETFEZH WD Z & T Fig. 342
B LW Fig. 343 1TR L2 FEBRICE T 2IRIAAL TR E BAFICHBELITE TWD Z LN o0nd.
FERKOGITR LT 7 4 7 — %k LTS TE, FM@IZR L7 07—k Ly
S Ll LT, BB R OERE N 50 CRESW ENDN5.

Fig. 3.4.8 (@)\2 7 — 2 sND B D5 C ORFF RSl 12 35 1F % BTR MO 243 27~
L, [FROICERS L7eSECEs T 5 BIR RO 45 257, FK@L Y, 7—7 56l
DHDEMETIE, EEEBIZEWT 2.7 %% 82 5 BTR WHEOT RSN BEAEL TWDLZ L
Damb. Fo, B)LY, 747 —%EETHZ LI2L0, BHESREHIZHB VT BTR ¥
PEOTHEEGMME T LTWD Z &5, Fig. 3.4.9 ICZRXFIZRT A EICBT D
BTR YO A i 2w d . FREY 7 — 27 JIlOBOEFIZIBNCIE, 3B i
2D 2.2 mm BREDOALE T, K 3.0 %FEED BTR WHEOT A BHEAL TND Z ER
D Ein, T4 T—REMTDH I LT, BIR MIEOF 0 O KAEDS 0.5 %R/ &
Ko TNDZENZMND.

7 4 7B OA I L D BTR BMEOT AIE S ORE SOEWVIZOWTRET 5729,
Fig. 3.4.10 1, MEKE T2 2.5 BLUBEOMHTIREREAZ =T, KNP O @I K
FLOfREREZRL, OFIRBMERTRLOMRERLTWD. £, RAIXT 47— %%
BLRWRFEOREEZRL, HRIET7 4 7256 T 55000/ REE2R LTS, FXLY,
T4 T B LR ORI T, BMERRSGEITO BTR ICEIE L T HEENETT 5
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[°C]
652.0
597.5
543.0
488.5
I 434.0 (a) Without filler feeding.
379.5
325.0
270.5
216.0
161.5
0 (b) With filler feeding.

Fig. 3.4.7 Comparison of penetration shape.

(a) Without filler feeding.

(b) With filler feeding.

Fig. 3.4.8 Comparison of distribution of plastic strain increment in BTR.

4.0

»
=

.y
=

—O—Without filler feeding
=L A |=0—=With filler feeding

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Plastic strain increment in BTR[%]

Distance from bottom of plate [m

Fig. 3.4.9 Distribution of plastic strain increment in BTR along A-A’.
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800 Qg T T "
—700f R\ VOog@ -
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S 500 b1
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s 400L __w
2 300 F
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o 100 [| With out filler feeding @ { }

Wlth ﬁller feedmg { |}

0 PR T
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Fig. 3.4.10 Temperature history at top and bottom of plate during cooling.

26~2T7MZHENT, BMEEHOREZ LA L TEBY, MW THLZ N5, £
NS, 74 T — ke LIRMETIE, RMERmAmAITF O BTR ()2 L TH b EER
WETT D 3.0~32 BIZENT, BMEmHOREIITHRL TR, mEAMETHL L
DD, T7ebb, Fig. 3411 R LTS O KL 912, B R OB IZ 380 T,

IENTAE D BIGHE & BEEN A © BEEIHE S AT DM, 74 7 — %M LARWEIETIX
R ERRS MBI L WISET 2 DIk LT, 74 7 —& % 550 CIE R Em X

WHNZ L VIUET 5 2 LN Db, ZHUC KD, 74 7 =% LARWEM T, R
DG % B O AENAE T 2728, K& 7 BTR #EOT AR B EL-EEZX DR
%.

LEDORER IV, #BEFIEIL, 342 HTRLIET 4 7 —EHBOF MBI X 2ERITERNO
EEEEINORAEDOH MO ERFERZFHB CX TS Z MRS

3.43.3 milEEA HAZ RILEINBRECRIZTHEE(CEHT et

7 — 7 pEINRE R 23 Rk SR I 381 D HAZ KL SRAL B DR AN RIE T BTSN T
et T o720, 7— 7 milREf A 2.0~3.5 B F TEM ST 2 %05 L 72, Fig. 3.4.12 1
7 — 7 RN A 2.0 £, 2.5 B, 3.0 BB IOU3S5 o 4iEn ICB ST EICBITS
REEERESARZRT. FKEY, 7—7 MO T 21T L, FRE ek
AL D Z e, T — 7 RN 3.0 B O S CIXIEEF D HIREEE £ To
FEEEDS 1.0 mm KT IZ 72 > TV D 2 E DR TE 5. E 72 AR 23 3.5 B ORIFIZEBNT,
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Thermal shrinkage
+

Solidification shrinkage

Thermal expansion
——

Thermal shrinkage
+

idification shrinkage

(b) With filler feeding.

Fig. 3.4.11 Schematic illustration of influence of filler feeding.

[°C]
652.0
597.5
543.0
488.5
I 434.0 (a) Arc time=2.0 s (b) Arc time=2.5s
379.5
325.0
270.5
216.0
161.5

(c) Arc time=3.0 s (d) Arc time=3.5 s

Fig. 3.4.12 Influence of arc time on distribution of maximum temperature.

HHEEAERL L T\ 2 LA 0, T 51T Fig.3.43@I0R L7z 25k TRER & - stir
DORFIREZ RIFICHBTE TV D 2 EPHEETE 5.

Fig. 3.4.13 12, 7 — 7 sl % 220 ST 5A12 81T 5 BTR HEOT 23855 O A &
A FREY, 77 SRR EVIZE, EREN O BTR SR OT 85 08K &
o TNAZ LR TE, BEENEEDTEENEG AoTEEEZLND. £
72 HAZ #2385\ TUE, B E CRl L 72V mlaIRER] 2.0~3.0 B D S IZ 3o\ UV R RIS
O TFHEBICIED BTR BEOT 23 03584 L TR Y, Ul 3.0 ORM TR B IEL 72
STNDHIENND. SIHIT, EHEAWREL 2RI 3.5 oS TiE, EEHogs
AlEE FUZIED BTR MMEOF B M TAE L TN D 2 RS 5.

Fig. 3.4.14 |2, KPR T A-AHR EI2I81T 5 BTR M OT I8 0 i &4, [FIK &
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(a) Arc time=2.0s

(c) Arc time=3.0s

L

PSR FIED miR B LR RE ~ i H]

(b) Arc time=2.5s

(d) Arc time=3.5 s

Fig. 3.4.13 Influence of arc time on distribution of plastic strain increment in BTR during cooling.
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Fig. 3.4.14 Influence of arc time on distribution of plastic strain increment in BTR along A-A’.

v, 7T—7 SN REVIEE, K& BTR EOT AN REL TR, ALK
R3O0MULETIE33% a2 2 BIR BIEOT A REL TND ZENHRTED. &
DFERIZ, Fig. 344 1R LT Ad03 527 4 77— L LTV ERER LIS L TEHY,
SRNEIR AN A < 72 2 Stk CITBEFIN OFE RN R R D EEZBND.

Fig. 3.4.15 (28 7 — 7 O s S 2 8V TIED BTR MOV 2853 23364 L= HAZ
FEIRORE I AT, FAREY, SFFFARKE WS TIEL, HAZ RO AW EFH TIED
BTR WPEOT Z 3 N FAE L TV D Z L 3 IR T &, HAZ RIS R FTHY 7 (R A Sk s 7 7E
L7256, @Waliky OF R RFTHIC/ER T2 2 & T, HAZ RFURIEFEIILA R A LT
e Mg ns.
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Fig. 3.4.16 |24 7 — 7 O JUNRFRSMIC 1T 2 B A REZ DM A FIZ BTR I L7
MDA & . R, A RERNFINFAREEKI R T oRHAER T Lo
O, ERREL DT E, FINBEVEENREDLERELRHLZEEE®RTHHDOTH
S, FAREY, sNRERED 3.0 UL EOZMATIE, BBRA EHEE O OBHIZ LY, BTR
IR AN RELRD NG, ZDOZ LD, HAZ TSR OOFHAME
M D rraetEnsm < 72 ¥, HAZ RLFURALEIN O FAEFTRIEN S o7 b D EB I HLD.
F72, BTRICHE T 2WFMIL, SEEIEE & 5S35 2 &b Rir~DRELE 2 HiLd.

PLEDORERN G, BEFIEE, 342 HTORLEERMERICET 57— 7 R O 2k
2 X B B O HAZ RIS EIN O A% BIFICHBETE THEY, AFEEZHAVWDS
LT, TR =T LEeEERO HAZ KIEFRAL RN O R AR ATRETH L L BEZ BN
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Fig. 3.4.15 Influence of arc time on maximum plastic strain increment in BTR in HAZ.
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(c) Arc time=3.0 s (d) Arc time=3.5s

Fig. 3.4.16 Influence of arc time on time to stay in BTR during cooling.
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Fig. 4.2.1 Schematic illustration of tandem welding for preventing hot cracking.
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Fig. 4.2.2 Cracked area obtained by experiment when electrode distance Lrorch is 30 mm.
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G0 4m

Fig. 4.2.3 Shape of weld metal with hot cracking with LTorch =30

mm on transverse cross section at x = 340 mm.
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Fig. 4.2.4 Measurement points of temperature.
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Fig. 4.2.5 Comparison of temperature history between analysis and experimental results.
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Fig. 4.2.6 Computed penetration shape and temperature gradient vector in BTR

for Ltoreh = 30 mm on transverse cross section at x = 340 mm.



62

HUE EiREN O IR - BIESAIZB D T

16

S 14 _ —O—Analy§is

§ 12 _ o Experlment-

= 10f ]

£ 8 -E

: o -s

g 4_' E

S 2t ]

2 0 60 120 180 240 300 360

Columnar crystal associate angle[’ |
Fig. 4.2.7 Comparison of columnar crystals associate angle between analysis

and experimental results for Lroren = 30 mm at x = 340 mm.
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Fig. 4.2.8 Distribution of plastic strain increment in BTR obtained by computation for

Ltorch = 30 mm on transverse cross section at x = 340 mm.

Large tensile ASETR

1
1
x =150 mm x =340 mm x =750 mm

3.30 3.03 2.76 2.49 222 195 1.68 1.41 1.14 0.87 0.60

(%] T e e e ——

Fig. 4.2.9 Distribution of plastic strain increment in BTR obtained by computation and

cracked area obtained by experiment for Ltorch = 30 mm.
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Fig. 4.2.10 Temperature distribution for each electrode distance during welding.
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Fig. 4.2.11 Computed penetration shape and temperature gradient vector in BTR for

each electrode distance L, ,. (x = 340 mm)
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Fig. 4.2.13 Distribution of plastic strain increment in BTR for each electrode

distance L, __,. (x = 340 mm)
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Fig. 4.2.14 Maximum plastic strain increment in BTR for each electrode distance L, ;.
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Fig. 4.2.15 Distribution of plastic strain increment in BTR in longitudinal

section with L = 80 mm.
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Fig. 4.2.16 Distribution of plastic strain increment in BTR obtained by computation and

cross-sectional macrostructure obtained by experiment with L = 80 mm on
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transverse cross section at x = 340 mm.
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Fig. 4.3.1 Multiple electrode single-sided submerged arc welding.
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Fig. 4.3.2 Analysis model of multiple electrode single-sided submerged arc welding.
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Fig. 4.3.3 Transient temperature distribution.
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Fig. 4.3.5 Plastic strain increment in BTR during cooling.
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0 Fig. 4.3.6 Distribution of plastic strain at tacking.
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Fig. 4.3.7 Distribution of plastic strain increment in BTR during cooling at base end and tab.
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Fig. 4.3.8 Plastic strain increment in BTR during cooling.
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Fig. 4.3.9 Distribution of plastic strain increment in BTR during cooling at base end and tab.
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Fig. 4.3.10 History of temperature, displacement and plastic strain (indiscrete tab).
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Fig. 4.3.11 History of temperature, displacement and plastic strain (separate tab).
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Fig. 4.3.12 Analysis model of multiple electrode single-sided submerged arc welding.
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Fig. 4.3.13 Transient temperature distribution and penetration shape.
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4352 BEEREARIFEEINICRITTHE
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PEO-F A5 404 35 £ O BTR IREARISZ A %7, RIK LY, EEEE ORI,
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Fig. 4.3.14 Distribution of plastic strain increment in BTR during cooling.
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Fig. 4.3.15 Distribution of BTR temperature gradient vector for each speed.

Fig. 4.3.16 Distribution of BTR temperature gradient vector for each speed. (30.66
mm/sec + 15.33 mm/sec)
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Fig. 4.3.17 Plastic strain increment in BTR during cooling.
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Fig. 4.3.18 History of temperature, displacement and plastic strain (welding speed
30.66 mm/sec).
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Fig. 4.3.19 History of temperature, displacement and plastic strain (welding speed
15.33+30.66 mm/sec).
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Fig. 4.4.1 Schematic illustration of parallel heating.



=

i

S ARAY S

-
—

AL DB IETE - B IEZRAE

foks

i

86

HRDIR

R, WIEE bl

N=
L)

443 WEMRAIZLBV0TAHE

200 mm, AE% 10 mm OET /L%

BRI, ANBVERB I OWAREEEE 2, 121 800 J/mm 38 LN 15

-
-

Y

-
—

A€ T /L % Fig. 4.4.2 |
TR 247 - 72

HE A 15 mm/s T

K DMEGRIEE, ThEhimss

-
—

FHEANEN - —

N
A

ELF. F7-
—E L LT, AEEL, 50~300 J/mm D 6 18 Y I ST 21T 7~

-
-

=
X

mm/s |

ViEE LT

n\’f

7

hn

245 15 mm DE

THEL L

i3k

-
—

(X, W8N —F OEITHENIH L 25 mm $£77C, ARibEITIA

RN

N

-
[

L, R

&3 AT & 7R

=]
JiliN

i

e
R XLV, INMEEORE IR RBTea 750 °C

BDOB AT T 5 T

!

7
B D

-
—

Fig. 4.4.3(a)l
1T 12411

R

53 AT &

SEelbea
EWTIND.

-
—

RoTNSHZ

-
—

VIR

Nodes: 155,344

Elements: 137,648

Fig. 4.4.2 Overall view of mesh division.

[°C]

S OO OO OO O OO
O VN O WV O N O WV ownm
MmN ANOAAD>S O T on o~
— o —

— —

(b) With parallel heating.

(a) Without parallel heating.

Fig. 4.4.3 Maximum temperature distribution.
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Fig. 4.4.4 Distributions of plastic strain increment in BTR in longitudinal cross section.
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Fig. 4.4.5 Distributions of plastic strain increment in BTR on top plate.
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Table 4.4.1 Welding and heating condition.

Welding Heating
Heat input | 800 J/mm | 50~300 J/mm
Welding speed | 15 mm/s 15 mm/s
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Fig. 4.4.6 Influence of heat input and heating position of parallel heating on maximum plastic
strain increment in BTR AngR.

FEet % Table. 4.4.1 [T, HESIEIT, AB\E JOVAHHE 2 20241 800 J/mm 35 &
OV 15 mn/s ([ZRRGE L7z, 2 WHENBA O IIEGRIE, WS EZ 15mm/s T—EL LT, A
B Z, 50~300 J/mm £ CEALS BT z1T-o7-. F/o, MEMLEIZSW TS, @8 b
—F b T BT T L, 0~50 mm # 7 C, B 7 A1 0~50 mm (225 S 7z,
Fig. 4.4.6 [Z ABVEF L OVNEMZIE DS BTR M OT A3 2 IE T EE =T . [FIXD(a)
~OIZENZENABEE 0=50/mm M5 0=300]/mm £ LI fERERLTEY,
B OMERMITIEE b —F 0 & RN b — T OME 7 AR 2ok U, BRI T
FERRZ R LTS, P OEAIE, £ ORMIFIZIST LT R D BTR BIEOT 2453 Dk
KiEZRLTWSD. FREY, ABENET D EWHEIMBZEIZ X2 O3 2R R
BAELTODZERINDN, EOANBEICBNTY, WHTMIZK 15 mm, JEEHRITHIC
#J25 mm OALE TR H/NS WD BTR BEOT I3 L 2o TWD T ENMERTE 5. £k,
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Fig. 4.4.7 Analysis model for multi-electrode single-sided submerged arc welding.
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Fig. 4.4.8 heating position on welding torch.
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Fig. 4.4.9 Temperature distribution during welding.
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Fig. 4.4.10 Distributions of maximum temperature in transverse cross section.
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(a) only welding. (b) with backward heating.

Fig. 4.4.11 Distributions of plastic strain increment in BTR in transverse cross section at end of plate.
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(b) with backward heating.

Fig. 4.4.12 Distributions of plastic strain increment in BTR in longitudinal cross section
at tack welds.
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(b) with backward heating.

Fig. 4.4.13Distributions of plastic strain increment in BTR in longitudinal cross section at
end of base plate.
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Fig. 4.5.1 Schematic illustration of FEM and Al Reinforcement Learning system.
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Fig. 4.5.2 Entire view of analysis model.

Table 4.5.1 Welding conditions as “action”.

Condition : Welding
Number Heat input speed
1 2 mm/sec
2 4 mm/sec
3 700 J/mm 6 mm/sec
4 8 mm/sec

4522 FEER

Al DFEEZATV, SEEHEEBIRFO BTR MIMEOT B85y D K A /b & < 3 2 EaE g
[ % S H T

Fig. 4.5.3 (2, %% % 15[, 35[@, 70 [@, 120 [@1T- 72 AL 238 H U7z BTR SO 74
oA R, FAIRE D EE BT IZ O TC, BTR BHEOT A0 MK L TV D 2 &0
MR TE 5.

Fig. 4.5.4 12, ¥ % 15[, 35[E], 70 [\, 120 [@1T- 7= Al 2388 H U722 2O fE
BERIEICBIT 5, )T O A-B EO BTR O A8 54 2~ 3. R E 0, 2891 <,
TEREIIZ TR LT e 1.0 %FEEED BTR BPEOT 85543, 120 [BfT o 72 Al AVEH] L7247
BBIEIZHE 21X, EEHRAIRT, 0.6 %R O BTR WIHEOT A L 70 n 2 N nnd. &
SIS E BTR IO 285 O I KIEDO BIfR % Fig. 4.5.5 12~ T, RN D, FEHO
HEATIZFEVY, AL 28 BTR SIPEOE 2855 0 e RAE 2 I3 D178 A58 IR (k&N
TETCWBIERGND. ZDLEIIC, AVATLAERNSZ LT, WM EO BTR ¥
O By DF R % KIBIAKR CTE T D 2 EN0n5.
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Fig. 4.5.3 Distribution of plastic strain increment in BTR.
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Pastic strain increment in BTR [%]

Fig. 4.5.4 Distribution of plastic strain increment in BTR along line A-B.
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Fig. 4.5.5 Learning progress in maximum plastic strain increment in BTR.
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Genetic Algorithms

lCrossoverl <:| l Selection l
| Mutation |§::::::jj::a Fitness

Hot cracking analysis

A [ifofofufofof1]ofo]r]

B [oft]t]t]o]o]o]o]o]1] F.‘MI.'_____
c [olola]olo]a]1]o]1]0] |:> - Tack welds position

o [ifoftfrfofofofofr]1] F.Imﬂ..l

: |0|0|0|1|1|0|0|1|1|1| * Plastic strain increment in BTR
Fo[afafefofofrofu]o]r]

Fig. 4.5.6 Schematic illustration of Genetic Algorithm.
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Fig. 4.5.7 Overall view of analysis model.
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Fig. 45912, MH D A-B D BTR BT 8500z d . KKV, EEiaEic
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Fig. 4.5.8 Distribution of plastic strain increment in BTR and tack welds position.
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Fig. 4.5.9 Distribution of plastic strain increment in BTR along line A-B.
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(a) Overall view of analysis model. (b) Tack welds installation at weld end

Fig. 4.5.10 Analysis model for butt welding.
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Fig. 4.5.11 Distribution of plastic strain increment in BTR and tack welds position.
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Fig. 4.5.12 Distribution of plastic strain increment in BTR along line A-B.
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[ : Solidified .. ‘= Columnar II
[ : Newly solidified

< VTgrr Columnar [v Columnar I

Fig. 5.2.1 Schematic illustration of definition of columnar crystal growth in FEM thermal

conduction analysis.
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7 MARREN, TROLEEREHEN/NS , BEREPRICBWTE, BEAR~Y
RS, TROLEEREERENRKE LS 2oTND I ERbND. E-EHEEEN
REVFHETIEATOERKE L, FREICENT, £ KEOVEFEKRERE L7225
WBHZEBDMND.
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WL V%, FRIICHGE S DR E — ROBEZEE) & REROMEM TH D Z L3bhrb.
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Welding direction ~

)

(a) Welding speed v =2 mm/s. (b) Welding speed v = 5 mm/s.

(c) Welding speed v =10 mm/s. (d) Welding speed v =20 mm/s.

Fig. 5.2.2 Influence of welding speed v on distribution of maximum temperature and temperature
gradient in BTR during cooling.

Welding direction

—>

[°C/mm]
I 400
360
320
280
I 240
?28 (a) Welding speed v =2 mm/s. (b) Welding speed v =5 mm/s.
120
80
40

50 mm

| —— | C—

(c) Welding speed v =10 mm/s. (d) Welding speed v =20 mm/s.

Fig. 5.2.3 Influence of welding speed v on distribution of magnitude of temperature gradient in
BTR during cooling.
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Welding direction

—@ v=2mm/s |~
@ v=4mm/s |-
@ v=10mm/s |
@~ v=20 mm/s

[a—y
L <&
S &
&S <&@

600

-

400

200

Magnitude of BTR
temperature gradient [°C/mm|

0 10
Coordinate in y-direction [mm]

Fig. 5.2.4 Distribution of magnitude of temperature gradient in BTR during cooling along line L-R.

Welding direction

(c) Welding speed v =10 mm/s. (d) Welding speed v = 20 mm/s.

Fig. 5.2.5 Influence of welding speed v on direction of columnar crystals growth on top surface.
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Fig. 5.2.7 \ZER M EREWTENZ 31T ARG DR E DM 2777, R L 0 IR ED NS
W CIEERmE S D EEH MA~ORED BN TH D Z L0130 hD. £72 Fig. 5.2.8 IZE
BERR R S ORI 2 31T DA O A AR, R LD EEBESE 03 K 2 0 ST
FEHERERTE N ~CR T DR OFEA K E SR D 2 L300 5. ZIUb OFER S Fig. 5.2.9
R LTeBH D DMT o T2 EBRRR O L RRROFER TH Y, MEFIEEZ MWD Z & T FEM #
(BT 2 B, R OFRR G AR 28 & AT R RE CTdo 5 mIREME &2 L7z,

— LI

(a) Welding speed v=4.16 mm/s (b) Welding speed v =250 mm/s

Fig. 5.2.6 Photos of columnar crystals growth obtained by Matsuda®).

e T
Welding d1rect1on

"-",P"

e

(d) Welding speed v =20 mm/s.

Fig. 5.2.7 Influence of welding speed on direction of columnar crystals growth on longitudinal cross section.
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(a) Welding speed v =2 mm/s.

L]
HEEEEEEER =

(c) Welding speed v =10 mm/s. (d) Welding speed v =20 mm/s.

Fig. 5.2.8 Influence of welding speed on direction of columnar crystals growth on transverse cross section.

(a) Transverse cross section. (a) Longitudinal cross section.

Fig. 5.2.9 Photos of columnar crystal growth obtained by Fukui®®.
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m

\Ne\d\ﬂ% &

(a) Welding speed v =2 mm/s. (b) Welding speed v =5 mm/s.

—
\u-“‘!‘-""" s+
; i

T LA
R
A

(c) Welding speed v = 10 mm/s. (d) Welding speed v =20 mm/s.

Fig. 5.2.11 Overall view of direction of columnar crystals growth.

(c) Welding speed v =10 mm/s. (d) Welding speed v = 20 mm/s.

Fig. 5.2.12 Influence of welding speed on direction of columnar crystals growth on transverse cross section.
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(c) Welding speed v =10 mm/s (d) Welding speed v =20 mm/s

Fig. 5.2.13 Distribution of plastic strain increment in BTR &5, on transverse cross section.
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5.3 Trans-Varestraint 32\ 5R B D R [E El L D 24T

531 % &

B Bl B VRS M 2 3T 3 2 3BT, K& < 201 T B saER & S R 5
i, SFIFEREERENGMEESNIEE I TS 9, Trans-Varestraint iR IE, 7D
PRI SN, wWETORBRAICIHITER 25T 52 L2k b, REmEICER
ERAESELHABRIETH . MR T AN R ET 57 WO EICEEDE, BB DR
JE LT ah RN D, IEROEHEBICEN T 2AMOTAENRESND. ZORE, &
MM DEERFGE T D RO 7, EEE NP FEEBTR), @Rl L OMR
ROTHHEE (CST) R EEZTEEBMITIRETE IR TH D 9. F72, Trans-Varestraint it
BRCIX, 3L AT RTOGEITEZEO LRI > TEREFRINAE L 5720, hoEik
FNHBIEL D BEA TN EEZILR TN,

L7 L7278 &, Trans-Varestraint s8R IZ 3517 2 #iE e th PR AET 57 & W ) RGENE,
WHAC X 5 Rt e ABES K OM Bt O b D7-, FBLT 5 Z LIXTET, HEHEHICITE
ESNDAMOTHELY bREQFFTOTHIMENT L WREMENH D Z L3, Wei HIZ X
DR 10T TN D.

—J5C, Trans-Varestraint sBRIZZ DOHEBIEZ@HT 5 2 & T, Bl o&EREEH 50
WCENTZFHHFNCOWTHREINLTWAD. Aucott HI1E X #2 AV C, Trans-Varestraint 3855 If
DIRNER DB AN E 2 R RFIHNCBIZE L, BN HRANEOEREIHM T » o3 4E L, )
RIETIZHERT DI L 2B LTS 1. Z 0 X 9 2B ORANE S L ORI,
MEDORERAOT A BIR 27 li 42 ETEHETH D, KFIZ, Trans-Varestraint sAlREF O O3
H DA RENEINF AT EL 525 2 LERMBILTEY 19, Trans-Varestraint 7R IKF D
OTHAMBEEDOEELZWONIT D2 LiE, FINBEDZ FA4 7V TIZOWTHRFTT S
LETHETHS.

2T, AEiITIL, B TIEA VT Trans-Varestraint FREREF O O BB &8N DUV TS
2179 . Fo, WHMREIRBINERFN 21TV, ARBRONIFHRERICOWVTH L
295,
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5.3.2 Trans-Varestraint 38 5& Ff D 5 B E N D B2 4T

Fig. 53.1 12”7 3 RILET /L& T, Trans-Varestraint sUBRINFIZ 3317 2 [ F 4L O iR
9N L7z, A JOEREITE T 1,072,015 B X 1,025,066 Th 5. AHiTIE
AT L A SUS304 x5 L L, BTR I 1435CH 5 1500C £ TD 65°CE L. F7-iBk
FiE, 350 mmX 150 mmX9 mm O TH Y, #E#HFME L TABEL L ONEEREE L Z
N 1800 J/mm BL U 25mm/s & L7z, P DRAMND R C ETREZITY, &P, &
BN —TFTNE BICELLRIL, 7y 7 IZhbE 2 TERSE b0 L L., S
a7 OFEREET 450 mm THY, HIFICLLIREOAMOTAREIL1.0% THD. Hh
FERIIHB T Sl 7 ey 7 OB oA ZE L-. 3BT o diF 2 AR L2Vl os
#7225 100 mm £ TEFEEFRL, WBRAUWIICHEHEIEZ 525 2 & THIELTND.

Fig. 5.3.2 12, HIFAMIHEE % 20.0 %/sec T, HIFAMOIREIT - IR 5B 5+
WICBT 520 FH0BEL RS, O, O, O, AHBIOVENL, #iFra vy
O MR N TN 125 mm, 167 mm, 250 mm, 500 mm 5 £ OV 1000 mm DFA %R,
FXEOET 7 ey 7 OFREETTLHZ L TR ERmICAR SN O0THENELL,
FARIC LY, e = =M bR SN A AHOTAREMETET0D LRGN 5. £,
AFROT BT D2 CTHIT5E T £ TORFMPEIML TWD Z &R 005.

Fig. 5.3.3 (M AR O EE A 2~ 7. A L 0, TERlfEE% /7 O BTR O R &3 1.4 mm
Lo TNWDZ NG5,

Bending block radius: 450 mm
& Nodes : 1,072,015

9 mm S 1221’? 3~ Elements: 1,025,066
: Complete restraint - 20
&
50 m / e 90 »
. o \/\;0 2

oy

Fig. 5.3.1 Analysis model of Trans-Varestraint test.
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S —0—R125 _ .

o0 2.0 [ OFR167 | Nominal strain (R125)
S 7o E250 ]
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5 1.O:lRSOO
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5 0> ERio05
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S 0.00 0.02 0.04 0.06 0.08 0.10

Time after start of bending [s]

Fig. 5.3.2 Influence of radius of bending block on time history of total
strain by bending.

L 15.15 mm

Fig. 5.3.3 Temperature distribution at start time of bending.

Fig. 5.3.4 (CHi T AR OB REEICB T 5, WIEH HOROTHOAMmZ 7T, [
LY, A BAICBWTL, PRI 5Ex b s EEISNZ 1.0 %D
T KBS Z 5 25 %D O THNAR SN TS Z LR TEX 5.

Fig. 53.5 ICABEZZL S 2B o, #hiFamictE > 20T AOEMELZ R . RO
BB ABVEZ R L, Ml A X 22070l EERT. £z, MPiZEn
ZRDANBE TR AT > T2 5B TR 1T D iR HaR AT 112361 2 W Has I O A 531 &
R FRE D, COABBICEOTHIEEEND 1.0 %D OTH LD KEROTHRATN
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Fig. 5.3.4 Distribution of total strain before and after bending.
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Fig. 5.3.5 Influence of heat input on total strain in welds by bending load.
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Bending block A-A'

'E 03 = = Displacement on back surface B-B' o 2000
g --==-Temperature Bl (?

0.0 | - 11500 2
g =
= : ~
S-05¢ 1000 2
= [ ] =
= : - . ] a
= -1.0F ; RS . ] 500 P
S-15L AN s e SR
72 40 35 30 25 20 15 10 5 0

Coordinate in y-direction [mm]

Fig. 5.3.6 Displacement in z-direction of back surface of specimen and

temperature distribution on top surface.

LHERLTWA., UED X 5722 & 935, Trans-Varestraint ;RABRIEFIZITEE SN =2AHOT
HEID ERELROTEHEMEHA L TS AN RS L.

5.3.3 Trans-Varestraint SRERIZ 8 T 5 EEIN D EELEHT

ARIATIE, B FIEOZYMMEEE BRI L LT, Trans-Varestraint 5k RF 0D E| 41 2 25 H)
BT 5700, BEEMEENOERMNZFE L. FihoERi, £%HEO BTR ¥k
OF Bl MR E LIZBRRA O T A B2 R ICER 2 Wb+ 5 2 L THBE L. xtge
9% SUS316L & SUS304 MRS TNT Zx1X, Trans-Varestraint 305 4 T, Z10E4 0.25 %
BRU0.6%TH2DEWMEININTND. FIEOKRFHIIBNT, ARER CTIIARE I D Aff
OT B0 3EREOOT HRBR A REICAM SND 2 LRI NI, £ 2 TR T
SUS316L & SUS304 DIRFOT A& ZHLEHL 0.75 %3 LN 1.8 % & L THINLOME R % 5=
i L7z, B ORAEFEIY, ERTOBNAENMBE D S EERT UM EOFERIZIRE
LT 24T > 7.

Fig. 53.7 12, P Z2AAMT L7-BRoORER A NEE L OREOFINFR LR L OERS M E2 R
F. [ @R EIC ISR AE Lk A R L, RIRO)EENE R OREZ R L, (A
B EFnERFHOREL TR L, RRAICEERZ2EIIERREZ RS, RKEDER
(X, BB OO EARFRE AT B3 AL, RSO RRRRRE T ICHER LT D Z &R
MERTE D, ZHUE, Aucott HT 70 MUK S X fi~A 70 vES T 7 4 &
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Fig. 5.3.7 Hot crack initiation and propagation behavior in plate.
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Fig. 5.3.8 Relationship between bending strain and maximum crack length.
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5. FElo, RRENES T EEICELTWD Z &R TE, BTR il Hliu)sdt
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WGy,
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Fig. 5.3.9 High temperature ductility curve obtained from analysis results.
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AT, AMOTHEL 1.0%E L, dhiFAmHE 2 20 S E7BRICEsEmIc N5
OFHBIZOWVTRETZAT 9. ERFIIUICKH LT, REIICERT 2 O Al S 8
THEEZLNTEY, WM S5IX, Trans-Varestraint RBRIFO HhIF AT E 2 2L SE 5 2
ET, O T HREENEIRFINFE A KT TREIZONTHRET L TV 5 12 fhiF A d X
3.0 %~c0 %fsec & L7z, 7z, AR JOVAREHL L, £ 4121 1800 J/mm 35 X T8 5.0 mm/s
L.

Fig. 5.3.10 ([ZHIITIHE A3 (a) o %/sec, (b) 12 %/sec, (c) 6 %/sec 35 & N(d) 3 %/sec DIGHIT

B D HT 5 TR OEREGECHRE i 2 n 3. LY, shiFAmEEN RS & dhT
BAAIRE & M52 TIRFD BTR OfZEN K E S H72 5 Z L AR TE 5. Fig. 5.3.11 12, EHH
A 5.0mm/s & L75E O T AR LB R 2 bR H S 2 dhiF A+ o BTR fEIR O
Bz 3. FAXEY,50mm &5 BTR OR SIZx LT, #iiFHOBEIEE 10.0 %A,
TP 5 0.5 mm L FICT 572020, T AsiERE % 10.0 %/sec 2L LICRET 5 LER H
HTEMTD.
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Fig. 5.3.10 Position of BTR after bending load (v = 5.0 mm/s).
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Fig. 5.3.11 Amount of movement of BTR during bending load.
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