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ABSTRACT

Marangoni convection has attracted continuous attention due to its existence in many natural
and industrial processes such as oceanography, droplets, material fabrication, and crystal growth.
Numerous fruitful research findings on Marangoni convection have been reported in recent years.
However, the simple boundary conditions are adopted in most previous studies, while different
boundary conditions also exist in many practical problems, and the associated unclear phenomena
need to be revealed as well. Therefore, this thesis focuses on the various boundary conditions
occurring in the practical processes, with the aim to investigate the effect of such conditions on the
flow instabilities and pattern evolutions induced by Marangoni convection in a shallow rectangular
cavity. In addition, not only pure solutal Marangoni convection but also thermal-solutal Marangoni
convection with such boundary conditions are further analyzed.

A theoretical model of pure Marangoni convection considering a linear solutal boundary condi-
tion is established, and solutal Marangoni convection with the moderate and high Schmidt numbers
(Sc = 10 and 100) is studied systematically. The results reveal that the concentration fluctuations
usually first appear inside the liquid layer due to the sudden change in flow direction. The evolu-
tion sequences of flow instabilities are related to the Schmidt number. Furthermore, compared with
the previous studies used a constant solutal boundary condition, it is found that the computed fluid
fluctuation with considerably less disturbance energy is observed and the concentration distribution
is much more uniform on the bottom surface.

Numerical simulations have been carried out on the thermal-solutal Marangoni convection sub-
jected to mutual perpendicular temperature and concentration gradients. The relative contributions
of thermal and solutal Marangoni effects on flow destabilization and pattern evolution are ana-
lyzed. On the one hand, the fluctuations of temperature and concentration are observed on the
free surface in the forms of hydrothermal wave and hydrosolutal wave. On the other hand, two
different propagation directions of wave patterns coexist on the free surface when the overall con-
tributions of thermal and solutal effects are in the same order. Moreover, the effect of rectangular
and cylindrical configurations on the characteristics of Marangoni oscillatory flow is qualitatively
examined. Last but not least, based on the previous discovery, the effect of thermal radiation on
thermal-solutal Marangoni convection is investigated. The critical Marangoni number at which the
flow destabilizes highly depends on thermal radiation and exhibits different variation tendencies
on the stages of heat loss and gain. Such a study would be beneficial for the industrial processes
such as material welding, glass production, and crystal growth, for better design and high-quality
production.
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CHAPTER 1

INTRODUCTION

1.1 Background

Marangoni convection usually takes place in a liquid layer due to the spatial variation of sur-

face tension. When the surface tension variation is caused by the temperature gradient, the flow

in the liquid is called thermal Marangoni convection, as shown in Figure 1.1. Analogous to the

thermal Marangoni effect, when it is caused by the concentration gradient, the flow is called so-

lutal Marangoni convection. In the presence of both temperature and concentration gradients, the

combined flow is called thermal-solutal Marangoni convection.

Figure 1.1 Sketch of thermal Marangoni convection.

Marangoni convection has attracted much attention for its rich dynamical behaviors and the

complex flow pattern transitions. The investigations on the formation and the evolution of these

complex flow patterns not only can provide insight into the occurrence mechanism of some natural

phenomena including the evaporation of droplet [1] and the formation of tear of wine [2, 3], but also

allow for a further understanding of the theoretical foundations in many industrial processes, such

as the thin-film coating [4–6], solidification of castings and ingots [7, 8], and crystal growth [9–12].

The development of a better understanding for Marangoni convection is urgently required.
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1.2 Related researches and status

Being known for over one hundred years, numerous fruitful researches on Marangoni convec-

tion have been carried out by the means of theoretical analysis, experimental observations and

numerical simulations. They not only determined the critical parameters of flow pattern transition,

but also analyzed the law of flow bifurcation and the influencing factors of the flow structure. Due

to the improvement and progress of space experiment conditions, especially in the past forty years,

the investigations on Marangoni convection have set off a new climax.

1.2.1 Study on pure thermal Marangoni convection

Numerous studies have been carried out on pure thermal Marangoni convection due to its wide

existence in natural and industrial processes. In an earlier study of Smith and Davis [13], a linear

stability analysis of thermal Marangoni convection in an infinitely shallow liquid layer subject to a

horizontal temperature gradient was carried out. The study revealed two types of thermal convec-

tion instabilities in the liquid, namely, stationary longitudinal rolls and oblique hydrothermal wave

(HTW), depending on the Prandtl number (Pr) of the working liquid and the basic flow pattern.

They also determined the corresponding critical Marangoni number. In subsequent experimental

studies, stationary longitudinal rolls and HTW were also observed [14–17].

Additionally, Smith [18], Davis [19], Yan et al. [20] and Shi et al. [21] provided an expla-

nation in detail for the instability mechanism of the hydrothermal wave, as shown in Figure 1.2.

As for return flow, the free surface perturbation may induce the local hot spot, and surface fluid

accordingly flows from that spot toward the surroundings due to the smaller thermal Marangoni

force. Meanwhile, as a result of mass conservation, the upward flow occurs beneath the hot spot,

as shown in Figure 1.2(a). Since the flow velocity in the layer is smaller than that of free surface

fluid, the upflow brings fluid with a lower velocity towards the surface, creating a upstream veloc-

ity perturbation opposite to the direction of basic-state surface flow, as shown in Figure 1.2(b). The

upward flow shown in Figure 1.2(a) and (b) brings cooler fluid to the perturbation spot and make

the temperature difference between that spot and surrounding fluid smaller, consequently, the ther-
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mal Marangoni effect disappears. Owing to the inertial force, the upward flow continue to bring

the lower velocity fluid to the perturbation spot, thus maximize the upstream velocity perturbation,

as depicted in Figure 1.2(c). During the basic-state mode, fluid flows from the hot sidewall to cold

sidewall, due to the effect of upstream velocity perturbation, the flow near the disturbance spot

lags behind that of the surrounding fluid, thus the temperature of spot further decreases. Driven by

the thermal Marangoni force, the fluid flows from the surroundings to the perturbation spot, and

the upstream velocity perturbation is weakened. Also, the downflow beneath the cold spot appears

because of the mass conservation, as shown in Figure 1.2(d). Eventually, the upstream perturba-

tion is eliminated and the temperature of the spot attains a minimum shown in Figure 1.2(e). It

is noteworthy that, with the increase of cold spot temperature, the perturbation of this spot would

undergo the reverse process of Figure 1.2(a)-(e), and a new hot spot accordingly forms shown in

Figure 1.2(a). The above mentioned perturbation evolution process is the instability mechanism of

the hydrothermal wave, when the temperature difference on the free surface is small, a few per-

turbation spots maybe appear on the free surface, but the perturbation transition process cannot be

sustained, and the perturbation eventually disappears; when the imposed temperature difference

is large enough, the disturbance energy could maintain the dynamic equilibrium of perturbation

transition, thus flow destabilizes.

Li et al. [22, 23] carried out three-dimensional numerical simulations of thermal Marangoni

convection and Marangoni-buoyancy convection of silicon melt and 0.65 cSt silicone oil in an

annular liquid pool. They indicated that indicated that the basic flow first bifurcates to the three-

dimensional steady flow, and then transits to the three-dimensional oscillatory flow as the temper-

ature difference increases. In addition, the simulation results were basically consistent with the

experimental results of Azami et al. [24] and Schwabe [25]. Burguete et al. [26, 27] investigated

experimentally natural and thermal Marangoni convection in a rectangular pool and found that

Marangoni convection was dominant in a shallow pool, while the contribution of buoyancy was

more notable in a deeper pool. Ueno et al. [28, 29] examined the whole transition of flow regimes

from steady to turbulent, and the characteristics of the hydrothermal wave. Also, the flow structure
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Figure 1.2 Sketch of the mechanism for hydrothermal wave.

was analyzed in detail after the flow destabilized through the observation of the suspended particle

motion. Xu and Zebib [30] carried out a numerical simulation study to examine the flow character-

istics and stability of thermal Marangoni convection. They pointed out the damping effect of the

sidewalls on oscillations.

The fluid properties and aspect ratios of configuration have an important impact on the thermal

Marangoni convection. Schwabe et al. [31, 32] carried out microgravity experiments and nu-

merical simulations to investigate the flow characteristics and the stability of thermal Marangoni

convection in a cylindrical annulus under various aspect ratios. It was verified that the axisym-

metric flow disappears and becomes an oscillatory flow subjected to the multi-roll structure when

the imposed temperature gradient exceeded a critical value. Furthermore, the aspect ratio has a

significant effect on the critical Marangoni number, and the number of azimuthal waves and mul-

ticells generally increases with the increase of aspect ratio. Liu et al. [33] investigated the effect

of aspect ratio on the instabilities of thermal Marangoni flow by using the linear stability analysis

method. Their results found that the bifurcation is oscillatory in the cases of small aspect ratios,

while the stationary bifurcation mode arises in the cases of large aspect ratios. Different instability

mechanisms corresponding to the different bifurcation modes were also revealed. Zhang et al. [34]
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performed the numerical simulations to investigate the critical condition of flow destabilization on

thermal Marangoni flow at two different aspect ratios. It found that the flow loss stability easily

at a smaller aspect ratio, and more wave number would be observed in the oscillatory flow. Liu et

al. [35] focused on the effect of Prandtl number (0.001 ≤ Pr ≤ 6.7) on the thermal Marangoni

flow in an annular pool by means of the linear stability analysis, and five types of instabilities were

observed. Also, the relationships among the Prandtl number, the wave number, and the associated

instability mechanism were systematically discussed. Peng et al. [36] observed various flow pat-

tern transitions in a pool with different depths (1–11 mm), and three types of three-dimensional

flow patterns are observed. In the shallow thin pool (d = 1 mm), the hydrothermal wave character-

ized by curved spokes is dominant. In the deep pools (d ≥ 5 mm) the three-dimensional stationary

flow appears and this flow pattern corresponds to the Rayleigh-Benard instability, which consists

of pairs of counter-rotating longitudinal rolls. When 2 mm ≤ d ≤ 4 mm, the hydrothermal wave

and three-dimensional oscillatory flow coexist in the pool and travel along the same azimuthal

direction with the same angular velocity.

1.2.2 Study on pure soultal Marangoni convection

Most studies have focused on thermal Marangoni convection. However, as known, the so-

lutal Marangoni convection developing in various systems, such as in solidification and casting

of alloys [37] and crystal growth [38], has significant effects on these processes. To the best of

our knowledge, in literature there are only a small number of studies taking the effects of solutal

Marangoni convection into account. For instance, Witkowski and Walker [39] studied the primary

instability of an axisymmetric steady flow driven by the solutal Marangoni effect in a liquid bridge

at various Schmidt numbers (0.5 ≤ Sc ≤ 20), and found that the first transition of instability is al-

ways a Hopf bifurcation at the critical solutal Marangoni number. The corresponding comparisons

for the flow structure and instability mechanism between pure thermal and pure solutal Marangoni

convections were also discussed. Their results showed that the concentration distribution was

different from that of the temperature field, but the instability mechanism was similar. Chen et
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al. [40] conducted a numerical simulation of pure solutal Marangoni convection with a horizontal

concentration gradient, and investigated the flow pattern transition and instability mechanism. Hy-

drosolutal wave (HSW), which is analogical to the hydrothermal wave, would be observed when

the imposed concentration gradient was sufficiently large. And it was revealed that the correspond-

ing instability should be attributed to the occurrence of phase lag between the concentration and

the velocity fluctuations. In addition, the aspect ratio has a significant influence on the flow pattern

transition.

As mentioned above, most studies considering solutal Marangoni convection adopted a con-

stant concentration value for the boundary wall. However, in order to provide more accurate pre-

dictions through numerical simulation for applications such as painting and drying [41, 42], more

appropriate boundary conditions must be used. Curak et al. [43] experimentally observed that

the high and low concentration areas always exist in the liquid layer, and only solutal Marangoni

convection has a predominant influence while the thermal Marangoni effect was neglected due to

a small temperature difference in the whole system. In response to this, in order to take into ac-

count the existence of high and low concentration regions, a simplified linear boundary condition

instead of a constant boundary value is needed to be applied to investigate the effect of boundary

conditions on pure solutal Marangoni convection.

1.2.3 Study on thermal-solutal Marangoni convection

Thermal-solutal Marangoni flow, which is much more complex due to the coupling effects of

thermal and solutal Marangoni flows, needs to be taken into consideration since it occurs in some

processes such as painting [44] and crystal growth [45, 46].

Bergman [47] investigated thermal-solutal Marangoni convection in a rectangular cavity for

a case where the thermal and solutal Marangoni effects were in opposite directions with equal

strengths. The results verified that the flow would occur and lose its stability when the Marangoni

number exceeds a specific critical value, even though the overall Marangoni effect was zero. The

mechanism of flow pattern transition was however not described in detail. Arafune et al. [48–50]
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carried out experiments and numerical simulations to analyze the relative contributions of thermal

and solutal Marangoni convections in an In–Ga–Sb system. It was predicted that solutal Marangoni

convection may weaken or enhance thermal Marangoni convection in the liquid, the typical sur-

face velocity of solutal Marangoni convection was about 3–5 times higher than that of thermal

Marangoni convection. Meanwhile, it was predicted that the coupling effect of thermal and solu-

tal Marangoni convections would affect the uniformity of crystal growth. Okano et al. [51, 52]

performed the numerical simulation on the oscillatory behavior of the melt during the melting of

GaSb/InSb/GaSb alloy in the horizontal Bridgman configuration. They also pointed out that the

thermal-solutal Marangoni effect should be responsible for the oscillatory flow, which may lead to

growth striations and finally lower the quality of the crystal. Sheremet and Pop [53] investigated

the thermal and solutal Marangoni effects on steady natural convection in a porous cavity filled

with a nanofluid. They stated that the strong Marangoni effect would result in reduction of the heat

transfer rate, with insignificant changes in flow patterns and heat transfer at small Marangoni num-

bers. Chen et al. [54] performed the linear stability analysis and numerical simulation to examine

the flow characteristics and stability of the thermal-solutal Marangoni flow in a two dimensional

rectangular cavity subjected to horizontal temperature and concentration gradients. They found

that the first transition of instability was always a Hopf bifurcation, which leaded the quiescent

fluid directly into the oscillatory flow. Also, the influences of Lewis number and Prandtl number

on the critical Marangoni number and flow pattern transition had been investigated systematically.

It was found that steady and oscillatory flow regimes can coexist simultaneously, at certain values

of these parameters.

Marangoni ratio, which means the relative contributions of thermal and solutal Marangoni ef-

fects in the whole system, is also a key factor in the characteristics of thermal-solutal Marangoni

convection. Zhan et al. [55] numerically analysed three-dimensional thermal-solutal Marangoni

convection in a cubic cavity where the Marangoni ratio is varied from -2 to 1. Their results showed

that the heat and mass transfer rate and the evolution of flow structures were significantly influ-

enced by the Marangoni ratio. A symmetry-breaking pitchfork bifurcation and a transition from
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the oscillatory flows to chaotic pattern were observed at the higher Marangoni ratio values, and,

most interestingly, a backward transition from the chaotic state to a steady state was observed

when the Marangoni ratio was equal to -0.5. Yu et al. [56, 57] numerically investigated thermal-

solutal Marangoni convection in an annular pool where the Marangoni ratio (the ratio of solutal

Marangoni effect to thermal Marangoni effect) is varied from -2 to 0.2. They pointed out that the

formation mechanisms of hydrothermal wave and hydrosolutal wave are similar, and the evolu-

tion sequence of wave pattern is highly depended on the Marangoni ratio. Agampodi Mendis et

al. [58] investigated the influence of aspect ratio on the thermal-solutal Marangoni instabilities of

the liquid bridge by the means of the dynamic mode decomposition method. The spatio-temporal

coherent structures were examined and the relationships among the critical Marangoni number,

the wave number, and the associated aspect ratio were discussed. In addition to Marangoni ratio,

Zhou et al. [59, 60] recently focused on the dynamic deformation of free surface in a rectangu-

lar cavity subjected to opposing thermal and solutal Marangoni effects. They found that the free

surface bulges outward near the left and right sidewalls and bulges inward at the centre when the

Marangoni ratio was -1. It was also predicted that the deformation of free surface increases with

the increase of the thermal Marangoni number.

It must be pointed out that most of the studies mentioned above considered only the cases of

mutually parallel thermal and concentration gradients in a rectangular cavity. To the best of our

knowledge, the case of mutually perpendicular gradients has not been considered yet. It would be

an interesting phenomenon to investigate since it occurs in some processes such as painting and

drying.

1.2.4 Effect of interfacial heat transfer on Marangoni convection

Some research findings on Marangoni convection with an assumption of adiabatic free sur-

face have been reported [61–64]. However, the interfacial heat transfer is inevitable in industrial

processes and has a significant effect on the quality of final products, especially in material weld-

ing [65, 66] and crystal growth [67–69]. Therefore, many studies considering heat transfer have
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emerged in the past few years.

Li et al. [70] studied the thermal Marangoni flow in an annular pool with/without considering

thermal radiation on the free surface. They reported that the critical Marangoni number and the

flow structure depended on the free surface condition, and thermal radiation needed to be taken

into account for accurate predictions in crystal growth. Zhang et al. [34, 71] performed a series of

three-dimensional numerical simulations to investigate the influence of liquid heat dissipation on

the stability of thermal Marangoni convection, and analysed the associated instability mechanism.

Alloui et al. [72] examined analytically and numerically the combined buoyancy–Marangoni con-

vection for a power-law fluid in a shallow rectangular cavity considering heat dissipation on the

free surface. Also, the effects of the thermal Rayleigh number, the Marangoni number, and the

power-law index n associated with the power-law fluid on flow stability and heat transfer were

discussed in detail. Jing et al. [73, 74] performed three-dimensional numerical simulations of

thermal Marangoni flow in the LiNbO3 melt in an open crucible, and radiative heat loss from the

melt surface to the ambient was considered. Their results showed that a thin thermal boundary

layer develops near the free surface when thermal radiation was considered. In addition, it was

verified that the spoke patterns were resulting from the thermal Marangoni instability due to the

reverse temperature gradient in the thin thermal boundary layer. Vinnichenko et al. [75] examined

the effect of local radiative heating on the characteristics of horizontal convection in a rectangular

tank filled with ethanol. They found that, compared with buoyancy-driven convection, the thermal

Marangoni convection plays a predominant role in the thin thermal boundary layer and enhances

heat transport to the whole free surface. Gelfgat et al. [76] investigated numerically the effect of

different types of radiative heating boundary conditions on the flow instabilities of the cylindri-

cal full-zone by the linear stability analysis method. It was shown that the radiative heat transfer

greatly affected the onset of the thermal Marangoni flow, and the primary bifurcation from initially

axisymmetric flows, depending simply on the total amount of heat flux provided. Kamotani et

al. [77, 78] carried out experiments and numerical simulations to analyze the influence of ambient

temperature on the thermal Marangoni instabilities of the liquid bridge. It was shown that, with
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transition from heat loss to heat gain, the critical Marangoni number exhibits different variation

tendencies. The three dimensional disturbance with respect to the heat loss was easier to gestate

and develop compared to the case of heat gain. Jin et al. [79] focused on the effect of radiative

heat transfer on the Marangoni flow in the liquid bridge. It was verified that thermal radiation

greatly affects not only the flow structure but also the characteristics of the concentration patterns.

In addition, the flow instabilities were also related to the radiative heat transfer. Yano et al. [80–

82] examined the relative contributions of convective and radiative heat transfer under the whole

interfacial heat transfer. They pointed out that thermal radiation also plays an important role in the

fluid flow and temperature fields even at room temperature, while their study was focused only on

a time-independent static system.

Obviously, most these studies that focused on the interfacial heat transfer considered only the

case of thermal Marangoni flow. The more complex thermal-solutal Marangoni convection occur-

ring in many practical processes has not been taken into account. Thus, it is necessary to carry out

3D numerical simulations to investigate the effect of heat transfer on thermal-solutal Marangoni

convection.

1.3 Thesis outline

This thesis aims to further understand the effect of Marangoni flow considering various bound-

ary conditions on the flow instabilities and flow pattern transitions. The chapter outlines of the

present thesis are stated as follows.

In Chapter 2, the employed numerical methods including governing equations and numerical

schemes for calculating the Marangoni convection in a shallow rectangular cavity are introduced.

In addition, the validations of the numerical method and grid independence are conducted to con-

firm the calculation reliability of the present work.

In Chapter 3, a series of numerical simulations are performed to investigate the pure Marangoni

convection with a linear solutal boundary condition. For the working fluid, two Schmidt number

values (moderate and high) (Sc = 10 and 100) are chosen to examine the effect of fluid prop-
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erties. In addition, the computed flow characteristics and concentration distribution are analyzed

and compared with those of previous studies used a constant solutal boundary condition. This

work presented herein provides a better understanding of the effect of a concentration boundary

condition on Marangoni flow.

In Chapter 4, numerical simulations are carried out to study thermal-solutal Marangoni con-

vection in a shallow rectangular cavity under the effect of mutually perpendicular thermal and

concentration gradients, with the aim to shed further light on the flow bifurcation and flow pattern

evolution. Also, the relative contribution of thermal and solutal Marangoni effects on the wave pat-

terns induced by temperature and concentration fluctuations is systematically investigated. Further-

more, the effect of rectangular and cylindrical configurations on the characteristic of Marangoni

oscillatory flow is qualitatively studied.

In Chapter 5, based on the study of Chapter 4, the case of interfacial heat transfer instead

of an assumption of adiabatic free surface is applied, the effect of radiative heat transfer on the

free surface is investigated. Wherein, the comparison among three kinds of the heat conditions,

namely, heat loss, heat gain, and adiabatic case, has been conducted to obtain the distinction of

flow characteristics and flow pattern transitions in the cavity. The results of present study would be

beneficial for making predictions in industrial processes such as crystal growth, glass production,

and welding.

In Chapter 6, the results obtained in this thesis are summarized and concluded, and perspectives

for future works are described as an extension of this work.
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CHAPTER 2

NUMERICAL METHODOLOGIES

In many industrial processes, Marangoni convection has a significant influence on the quali-

ties of final products. In this chapter, the author mentions not only the pure solutal Marangoni

convection but also the thermal-solutal Marangoni convection. The governing equations for cal-

culating the Marangoni flow and relevant assumptions are introduced. All the governing equa-

tions associated with the present numerical simulation were solved using an open source software,

OpenFOAM.

2.1 Pure solutal Marangoni flow

In most studies to date, the investigation on the Marangoni convection consists of three kinds of

geometries; namely, sphere, cylindrical and rectangular configurations. For the sphere case, many

researches focus on bubble migration, which has little relationship with the fluid mechanics. For

the cylindrical case such as the crystal growth in the floating zone method, due to the requirement

of microgravity condition, the large-scale experiment is hard to conduct on the earth. Thus few ex-

perimental results could be used to validate the numerical simulation. In the case of the rectangular

configuration, many experiments had been conducted on the earth. And the comparison between

experiment and simulation was also examined. In addition, compared with the cylindrical case,

the rectangular case is suitable for a large range of practical processes such as painting and dying,

crystal growth, and glass production, to cite a few. Therefore, a rectangular model would be chosen

in the present study. Furthermore, in order to clarify clearly the Marangoni effect, buoyancy force

is neglected in the whole system, a shallow rectangular cavity (aspect ratio, which means the ratio

of length to its depth, is equal to 0.1) is adopted eventually.

When only solutal Marangoni effect is considered, the fluid motion in a three-dimensional

rectangular cavity with a free surface at the top as shown in Figure 2.1 is considered in the Cartesian

coordinate system. The length, width, and depth of the cavity are L, L and 0.1L, respectively. The
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(a) bird view (b) top view

Figure 2.1 Numerical simulation domain and the prescribed boundary conditions.

fluid motion in a three-dimensional rectangular cavity with a free surface at the top as shown in

Figure 2.1 is considered in the Cartesian coordinate system. The length, width, and depth of the

cavity are L, L and 0.1L, respectively. High and low concentration values, Ch and Cl are specified

at the four boundary corners, and the linear solutal boundary condition is applied as shown in Fig.

1(b). The Marangoni convection along the free surface is driven by the surface tension gradient

due to the imposed concentration difference.

In the simulation model we make the following assumptions: (i) the free surface does not de-

form under the effect of fluid flow; (ii) the fluid is incompressible and Newtonian, and the physical

properties are constant except that for surface tension; (iii) the no-slip boundary condition on flow

velocity is applied along boundaries except for the top free surface, and the solutal Marangoni

force is taken into consideration along the free surface.

The governing equations of the fluid flow in the cavity are written in dimensionless forms. Be-

ing L as the characteristic scale for length, the coordinates (x, y, z) are defined as (X, Y, Z)/L. In

addition, L2/ν and ν/L are used as the characteristic time and velocity, respectively, the dimen-

sionless governing equations are the conservation of mass, momentum, and mass transfer:
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∇ · V = 0 (2.1)
∂V

∂τ
+ V · ∇V = −∇P +∇2V (2.2)

∂Φ

∂τ
+ V · ∇Φ =

1

Sc
∇2Φ (2.3)

where V = (Vx, Vy, Vz) is the dimensionless velocity vector, the dimensionless concentration is

defined as Φ = (C−Cl)/(Ch−Cl), τ and P are respectively the dimensionless time and pressure.

Sc = ν/D is the Schmidt number, where ν is the kinematic viscosity and D is the diffusion

coefficient of the fluid. In this study, the computations have been performed for the fluid with

Sc = 10 and 100, respectively.

The boundary conditions are as follows:

Φ = y (x = 0) (2.4)
Φ = 1− y (x = 1) (2.5)

Φ = x (y = 0) (2.6)
Φ = 1− x (y = 1) (2.7)
∂Φ

∂z
= 0 (z = 0) (2.8)

and for the free surface (z = 0.1),

∂Vx
∂z

= −MaC
∂Φ

∂x
,
∂Vy
∂z

= −MaC
∂Φ

∂y
, Vz = 0,

∂Φ

∂z
= 0 (2.9)

Wherein, the solutal Marangoni numbers are defined as:

MaC = σC
(Ch − Cl)L

µν
(2.10)

The initial conditions are expressed as follows (τ = 0):

Vx = Vy = Vz = 0 (2.11)
Φ = x+ y (x+ y ≤ 1) (2.12)
Φ = 1− x− y (x+ y > 1) (2.13)
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Figure 2.2 Numerical simulation domain and the prescribed boundary conditions. The red and
blue arrows respectively indicate the directions of thermal and solutal Marangoni flows

2.2 Thermal-solutal Marangoni flow

When coupling effect of thermal and solutal Marangoni flows is considered, the simulation

model is a rectangular cavity filled with fluid as shown in Figure 2.2. The top boundary is the free

surface while the other boundaries are the cavity walls. A high and low temperature values, Th

and Tl, are set at the left (X = 0) and right (X = L) boundaries, and the concentration values of

Ch and Cl are prescribed at the back (Y = L) and front (Y = 0) boundaries. Marangoni flows

along the free surface are driven by the surface tension gradient due to the prescribed temperature

gradient in the X-direction and the concentration gradient in the Y -direction. The directions of

these flows are also shown in the figure.

Regarding the dimensionless governing equations of the fluid flow in the cavity, in addition

to the conservation of mass, momentum, and mass transfer shown in the previous section, energy

equation is also applied:

∂Θ

∂τ
+ V · ∇Θ =

1

Pr
∇2Θ (2.14)

where the dimensionless temperature and concentrations are defined as Θ = (T − Tl)/(Th − Tl)

and Φ = (C − Cl)/(Ch − Cl), τ and P are the dimensionless time and pressure. Pr = ν/α is the

Prandtl number, and Sc = ν/D is the Schmidt number, where α and D are the thermal diffusivity

and the diffusion coefficient of working fluid (Pr = 0.01, Sc = 1), respectively.
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No-slip boundary condition is applied except for top surface, and the other boundary conditions

are follows:

Θ = 1,
∂Φ

∂x
= 0 (x = 0) (2.15)

Θ = 0,
∂Φ

∂x
= 0 (x = 1) (2.16)

∂Θ

∂y
= 0, Φ = 0 (y = 0) (2.17)

∂Θ

∂y
= 0, Φ = 1 (y = 1) (2.18)

∂Θ

∂y
= 0,

∂Φ

∂x
= 0 (z = 0) (2.19)

and on the free surface with an adiabatic assumption (z = 0.1):

∂Vx
∂z

= −MaT
∂Θ

∂x
−MaC

∂Φ

∂x
(2.20)

∂Vy
∂z

= −MaT
∂Θ

∂y
−MaC

∂Φ

∂y
(2.21)

Vz = 0 (2.22)
∂Θ

∂z
= 0,

∂Φ

∂z
= 0 (2.23)

When thermal radiation would be considered between the upper free surface and the ambient

environment, Ta is the ambient temperature shown in Figure 2.2. the heat transfer through the free

surface can be expressed as,

∂Θ

∂z
= −Rad(Θ−Θa) = Qr (2.24)

where Qr is the heat flux on the whole free surface, Θa = (Ta−Tl)/(Th−Tl) is the dimensionless

ambient temperature.Rad = εσSBL(T 2 +T 2
a )(T −Ta)/k is defined as the radiation number, where

ε, σSB and k are respectively the emissivity, Stefan-Boltzmann constant and thermal conductivity.

The initial conditions are expressed as follows (τ = 0):

Vx = Vy = Vz = 0 (2.25)
Θ = 1− x (2.26)
Φ = y (2.27)
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The thermal and solutal Marangoni numbers are defined as:

MaT = −σT
(Th − Tl)L

µν
(2.28)

MaC = σC
(Ch − Cl)L

µν
(2.29)

where σT = ∂σ/∂T (< 0) and σC = ∂σ/∂C(> 0) are the surface tension coefficients of the

temperature and concentration fields, respectively.

Furthermore, the relative magnitude between the thermal and solutal Marangoni effects is de-

scribed by the Marangoni ratio Maσ, which is defined by:

Maσ =
MaT
MaC

= − σT(Th − Tl)
σC(Ch − Cl)

(2.30)

The directions of Marangoni flows are shown in Figure 2.2.

2.3 Numerical method and validation

The finite volume method is applied to discretize the associated governing equations and

boundary conditions. They are solved by the pressure-implicit split-operator (PISO) algorithm [83].

The computation is carried out using the open source software OpenFOAM. The Euler scheme,

QUICK scheme, and Gauss linear scheme are adopted respectively to the terms involving time

derivative, divergence, and Laplacian in the governing equations. The residual of sparse matrix

solvers is below the solver tolerance 1.0 × 1010 to make the simulation accurate enough. To val-

idate the present numerical method, we conducted simulations of the thermal-solutal Marangoni

convection in a cubic cavity that was investigated by Zhan et al. [55]. Figure 2.3 showed the the

results of streamlines, temperature and concentration fields, which is consistent with the prediction

of the Ref. [55] at the same computational condition. In addition, Table 2.1 shows the comparison

results of average heat and mass fluxes at the left vertical wall (x = 0) with that of Ref. [55]. The

average heat and mass fluxes are given by Nusselt number Nu and Sherwood number Sh as

Nu =

∫ 1

0

∫ 1

0

∣∣∣∣∂Θ

∂x

∣∣∣∣ dydz (2.31)
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(a) (b) (c)

Figure 2.3 Streamlines on the mid-y-z plane (a), iso-sofurfaces of the temperature field (b) and
contour slices of concentration field at the same computational condition with the Ref. [55] that
MaT = 120, MaC = −60.

Sh =

∫ 1

0

∫ 1

0

∣∣∣∣∂Φ

∂x

∣∣∣∣ dydz (2.32)

As shown in Table 2.1, the maximum deviation of Nu and Sh is less than 0.8%. Therefore, the

present numerical method is appropriate for carrying out the intended simulations for the thermal-

solutal Marangoni flow in a rectangular cavity. In addition, the calculation method used in this

work was successfully adopted to investigate the thermal-solutal Marangoni convection in a liquid

bridge considering with/without the radiative heat transfer on the free surface, reported in our

previous work [79, 84, 85]. Therefore, we concluded that the numerical method adopted is high-

accurate and appropriate for the present work.

Table 2.1 Comparison of average Nusselt number (Nu) and Sherwood number (Sh) at
MaC/MaT = −0.5, P r = 5 and Sc = 50

MaT 10 60 120 200 340
Nu Present 1.010 1.1691 1.331 1.4976 1.7290

Ref. [55] 1.013 1.1686 1.3306 1.4959 1.7164
Relative deviation, % 0.3 0.04 0.03 0.11 0.73
Sh Present 1.509 2.7215 3.236 3.601 4.0764

Ref. [55] 1.5089 2.7180 3.230 3.587 4.0665
Relative deviation, % 0.007 0.13 0.19 0.39 0.24

19



2.4 Grid independence validation

Figure 2.4 shows a sample computational grid. The thin boundary layers are resolved by the

dense nonuniform grids near all the boundaries. Meanwhile, in order to verify the grid dependency,

simulation results with four different grids are compared in the case of pure solutal Marangoni

convection. Table 2.2 shows the dimensionless frequency, F , and the oscillation amplitude, AC,

of concentration at a sampling point, P (x, y, z) = (0.5, 0.5, 0.1), on the free surface at different

Schmidt number values. The maximum deviations of F and AC are less than 2% between two

fine grids, so the grids of 140 × 140 × 30 and 160 × 160 × 35 are chosen for the high-accuracy

simulation in the cases of Sc = 10 and 100, respectively.

(a) top view (b) section view

Figure 2.4 A sample computational grid with a top view (a) and a section view (b) at Sc = 100.

Table 2.2 Comparison of frequency and oscillation amplitude of concentration at point P in the
case of pure solutal Marangoni convection. Nx, Ny, Nz are the numbers of grids in x, y, and z
directions, respectively.

Case Nx ×Ny ×Nz F AC

Sc = 10, 100× 100× 30 69.96 0.00260
Ma = 2× 104 120× 120× 30 72.39 0.00302

140× 140× 30 72.59 0.00315
160× 160× 35 72.96 0.00320

Sc = 100, 120× 120× 35 10.40 0.000088
Ma = 2.5× 103 140× 140× 35 10.33 0.000116

160× 160× 35 10.29 0.000128
180× 180× 40 10.25 0.000126
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Table 2.3 Comparison of frequency and oscillation amplitude of concentration at point P in the
case of an adiabatic free surface assumption on thermal-solutal Marangoni convection.
Nx, Ny, Nz is the number of grids in x, y, z direction, respectively.

Case Nx ×Ny ×Nz F Ac
Case I 60× 60× 30 219.845 0.0214
Case II 80× 80× 30 265.343 0.0137
Case III 100× 100× 30 263.579 0.0116
Case IV 120× 120× 30 262.891 0.0107
Case V 140× 140× 40 262.065 0.0102

In the case of an adiabatic free surface assumption on thermal-solutal Marangoni convection,

simulations with five different grids are compared.Table 2.3 shows the dimensionless frequency,

F , and the oscillation amplitude, AC, of concentration at a sampling point P on the free surface.

The maximum deviation of F and AC are less than 5% between two fine grids (case IV and V), so

the grid of 120× 120× 30 is chosen for the present simulation.

Table 2.4 Comparison of frequency and oscillation amplitudes of temperature and concentration
at point P in the case of thermal radiation on thermal-solutal Marangoni convection. Nx, Ny, Nz

are the numbers of grids in x, y, z direction, respectively.

Case Nx ×Ny ×Nz F AT AC

Case I 80× 80× 30 228.0584 0.00040 0.0137
Case II 100× 100× 30 223.9163 0.000383 0.0020
Case III 120× 120× 30 223.8846 0.0003833 0.002005
Case IV 140× 140× 35 222.7830 0.000380 0.002003

In the case of thermal radiation on thermal-solutal Marangoni convection, simulations with four

different grids are compared. Table 2.4 shows the dimensionless frequency, F , and the oscillation

amplitudes, AT and AC, of temperature and concentration at a sampling point P on the free surface

at MaT = 3 × 104 and Θa = −0.5. The maximum deviation of F , AT, and AC are less than 4%

between two fine grids, so the grid of 120× 120× 30 is chosen for the present simulation.
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CHAPTER 3

PURE MARANGONI CONVECTION WITH A LINEAR SOLUTAL BOUNDARY

CONDITION

To the best of our knowledge, most studies considering solutal Marangoni convection adopted

a constant concentration value for the boundary wall. However, in order to provide more accurate

predictions through numerical simulation for applications such as painting and drying [41, 42],

more appropriate boundary conditions must be used. Curak et al. [43] experimentally observed that

the high and low concentration areas always exist in the liquid layer, and only solutal Marangoni

convection has a predominant influence while the thermal Marangoni effect was neglected due to

a small temperature difference in the whole system. In response to this, in this chapter a simplified

linear boundary condition is applied instead of a constant boundary value, in order to take into

account of the existence of high and low concentration regions. To extend the existing knowledge

and gain more insight into the subject, a series of three-dimensional numerical simulations are

performed on pure solutal Marangoni convection in a shallow rectangular cavity at moderate and

high Schmidt number values (Sc = 10 and 100), with the aim of shedding further light on the

related flow characteristics and flow pattern transitions in the cavity.

3.1 Basic flow pattern

When the Marangoni number is relatively small, the solutal Marangoni convection is steady,

which is called the ”basic flow” hereafter. Figure 3.1 shows the streamlines and the iso-concentration

lines of a typical basic flow at Sc = 10. It can be noted that the streamlines along the boundaries

are totally symmetric along the diagonals due to the applied linear boundary condition. The fluid in

the cavity near the free surface flows from the high concentration region (A) to the low concentra-

tion region (C) with a certain curvature, and then returns back near the bottom due to mass balance,

as shown in the simulation domain in Figure 3.1(a). The Schmidt numbers (Sc = 10 and 100) used

for the working fluid in the present study are much larger than unity. It means that the relative

23



contribution of the advective mechanism is more dominant than that of diffusion. Thus, the mass

transfer in the cavity is basically by fluid flow and is very sensitive to the flow region. This leads

to the drastically distorted iso-concentration lines on the free surface, as shown in Figure 3.1(b).

(a) streamlines of internal field (left) and boundaries (right) (b) iso-concentration lines

Figure 3.1 Typical snapshots of the streamlines (a) and concentration field (b) of the basic flow at
Sc = 10. The contour value of concentration is from 0.1 to 0.9 with steps of 0.1.

Figure 3.2 presents the computed streamlines and iso-concentration lines in detail along the

A-B and C-D planes at different Schmidt number and solutal Marangoni number values. The

positions of the A-B and C-D planes are shown in Figure 3.1(b). Because of the lower mass

diffusivity of the case, the concentration boundary layer appears near the corners at Sc = 100,

which is in good agreement with those obtained by Chen et al. [40], while it is not obvious at

Sc = 10. For a moderate Schmidt number, as the Marangoni number increases, i.e., at MaC =

5 × 103, two small secondary vortices appear near points A and B as shown in Figure 3.2(b),

resulting from the enhancement of the solutal Marangoni effect. In the case of high Schmidt

number (Sc = 100), it is evident from Figure 3.2(c) and Figure 3.2(d) that all vortices are much

closer to the free surface, and more secondary vortices develop at the A–B plane at the same MaC

level. A similar phenomenon of secondary vortices was also observed in previous studies in the

case of pure thermal Marangoni convection [35, 86]. These small vortices are embedding into the

basic flow and would appreciably affect the concentration field, as depicted in the concentration

distribution of Figure 3.2.

The variations of the magnitude of flow velocity and the concentration along the diagonals AB

and CD on the free surface are plotted in Figure 3.3. The diagonals AB and CD are presented
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(a) Sc = 10,MaC = 1× 103

(b) Sc = 10,MaC = 5× 103

(c) Sc = 100,MaC = 1× 103

(d) Sc = 100,MaC = 2× 103

Figure 3.2 Streamlines (left) and iso-concentration lines (right) of basic flow at the A–B and C–D
planes. (a) Sc = 10,MaC = 1× 103; (b) Sc = 10,MaC = 5× 103; (c)
Sc = 100,MaC = 1× 103 and (d) Sc = 100,MaC = 2× 103. The position of the A–B and C–D
planes are shown in Figure 3.1(b), and the contour value of concentration is from 0.1 to 0.9 with
steps of 0.1.

(a) (b)

Figure 3.3 Distributions of magnitude of velocity Vmag (a) and concentration Φ (b) along the
diagonals AB and CD at different Schmidt number and solutal Marangoni number values. The
positions of the diagonals AB and CD are shown in Figure 3.1(b).
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with the solid and dash lines, respectively. The peaks of the curves in Figure 3.3(a) coincide with

their respective vortice-center positions. Large concentration drops appear in the vicinity of the

boundary corners so that the effect of solutal Marangoni convection in the mid-section of the free

surface is weaker than that at the corners, which agrees well with the result of Figure 3.1(b). Also,

as the solutal Marangoni number becomes larger, the concentration drops increase, and the solutal

Marangoni effect is enhanced, leading to a stronger fluid flow, as seen in Figure 3.3(b).

3.2 Critical Marangoni number

Once the solutal Marangoni number exceeds a critical value, namely, critical Marangoni num-

ber MaC,cri, the basic flow becomes unsteady and bifurcates into three-dimensional oscillatory

flows. The MaC,cri value were obtained as 11153 and 2104 in the cases of Sc = 10 and 100 by

the global linear stability analysis method, which has shown high accuracy in our previous stud-

ies [87]. At the high Schmidt number value, as mentioned earlier, larger solutal Marangoni effect is

observed near the boundary corners at the same MaC number level (see Figure 3.3), which makes

the three-dimensional disturbance gestate and develop easily. Thus, the MaC,cri value with respect

to Sc = 10 is approximately 5.3 times larger than that of Sc = 100. Imaishi et al. [88] reported

that for the pure thermal Marangoni flow in an annular pool, as the Prandtl number (Pr) increases

from 10 to 100, MaC,cri becomes about 5.7 times lower, which is close to the present result.

3.3 Comparison with CBC (constant boundary condition) in oscillatory flow

3.3.1 Characteristics of Marangoni oscillatory flow

In most studies to date [89–92], the simple CBC (constant boundary condition) subjected

to horizontal gradients is applied. However, as mentioned earlier the boundary condition used

will have an important influence on the characteristics of oscillatory flow. Figure 3.4 presents

the variation of concentration at the sampling points (P) at (x, y, z) = (0.5, 0.5, 0.1) and (M) at

(x, y, z) = (0.2, 0.2, 0.1) with time for Sc = 10 at the CBC and LBC (linear boundary condition).

The setups of CBC and LBC are shown in Figure 3.4.
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It is noteworthy that the flow in the case of LBC, undergoes a backward transition from an

oscillatory mode to a chaotic one at MaC ≈ 3 × 104, then to the oscillatory pattern again, while

the concentration oscillation associated with the CBC just becomes more complicated with the

increase of MaC. As shown in Figure 3.4, the concentration Φ at two sampling points is quasi-

periodic at MaC = 3.25 × 104, but the flow velocity fluctuates irregularly in time at MaC =

3× 104. This phenomenon of backward transition at the LBC could be illustrated by the dynamic

theory. Although, with the increase of the solutal Marangoni number, the temporal complexity of

the flow reduces from chaotic to quasi-oscillatory, the spatial flow pattern changes from four to

eight vortices, as seen in Figure 3.5. Eventually, the overall complexity of the flow increases, the

appearance of the backward transition from chaotic to oscillatory is reasonable. Similar backward

transitions from the oscillatory to steady state [45], or from chaotic to an oscillatory flow [55, 93]

have been observed in an annular pool and in a rectangular cavity. However, all the cases mentioned

here are due to the coupling effect of thermal and solutal Marangoni flows; by suppressing or

enhancing each other.

Most interestingly, it was found from Figure 3.4 that, even though the flow instability (oscilla-

tory or chaotic) modes might be different at the sameMaC level, the disturbance energy concerning

the CBC is much stronger and the concentration fluctuation is always larger than that of the case

of LBC. Also, the oscillation amplitude at the mid-center point P is close to 0 due to the mutually

suppressing effects of the symmetrical solutal Marangoni flows in the case of LBC.

3.3.2 Concentration distribution

The control of mass transfer is crucial for the quality of products in applications especially in

dying and painting. Thus, the concentration field and its stability are further investigated. Fig-

ure 3.6 shows the computed distribution of the time-averaged concentration ΦMean on the bottom

surface for two different boundary conditions. As seen in Figure 3.6(d)– Figure 3.6(f), the concen-

tration fields in the domain are nonuniform everywhere and fluctuate sharply in a wavy form due

to the development of oblique traveling waves, as pointed in our previous work [93]. Nevertheless,
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Figure 3.4 Variation of concentration Φ at the sampling points P and M with time at Sc = 10 for
two different boundary conditions. (a) MaC = 2.5× 104, (b) MaC = 3× 104, (c)
MaC = 3.25× 104. The dimensionless time τ0 represents an instant. In addition, the setups of
LBC and CBC are shown and the red and blue colours represent the high and low concentration,
respectively.

(a) MaC = 3× 104

(b) MaC = 3.25× 104

Figure 3.5 Streamlines of LBC at the C–D planes at (a) MaC = 3× 104 and (b)
MaC = 3.25× 104. The position of the C–D plane is shown in Figure 3.1(b).
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the stability of the concentration field is easier to sustain in the case of LBC, and the concentration

contours are more uniform in most areas of the bottom surface as seen in Figure 3.6(a)– Fig-

ure 3.6(c). In addition, the concentration distribution in both cases, respectively, gave rise to just a

few differences for such a large range of MaC values.

Figure 3.6 Distributions of the time-averaged concentration ΦMean on the bottom surface in the
cases of LBC (a-c) and CBC (d-f) at MaC = 2.5× 104 (a, d), MaC = 3× 104 (b, e) and
MaC = 3.25× 104 (c, f). The contour value of concentration is from 0.1 to 0.9 with steps of 0.1.

The boundary conditions affect not only the characteristics of oscillatory flow and concentra-

tion stability but also the wave pattern evolution. As pointed out in previous studies [15, 93, 94],

there are generally only two kinds of wave patterns, namely standing and oblique traveling waves

for CBC, while more diverse and complicated flow patterns develop for LBC, which will be intro-

duced in more detail in the following sections.
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3.4 Wave pattern evolution in LBC

3.4.1 For moderate Schmidt number (Sc = 10)

In order to quantitatively investigate three-dimensional disturbances of concentration, a fluctu-

ation quantity (δΦ) for one period is introduced as,

δΦ(x, y, z, τ) = Φ(x, y, z, τ)− 1

τp

∫ τ0+τp

τ0

Φ(x, y, z, τ)dτ (3.1)

Figure 3.7 shows the computed snapshots of the concentration fluctuations on the free surface

and the corresponding space-time diagram (STD), which consists of a series of parallel stripes,

at four different Marangoni number values; namely, MaC = (1.2, 1.5, 2 and 2.5) × 104. It is

evident that the traveling wave instabilities are observed on the free surface, and the maximum

concentration fluctuation is proportional to the solutal Marangoni number value.

At MaC = 1.2× 104, the flow destabilizes and bifurcates to an oscillatory flow, and a symmet-

rical wave 1 (SW1) appears, which is characteristically symmetrical along the diagonals AB and

CD, as shown in Figure 3.7(a). The SW1 propagates from low concentration areas (points C, D)

to the center region of the free surface, corresponding to the tilted straight stripes on the STD. It

should be pointed out that, the flow instability is mainly caused by the sudden change in the flow

direction near the low concentration areas when it comes close to the corners. Therefore, when

MaC slightly exceeds the MaC,cri value, the maximum concentration fluctuation will not appear

on the free surface. It exists in the liquid layer close to the low concentration areas, as shown

in Figure 3.8(a). In addition, with the motion of the return flow near the bottom, the fluctuation

propagates from the corner to the center region of the domain, which is synchronously accom-

panied by the attenuation of concentration fluctuations during the propagation process. Hence,

the concentration fluctuation near the diagonal AB is approximately 0, as shown in the STD from

Figure 3.7(a).

At MaC = (1.5 and 2) × 104, the solutal Marangoni effect becomes strengthened, as shown

in Figure 3.7(b) and Figure 3.7(c). As the flow disturbance gets stronger, the concentration fluc-
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(a) MaC = 1.2× 104

(b) MaC = 1.5× 104

(c) MaC = 2× 104

(d) MaC = 2.5× 104

Figure 3.7 Snapshots of surface concentration fluctuations and the corresponding space-time
diagram (STD) along the diagonals AB and CD at Sc = 10. (a) MaC = 1.2× 104, (b)
MaC = 1.5× 104, (c) MaC = 2× 104 and (d) MaC = 2.5× 104. The arrows in concentration
fluctuations indicate the directions of wave propagation. In addition, the dimensionless time τ for
all STDs is 0.28, and the positions of the diagonals AB and CD are shown in Figure 3.1(b).
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(a) MaC = 1.2× 104 (b) MaC = 1.5× 104

(c) MaC = 2× 104 (d) MaC = 2.5× 104

Figure 3.8 Isosurfaces of 3D concentration fluctuations in the whole domain at Sc = 10. (a)
MaC = 1.2× 104, (b) MaC = 1.5× 104, (c) MaC = 2× 104 and (d) MaC = 2.5× 104.

tuations gradually become closer to the center region and cover the whole free surface with the

increase of the solutal Marangoni number, as can be clearly observed from the stripes on the STD

at lines AB and CD. In addition, due to the effect of cavity walls (the flow is confined within

the cavity), the development of flow patterns cannot sufficiently progress, thus the wave patterns

undergo a series of evolutions such as expansion, separation, squeezing, and merging during prop-

agation, as shown in Figure 3.8(c). Therefore, the wave patterns transform from spline-like shapes

(see Figure 3.8(a)) to horseshoe-like configurations. The locally curved stripes also appear on the

STD due to squeezing and merging of wave patterns in the liquid layer, as shown in Figure 3.7(c).

AtMaC = 2.5×104, three-dimensional disturbance further increases, the wave patterns change

from SW1 to RW (rotation wave) forms, propagating in the counter-clockwise direction, as shown

in Figure 3.7(d) and Figure 3.8(d). The streamlines at the E–F plane are depicted in Figure 3.9.

The position of the E–F plane is shown in Figure 3.7(a). As indicated in Figure 3.9(b), a secondary

instability occurs at MaC = 2.5 × 104. The symmetry of streamlines is broken, resulting in the
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generation of RW. This secondary instability should be attributed to the occurrence of pitchfork

bifurcation, in which the direction of propagation is random, as pointed out previously [55]. The

RW, propagating in the clockwise direction, is also observed at MaC = 2.4× 104. A similar flow

instability with respect to the pure thermal Marangoni flow has been reported by Li et al. [70] in a

thin annular pool, and they called this type of oscillation the ”travelling hydrothermal wave”.

(a) MaC = 2× 104

(b) MaC = 2.5× 104

Figure 3.9 Streamlines at the E–F plane at (a) MaC = 2× 104 and (b) MaC = 2.5× 104. The
position of the E–F plane is shown in Figure 3.7(a).

At the higher solutal Marangoni number values, the associated flow exhibits another type of

symmetrical wave 2 (SW2), which only remains symmetrical along the diagonal AB. Figure 3.10

presents the concentration fluctuation and the associated STD at MaC = (3.25 and 4)× 104. This

instability of SW2 is caused by the separation of flow disturbances near the wave sources, as shown

in the Figure 3.11. In the liquid layer, the wave oscillations would not propagate further along the

line CD but spread directly at a certain curvature from the wave source locations (points C, D)

to the wave sinks (points A, B). A similar phenomenon has been observed by Yu et al. [57] and

Zhang et al. [95] in an annular pool in the case of thermal-solutal Marangoni flow, while the posi-

tions of wave sources and sinks were random. It could also be found that the regularity of surface

fluctuations near the wave source is not obvious in the spatial dimension, while it exhibits apparent

flow patterns close to the wave sinks. Moreover, as the four wave instabilities appears, the maxi-
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mum fluctuation on the free surface occurs at the location close to the line AB due to the further

squeezing and merging of wave instabilities. The oscillation period becomes longer, meanwhile

the stripes in the STD are more complex, as shown in Figure 3.10, which is in agreement with the

quasi-periodic oscillation shown in Figure 3.4(c).

(a) MaC = 3.25× 104

(b) MaC = 4× 104

Figure 3.10 Snapshots of the surface concentration fluctuations and the corresponding space-time
diagram (STD) along the diagonals AB and CD at Sc = 10. (a) MaC = 3.25× 104 and (b)
MaC = 4× 104. The arrows in concentration fluctuations indicate the directions of wave
propagation. The positions of the diagonals AB and CD are shown in Figure 3.1(b).

3.4.2 For high Schmidt number (Sc = 100)

Analogous to the role of Prandtl number (Pr) in examining thermal Marangoni flows, as

pointed in previous studies [71, 96, 97], the Schmidt number plays a similar role in studying

solutal Marangoni flows. Figure 3.12 shows the computed snapshots of the concentration fluctu-

ations on the free surface and the corresponding space-time diagram (STD) at Sc = 100, at four

different Marangoni number values; namely, MaC = (0.225, 1.25, 2 and 2.5) × 104. It is obvious

from the STD of Figure 3.12(a)– Figure 3.12(d) that in all four cases, the oscillation frequencies

and the concentration fluctuations are considerably smaller than those at Sc = 10 (see Figure 3.7).
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(a) MaC = 3.25× 104 (b) MaC = 4× 104

Figure 3.11 Isosurfaces of 3D concentration fluctuations in the whole domain at Sc = 10. (a)
MaC = 3.25× 104 and (b) MaC = 4× 104. The arrows indicate the directions of wave
propagation.

This is consistent with the report of Imaishi et al. [88] that the critical oscillation frequency from

basic flow to oscillation mode becomes around 7 times lower when Pr increases from 10 to 100 in

the case of thermal Marangoni flow. Liu et al. [35] also demonstrated that the critical oscillation

frequency generally decreases with the increase of Pr.

At MaC = (0.225 and 1.25)× 104, the concentration fluctuations become larger and gradually

cover the whole free surface, as shown in Figure 3.12(a) and Figure 3.12(b). It is noteworthy that

the maximum fluctuation of concentration on the free surface appears close to the diagonal AB at

MaC = 1.25 × 104, in contrast to the result at MaC = 2.25 × 103. Because of an even more

sensitive advective mechanism, the oscillation is easier to propagate to points A, B than the case

of Sc = 10, the intensity of squeezing and merging of wave pattern dramatically increases. Thus,

the maximum concentration fluctuation on the free surface appears close to the diagonal AB at

MaC = 1.25 × 104. Furthermore, the isosurfaces of 3D concentration fluctuations in the whole

domain are more distorted, as shown in Figure 3.13(b), and the wedge-like patterns are observed

in comparison with the horseshoe-like patterns in Figure 3.8(b), while both cases keep the modes

of SW1.

At MaC = 2 × 104, more complex fluid flow and STD develop, as seen in Figure 3.12(c).

Since the concentration boundary layer occurs as shown in Figure 3.2(c) and Figure 3.2(d), the
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(a) MaC = 2.25× 103

(b) MaC = 1.25× 104

(c) MaC = 2× 104

(d) MaC = 2.5× 104

Figure 3.12 Snapshots of the surface concentration fluctuations and the corresponding space-time
diagram (STD) along the diagonals AB and CD at Sc = 100. (a) MaC = 2.25× 103, (b)
MaC = 1.25× 104, (c) MaC = 2× 104 and (d) MaC = 2.5× 104. The black and red arrows
indicate the propagation directions of the dominant and secondary waves, respectively. The
positions of diagonals AB and CD are shown in Figure 3.1(b).
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(a) MaC = 2.25× 103 (b) MaC = 1.25× 104

(c) MaC = 2× 104 (d) MaC = 2.5× 104

Figure 3.13 Isosurfaces of 3D concentration fluctuations in the whole domain at Sc = 10. (a)
MaC = 2.25× 103, (b) MaC = 1.25× 104, (c) MaC = 2× 104 and (d) MaC = 2.5× 104. The
black and red arrows indicate the propagation direction of the dominant and secondary waves,
respectively.

Figure 3.14 Snapshots of the surface concentration fluctuations and the corresponding space-time
diagram (STD) along the diagonals AB and CD at Sc = 100 and MaC = 3× 104. The black and
red arrows indicate the propagation directions of the dominant and secondary waves, respectively.
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Figure 3.15 Isosurfaces of 3D concentration fluctuations in the whole domain at Sc = 100 and
MaC = 3× 104. The black and red arrows indicate the propagation directions of the dominant
and secondary waves, respectively.

solutal Marangoni effect in the vicinity of points A, B would be stronger with the increase ofMaC.

Four new secondary waves begin to gestate and form, as shown in Figure 3.13(c), resulting in a

sudden drop in the oscillation frequency, as depicted in the STD of Figure 3.12(c). The flow region

is significantly affected by the development of multi-waves, and the concentration fluctuations in

most areas of the free surface become relatively small, while the concentration oscillates sharply

in the local area near the boundary corners.

AtMaC = 2.5×104, the wave pattern changes from SW1 to a new symmetrical wave 3 (SW3),

which is characteristically symmetrical only along the diagonal CD, as shown in Figure 3.12(d). At

this solutal Marangoni number level, larger concentration fluctuations are observed in the vicinity

of the sidewall of the corners due to the mutual interactions between the dominant and secondary

waves, as shown in Figure 3.13(d). Again, due to the effect of the cavity walls, near corners (points

A, B) every two secondary waves would separate near the free surface after coming close to the

corner, and the oscillation mode is not synchronized anymore. As seen the STD along diagonal

CD does not remain symmetrical. Note that in Figure 3.12(c), two secondary waves remain in the

merging state instead of separating near the free surface after getting close to the corner.

Similar to the results described in the previous section, a symmetrical wave 2 (SW2) develops

at the higher solutal Marangoni number value, as shown in Figure 3.14. At MaC = 3 × 104, one
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dominant wave would separate into two, propagating respectively at a certain curvature towards

points C, D. From Figure 3.15, it can be concluded that the dominant wave plays a leading role

in most part of the domain, while the contribution of the secondary wave is relatively larger only

near points A, B. Also, the maximum concentration fluctuation on the free surface is even closer

to points A, B compared to the case at Sc = 10 shown in Figure 3.10. In addition, a series of

curved stripes form on the STD associated with the diagonal AB due to the coupling effects of the

dominant and secondary wave instabilities, as shown in Figure 3.14.
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CHAPTER 4

THERMAL-SOLUTAL MARANGONI CONVECTION WITH MUTUALLY

PERPENDICULAR TEMPERATURE AND CONCENTRATION GRADIENTS

Most previous studies considered only the cases of mutually parallel thermal and concentration

gradients in a rectangular cavity. However, the case of mutually perpendicular gradients has not

been considered yet. It would be an interesting phenomenon to investigate since it occurs in some

processes such as painting and drying [41, 43]. In this chapter, a series of three-dimensional

numerical simulations are performed to study thermal-solutal Marangoni convection in a shallow

rectangular cavity under the effect of mutually perpendicular thermal and concentration gradients

to shed further light on flow characteristics and flow pattern transitions.

4.1 The overall flow map

The flow regimes computed at various thermal and solutal Marangoni numbers are summarized

in Figure 4.1. The flow regimes in this map are identified by the time variation of concentration

and temperature values on the free surface at the sampling point (P) at (x, y, z) = (0.5, 0.5, 0.1).

In this figure we present the computed values at fixed thermal Marangoni numbers MaT (which

are 0, 1, 3, and 7× 104 along the horizontal axis) by varying the solutal Marangoni number MaC

(presented along the vertical axis). For each value of MaT, the flow pattern changes from a steady

to oscillatory and then to chaotic with the increase of the solutal Marangoni number. At the higher

MaC values, generally all flow regimes become chaotic. The variation at MaT = 3 × 104 differs

from the others; it becomes chaotic first after the oscillatory traveling mode, and then oscillatory

again, and then finally chaotic at the higher MaC values like others. This will be discussed later in

detail.
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Figure 4.1 The (MaT,MaC) map of computed flow regimes. The dashed line indicates the critical
solutal Marangoni numbers at the fixed MaT values. In all cases, the flow is steady when MaC is
smaller than a critical value and is unstable above this critical value.
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4.2 Basic flow pattern

When MaC is relatively small, the Marangoni flow is steady, which is called the ”basic flow”

hereafter. Figure 4.2 shows the computed streamlines, isotherms, and iso-concentration lines of

the basic flow at MaC = 1 × 104. It can be noted at this MaC level, the basic flow evolves into

three types of steady flows (a longitudinal surface flow, an oblique stripe flow, and a lateral surface

flow) with the increase of the thermal Marangoni number.

At MaT = 0, only the solutal Marangoni convection develops (pure solutal Marangoni flow),

and the fluid on the surface flows in the positive y-direction by the solutal Marangoni force, then

returns back near the bottom due to the mass conservation, as seen in Figure 4.2(a). When MaT

is higher than 0, the effect of the thermal Marangoni force kicks in. As seen in Figure 4.2(b,c),

the surface fluid flows diagonally with flow velocity components in both the x- and y-directions.

At the higher thermal Marangoni number, as seen in Figure 4.2(d), the fluid flow is almost in the

x-direction. This means that the flow is dominated by the thermal Marangoni effect at this state.

The Prandtl number (Pr = 0.01) of the working fluid in the present work is much less than

unity; it means that the heat transfer is basically by diffusion in the liquid. Thus, the isotherms

of the primary basic flow are almost uniform and parallel to the left and right sidewalls. As noted

however, the iso-concentration lines are much more distorted and the mass transport is sensitive to

the flow regime due to the equal contributions (Sc = 1) of the diffusion and advective mechanisms,

as seen in Figure 4.2. The variation of the concentration gradient along line AB (at x = 0.5) on

the free surface is plotted in Figure 4.3. The position of the AB line is shown in Figure 4.2(a). As

seen from the figure, the solutal concentration boundary layers are thinner in the vicinity of the

back sidewall (y = 1) at MaT = 0. At the higher thermal Marangoni number, the contribution of

solutal Marangoni flow decreases, the local maximum concentration gradients rapidly get lower,

and the overall concentration distribution becomes relatively uniform.
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(a) MaT = 0

(b) MaT = 1× 104

(c) MaT = 3× 104

(d) MaT = 7× 104

Figure 4.2 Streamlines along the boundaries (left), iso-concentration lines (middle) and isotherms
(right) on the top free surface as MaT = 1× 104. The contour values of temperature and
concentration are from 0.1 to 0.9 with steps of 0.1.
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Figure 4.3 Distribution of the concentration gradient along line AB on the free surface at
MaC = 1× 104 without/with radiation.

4.3 Critical Marangoni number

As mentioned earlier, at all the selected thermal Marangoni numbers, the basic flow may

become unsteady and bifurcate into different three-dimensional oscillatory flows once the solu-

tal Marangoni number exceeds a critical value; called the “critical” solutal Marangoni number

(MaC,cri). In Figure 4.4, the variations of temperature AT and concentration AC at a sampling

point (A) on the free surface are plotted at MaT = 1 × 104. As seen, the temperature and con-

centration amplitudes increase linearly with MaC. The critical solutal Marangoni number, MaC,cri

are estimated by means of the linear extrapolation method [98]. The critical solutal Marangoni

numbers values, which depend on the corresponding thermal Marangoni number MaT, are given

in Figure 4.1 (the dash line). At smaller MaT values, the solutal Marangoni effect is dominant in

the whole system. On the other hand, the local maximum concentration gradient is weakened (see

Figure 4.3), thus a larger MaC value is needed to make the flow unsteady. At large MaT values,

the thermal Marangoni effect is dominant, thus only a small MaC value can also destabilize the

flow. As a result, as seen, the value of MaC,cri firstly increases and then decreases at a slope of
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about 0.1 with the increasing thermal Marangoni number.
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Figure 4.4 Variations of temperature amplitude AT and concentration amplitude AC with time at
MaT = 1× 104.

4.4 Oscillatory flow

4.4.1 Characteristics of the thermal-solutal Marangoni oscillatory flow

When the solutal Marangoni number exceeds the critical value MaC,cri, the thermal-solutal

Marangoni flow bifurcates to an oscillatory flow. Figure 4.5 presents the computed time depen-

dencies of temperature, concentration and longitudinal velocity component at a sampling point

(P) at (x, y, z) = (0.5, 0.5, 0.1), and the corresponding frequency spectra at MaT = 1 × 104 and

MaC = 3 × 104. The velocity oscillation, Vy, due to the inertial effect of fluid flow is always

delays. There is a phase difference between temperature, concentration, and flow velocity varia-

tions. Their coupling leads to the development of instabilities in the form of hydrothermal waves

(HTW) and hydrosolutal waves (HSW) on the free surface (as seen from Figure 4.8(a)). A similar

phase difference in HTW, or in HSW, was also reported in Refs. [18, 57]. Meanwhile, the same

frequencies (F = 262.81) are observed in the frequency spectra shown in Figure 4.5(b).

Figure 4.6 presents the variation of concentration at the sampling point (A) with time and its

frequency spectra at MaT = 7 × 104. Variations were calculated for three solutal Marangoni

numbers: MaC =(2.25, 5 and 7)×104. At the small solutal Marangoni number value, i.e., MaC =
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(a) (b)

Figure 4.5 Time variations of the velocity, temperature and concentration at the sampling point A
(a) and their frequency spectra (b) at MaT = 1× 104 and MaC = 3× 104.

2.25×104, the concentration oscillation amplitude is small and constant, with only one fundamental

frequency F1 = 300 and two harmonic frequencies F2 = 2F3/3 = 2F1, as shown in Figure 4.6(a).

When the solutal Marangoni number is larger, i.e., MaC = 5× 104, the variation of concentration

oscillates like an amplitude modulation (AM) wave, the amplitude still varies periodically with

time at the sampling point, which has more complicated frequency spectra. At the highest solutal

Marangoni number value, i.e., MaC = 7 × 104, the concentration oscillation is not periodic.

No obvious dominant frequency can be detected in the spectra, and the Marangoni flow becomes

completely chaotic. The same evolution process can also be observed in pure thermal or solutal

Marangoni convection [28, 99].

4.4.2 Wave pattern evolution

In order to quantitatively investigate the three-dimensional disturbances, a fluctuation quantity

(δW ) over one period is introduced as,

δW (x, y, z, τ) = W (x, y, z, τ)− 1

τp

∫ τ0+τp

τ0

W (x, y, z, τ)dτ (4.1)

where W can be Θ or Φ.

When the case of pure solutal Marangoni convection (MaT = 0) is considered, the associated

flow exhibits two different wave-type oscillations. Figure 4.7 shows the computed snapshots of

the concentration fluctuations on the free surface and the streamlines at a plane at y = 0.5 (the
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(a) MaC = 2.25× 104

(b) MaC = 5× 104

(c) MaC = 7× 104

Figure 4.6 Variation of concentration at the sampling point A with time and its frequency spectra
at MaT = 7× 104.
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C–D plane as shown in Figure 4.2(a)), at two different solutal Marangoni number values; namely,

MaC =(2.15 and 5) ×104. At MaC = 2.15 × 104, the concentration wave pattern resembles

a checkerboard-like configuration and propagates in the negative y-direction. The mechanism of

instability in the flow pattern is the periodical evolution of rolling cells, as shown in the streamlines

in Figure 4.7(a). A similar flow pattern has been reported by Chen et al. [40] for the oscillatory flow

in a thin annular pool, and they called this kind of oscillation the ”standing-wave type oscillation”.

As the solutal Marangoni number further increases, i.e., atMaC = 5×104, as seen in Figure 4.7(b),

the amplitudes of oscillations get larger, and the wave pattern changes from a standing wave to a

HSW. The propagation angle of HSW ϕC is about 51◦. Smith and Davis [13] reported that, for an

infinite pure fluid layer with Pr = 1, the propagation angle of HTW is about 54◦, which is close to

that of the present HSW. Also, from Figure 4.7(b) we see that a secondary instability occurs. The

symmetry of streamlines is broken, resulting in the generation of HSW. The secondary instability

should be attributed to the occurrence of pitchfork bifurcation, as pointed previously [55].

(a) MaC = 2.15× 104

(b) MaC = 5× 104

Figure 4.7 Snapshots of surface concentration fluctuations (left) and the streamlines (right) at the
C–D plane (y = 0.5) at MaT = 0. The arrows in the left figures indicate the direction of wave
propagation.
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Next considering a case where both the thermal and solutal Marangoni effects are in place. For

this case, three different thermal Marangoni number values, namely MaT =(1, 3 and 7) ×104,

are used at the value of MaC = 3 × 104. Results are presented in Figure 4.8. In all three cases,

the fluctuations of temperature and concentration on the free surface form HTWs and HSWs,

respectively, propagating at a certain angle with respect to the negative x-axis. As seen from the

figure, the space-time diagram (STD) consists of a series of parallel tilted stripes. It is evident

from Figs. Figure 4.8(a)-(c) that in all three cases the maximum fluctuation of temperature is

proportional to the thermal Marangoni effect although it is far less than that of the concentration

due to the large Lewis number of the working fluid.

At MaT = 1 × 104 and MaC = 3 × 104, the solutal Marangoni effect is dominant (solutal

Marangoni number is larger), as also seen in Figure 4.3. The wave patterns of HTW and HSW

are similar, and both patterns propagate from the upper-right corner towards the lower-left corner

as shown in Figure 4.8(a). Since the relative contribution of solutal Marangoni effect along the

x-axis in the negative direction gradually increases, and the iso-concentration line is denser in

the vicinity of the left sidewall (x = 0) shown in Figure 4.2(b), the stripes on the STD bends

slightly inward, which is synchronously accompanied by the enhancement of temperature and

concentration fluctuations during the propagation. Chen et al. [45] also reported such HTWs and

HSWs under the effects of mutual parallel temperature and concentration gradients, while the wave

pattern was more regular and straightforward in the spatiotemporal distribution than the present

cases because the thermal and solutal Marangoni forces could suppress or enhance each other in

only one dimension.

At MaT = 7 × 104 and MaC = 3 × 104, the thermal Marangoni effect is dominant (thermal

Marangoni number is larger), and the propagation is towards the upper-left corner, as seen in

Figure 4.8(c). It appears that the maximum fluctuations of temperature and concentration are close

to the top corner due to a higher temperature gradient near the cold sidewall (x = 1), which is

consistent with the prediction made in the case of pure Marangoni convection by Liu et al. [35].

Also, the strips of both STDs are almost parallel to the x-axis, which means the HTW and HSW
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(a) MaT = 1× 104

(b) MaT = 3× 104

(c) MaT = 7× 104

Figure 4.8 Snapshots of the surface temperature (left) and concentration (right) fluctuations and
the corresponding space-time diagram (STD) at the EF line (y = 0.9) at MaC = 3× 104. The
arrows in HTW and HSW indicate the directions of wave propagation. In addition, the
dimensionless time τ for all STDs is 0.028, and the position of the EF line is shown in
Figure 4.8(a).
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Figure 4.9 Distribution of the temperature and concentration gradients along y = 0.9 (the EF line
in Figure 4.8) on the free surface at MaT = 3× 104 and MaC = 3× 104. W is Θ or Φ.

also have some characteristics of standing wave type oscillations as seen in Figure 4.7(a).

At MaT = 3 × 104 and MaC = 3 × 104, the overall contributions of thermal and solutal

Marangoni effects are in the same order (thermal and solutal Marangoni numbers are equal). How-

ever, as shown in Figure 4.9, the value of concentration gradient (Φx) along x-axis at y = 0.9 (the

EF line in Figure 4.8) varies widely and is larger than the temperature gradient (Θx) in the local

region (x ≈ 0.85), while Θx remains around −1 due to the small Prandtl number of the working

fluid. Note that in Figure 4.8(a) and Figure 4.8(c) the propagation directions of HTW and HSW

were in one direction only. In Fig.9(b), however, we see both directions appear at the same time.

This simultaneous appearance is due to the fact that the thermal and solutal Marangoni effects

have comparable contributions in this case. In addition, a series of curved narrow stripes appear at

x ≈ 0.85 on the STD due to the mutual interactions between the thermal and solutal Marangoni

flows.
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4.4.3 Frequency drop of oscillatory flow and backward transition to a chaotic flow

The Marangoni number has a significant influence on the frequency of the oscillatory flow.

Figure 4.10 shows the frequency value at the sampling point (A) as a function of MaC for each

MaT. The frequency monotonically increases at MaT = 0. When the thermal Marangoni effect is

included, as shown in Figure 4.11, only one wave instability exists near the back sidewall (y = 1) at

MaC = 3× 104, while another wave instability is observed near the front sidewall (y = 0), which

propagates from the lower-left corner to upper-right when MaC increases to 3.5 × 104. Since the

signals at the sampling point (A) will be affected by the two waves, a sudden drop occurs in the

frequency, as seen in Figure 4.10.
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Figure 4.10 Variation of the oscillation frequency F with the solutal Marangoni number MaC for
each thermal Marangoni number MaT at the sampling point A.

It is noteworthy that the flow undergoes a backward transition from the oscillatory flow to a

chaotic one at around MaC ≈ 5 × 104, then to an oscillatory pattern again (see the dashed line

in Figure 4.10) when the thermal Marangoni number is around 3 × 104. Figure 4.12 shows the

snapshots of concentration surface fluctuation and its STD at MaT = 3 × 104. The wave pattern
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(a) MaC = 3× 104 (b) MaC = 3.5× 104

Figure 4.11 Isosurfaces of 3D concentration fluctuations at MaT = 1× 104.

(a) MaC = 4× 104

(b) MaC = 6× 104

Figure 4.12 Snapshots of concentration surface fluctuations (left) and the corresponding STD
(right) at the EF line (y = 0.9) at MaT = 3× 104. The position of the EF line is shown in
Figure 4.8(a)
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in Figure 4.12(a) is similar to that shown in Figure 4.8(b) at MaC = 4 × 104, while there is no

obvious wave pattern in concentration fluctuation at MaC = 6 × 104, which means that the flow

developed becomes more complex due to the stronger solutal Marangoni effect. However, in the

STD of Figure 4.12(b), the concentration fluctuations are still regular in time. As demonstrated in

Figure 4.13, the longitudinal velocity Vy at the sampling point is quasi-periodic forMaC = 6×104,

but the flow velocity fluctuates irregularly in time at MaC = 5 × 104. Although, as the solutal

Marangoni number increases, the temporal complexity of the flow reduces from chaotic to the

secondary oscillatory flow, the spatial flow pattern changes from two vortices to five coherent

vortices as seen in Figure 4.14. As a result, since the overall complexity of the flow increases, the

appearance of the backward transition from chaotic to oscillatory is reasonable. Zhan et al. [55]

have also analyzed the rationality of backward transition using dynamic theory, while the flow

goes from chaotic into the steady state. In addition, the same backward transition from chaotic to

an oscillatory flow in the thermal and solutal Marangoni flows of opposite directions in a liquid

bridge was also numerically observed by Jin et al. [84].
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Figure 4.13 Time dependency of the longitudinal velocity Vy at various solutal Marangoni
numbers MaC at the sampling point A at MaT = 3× 104.
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(a) MaC = 5× 104

(b) MaC = 6× 104

Figure 4.14 Streamlines at the C–D plane (y = 0.5) at MaT = 3× 104.

4.5 Comparison with a cylindrical configuration

4.5.1 Onset of flow instabilities

It is well known that the configurations have an important influence on the instabilities of

Marangoni flow. Many studies in two basic rectangular and cylindrical configurations have been re-

ported on the investigation of Marangoni effect. Therefore, it would be an interesting phenomenon

to analyze the difference between these two configurations.

Figure 4.12 shows the variation of critical solutal Marangoni number with Marangoni ratio in

the present rectangular and previous cylindrical cases. It is worthy to note that, in the previous case

by Agampodi Mendis et al. [58], the Schmidt number (Sc = 14) of working fluid is larger than the

unity, while the Prandtl number value is close to the present study. Similar to the result described

in the last chapter, the flow disturbance gestate and develop easily at a higher Schmidt number,

thus the critical solutal Marangoni number MaC,cri with respect to the cylindrical case is around

10 times smaller than that of the present case. In addition, with the increase of Marangoni ratio

Maσ, MaC,cri values for both two cases show the same tendencies overall, namely, first increase

and then decrease. For the cylindrical configuration, the thermal and solutal Marangoni flows are

in the opposite direction, the MaC,cri value first increases at small Maσ due to the suppression

effect of combined thermal and solutal Marangoni flows. When Maσ > 1, the thermal Marangoni

effect becomes dominant. As shown in the black line of Figure 4.12, MaC,cri decreases rapidly,
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it is caused by the instability effect of thermal Marangoni flow on the flow behavior in the whole

system. In response to the rectangular configuration, owing to the mutually perpendicular thermal

and concentration gradients, the suppression and enhancement effects of coupling thermal and

solutal Marangoni flows in the whole system coexist. Therefore, the inflection point (see red line)

appears at Maσ < 1.

Figure 4.15 The variation of critical solutal Marangoni number with Marangoni ratio in the
rectangular case (present study) and cylindrical case (reported by Laknath et al. [58]).

4.5.2 Wave pattern evolution

As summarized in Figure 4.1, there are mainly two kinds of oscillatory wave patterns, namely,

standing wave and traveling wave. Figure 4.16 and Figure 4.17 present such two oscillatory waves

in the cases of rectangular and cylindrical configurations. The appearance of oscillatory standing

wave results from the periodical evolution of rolling cells, and the stationary longitudinal rolls

exist in the whole system, as pointed in the work of Smith and Davis [13]. It is obvious from

Figure 4.16(a) and Figure 4.17(a) that the standing wave propagates in the longitudinal direction

for both configurations. However, due to the effect of the rectangular cavity wall, the flow pattern
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close to the left and right sidewalls cannot sufficiently progress, and wave patterns are squeezed to

extent. In addition, the wave patterns of checkerboard-like and strip-like are respectively observed

in the rectangular and cylindrical configurations, it may be induced by the fluid properties and

aspect ratio.

(a) Standing wave

(b) Travelling wave

Figure 4.16 Standing wave (a) and travelling wave (b) inside a rectangular cavity. The red arrows
in the figures indicate the direction of wave propagation. W is Θ or Φ.
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(a) Standing wave

(b) Travelling wave

Figure 4.17 Standing wave (a) and travelling wave (b) inside a cylindrical configuration [100].
The red arrows in the figures indicate the direction of wave propagation. W is Θ or Φ.
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With the further increase of Marangoni effect, the pitchfork bifurcation mentioned in the pre-

vious section would occur, resulting in the appearance of oscillatory traveling wave shown in

Figure 4.16(b) and Figure 4.17(b). On the one hand, the propagation direction highly depends

on the configurations. Wherein, as shown in Figure 4.17(b), the traveling wave propagates in the

clockwise direction inside a cylindrical configuration, while the oblique oscillation wave appears

in the rectangular cavity. On the other hand, the development of flow patterns exhibits different

characteristics. Compared with the observation in the rectangular cavity, the wave pattern inside a

cylindrical configuration could develop more sufficiently and shows no obvious difference during

the propagation process. However, in the cavity, wave pattern undergoes two stages of evolution

such as expansion and shrinking during propagation, which is also induced by the effect of cavity

wall, as shown in Figure 4.16(b).

60



CHAPTER 5

THERMAL-SOLUTAL MARANGONI CONVECTION UNDER RADIATIVE HEAT

TRANSFER

The interfacial heat transfer is inevitable in industrial processes and has a significant effect

on the quality of final products, especially in welding [101] and crystal growth [67]. However,

most studies that focused on the thermal-solutal Marangoni flow considered only the case of an

adiabatic free surface. The surface heat transfer has not been taken into account. To extend the

existing knowledge and gain more insight into the subject, based on our previous work [93], we

perform a series of three-dimensional numerical simulations considering the effect of radiative heat

transfer on thermal-solutal Marangoni convection in a shallow rectangular cavity with mutually

perpendicular thermal and concentration gradients. It is also hoped to shed further light on the

related flow characteristics and flow pattern transitions in the cavity.

5.1 The overall flow map

The flow regimes without/with thermal radiation computed at various thermal Marangoni num-

ber values are summarized in Figure 5.1. In this figure we present the computed values at the con-

ditions of adiabatic free surface and fixed ambient temperature Θa (which are -1.5, -1, -0.5, 0, 0.5,

1 and 1.5) along the horizontal axis by varying the thermal Marangoni number MaT (presented

along the vertical axis). It is obvious that, in all cases (without/with radiative heat transfer), the

flow pattern always changes from steady to oscillatory and then to chaotic with the increase of the

thermal Marangoni number. In addition, oscillatory modes highly depend on the ambient temper-

ature. Three types of oscillatory modes appear at different ambient temperature Θa values. This

will be discussed later in detail.
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Figure 5.1 The computed flow regimes without/with thermal radiation. The dashed line indicates
the critical solutal Marangoni numbers for the corresponding free surface conditions. In all cases,
the flow is steady when MaT is smaller than a critical value and is unstable above this critical
value.
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5.2 Basic flow pattern

When the Marangoni number is relatively small, the thermal-solutal Marangoni convection is

steady, which is called the ”basic flow” hereafter. Figure 5.2 presents the computed streamlines,

isotherms, and iso-concentration lines of a typical basic flow at MaT = 1 × 104 at various free

surface conditions. Since the overall thermal and solutal Marangoni effects are of equal strengths

(Maσ = 1), the fluid along the free surface (called here ”surface fluid”) usually flows diagonally

with a flow velocity with the components in the x- and y-directions, and then returns back near

the bottom due to the mass conservation since the flow is confined within the cavity, as seen in the

streamlines of Figure 5.2. The variations at Θa = -1.5 and Θa = 1.5 differ from the others in the

local region; namely, in the vicinity of the right (x = 1) and left (x = 0) sidewalls, respectively.

The surface fluid locally flows towards the upper-left direction, as shown as the secondary reverse

vortex in Figure 5.3(b) and Figure 5.3(f). This is caused by the movement of maximum and

minimum temperature positions from the sidewall to the free surface due to the strong radiative

heat transfer, as depicted in Figure 5.2(b) and Figure 5.2(d). The temperature difference is larger

than 1 on the free surface.

Since the Prandtl number (Pr = 0.01) of the working fluid is far less than unity; the heat trans-

fer in the liquid layer is basically by conduction. The isotherms of the basic flow are almost parallel

to the left and right sidewalls, while the iso-concentration lines are much more distorted and sen-

sitive to the flow region due to the equal contribution (Sc = 1) of conduction and momentum

transfer. It is noted that the ambient temperature has a significant influence on the thermal-solutal

Marangoni flow. As shown in Figure 5.2(a)-(d), thermal radiation gives rise to a difference of

temperature gradient and thus to a change in the fluid flow that triggers a distortion in the concen-

tration field. The distortion in the concentration in turn affects the distributions of temperature and

flow velocity. This coupling mechanism is responsible for the effect of thermal radiation on the

thermal-solutal Marangoni flow. Accordingly, as depicted in Figure 5.3, the basic flow appears in

three forms of steady flow, namely, unidirectional multicellular flow, unicellular flow, and reverse

multicellular flow at different free surface conditions.
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(a) adiabatic

(b) Θa = -1.5

(c) Θa = 0.5

(d) Θa = 1.5

Figure 5.2 Streamlines along the boundaries (left), isotherms (middle) and iso-concentration lines
(right) on the top free surface at MaT = 1× 104 at different free surface conditions. (a) adiabatic,
(b) Θa = -1.5, (c) Θa = 0.5, and (d) Θa = 1.5. The contour values of temperature and concentration
are with steps of 0.1.
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Figure 5.3 Streamlines at the A–B plane (y = 0.5) at MaT = 1× 104 at different free surface
conditions. (a) adiabatic, (b) Θa = -1.5, (c) Θa = -0.5, (d) Θa = 0.5, (e) Θa = 1, and (f) Θa = 1.5.
The position of A–B plane is shown in Figure 5.2(a).

Figure 5.4 shows the computed distributions of temperature gradient gradΘx and velocity mag-

nitude Vmag along the AB line (y = 0.5) at various free surface conditions. With the increase of

ambient temperature, the overall radiative heat transfer on the free surface exhibits transition from

heat loss to heat gain. Thus, as shown in Figure 5.4(a), the maximum temperature gradient first de-

creases then increases, and the positions of that transit from left to right sidewalls. It is noted that,

at Θa = 0.5 (green line), although the temperature gradient close to sidewalls is larger than that of

the adiabatic case (orange line), it is contrary at the central region, while the temperature gradient

is always approximately -1 under the adiabatic condition. Owing to the coexistence of heat gain

and heat loss, the overall radiative heat flux in terms of Θa = 0.5 is close to 0, as shown in Fig-

ure 5.5. Therefore, the similar distributions of streamline, temperature, and concentration overall

are observed, which are shown in Figure 5.2(a) and Figure 5.2(c). In addition, as shown in Fig-

ure 5.4(b), the distribution of flow velocity magnitude also accordingly changes with the intensity

of thermal radiation, which greatly affects the flow structure in the system (see Figure 5.3).

5.3 Critical Marangoni number

The control of flow stability is crucial for the quality of products in applications especially

in material welding, glass production, and crystal growth. Thus, the relationships between the

thermal radiation and flow stability need to be further investigated. As the thermal Marangoni
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(a)

(b)

Figure 5.4 Distributions of the temperature gradient gradΘx (a) and velocity magnitude Vmag (b)
along AB line on the free surface at MaT = 1× 104.
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Figure 5.5 Variation of the overall interfacial radiative heat flux with different ambient
temperature.

number exceeds a critical value, namely, critical Marangoni number Macri, the three-dimensional

disturbances begin to gestate and develop. The basic flow may become unsteady and bifurcate into

various three-dimensional oscillatory flows.

Dynamic mode decomposition (DMD) is a useful technique to investigate the hydrodynamic

processes involved, which was successfully applied to determine the critical condition with the

respect to the instability of thermal-solutal Marangoni flow in our previous work [58]. In the DMD

method, a temporal sequence of data snapshots from the numerical simulation are represented by

a matrix MN
1 ,

MN
1 = {m1,m2,m3, ...,mN} (5.1)

where mi stands for the i-th flow field (N = 1, 2, 3, ..., N ).

We assume that, in a short constant sampling time, a linear mapping A between a flow field

mi and the subsequent flow field mi+1 can be expressed as mi+1 = Ami, which is considered

as a linear approximation of solving the governing equations. The dynamic characteristics of the
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system is given by the eigenvalues and eigenvectors of the matrix A. And the corresponding matrix

form can be represented as,

MN
2 = AMN−1

1 + reTN−1 (5.2)

where r denotes the residual vector and eN−1 ∈ RN−1 applies as the (N − 1) unit vector. Substi-

tuting the singular value decomposition (MN−1
1 = UΣWH) into above equation, then

UHAU = UHMN
2 WΣ−1 ≡ Ã (5.3)

with the matrix U contains the proper orthogonal modes of MN−1
1 . As A related to Ã by a

similarity transformation, the dynamic modes κi can be expressed as follow,

κi = Uyi (5.4)

where yi is the i-th eigenvector of Ã, i.e. Ãyi = µiyi. In consequence, the corresponding

eigenvalues λ, which present the stability of extracted dynamic oscillatory mode, is obtained by

the logarithmic transform of µi. The real part of the eigenvalues, λr, determines the growth/decay

rate: unstable, λr ¿ 0; neutral, λr = 0; stable, λr ¡ 0. And the imaginary part, λi represents the

frequency of the mode.

Table 5.1 The non-dimensional frequencies of disturbances obtained by DMD and simulation.

Θa MaT F
DMD Simulation

-0.5 2.35× 104 191.80 191.21
0.5 2.47× 104 226.19 226.27
0.5 2.5× 104 226.87 226.88
0.5 2.6× 104 228.88 228.89
1 3.1× 104 284.19 284.17
1.5 3.4× 104 86.13 86.12

Figure 5.6 shows an example of the eigenvalue spectrum at Θa = 0.5 obtained by DMD method

near the onset of thermal-solutal Marangoni convection. At MaT = 2.47 × 104, as shown in the

inset of Figure 5.6, the real part of the leading eigenvalue (λ = λr+λi = 0.00098±1.99i) is larger

than zero, which indicates the unstable oscillatory mode appears. However, the flow remains steady

68



Figure 5.6 Eigenvalue spectrum of thermal-solutal Marangoni convection onset at Θa = 0.5.

at MaT = 2.46 × 104 due to the negative growth rate λr. Thus, the critical Marangoni number is

calculated as Macri = 2.465× 104 ± 0.2%. In addition, as summarized in Table 5.1, the predicted

frequencies from DMD are in good agreement with those of simulation.

The critical Marangoni number values at various free surface conditions are given in Figure 5.1

(the dashed line). In the case of heat loss, at -0.5 ≤ Θa < 0.5, with the increase of ambient

temperature, the amount of heat loss decreases, and the maximum temperature gradient on the

free surface becomes smaller. Thus the critical Marangoni number Macri slightly increases due to

the weakened flow velocity intensity. At Θa < -0.5, the reverse multicellular flow appears and the

primary flow region becomes small. Therefore, although the flow intensity would still increase, the

effective aspect ratio becomes larger, resulting in the largerMacri, which is in good agreement with

those earlier predictions made for the relationship of aspect ratio and critical Marangoni number

[33, 71]. Zhang et al. [102] reported that for the pure thermal Marangoni flow in an annular pool,

the critical Marangoni number of flow destabilization becomes larger at strong heat loss conditions,

while that value is basically unchanged in the case of weak heat loss. In the case of heat gain (Θa >
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0.5), the maximum thermal gradient moves from left to the right sidewall and interacts directly with

solutal Marangoni effect near the upper-right corner, leading to the appearance of a suppressing

effect between thermal and solutal Marangoni flows to some extend. On the other hand, analogous

to the case of large heat loss, a secondary reverse flow appears, and the effective aspect ratio

increases. Hence, Macri gradually increases at the higher Θa values. Furthermore, a Macri higher

than that of Θa = 0.5 is observed in the adiabatic case.

5.4 Effect of radiative heat transfer on flow pattern

When the Marangoni number exceeds the critical value Macri, the stability of the Marangoni

flow gets lost, and a three-dimensional oscillatory flow develops. In order to quantitatively investi-

gate the three-dimensional disturbances, a fluctuation quantity (δW ) over one period is introduced

as,

δW (x, y, z, τ) = W (x, y, z, τ)− 1

τp

∫ τ0+τp

τ0

W (x, y, z, τ)dτ (5.5)

where W can be Θ or Φ.

5.4.1 No heat flux (Qr ≈ 0)

In the case of pure thermal Marangoni flow, as predicted by Smith and Davis [13], the hy-

drothermal wave (HTW) propagates from the low temperature sidewall to the high temperature

sidewall at a certain angle of ϕT with respect to the horizontal temperature gradient. This pre-

diction is observed in subsequent experimental observations [103–105] and numerical simula-

tions [29, 106], as shown in Figure 5.7(a). Analogous to the HTW, in the case of pure solutal

Marangoni flow, the hydrosolutal wave (HSW) due to the inverse surface tension coefficient (σC >

0) would propagate from the high concentration sidewall to the low concentration sidewall at a cer-

tain angle of ϕC with respect to the horizontal concentration gradient, as shown in Figure 5.7(b).

In the present work, we consider the cases where both the thermal and solutal Marangoni

effects are present. Figure 5.8 shows the computed snapshots of surface temperature and concen-

tration fluctuations and their corresponding space-time diagram (STD), which consists of a series
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(a) HTW (b) HSW

Figure 5.7 The schematic drawing of propagation direction associated with HTW (a) and HSW
(b) in the pure thermal Marangoni flow and pure solutal Marangoni flow. The dash arrow
indicates the direction of the wave propagation.

(a) adiabatic

(b) Θa = 0.5

Figure 5.8 Snapshots of the surface temperature (left) and concentration (right) fluctuations and
the corresponding space-time diagram (STD) at the CD line (y = 0.9) at MaT = 4× 104. (a)
adiabatic, and (b) Θa = 0.5. The arrows in HTW and HSW indicate the directions of wave
propagation. In addition, the dimensionless time τ for all STDs is 0.028, and the position of the
CD line is shown in Figure 5.8(a).
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of parallel stripes, at MaT = 4 × 104. It is evident that the flow instabilities are observed on the

free surface in the forms of HTW and HSW. Meanwhile, for both wave forms, the thermal and

solutal Marangoni flows are of equal strengths (Marangoni ratio Maσ = 1). Thus, two different

propagation directions of wave pattern always coexist at the same time. This is in good agreement

with the results of our previous study [93].

In the case of an adiabatic free surface assumption, as shown in Figure 5.8(a), the wave patterns

of HTW and HSW propagate from the upper-right corner towards the lower-left corner first (Stage

1), and then to the upper-left corner (Stage 2), which is called the ”oscillatory mode I” hereafter.

This phenomenon occurs because the thermal and solutal Marangoni effects have comparable con-

tributions locally. During Stage 1, as also shown in Figure 5.2, the dense iso-concentration lines

are observed in the vicinity of upper-right corner, the solutal Marangoni effect is dominant, re-

sulting in the lower-left propagation direction, which is consistent with the prediction made in the

case of pure Marangoni flow shown in Figure 5.7(b). On the contrary, the thermal Marangoni flow

plays a prominent role during Stage 2, thus the wave propagates towards the upper-left corner. It

should be pointed out that the wave propagation in the lower-left direction appears in the narrow

region of the back sidewall (y = 1) due to the strong solutal Marangoni effect. When Θa = 0.5, as

shown in Figure 5.8(b), a similar flow pattern is observed. Compared with the adiabatic case, the

intensity of the thermal Marangoni effect near the right sidewall (x = 1) becomes slightly stronger

(see Figure 5.4(a)), thus the propagation distance of Stage 1 is smaller, as shown in the STD of

Figure 5.8(b).

5.4.2 Heat loss (Qr < 0)

When Θa < 0.5, heat loss occurs on the free surface. The maximum temperature gradient

would be observed close to the left sidewall (x = 0) due to the effect of radiative heat transfer.

Figure 5.9 shows the computed snapshots of the surface temperature and concentration fluctuations

and their corresponding space-time diagram atMaT = 4×104 at two different ambient temperature

values; namely, Θa = 0 and -1. It is obvious that in both cases, due to the physical properties of the
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working fluid (Pr = 0.01, Sc = 1), the patterns of HTW and HSW would be different, while the

directions of wave propagation are basically the same. Therein, the propagation process of HTW

is not notable during Stage 1 due to the weak thermal Marangoni effect, but the upper-left oblique

stripes could be found in the corresponding STD.

(a) Θa = 0

(b) Θa = -1

Figure 5.9 Snapshots of the surface temperature (left) and concentration (right) fluctuations and
the corresponding space-time diagram (STD) at the CD line (y = 0.9) at MaT = 4× 104. (a) Θa

= 0, and (b) Θa = -1. The dimensionless time τ for all STDs is 0.028, and the position of the CD
line is shown in Figure 5.8(a).

At Θa = 0, the amount of heat loss through the free surface is small, the wave patterns in the

forms of HTW and HSW are similar at Θa = 0.5, while the propagation distance of Stage 1 in-

creases and the position of maximum temperature fluctuation on the free surface close towards

the left sidewall, as shown in the STD of Figure 5.9(a). As the intensity of heat loss becomes

larger, i.e., at Θa = -1, as shown in Figure 5.9(b), the associated wave pattern exhibits another type

of oscillatory mode (mode II), which propagates towards the lower-right corner during Stage 2.

As shown in Figure 5.10, the value of the concentration gradient (gradΦmag) along the CD line

(y = 0.9) varies widely and is larger than the temperature gradient (gradΘmag) in the most region

(0.3 < x < 1.0), resulting in the further increase of the propagation distance during Stage 1, while
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Figure 5.10 Distributions of the temperature and concentration gradients along y = 0.9 (the CD
line in Figure 5.8) on the free surface at MaT = 4× 104 at Θa = -1. W is Θ or Φ.

Figure 5.11 Isosurfaces of 3D concentration fluctuations at MaT = 4× 104 at Θa = -1. The red
arrow represents the process of impinging the sidewall.
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the wave pattern associated with the thermal Marangoni effect in Stage 2 suddenly propagates to-

wards the lower-right corner. Figure 5.11 presents the snapshots of the concentration fluctuation

at MaT = 4 × 104 within the upper-left part (0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1) of the rectangu-

lar cavity. Due to the effect of the cavity walls, after the wave instabilities impinge the sidewall

along the upper-right direction, the reversed propagation direction at the lower-right corner would

appear finally. A similar phenomenon with respect to the effect of the cavity walls on the prop-

agation direction was also illustrated in previous studies in the case of pure thermal Marangoni

convection [29, 105].

5.4.3 Heat gain (Qr > 0)

When Θa > 0.5, heat gain occurs on the free surface, and the maximum temperature gradient

would move towards the right sidewall (x = 1) due to the effect of radiative heat transfer. Fig-

ure 5.12 shows the computed snapshots of surface temperature and concentration fluctuations and

their corresponding space-time diagram at MaT = 4× 104 at three different ambient temperature

values; namely, Θa = 0.75, 1, and 1.5. When the heat gain is small, as shown in Figure 5.12(a),

the associated result is similar to the case of Θa = 0.5, while the propagation region of Stage 1

becomes smaller. In addition, the wave pattern would change from the oblique wave to the straight

wave during the propagation process of Stage 2, as shown in Figure 5.13(a). This should be at-

tributed to the comparable contributions of the thermal and solutal Marangoni effects in the local

region shown in Figure 5.14, the difference between temperature and concentration gradient values

gradually decreases along the negative x direction and finally becomes approximately 0 at x ¡ 0.4.

When we have heat gain again, i.e. at Θa = 1, the temperature gradient increases near the

right sidewall (x = 1) but decreases near the left sidewall (x = 0). Therefore, the region of Stage 1

further decreases, and the new Stage 3 appears with the propagation direction towards the lower-left

corner due to the dominant solutal Marangoni effect, as shown in Figure 5.13(b). With the further

increase of heat gain, at Θa = 1.5 shown in Figure 5.12(c), the thermal Marangoni flow is confined

at the right part of the rectangular cavity, resulting in the more complicated coupling effects of

75



(a) Θa = 0.75

(b) Θa = 1

(b) Θa = 1.5

Figure 5.12 Snapshots of the surface temperature (left) and concentration (right) fluctuations and
the corresponding space-time diagram (STD) at the CD line (y = 0.9) at MaT = 4× 104. (a) Θa

= 0.75, (b) Θa = 1, and (c) Θa = 1.5. The dimensionless time τ for all STDs is 0.028, and the
position of the CD line is shown in Figure 5.8(a).
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thermal and solutal Marangoni flows. The oscillation period would become larger, meanwhile the

strips in the STD are more complex. The wave pattern changes from oscillatory mode I to a new

oscillatory mode III, which typically propagates towards the upper-left corner first, and then to

the lower-right corner. As shown in Figure 5.13(c), Stage 1 starts to disappear and the transition

of propagation direction during the stage 3 appears due to the effect of the cavity wall, which is

analogous to the results described in the previous subsection.

Figure 5.13 Isosurfaces of 3D concentration fluctuations at MaT = 4× 104. (a) Θa = 0.75, (b) Θa

= 1, and (c) Θa = 1.5.

Figure 5.14 Distributions of the temperature and concentration gradients along y = 0.5 (the AB
line in Figure 5.2) on the free surface at MaT = 4× 104 at Θa = 0.75 and 1.5. W is Θ or Φ.
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5.5 Characteristics of the thermal-solutal Marangoni oscillatory flow

The coupling effect of the thermal-solutal Marangoni flow and the radiative heat transfer has

a significant influence on the characteristics of oscillatory flow. Figure 5.15 shows the time de-

pendencies of temperature, concentration, and longitudinal velocity at the monitoring point (P) at

(x, y, z) = (0.5, 0.5, 0.1) and the associated frequency spectra at MaT = 4× 104 at different ambi-

ent temperatures. It is clearly shown that there is a constant phase difference between the velocity,

temperature, and concentration oscillations. The phase lag phenomenon is the basic characteris-

tic of flow instabilities and would result in the occurrence of HTW and HSW on the free surface

(see Figure 5.8). Similar observations have been reported not only in the case of pure Marangoni

flow [18, 40] but also in the case of thermal-solutal Marangoni flow [57, 95] with an adiabatic free

surface assumption.

The sequence and difference of the phase lag depend on the intensity of thermal radiation. In

the case of Θa = -0.5, as shown in Figure 5.15(a), the velocity oscillation is behind the temperature

and concentration oscillations in the time phase, while the contrary sequence is observed at Θa

= 1.5. In addition, the same frequencies are obtained in the frequency spectra as shown in Fig-

ure 5.15(a), and there are three main peaks with the values of F1 = 255.1 and F2 = 2F3/3 = 2F1.

Therein, F1 is the dimensionless fundamental frequency, F2 and F3 are the harmonics frequencies.

However, at higher Θa, the maximum temperature gradient is close to the right sidewall, and the

interactive effect of thermal and solutal Marangoni flows becomes stronger. This results in more

complicated frequency spectra and a smaller fundamental frequency, as shown in Figure 5.15(b).

Figure 5.16 shows the variation of frequency value with the thermal Marangoni number at dif-

ferent free surface conditions. It can be seen that the frequency value with respect to the adiabatic

case almost coincide with the result of Θa = 0.5 at a small thermal Marangoni number, and the

difference of that becomes larger at a higher thermal Marangoni number due to the enhanced ra-

diative heat transfer. In addition, with the increase of Marangoni number, the 3D disturbance gets

stronger, as shown in Figure 5.17. The transition from the oscillatory flow to the quasi-oscillatory

flow occurs, and it results in the occurrence of a sudden drop in the frequency, while there are
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(a) Θa = 0.5

(b) Θa = 1.5

Figure 5.15 Time variations of temperature Θ, concentration Φ, and the longitudinal velocity Vy
at the sampling point P (left) and their frequency spectra (right) at MaT = 4× 104. (a) Θa = 0.5,
and (b) Θa = 1.5.
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Figure 5.16 Variation of the oscillation frequency F with the thermal Marangoni number MaT for
different free surface conditions at the sampling point P.

Figure 5.17 Time dependency of the concentration Φ at various thermal Marangoni numbers
MaT at the sampling point P at Θa = 0.
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no notable variations for Θa = 1.5. Note that in Figure 5.16 the frequency drop at Θa = 1 is also

accompanied by the transition of wave pattern from oscillatory mode I to oscillatory mode III (see

flow map in Figure 5.1).
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CHAPTER 6

CONCLUSIONS AND FUTURE PERSPECTIVES

6.1 Pure Marangoni convection with a linear solutal boundary condition

This work deals with the characterstics of Marangoni convection developing in a rectangular

cavity subjected to a linear solutal boundary condition. A series of three-dimensional simulations

are performed with two Schmidt number values (moderate and high) (Sc = 10 and 100). The

results exhibit some unique characteristics compared with those of previous studies based on a

constant boundary condition. The following conclusions are drawn from the present study:

(1) At a relatively small solutal Marangoni number, the basic flow is steady, and the flow struc-

tures remain symmetric along the diagonals of the domain. Small secondary vortices are em-

bedded into the liquid layer, which has a significant influence on the concentration distribu-

tion. Also, the number of secondary vortices depends on the levels of the solutal Marangoni

and the Schmidt numbers.

(2) Comparing with the oscillatory flows develop using CBC (constant boundary condition),

one can see that the disturbance energy is considerably less at all levels of MaC values

considered, although a backward transition from chaotic to oscillatory is observed with the

use of LBC (linear boundary condition) for a moderate Schmidt number at MaC = 3× 104.

In addition, the concentration distribution displays more uniformity on the bottom surface.

(3) At higher solutal Marangoni number values, the steady flow evolves into three types of os-

cillatory flows, namely, SW1 (symmetric along diagonals AB and CD), RW (rotating wave),

and SW2 (symmetric only along diagonal AB) at a moderate Schmidt number. However,

in the case of a higher Schmidt number, the flow bifurcates orderly to SW1, then to SW3

(symmetric only along diagonal CD), and finally to SW2. It is worth noting that the RW

does not appear during the flow evolution, resulting from the coupling effect of the dominant

and secondary waves.
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(4) The concentration fluctuations usually first appear in the liquid layer due to the sudden

change in flow direction. In addition, at the higher solutal Marangoni number values, due to

the effect of cavity walls, the wave patterns undergo expansion, separation, squeezing, and

merging during propagation, resulting in the occurrence of patterns in the forms of spline-

like, horseshoe-like, and wedge-like.

The simulation results show that the Marangoni convection developing in a rectangular cavity,

that is subjected to a liner solutal boundary condition, exhibits more complex flow and concentra-

tion characteristics compared to the findings of previous studies in similar systems that were sub-

jected to a constant boundary condition. This shows that the selection of a concentration boundary

condition needs further studying in order to gain a deeper understanding of the role of Marangoni

convection in industrial processes such as painting and drying.

6.2 Thermal-solutal Marangoni convection with mutually perpendicular temperature and
concentration gradients

Numerical simulations are carried out to investigate the thermal-solutal Marangoni convection

that is subjected to mutually perpendicular temperature and concentration gradients. Basing on the

simulation results, the main conclusions are drawn:

(1) At the relatively small solutal Marangoni number, solutal Marangoni convection is greatly

affected by the thermal Marangoni effect. The basic flow evolves into three types of steady

flows, namely a longitudinal surface flow, an oblique stripe flow, and a lateral surface flow,

at the higher thermal Marangoni number values.

(2) With the increase of thermal Marangoni number, the critical solutal Marangoni number

firstly increases and then decreases due to the change of relative contributions of the thermal

and solutal Marangoni effect, as shown in Figure 4.1.

(3) Once the flow becomes unstable, the concentration fluctuation on the free surface is similar

to the temperature fluctuation. The propagation directions of wave patterns depend on the

coupling thermal–solutal Marangoni effect. Also, a backward transition from chaotic to
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oscillatory is encountered at MaT = 3 × 104. The Marangoni flow becomes completely

chaotic at higher solutal Marangoni number values.

(4) Oscillatory standing wave and traveling wave are observed not only in the rectangular cav-

ity but also in the cylindrical configurations. However, owing to the effect of cavity wall,

the flow pattern in a cylindrical configuration could develop more sufficiently and shows

different characteristics.

Thermal-solutal Marangoni convection developing in a rectangular cavity that is subjected to

mutual perpendicular temperature and concentration gradients have shown significant difference

from the findings of previous studies in similar setups that were subjected to mutual parallel ther-

mal and concentration gradients. Results show that the relationship between the directions of

imposed temperature and concentration gradients needs to be further examined for a deeper under-

standing of the subject.

6.3 Thermal-solutal Marangoni convection under radiative heat transfer

A series of three-dimensional simulations under the effect of radiative heat transfer have been

carried out on the thermal-solutal Marangoni convection in a rectangular cavity that is subjected

to mutually perpendicular temperature and concentration gradients. The following conclusions are

obtained from the analysis.

(1) For the basic flow, with the increase of ambient temperature, the maximum temperature

gradient first decreases then increases, and the positions of that transit from the left to right

sidewalls, which in turn greatly affects the concentration and velocity fields in the whole

system.

(2) Radiative heat transfer has significant influence on the stability of thermal-solutal Marangoni

convection. With the transition from heat loss to heat gain, the critical Marangoni number

first decreases and then increases due to the coupling effects of the thermal radiation and

thermal-solutal Marangoni flow.
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(3) Once the flow destabilizes, the fluctuations of temperature and concentration are observed

on the free surface in the forms of hydrothermal wave and hydrosolutal wave. Two different

propagation directions of wave patterns coexist on the free surface due to the equal overall

contributions of thermal and solutal effects, while the associated directions of wave propaga-

tion highly depend on the intensity of radiative heat transfer. Furthermore, a frequency drop

suddenly appears at a higher thermal Marangoni number due to the more complex interactive

effects of thermal and solutal Marangoni flows.

We can conclude that the present numerical results under the effect of radiative heat transfer ex-

hibits more unique characteristics compared to the findings of previous studies in similar systems

that used an assumption of adiabatic free surface. Results show that instabilities of thermal-solutal

Marangoni flow, which is crucial for the quality of final products in applications, are greatly af-

fected by the intensity of thermal radiation, and exhibits different characteristics in the cases of heat

loss and heat gain. Such a study would be beneficial for the industrial processes such as material

welding, glass production, and crystal growth, for better design and high-quality production.

6.4 Future perspectives

This thesis numerically demonstrated the instabilities on Marangoni convection in a shallow

rectangular cavity with various boundary conditions. However, owing to the limited time and

heavy computational workload, there are still some aspects that can be further studied.

(1) Note that, the fluid properties would have significant effects on flow characteristics, while

only low Prandtl number and Schmidt number fluids are considered on the thermal-solutal

Marangoni flow in the present study. In order to examine the instabilities of Marangoni flow

with different working fluids in the case of thermal radiation, the effect of fluid properties

needs to be considered.

(2) The convective heat transfer is also an important component of interfacial heat transfer and

has a significant effect on the heat transfer in the whole system. Thus, the relative contribu-

tion of convective and radiative heat transfer would also be further investigated.
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(3) The two free surfaces system is a potential way to realize a new kind of crystallization

process of materials, to avoid the liquid being contaminated by impurities supplied from the

solid. The characteristic on thermal-solutal Marangoni flow with two free surfaces is hoped

to examined, in order to provide the theoretical foundations for perfecting the crystal growth

process.
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λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . eigenvalue
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λi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . growth/decay rate

λr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frequency by DMD

µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dynamic viscosity, kg/(m·s)

µi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th eigenvalue

ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kinematic viscosity, m2/s

σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . surface tension, N/m

Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . diagonal matrix

σC . . . . . . . . . . . . . . . . . . . . . . . . . . . solutal coefficient of surface tension, N/m

σSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stefan-Boltzmann constant, W/(m2·K4)

σT . . . . . . . . . . . . . . . . . . . . . . temperature coefficient of surface tension, N/(m·K)

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless time

τp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless time of period

ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . propagation angle of wave pattern, deg

Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless concentration

ΦMean . . . . . . . . . . . . . . . . . . . . . . . dimensionless concentration of time-averaged

Superscripts

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . conjugate transpose of a matrix

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N temporal flow fields

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transpose of a matrix

Subscripts

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ambient

cri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . critical
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C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . solutal

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . high

l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . low

mag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . magnitude

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . thermal

x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless x coordinate

y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless y coordinate

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless z coordinate
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